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1. Introduction      

The design of most process control is essentially a dynamic multi-objective optimization 
problem (Meadowcroft et al., 1992), sometimes with nonlinear characters, and in which both 
economic benefit and social benefit should be considered. Commonly speaking, there are 
contradictory objectives such as quantity of products, quality of products, safety of 
manufacturing, cost of manufacturing, environment protection and so on. Since the different 
relative importance of these objectives cannot be ignored in the process of the controller 
design, we should manage the different priority of each objective correctly and exactly. 
Therefore, multivariable process control could be formulated as a complicated dynamic 
multi-objective optimization problem. 
Traditionally, a multi-objective control problem could be transformed into a single-objective 
dynamic optimization with the quadratic objective function, where the weights denote the 
different relative importance of different objectives. This method is easy to understand, but 
the value of the weight coefficients usually could be only decided by try-and-error method, 
based on engineering experiences, repeating simulations and other information, while there 
is no accurate theoretical analysis of these weight coefficients yet. So it can be seen that, the 
design process of the traditional method is complicated and time-consuming indeed. 
Especially, when the situation of manufacturing changes (such as sudden load increasing of 
a power supplier and so on), it is very hard for operators to renew the weights rapidly. 
Therefore, a new framework of multi-objective controller is desired, it should be driven by 
the relative importance of different objectives, which reflect the practical requirement of 
control problems, and it also should be convenient to redesign for engineers and operators, 
when the values or priorities of the objectives are changed.  
Using lexicographic method, which also called completely stratified method, Meadowcroft 
et al. proposed a priority-driven framework of controller: Modular Multivariable Controller 
(MMC), and analyzed its steady-state properties (Meadowcroft et al., 1992). It sorts 
objectives sequentially according to their relative importance, and then satisfies them as 
many as possible in the corresponding control modules by the order as Fig. 1., where one 
module handles with only one objective. Later, because of its advantages, researchers have 
extended MMC to the dynamic optimization of linear systems with model predictive control 
(MPC) and other controllers in past years (Ocampo-Martinez et al., 2008, Wu et al., 2000).  
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Fig. 1. Lexicographic structure of Modular Multivariable Controller 
 
While has the mentioned advantages, the lexicographic structure still has some serious 
problems. First, in this structure, the priorities of objectives are absolute and rigid, if an 
objective cannot be completely satisfied (usually a objective with a setpoint form or an 
extremum form), the objectives with lower priorities than it will not be considered any 
more, even if they can be satisfied without any bad influence on other objectives. Second, in 
some practical cases, it is hard to distinguish the difference on priorities between some 
“parallel objectives”, and it is also not necessary indeed. In practical need, the number of 
priorities is no need to equals to the number of objectives, it can be smaller, that means a 
certain priority may have several objectives. So sometimes, the partially stratified structure 
is more flexible than completely stratified structure (lexicographic structure), the number of 
priorities could be determined by the essential control problem, and the objectives with 
relatively lower importance can be handled in a same priority together for simplicity. 
Besides the structure of the controller, the control algorithm is also important in multi-
objective control nowadays. Since the control demand of modern process industry is 
heightening continuously, nonlinearity of systems cannot be ignored in controller design, to 
utilize the advantages of MPC in process control, nonlinear model predictive control 
(NMPC) now are developing rapidly (Alessio & Bemporad, 2009, Cannon, 2004). Naturally, 
for multi-objective NMPC in many industrial cases, the priority-driven method is also 
necessary. We have tried to combine lexicographic structure (or partially stratified structure) 
and NMPC directly, as dynamic MMC of linear systems (Ocampo-Martinez et al., 2008, Wu 
et al., 2000). But the nonlinear character makes it difficult to obtain analytic solution of 
control problem, and the modular form for stratified structure seems to be too complex for 

 

nonlinear systems in some extent. Both these facts lead us to find a new way for the 
nonlinear multi-objective control problem. Genetic algorithm (GA) now is recognized as an 
efficient computing means for single-objective NMPC already (Yuzgec et al., 2006), and it 
also can be used to solve lexicographic optimization (Coello, 2000). So, in this chapter, a 
series of dynamic coefficients are used to make up a combined fitness function of GA, which 
makes GA be able to handle lexicographic optimization or partially stratified optimization 
in multi-objective NMPC. It can solve the nonlinear multi-objective control problem in the 
same way as MMC, but with a simple structure and much little computational load.  
Since the partially stratified structure could be modified from lexicographic structure easily 
(or lexicographic structure can be seen as a special case of partially stratified structure), in 
this chapter, we will introduce lexicographic method as the main content, then the 
corresponding content of partially stratified method can be obtained directly. The rest of this 
chapter is organized as follow, Section 2 will introduce the basic theory of lexicographic 
optimization and partially stratified optimization, then the modified GA for them will be 
proposed in Section 3, lexicographic NMPC and partially stratified NMPC based on the 
proposed GA will be studied in Section 4, using the control problem of a two-tank system as 
a case study. At last, conclusions and acknowledgements will be done in Section 5. 

 
2. Lexicographic optimization and partially stratified optimization 

2.1 Lexicographic optimization 
Lexicographic optimization is a strategy of multivariable optimization derived from 
priority-driven thought, without loss of generality, we just considers the minimization of 
multi-objective problem in this chapter. 
Suppose a complex goal }g,,g,{gg n21   contains n objectives, and the subscript also 
describe the relative importance of each objective, where 1g is the most important one and 

1ig  is always more important than ig . The solution }g,,g,g{g )1(
n
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i gmin gg   hold 

for certain nk   and all ki  . It means that, before priority k , all objectives are satisfied in 
both )1(g  and )2(g , but on priority k, )1(g is preferred to )2(g , so it is a better solution for the 
whole multi-objective optimization, no matter what will be on the objectives of lower 
priorities than kg . Thus the formulation of the lexicographic minimization problem can be 
written as follow (Meadowcroft et al., 1992):  

n,2,1k,gmin k   
  s. t.  ki,gmin g ii    (1) 
Therefore, lexicographic optimization would be defined as the computing process of a 
lexicographic minimum solution of a multi-objective problem (or sometimes maybe a 
maximum solution). This solution usually is not the optimal solution of any quadratic 
objective function and vice versa. As mentioned in Section 1, in lexicographic optimization, 
one priority can have only one objective, so it also called completely stratified optimization. 
If needed, the readers can find more about the definition of lexicographic optimization from 
other references. 

 

www.intechopen.com



Multi-objective Nonlinear Model Predictive Control: Lexicographic Method 169

 

Initialize
Feasible 

Control Set

Module 1

Module 2

Module n

Process 

...

1U

0U

2U

1nU

nU

Control
Objectives

&
Constraints

System’s
Information

 
Fig. 1. Lexicographic structure of Modular Multivariable Controller 
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2.2 Partially stratified optimization 
Still suppose the complex goal }g,,g,g{g n21  contains n objectives, and all objectives 
need to be minimized. If these n objectives can be divided into m priorities ( nm  ), the 
complex goal can be rewritten as }G,,G,G{G m21  , where 

j
ijiji gG  is a combined 

goal of a certain priority i that contains j goals, and the goals in the same priority still could 
be combined with weight coefficients. 
Because the relation between priorities is still lexicographic, the subscript of iG  also 
describes the relative importance, where 1G is the most important and 1iG  is always more 

important than iG . The solution }G,,G,G{G )1(
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mk   and all ki  . Similar to de definition of lexicographic minimization in (1), the 
partially stratified optimization now can be defined as the computing process of a partially 
stratified minimum solution: 

m,2,1k,Gmin k   
 s. t.  ki,GminG ii    (2) 
 
Simply speaking, partially stratified multi-objective optimization here means lexicographic 
method between priorities and traditional weight coefficients method on goals in the same 
priority. Specially, if the number of priorities equals to the number of goals ( nm  ), 
partially stratified multi-objective optimization will equal to lexicographic multi-objective 
optimization. 

 
3. GA for lexicographic optimization and partially stratified optimization 

3.1 GA for lexicographic optimization 
In GA, the survival opportunity and competitiveness of individuals are only determined by 
fitness function. So the key to a lexicographic genetic algorithm is a special fitness function, 
which is suitable for lexicographic optimization for multi-objective control. 
Still suppose a complex goal }g,,g,g{g n21  contains n objectives, and the fitness 
function of each objective is ni1],1,0[Fi  , while 1Fi   means objective i has been 
completely satisfied. Since lexicographic optimization can only deal with a certain objective 
when all the objectives with higher priority have been achieved already, a series of dynamic 
coefficients is introduced to describe this decision procedure: 

  










 

otherwise0
ni2,1FFF1

1i1

1i21i    (3) 

Here, since 1F  is the fitness function of the most important objective, which has no objective 
with higher priority than itself, so 11   should be held all the time. Then the combined 
fitness function could be: 

 


n

1i
iinn2211 FFFFF    (4) 

 

Using this lexicographic combined fitness function in multi-objective GA, the lexicographic 
optimum solution can be obtained directly, and there are no special rules on coding method, 
crossover operator, mutation operator or any other parameters of GA. Constraints on the 
value of individuals can be matched by lethal penalty or other kinds of penalties in GA, and 
to ensure the solution’s convergence to the optimal solution, the best individual should be 
remained in every evolution. For the convenience to readers, we will describe the steps of 
this modified GA for lexicographic optimization briefly as follow: 

Step 1: create M initial parent individuals randomly. 
Step 2: create M offspring individuals by crossover operator, mutation operator 

with proper operation on constraints. 
Step 3: compute the fitness of all the 2M individuals (parents and offspring) 

respectively by (4). 
Step 4: choose M individuals with higher fitness among the 2M individuals as new 

parent individuals. 
Step 5: if the ending condition for evolution computation is matched, output the 

individual of the highest fitness, or return to Step 2. 

 
3.2 GA for partially stratified optimization and some discussion 
The only difference between GA for lexicographic optimization (LMGA) and partially 
stratified GA (PSMGA) is the definition of iF , in LMGA it is the fitness function for a single 
objective, but in PSMGA it is the fitness function for all the objectives in a same priority. 
Since the form of fitness fuction is depend on the problem will be solved, the fitness fuction 
of NMPC based on proposed GA will be introduced in detail later in the Section 4. 
Both LMGA and PSMGA are quite different from many other multi-objective GA. 
Traditional multi-objective GA usually need to find out Pareto Surface (Coello, 2000), which 
contains a set of Pareto optimal solutions, then choose a best solution by the given criterion. 
But LMGA and PSMGA don’t need this additional selection after evolutionary computing, 
since the optimal solution of the multi-objective optimization can be obtained directly. For 
controller design, what we need is just an optimal solution, no matter what the Pareto 
Surface is, so PSMGA and LMGA’s disposal is quite suitable and time-saving.  
In LMGA and PSMGA, if  the priority order of objectives changes, we only need  to modify 
the logical descriptions of the priorities in the combined fitness function, and if the value of 
objectives changes, we only need to modify the numerical description of the combined 
fitness function, while there is no parameters need to be tuned. 

 
4. Multi-objective NMPC based on GA: a case study 

4.1 The model of the two-tank system 
To be used in this chapter to carry out simulations, the nonlinear model of a two-tank 
system in Fig. 2. would be introduced here as (5), which is obtained by mechanism 
modelling, and the sample time of this discrete system is 1 second. Here outputs 

)k(y),k(y 21  denote the height of water in two tanks 1T  and 2T  respectively, and control 
input )k(u  is the water fed into tank 1T  from the valve 3V . The manual valve 1V  and 2V  
are kept open at the maximal position all the time, and magnetic valve  3V  is controlled by 
PC to be the actuator of the system, to control the fluid speed of water from pulp 1P . (5-1) 
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and (5-2) is the fluid mechanical character of  1T  and 2T  and (5-3) is the constraints on 
outputs, input, and the increment of input respectively. For convenience, all the variables in 
the model are normalized to the scale 0%-100%. 
 

 
Fig. 2. Structure of the two-tank system 
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4.2 The basic control problem of the two-tank system 
The NMPC of the two-tank system would have two forms of objective functions, according 
to two forms of practical goals in control problem: setpoint and restricted range. 
For goals in the form of restricted range 2,1i],y,y[)k(y:g highilowii   , suppose the 

predictive horizon contains p sample time, k is the current time and the predictive value at 
time k of future output is denoted by )k|(ŷ i  , the objective function can be chosen as:  
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where the positive function and negative function are 
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In (6), if the output is in the given restricted range, the value of objective function )k(J  is 
zero, which means this objective is completely satisfied. 
For goals in the form of setpoint 2,1i,y)k(y:g setii   , since the output cannot reach the 
setpoint from recent value immediately, we can use the concept of reference trajectories, and 

 

the output will reach the set point along it. Suppose the future reference trajectories of 
output )k(y i  are 2,1i),k(w i  , in most MPC (NMPC), these trajectories often can be set as 
exponential curves as (7) and Fig. 3. (Zheng et al., 2008) 
 2,1i,pj1,y)1()1jk(w)jk(w setiiiii    (7) 
where 

)k(y)k(w ii  and 10 i  . 
Then the objective function of a setpoint goal would be: 
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Fig. 3. Description of exponential reference trajectory 

 
4.3 The stair-like control strategy 
To enhance the control quality and lighten the computational load of dynamic optimization 
of NMPC, especially the computational load of GA in this chapter, stair-like control strategy 
(Wu et al., 2000) could be used here. Suppose the first unknown increment of instant control 
input  is )1k(u)k(u)k(u  , and the stair constant   is a positive real number, in stair-
like control strategy, the future control inputs could be decided as follow (Wu et al., 2000, 
Zheng et al., 2008): 
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Fig. 4. Description of stair-like control strategy 
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and (5-2) is the fluid mechanical character of  1T  and 2T  and (5-3) is the constraints on 
outputs, input, and the increment of input respectively. For convenience, all the variables in 
the model are normalized to the scale 0%-100%. 
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4.2 The basic control problem of the two-tank system 
The NMPC of the two-tank system would have two forms of objective functions, according 
to two forms of practical goals in control problem: setpoint and restricted range. 
For goals in the form of restricted range 2,1i],y,y[)k(y:g highilowii   , suppose the 

predictive horizon contains p sample time, k is the current time and the predictive value at 
time k of future output is denoted by )k|(ŷ i  , the objective function can be chosen as:  
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In (6), if the output is in the given restricted range, the value of objective function )k(J  is 
zero, which means this objective is completely satisfied. 
For goals in the form of setpoint 2,1i,y)k(y:g setii   , since the output cannot reach the 
setpoint from recent value immediately, we can use the concept of reference trajectories, and 

 

the output will reach the set point along it. Suppose the future reference trajectories of 
output )k(y i  are 2,1i),k(w i  , in most MPC (NMPC), these trajectories often can be set as 
exponential curves as (7) and Fig. 3. (Zheng et al., 2008) 
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Fig. 3. Description of exponential reference trajectory 

 
4.3 The stair-like control strategy 
To enhance the control quality and lighten the computational load of dynamic optimization 
of NMPC, especially the computational load of GA in this chapter, stair-like control strategy 
(Wu et al., 2000) could be used here. Suppose the first unknown increment of instant control 
input  is )1k(u)k(u)k(u  , and the stair constant   is a positive real number, in stair-
like control strategy, the future control inputs could be decided as follow (Wu et al., 2000, 
Zheng et al., 2008): 
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Fig. 4. Description of stair-like control strategy 
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With this disposal, the elements in the future sequence of control input  
)1pk(u)1k(u)k(u    are not independent as before, and the only unknown 

variable here in NMPC is the increment of instant control input )k(u , which can determine 
all the later control input. The dimension of unknown variable in NMPC now decreases 
from pi   to i remarkably, where i is only the dimension of control input, thus the 
computational load is no longer depend on the length of the predictive horizon like many 
other MPC (NMPC). So, it is very convenient to use long predictive horizon to obtain better 
control quality without additional computational load under this strategy. Because MPC 
(NMPC) will repeat the dynamic optimization at every sample time, and only 

)1k(u)k(u)k(u   will be carried out actually in MPC (NMPC), this strategy is surely 
efficient here. At last, in stair-like control strategy, it also supposes the future increment of 
control input will change in the same direction, which can prevent the frequent oscillation of 
control input’s increment, while this kind of oscillation is very harmful to the actuators of 
practical control plants. A visible description of this control strategy is shown in Fig. 4. 

 
4.4 Multi-objective NMPC based on GA 
Based on the proposed LMGA and PSMGA, the NMPC now can be established directly. 
Because NMPC is an online dynamic optimal algorithm, the following steps of NMPC will 
be executed repeatedly at every sample time to calculate the instant control input. 

Step 1: the LMGA (PSMGA) initialize individuals as different )k(u  (with 
population M) under the constraints in (5-3) with historic data )1k(u  . 

Step 2: create  M offspring individuals by evolutionary operations as mentioned in 
the end of Section 3.1. In control problem, we usually can use real number coding, linear 
crossover, stochastic mutation and the lethal penalty in GA for NMPC. Suppose 21 P,P  are 
parents and 1 2,O O  are offspring, linear crossover operator 10   and stochastic 
mutation operator   is Gaussian white noise with zero mean, the operations can be 
described briefly as bellow: 
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Step 3: predictions of future outputs ( )k|pk(ŷ)k|2k(ŷ)k|1k(ŷ iii   , 
i=1,2) are carried out by (5-1) and (5-2) on all the 2M individuals (M parents and M 
offspring), and their fitness will be calculated. In this control problem, the fitness function F  
of each objective is transformed from its objective function J  easily as follow, to meet the 
value demand of ]1,0[F , in which J  is described by (6) or (8): 
 

 )1J(1F    (11) 
 

To obtain the robustness to model mismatch, feedback compensation can be used in 
prediction, thus the latest predictive errors 2,1i),1k|k(ŷ)k(y)k(e iii   should be added 
into every predictive output pj1 ,2,11),k|jk(ŷi  . 

Step 4: the M individuals with higher fitness in the 2M individuals will be 
remained as new parents.  

 

Step 5: if the condition of ending evaluation is met, the best individual will be the 
increment of instant control input )k(u  of NMPC, which is taken into practice by the 
actuator. Else, the process should go back to Step 2, to resume dynamic optimization of 
NMPC based on LMGA (PSMGA).  

 
4.5 Simulations and analysis of lexicographic multi-objective NMPC 
First, the simulation about lexicographic Multi-objective NMPC will be carried out. Choose 
control objectives as: %]60%,40[)k(y:g 11  , %]40%,20[)k(y:g 22  , %30y:g 23  . Consider 
the physical character of the system, two different order of priorities can be chosen as: [A]: 

321 ggg  , [B]: 312 ggg  , and they will have the same initial state as %80)0(y1  , 
%0)0(y2   and %20)0(u  . Parameters of NMPC are 85.0,95.0   for both 1y  and 2y , 

and parameters of GA are 9.0 , while   is a zero mean Gaussian white noise, whose variance 
is 5. Since the feasible control input set is relatively small in our problem according to constraints 
(5-3), it is enough to have only 10 individuals in our simulation, and they will evolve for 20 
generations. While in process control practice, because the sample time is often has a time scale of 
minutes, even hours, we can have much more individuals and they can evolve much more 
generations to get a satisfactory solution. (In following figures, dash-dot lines denote 21 g,g , dot 
line denote 3g  and solid lines denote u,y,y 21  )  
Compare Fig. 5. and Fig. 6. with Fig. 7. and Fig. 8., although the steady states are the same in 
these figures, the dynamic responses of them are with much difference, and the objectives 
are satisfied as the order appointed before respectively under all the constraints. The reason 
of these results is the special initial state: )0(y1  is higher than 1g (the most important 
objective in order [A]: 321 ggg  ), while )0(y2  is lower than 2g  (the most important 
objective in order [B]: 312 ggg  ). So the most important objective of the two orders must 
be satisfied with different control input at first respectively. Thus the difference can be seen 
from the different decision-making of the choice in control input more obviously: in Fig. 5. 
and Fig. 6. the input stays at the lower limit of the constraints at first to meet 1g , while in 
Fig. 7. and Fig. 8. the input increase as fast as it can to satisfy 2g  at first. The lexicographic 
character of LMGA is verified by these comparisons. 
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Fig. 5. Control simulation: priority order [A] and p=1 
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Fig. 5. Control simulation: priority order [A] and p=1 
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Fig. 6. Control simulation: priority order [A] and p=20 
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Fig. 7. Control simulation: priority order [B] and p=1 
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Fig. 8. Control simulation: priority order [B] and p=20 
 
And the difference in control input with different predictive horizon can also be observed 
from above figures: the control input is much smoother when the predictive horizon 

 

becomes longer, while the output is similar with the control result of shorter predictive 
horizon. It is the common character of NMPC.  
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Fig. 9. Control simulation: when an objective cannot be satisfied 
 
In Fig. 9., 1g is changed as %]80%,60[y1  , while other objectives and parameters are kept 
the same as those of Fig. 6., so that 3g  can’t be satisfied at steady state. The result shows that 

1y  will stay at lower limit of 1g  to reach set-point of 3g  as close as possible, when 1g  must 
be satisfied first in order [A]. This result also shows the lexicographic character of LMGA 
obviously. 
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Fig. 10. Control simulation:  when model mismatch 
 
Finally, we would consider about of the model mismatch, here the simulative plant is 
changed, by increasing the flux coefficient 0.2232 to 0.25 in (5-1) and (5-2), while all the 
objectives, parameters and predictive model are kept the same as those of Fig. 6. The result 
in Fig. 10. shows the robustness to model mismatch of the controller with error 
compensation in prediction, as mentioned in Section 4.4. 
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Fig. 6. Control simulation: priority order [A] and p=20 
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Fig. 7. Control simulation: priority order [B] and p=1 
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Fig. 8. Control simulation: priority order [B] and p=20 
 
And the difference in control input with different predictive horizon can also be observed 
from above figures: the control input is much smoother when the predictive horizon 

 

becomes longer, while the output is similar with the control result of shorter predictive 
horizon. It is the common character of NMPC.  
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Finally, we would consider about of the model mismatch, here the simulative plant is 
changed, by increasing the flux coefficient 0.2232 to 0.25 in (5-1) and (5-2), while all the 
objectives, parameters and predictive model are kept the same as those of Fig. 6. The result 
in Fig. 10. shows the robustness to model mismatch of the controller with error 
compensation in prediction, as mentioned in Section 4.4. 
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4.6 Simulations and analysis of partially stratified multi-objective NMPC 
To obtain evident comparison to Section 4.5, simulations are carried out with the same 
parameters ( 85.0,95.0   for both 1y  and 2y , predictive horizon p=20 and the same 
GA parameters), and the only difference is an additional objective on 1y  in the form of a 
setpoint. 
The four control objectives now are %]60%,40[)k(y:g 11  , %]40%,20[)k(y:g 22  , 

%30y:g 23  ,  %50y:g 14  , and then choose the new different order of priorities as: [A]: 

4321 gggg  , [B]: 4312 gggg  , if we still use lexicographic multi-objective NMPC 
as Section 4.5, the control result in Fig. 11. and Fig. 12. is completely the same as Fig. 6. and 
Fig. 8., when there are only three objectives 321 ggg ，， . That means, the additional 
objective 4g  (setpoint of 1y ) could not be considered by the controller in both situations 
above, because the solution of 3g  (setpoint of 2y ) is already a single-point set of u . (In 
following figures, dash-dot lines denote 21 g,g , dot line denote 43 g,g  and solid lines denote 

u,y,y 21  ) 
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Fig. 11. Control simulation: priority order [A] of four objectives, NMPC based on LMGA  
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Fig. 12. Control simulation: priority order [B] of four objectives, NMPC based on LMGA 

 

In another word, in lexicographic multi-objective NMPC based on LMGA, if optimization of 
an objective uses out all the degree of freedom on control inputs (often an objective in the 
form of setpoint), or an objective cannot be completely satisfied (often an objective in the 
form of extremum, such as minimization of cost that can not be zero), the objectives with 
lower priorities will not be take into account at all. But this is not rational in most practice 
cases, for complex process industrial manufacturing, there are often many objectives in the 
form of setpoint in a multi-objective control problem, if we handle them with the 
lexicographic method, usually, we can only satisfy only one of them. Take the proposed 
two-tank system as example, 3g  and 4g  are both in the form of setpoint, seeing about the 
steady-state control result in Fig. 13. and Fig. 14., if we want to satisfy %30y:g 23  , then 

1y  will stay at 51.99%, else if we want to satisfy %50y:g 14  , then 2y  will stay at 28.92%, 
the errors of the dissatisfied output are both more than 1%.  
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Fig. 13. Steady-state control result when 3g  is completely satisfied 
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Fig. 14. Steady-state control result when 4g  is completely satisfied 
 
In the above analysis, the mentioned disadvantage comes from the absolute, rigid 
management of lexicographic method, if we don’t develop it, NMPC based on LMGA can 
only be used in very few control practical problem. Actually, in industrial practice, 
objectives in the form of setpoint or extremum are often with lower importance, they are 
usually objectives for higher demand on product quality, manufacturing cost and so on, 
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0 20 40 60 80 100
20%

40%

60%

80%

Y
1

0 20 40 60 80 100
0%

20%

40%

60%

Y
2

0 20 40 60 80 100
0%

50%

100%

Time (second)

U

 
Fig. 12. Control simulation: priority order [B] of four objectives, NMPC based on LMGA 

 

In another word, in lexicographic multi-objective NMPC based on LMGA, if optimization of 
an objective uses out all the degree of freedom on control inputs (often an objective in the 
form of setpoint), or an objective cannot be completely satisfied (often an objective in the 
form of extremum, such as minimization of cost that can not be zero), the objectives with 
lower priorities will not be take into account at all. But this is not rational in most practice 
cases, for complex process industrial manufacturing, there are often many objectives in the 
form of setpoint in a multi-objective control problem, if we handle them with the 
lexicographic method, usually, we can only satisfy only one of them. Take the proposed 
two-tank system as example, 3g  and 4g  are both in the form of setpoint, seeing about the 
steady-state control result in Fig. 13. and Fig. 14., if we want to satisfy %30y:g 23  , then 

1y  will stay at 51.99%, else if we want to satisfy %50y:g 14  , then 2y  will stay at 28.92%, 
the errors of the dissatisfied output are both more than 1%.  
 

100 110 120 130 140 150
30%

40%

50%

60%

70%

Y
1

100 110 120 130 140 150
10%

20%

30%

40%

50%

Time (second)

Y
2

 
Fig. 13. Steady-state control result when 3g  is completely satisfied 
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Fig. 14. Steady-state control result when 4g  is completely satisfied 
 
In the above analysis, the mentioned disadvantage comes from the absolute, rigid 
management of lexicographic method, if we don’t develop it, NMPC based on LMGA can 
only be used in very few control practical problem. Actually, in industrial practice, 
objectives in the form of setpoint or extremum are often with lower importance, they are 
usually objectives for higher demand on product quality, manufacturing cost and so on, 
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which is much less important than the objectives about safety and other basic 
manufacturing demand. Especially, for objectives in the form of setpoint, under many kinds 
of disturbances, it always can not be accurately satisfied while it is also not necessary to 
satisfy them accurately. 
A traditional way to improve it is to add slack variables into objectives in the form of setpoint or 
extremum. Setpoint may be changed into a narrow range around it, and instead of an extremum, 
the satisfaction of a certain threshold value will be required. For example, in the two-tank 
system’s control problem, setpoint %30y:g 23   could be redefined as %1%30y:g 23  . 
Another way is modified LMGA into PSMGA as mentioned in Section 3, because sometimes 
there is no need to divide these objectives with into different priorities respectively, and they are 
indeed parallel. Take order [A] for example, we now can reform the multi-objective control 
problem of the two-tank system as: 443321321 ggggGGG  . Choose weight 
coefficients as 1,30 43  and other parameters the same as those of Fig. 6., while NMPC 
base on PSMGA has the similar dynamic state control result to that of NMPC based on LMGA, 
the steady state control result is evidently developed as in Fig. 15. and Fig. 16.,  1y  stays at 
50.70% and 2y  stays at 29.27%, both of them are in the 0.8% neighborhood of setpoint in 43 g,g . 
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Fig. 15. NMPC based on PSMGA: priority order [A] 
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Fig. 16. Steady-state control result of NMPC base on PSMGA 

 

4.7 Some discussions 
In the above simulative examples, there is only one control input, but for many practical 
systems, coordinated control of multi-input is also a serious problem. The brief discussions 
on multi-input proposed NMPC can be achieved if we still use priorities for inputs. If all the 
inputs have the same priority, in another word, it is no obvious difference among them in 
economic cost or other factors, we can just increase the dimension of GA’s individual. But, 
in many cases, the inputs actually also have different priorities: for certain output, different 
input often has different gain on it with different economic cost. The cheap ones with large 
gain are always preferred by manufacturers. In this case, we can form anther priority list, 
and then inputs will be used to solve the control problem one by one, using single input 
NMPC as the example in Section 4, that can divide an MIMO control problem into some 
SIMO control problems. 
We should point out that, the two kinds of stratified structures proposed in this paper are 
basic structures for multi-objective controllers, though we use NMPC to realize them in this 
chapter, they are independent with control algorithms indeed. For certain multi-objective 
control problem, other proper controllers and computational method can be used. 
Another point must be mentioned is that, NMPC proposed in this paper is based on LMGA 
and PSMGA, because it is hard for most NMPC to get an online analytic solution. But the 
LMGA and PSMGA are also suitable for other control algorithms, the only task is to modify 
the fitness function, by introducing the information from the control algorithm which will 
be used. 
At last, all the above simulations could been done in 40-200ms by PC (with 2.7 GHz CPU, 
2.0G Memory and programmed by Matlab 6.5), which is much less than the sample time of 
the system (1 second), that means controllers proposed in this chapter are actually 
applicable online. 

 
5. Conclusion 

In this chapter, to avoid the disadvantages of weight coefficients in multi-objective dynamic 
optimization, lexicographic (completely stratified) and partially stratified frameworks of 
multi-objective controller are proposed. The lexicographic framework is absolutely priority-
driven and the partially stratified framework is a modification of it, they both can solve the 
multi-objective control problem with the concept of priority for objective’s relative 
importance, while the latter one is more flexible, without the rigidity of lexicographic 
method. 
Then, nonlinear model predictive controllers based on these frameworks are realized based 
on the modified genetic algorithm, in which a series of dynamic coefficients is introduced to 
construct the combined fitness function. With stair–like control strategy, the online 
computational load is reduced and the performance is developed.  The simulative study of a 
two-tank system indicates the efficiency of the proposed controllers and some deeper 
discussions are given briefly at last. 
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