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1. Historical background 

Process control has become an integral part of process plants. An automatic controller must 
be able to facilitate the plant operation over a wide range of operating conditions. The 
proportional-integral (PI) or proportional-integral-derivative (PID) controllers are 
commonly used in many industrial control systems. These controllers are tuned with 
different tuning techniques to deliver satisfactory plant performance.  
 

 
Fig. 1. MPC multi-step prediction scheme. 
 
However, specific control problems associated with the plant operations severely limit the 
performance of conventional controllers. The increasing complexity of plant operations 
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together with tougher environmental regulations, rigorous safety codes and rapidly 
changing economic situations demand the need for more sophisticated process controllers.  
Model predictive control (MPC) is an important branch of automatic control theory. MPC 
refers to a class of control algorithms in which a process model is used to predict and 
optimize the process performance. MPC has been widely applied in industry (Qin and 
Badgwell, 1997). The idea of MPC is to calculate a control function for the future time in 
order to force the controlled system response to reach the reference value. Therefore, the 
future reference values are to be known and the system behavior must be predictable by an 
appropriate model. The controller determines a manipulated variable profile that optimizes 
some open-loop performance objective over a finite horizon extending from the current time 
into the future. This manipulated variable profile is implemented until a plant measurement 
becomes available. Feedback is incorporated by using the measurement to update the 
optimization problem for the next time step. Figure 1 explains the basic idea of MPC 
showing how the past input-output information is used to predict the future process 
behavior at the current time and how this information is extended to future to track the 
desired setpoint trajectory. The notation y, u and Ts refer process output, control action and 
sample time, respectively. 

 
2. Model predictive control scheme 

Model predictive control (MPC) refers to a wide class of control algorithms that use an 
explicit process model to predict the behavior of a plant. The most significant feature that 
distinguishes MPC from other controllers is its long range prediction concept. This concept 
enables MPC to perform current computations to account the future dynamics, thus 
facilitating it to overcome the limitations of process dead time, non-minimum phase 
behavior and slow dynamics. In addition, MPC exhibits superior performance by 
systematically handling constraints violation.  
 

 
Fig. 2. MPC block diagram. 

The fundamental framework of MPC algorithms is common for any kind of MPC schemes. 
The main differences in many MPC algorithms are the types models used to represent the 
plant dynamics and the cost function to be minimized. The multi-step model predictive 
control scheme shown in Figure 1 can be realized from the block diagram represented in 
Figure 2.  
The basic elements in the block diagram are defined as follows. An appropriate model is 
used to predict the process outputs, ( ), 1,....,y t i i N  over a future time interval known 
as prediction horizon, N. A sequence of control actions, u(t+j), j=1,…., m over the control 
horizon m are calculated by minimizing some specified objective which is a function of 
predicted outputs, y(t+i), set-point values, w(t+i) and control actions, u(t). The first control 
move, u(t) of the sequence is implemented and the calculations are repeated for the 
subsequent sampling instants. In order to account the plant-model mismatch, a prediction 
error, d(t), that is calculated based on plant measurement, y(t) and model prediction, ym(t) is 
used to update the  future predictions.  
In MPC, the control law generates a control sequence, which forces the future system 
response to be equal to the reference values. The system response is based on future control 
actions, model parameters and the actual system states. Many methods for updating the 
optimization problem are possible, such as estimating model parameters and/or states, 
inferring about disturbances etc. MPC design considers different types of process models. 
These include first principle models, auto regressive moving average models, polynomial 
models, neural network models, fuzzy models etc. The attraction for MPC is due to its 
capability of handling various constraints directly in the formulation through on-line 
optimization. A variety of model predictive control techniques have been reported for 
controlling the processes of various complexities.    
This chapter presents different linear and nonlinear model predictive controllers with case 
studies illustrating their application to real processes. 

 
3. Linear model predictive control 

Linear MPC (LMPC) algorithms employ linear or linearized models to obtain the predictive 
response of the controlled process. These algorithms include the Model Algorithmic Control 
(MAC) (Richalet et al., 1978), the Dynamic Matrix Control (DMC) (Cutler and Ramaker, 
1980) and the Generalized Predictive Control (GPC) (Clarke et al., 1987). These algorithms 
are all similar in the sense that they rely on process models to predict the behavior of the 
process over some future time interval, and the control calculations are based on these 
model predictions. The models used for these predictions have usually been derived from 
linear approximations of the process or experimentally obtained step response data. A 
survey of theory and applications of such algorithms have been reported by Garcia et al. 
(1989).  

 
3.1 LMPC design  
A classical autoregressive moving average (ARX) model structure that relates the plant 
output with the present and past plant input-output can be used to formulate a predictive 
model. The model parameters can be determined a priori by using the known input-output 
data to form a fixed predictive model or these parameters are updated at each sampling 
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inferring about disturbances etc. MPC design considers different types of process models. 
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process over some future time interval, and the control calculations are based on these 
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output with the present and past plant input-output can be used to formulate a predictive 
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time by an adaptive mechanism. The one step ahead predictive model can be recursively 
extended to obtain future predictions for the plant output. The minimization of a cost 
function based on future plant predictions and desired plant outputs generates an optimal 
control input sequence to act on the plant. The strategy is described as follows. 
 
Predictive model   
The relation between the past input-output data and the predicted output can be expressed 
by an ARX model of the form   
 
  y(t+1) = a1y(t) + . . . + anyy(t-ny+1) + b1u(t) +. . . . . . . + bnuu(t-nu+1)  (1) 
 
where y(t) and u(t) are the process and controller outputs at time t, y(t+1) is the one-step 
ahead model prediction at time t, a’s and b’s represent the model coefficients and the nu and 
ny are input and output orders of the system.    
 
Model identification  
 
The model output prediction can be expressed as 
            
  ym(t+1) =  xm(t)  (2) 
where 
  = [1 . . . ny 1 . . . nu]   (3) 
and  
  xm(t) = [y(t) . . . y(t-ny+1)  u(t) . . . u(t-nu+1)]T   (4)  
 
with   and    as  identified model parameters. 
One of the most widely used estimators for model parameters and covariance is the popular 
recursive least squares (RLS) algorithm (Goodwin and Sin, 1984). The RLS algorithm 
provides the updated parameters of the ARX model in the operating space at each sampling 
instant or these parameters can be determined a priori using the known data of inputs and 
outputs for different operating conditions. The RLS algorithm is expressed as  
 

   (t+1) =  (t)  + K(t) [y(t+1) - ym(t+1)]   
 K(t) = P(t) xm(t+1) / [1 +  xm(t+1)T P(t) xm(t+1)]  (5) 
 P(t+1) = 1/ [P(t) - {( P(t) xm(t+1) xm(t+1)T P(t)) / (1 +  xm(t+1)T P(t) xm(t+1))}]  
 

where (t) represents the estimated parameter vector,  is the forgetting factor, K(t) is the 
gain matrix and P(t) is the covariance matrix.  
 
Controller formulation   
 
The N time steps ahead output prediction over a prediction horizon is given by 
 

 1( )py t N    y(t+N-1)+...+nyy(t-ny+N)+1u(t+N-1)+...+nuu(t-nu+N)+err(t)  (6) 
 

where yp(t+N) represent the model predictions for N steps and err(t) is an estimate of the 
modeling error which is assumed as constant for the entire prediction horizon. If the control 
horizon is m, then the controller output, u after m time steps can be assumed to be constant. 

An internal model is used to eliminate the discrepancy between model and process outputs, 
error(t), at each sampling instant 
  error(t) = y(t) - ym(t)  (7) 
 

where ym(t) is the one-step ahead model prediction at time (t-1). The estimate of the error is 
then filtered to produce err(t) which minimizes the instability introduced by the modeling 
error feedback. The filter error is given by 
 

 err(t) = (1-Kf) err(t-1) + Kf  error(t)  (8) 
 

where Kf  is the feedback filter gain which has to be tuned heuristically. 
Back substitutions transform the prediction model equations into the following form 
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The elements f, g and e  are recursively calculated using the parameters  and  of  
Eq. (3). The above equations can be written in a condensed form as 
 

 Y(t) = F X(t) + G U(t) + E err(t)  (10)  
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 Y(t) = [yp(t+1) . . . yp(t+N)]T  (11)  
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 U(t) = [u(t) . . . u(t+m-1)]T  (13) 
 

11 12 1( 1)

11 12 2( 1)

1 12 ( 1)

  ..... 
  ..... 

:
:

  ..... 

ny nu

ny nu

N N N ny nu

f f f
f f f

F

f f f

 

 

 

 
 
 
   
 
 
  

 

11

21 21

1 2 3

1 2 3

0 0 ... 0
0 ... 0

. . . . .
   

. . . . .

. . . . .
...

. . . ... .

. . . ... .
   

. . . ... .
...

m m m mm

N N N Nm

g
g g

G
g g g g

g g g g

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

E =   [e1  . . . eN]T 

www.intechopen.com



Model predictive control of nonlinear processes 113
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In the above, Y(t) represents the model predictions over the prediction horizon, X(t) is a 
vector of past plant and controller outputs and U(t) is a vector of future controller outputs. If 
the coefficients of F, G and E are determined then the transformation can be completed. The 
number of columns in F is determined by the ARX model structure used to represent the 
system, where as the number of columns in G is determined by the length of the control 
horizon. The number of rows is fixed by the length of the prediction horizon. 
 
Consider a cost function of the form 
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where W(t) is a setpoint vector over the prediction horizon 
 
    W(t) = [ w(t+1) . .  .  . w(t+N)]T  (15)                          
 
The minimization of the cost function, J gives optimal controller output sequence 
            
 U(t) = [GTG + I ]-1GT[W(t) - FX(t) - Eerr(t)]  (16)                          
          
The vector U(t) generates control sequence over the entire control horizon. But, the first 
component of U(t) is actually implemented and the whole procedure is repeated again at the 
next sampling instant using latest measured information. 
Linear model predictive control involving input-output models in classical, adaptive or 
fuzzy forms is proved useful for controlling processes that exhibit even some degree of 
nonlinear behavior (Eaton and Rawlings, 1992; Venkateswarlu and Gangiah, 1997 ; 
Venkateswarlu and Naidu, 2001). 

 
3.2 Case study: linear model predictive control of a reactive distillation column 
In this study, a multistep linear model predictive control (LMPC) strategy based on  
autoregressive moving average (ARX) model structure is presented for the control of a 
reactive distillation column. Although MPC has been proved useful for a variety of chemical 
and biochemical processes (Garcia et al., 1989 ; Eaton and Rawlings, 1992), its application to 
a complex dynamic system like reactive distillation is more interesting.  
 
The process and the model 
Ethyl acetate is produced through an esterfication reaction between acetic acid and ethyl 
alcohol 

 5232523 HCOOCCHOHOHHCCOOHCH H     (17) 
 
The achievable conversion in this reversible reaction is limited by the equilibrium 
conversion. This quaternary system is highly non-ideal and forms binary and ternary 

azeotropes, which introduce complexity to the separation by conventional distillation. 
Reactive distillation can provide a means of breaking the azeotropes by altering or 
eliminating the conditions for azeotrope formation. Thus reactive distillation becomes 
attractive alternative for the production of ethyl acetate.  
The rate equation of this reversible reaction in the presence of a homogeneous acid catalyst 
is given by (Alejski and Duprat, 1996) 
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Vora and Daoutidis (2001) have presented a two feed column configuration for ethyl acetate 
reactive distillation and found that by feeding the two reactants, ethanol and acetic acid, on 
different trays counter currently allows to enhance the forward reaction on trays and results 
in higher conversion and purity over the conventional column configuration of feeding the 
reactants on a single tray. All plates in the column are considered to be reactive. The column 
consists of 13 stages including the reboiler and the condenser. The less volatile acetic acid 
enters the 3 rd tray and the more volatile ethanol enters the 10 th tray. The steady state 
operating conditions of the column are shown in Table 1.  

 
 

Acetic acid feed flow rate, FAc                             6.9 mol/s                 
Ethanol flow rate, FEth                              6.865 mol/s      
Reflux flow rate, Lo                                            13.51 mol/s  
Distillate flow rate, D                                             6.68 mol/s  
Bottoms flow rate, B                                              7.085 mol/s  
Reboiler heat duty, Qr                                            5.88 x 105 J/mol     
Boiling points, oK                                           391.05, 351.45, 373.15, 350.25 
(Acetic acid, ethanol, water, ethyl acetate)    
Distillate composition                                     0.0842, 0.1349, 0.0982, 0.6827 
(Acetic acid, ethanol, water, ethyl acetate)    
Bottoms composition                                      0.1650, 0.1575, 0.5470, 0.1306 
(Acetic acid, ethanol, water, ethyl acetate)    

 
Table 1. Design conditions for ethyl acetate reactive distillation column 
 
The dynamic model representing the process operation involves mass and component 
balance equations with reaction terms, along with energy equations supported by vapor-
liquid equilibrium and physical properties (Alejski & Duprat, 1996). The assumptions made 
in the formulation of the model include adiabatic column operation, negligible heat of 
reaction, negligible vapor holdup, liquid phase reaction, physical equilibrium in streams 
leaving each stage, negligible down comer dynamics and negligible weeping of liquid 
through the openings on the tray surface. The equations representing the process are given 
as follows. 
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In the above, Y(t) represents the model predictions over the prediction horizon, X(t) is a 
vector of past plant and controller outputs and U(t) is a vector of future controller outputs. If 
the coefficients of F, G and E are determined then the transformation can be completed. The 
number of columns in F is determined by the ARX model structure used to represent the 
system, where as the number of columns in G is determined by the length of the control 
horizon. The number of rows is fixed by the length of the prediction horizon. 
 
Consider a cost function of the form 
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where W(t) is a setpoint vector over the prediction horizon 
 
    W(t) = [ w(t+1) . .  .  . w(t+N)]T  (15)                          
 
The minimization of the cost function, J gives optimal controller output sequence 
            
 U(t) = [GTG + I ]-1GT[W(t) - FX(t) - Eerr(t)]  (16)                          
          
The vector U(t) generates control sequence over the entire control horizon. But, the first 
component of U(t) is actually implemented and the whole procedure is repeated again at the 
next sampling instant using latest measured information. 
Linear model predictive control involving input-output models in classical, adaptive or 
fuzzy forms is proved useful for controlling processes that exhibit even some degree of 
nonlinear behavior (Eaton and Rawlings, 1992; Venkateswarlu and Gangiah, 1997 ; 
Venkateswarlu and Naidu, 2001). 

 
3.2 Case study: linear model predictive control of a reactive distillation column 
In this study, a multistep linear model predictive control (LMPC) strategy based on  
autoregressive moving average (ARX) model structure is presented for the control of a 
reactive distillation column. Although MPC has been proved useful for a variety of chemical 
and biochemical processes (Garcia et al., 1989 ; Eaton and Rawlings, 1992), its application to 
a complex dynamic system like reactive distillation is more interesting.  
 
The process and the model 
Ethyl acetate is produced through an esterfication reaction between acetic acid and ethyl 
alcohol 

 5232523 HCOOCCHOHOHHCCOOHCH H     (17) 
 
The achievable conversion in this reversible reaction is limited by the equilibrium 
conversion. This quaternary system is highly non-ideal and forms binary and ternary 

azeotropes, which introduce complexity to the separation by conventional distillation. 
Reactive distillation can provide a means of breaking the azeotropes by altering or 
eliminating the conditions for azeotrope formation. Thus reactive distillation becomes 
attractive alternative for the production of ethyl acetate.  
The rate equation of this reversible reaction in the presence of a homogeneous acid catalyst 
is given by (Alejski and Duprat, 1996) 
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Vora and Daoutidis (2001) have presented a two feed column configuration for ethyl acetate 
reactive distillation and found that by feeding the two reactants, ethanol and acetic acid, on 
different trays counter currently allows to enhance the forward reaction on trays and results 
in higher conversion and purity over the conventional column configuration of feeding the 
reactants on a single tray. All plates in the column are considered to be reactive. The column 
consists of 13 stages including the reboiler and the condenser. The less volatile acetic acid 
enters the 3 rd tray and the more volatile ethanol enters the 10 th tray. The steady state 
operating conditions of the column are shown in Table 1.  

 
 

Acetic acid feed flow rate, FAc                             6.9 mol/s                 
Ethanol flow rate, FEth                              6.865 mol/s      
Reflux flow rate, Lo                                            13.51 mol/s  
Distillate flow rate, D                                             6.68 mol/s  
Bottoms flow rate, B                                              7.085 mol/s  
Reboiler heat duty, Qr                                            5.88 x 105 J/mol     
Boiling points, oK                                           391.05, 351.45, 373.15, 350.25 
(Acetic acid, ethanol, water, ethyl acetate)    
Distillate composition                                     0.0842, 0.1349, 0.0982, 0.6827 
(Acetic acid, ethanol, water, ethyl acetate)    
Bottoms composition                                      0.1650, 0.1575, 0.5470, 0.1306 
(Acetic acid, ethanol, water, ethyl acetate)    

 
Table 1. Design conditions for ethyl acetate reactive distillation column 
 
The dynamic model representing the process operation involves mass and component 
balance equations with reaction terms, along with energy equations supported by vapor-
liquid equilibrium and physical properties (Alejski & Duprat, 1996). The assumptions made 
in the formulation of the model include adiabatic column operation, negligible heat of 
reaction, negligible vapor holdup, liquid phase reaction, physical equilibrium in streams 
leaving each stage, negligible down comer dynamics and negligible weeping of liquid 
through the openings on the tray surface. The equations representing the process are given 
as follows. 
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Total mass balance 
Total condenser: 
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Total energy balance 
Total condenser : 
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Level of  liquid on the tray 
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Flow of liquid over the weir  
  If   ( Lliq<hweir ) then Ln  = 0  (29) 
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Mole fraction normalization 
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VLE calculations 
 
For the column operation under moderate pressures, the VLE equation assumes the ideal 
gas model for the vapor phase, thus making the vapor phase activity coefficient equal to 
unity. The VLE relation is given by 
 
 yi P = xi i Pisat       (i = 1,2,….,NC)   (32) 
 
The liquid phase activity coefficients are calculated using UNIFAC method (Smith et al., 
1996). 
 
Enthalpies Calculation 
The relations for the liquid enthalpy h, the vapor enthalpy H and the liquid density   are: 
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    (33) 

 
Control scheme 
 
The design and implementation of the control strategy is studied for the single input-single 
output (SISO) control of the ethyl acetate reactive distillation column with its double feed 
configuration. The objective is to control the desired product purity in the distillate stream 
inspite disturbances in column operation. This becomes the main control loop. Since reboiler 
and condenser holdups act as pure integrators, they also need to be controlled. These 
become the auxiliary control loops. Reflux flow rate is used as a manipulated variable to 
control the purity of the ethyl acetate. Distillate flow rate is used as a manipulated variable 
to control the condenser holdup, while bottom flow rate is used to control the reboiler 
holdup. In this work, it is proposed to apply a multistep model predictive controller for the 
main loop and conventional PI controllers for the auxiliary control loops. This control 
scheme is shown in the Figure 3.  
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VLE calculations 
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Control scheme 
 
The design and implementation of the control strategy is studied for the single input-single 
output (SISO) control of the ethyl acetate reactive distillation column with its double feed 
configuration. The objective is to control the desired product purity in the distillate stream 
inspite disturbances in column operation. This becomes the main control loop. Since reboiler 
and condenser holdups act as pure integrators, they also need to be controlled. These 
become the auxiliary control loops. Reflux flow rate is used as a manipulated variable to 
control the purity of the ethyl acetate. Distillate flow rate is used as a manipulated variable 
to control the condenser holdup, while bottom flow rate is used to control the reboiler 
holdup. In this work, it is proposed to apply a multistep model predictive controller for the 
main loop and conventional PI controllers for the auxiliary control loops. This control 
scheme is shown in the Figure 3.  
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Fig. 3. Control structure of two feed ethyl acetate reactive distillation column. 
 
Analysis of Results  
The performance of the multistep linear model predictive controller (LMPC) is evaluated 
through simulation. The product composition measurements are obtained by solving the 
model equations using Euler’s integration with sampling time of 0.01 s. The input and 
output orders of the predictive model are considered as nu = 2 and ny = 2. The diagonal 
elements of the initial covariance matrix, P(0) in the RLS algorithm are selected as 10.0, 1.0, 
0.01, 0.01, respectively. The forgetting factor,  used in recursive least squares is chosen as 
5.0. The feedback controller gain Kf  is assigned as 0.65. The tuning parameter   in the 
control law is set as  0.115 x 10-6. The PI controller parameters of ethyl acetate composition 
are evaluated by using the continuous cycling method of Ziegler and Nichols. The tuned 
controller settings  are kc = 11.15 and  I = 1.61 x 104 s. The PI controller parameters used for 

reflux drum and reboiler holdups are kc =  - 0.001 and I = 5.5 h,  and kc =  - 0.001 and  

I  = 5.5 h, respectively (Vora and Daoutidis, 2001).  
The LMPC is implemented by adaptively updating the prediction model using recursive 
least squares. On evaluating the effect of different prediction and control horizons, it is 
observed that the LMPC with a prediction horizon of around 5 and a control horizon of 2  
has shown reasonably better control performance. The LMPC is also referred here as MPC. 
Figure 4 shows the results of MPC and PI controller when they are applied for tracking 
series of step changes in ethyl acetate composition. The regulatory control performance of 
MPC and PI controller for 20% decrease in feed rate of acetic acid is shown in Figure 5. The 
results thus show the effectiveness of the multistep linear model predictive control strategy 
for the control of highly nonlinear reactive distillation column. 

 
Fig. 4. Performance of MPC and PI controller for tracking series of step changes in distillate 
composition. 
 

 
Fig.5. Output and input profiles for  MPC and PI controller for  20% decrease in the feed rate 
of acetic acid. 
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4. Generalized predictive control 

The generalized predictive control (GPC) is a general purpose multi-step predictive control 
algorithm (Clarke et al., 1987) for stable control of processes with variable parameters, 
variable dead time and a model order which changes instantaneously. GPC adopts an 
integrator as a natural consequence of its assumption about the basic plant model. Although 
GPC is capable of controlling such systems, the control performance of GPC needs to be 
ascertained if the process constraints are to be encountered in nonlinear processes. Camacho 
(1993) proposed a constrained generalized predictive controller (CGPC) for linear systems 
with constrained input and output signals. By this strategy, the optimum values of the 
future control signals are obtained by transforming the quadratic optimization problem into 
a linear complementarity problem. Camacho demonstrated the results of the CGPC strategy 
by carrying out a simulation study on a linear system with pure delay. Clarke et al. (1987) 
have applied the GPC to open-loop stable unconstrained linear systems. Camacho applied 
the CGPC to constrained open-loop stable linear system. However, most of the real 
processes are nonlinear and some processes change behavior over a period of time. 
Exploring the application of GPC to nonlinear process control will be more interesting.  
In this study, a constrained generalized predictive control (CGPC) strategy is presented and 
applied for the control of highly nonlinear and open-loop unstable processes with multiple 
steady states. Model parameters are updated at each sampling time by an adaptive 
mechanism.  

 
4.1 GPC design 
A nonlinear plant generally admits a local-linearized model when considering regulation 
about a particular operating point. A single-input single-output (SISO) plant on linearization 
can be described by a Controlled Autoregressive Integrated Moving Average (CARIMA) 
model of the form 
 A(q-1)y(t) = B(q-1)q-d u(t) + C (q-1)e(t )/  (34) 
 
where A, B and C are polynomials in the backward shift operator q-1. The y(t) is the 
measured plant output, u(t) is the controller output, e(t) is the zero mean random Gaussian 
noise, d is the delay time of the system and  is the differencing operator 1-q-1. 
The control law of GPC is based on the minimization of a multi-step quadratic cost function 
defined in terms of the sum of squares of the errors between predicted and desired output 
trajectories with an additional term weighted by projected control increments as given by  
 

 
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where E{.} is the expectation operator, y(t + j| t ) is a sequence of predicted outputs, w(t + j) 
is a sequence of future setpoints, u(t + j -1) is a sequence of predicted control increments 
and  is the control weighting factor. The N1 , N2 and N3 are the minimum costing horizon, 
the maximum costing horizon and the control horizon, respectively. The values of N1 , N2 
and N3 of Eq. (35) can be defined by N1 = d + 1, N2 = d + N, and N3 = N, respectively. 

Predicting the output response over a finite horizon beyond the dead-time of the process 
enables the controller to compensate for constant or variable time delays. The recursion of 
the Diophantine equation is a computationally efficient approach for modifying the 
predicted output trajectory.  An optimum j-step a head prediction output is given by 
 
  y(t + j| t) = Gj (q-1 ) u(t + j - d - 1) + Fj (q-1 )y(t)  (36) 
 
where Gj (q-1 ) = Ej (q-1 )B(q-1), and Ej and Fj are polynomials obtained recursively solving the 
Diophantine equation, 
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The j-step ahead optimal predictions of  y for  j = 1, . . . , N2 can be written in condensed form 
 
 Y =Gu + f  (38) 
 
where f contains predictions based on present and past outputs up to time t and past inputs 
and referred to free response of the system, i.e., f = [f1, f2, ….., fN]. The vector u corresponds 
to the present and future increments of the control signal, i.e., u = [u(t),  u(t+1), ……., 
u(t+N-1)]T.  Eq. (35) can be written as  
 

     uuwfGuwfGuJ TT     (39) 
 
The minimization of J gives unconstrained solution to the projected control vector 
 

 )()( 1 fwGIGGu TT     (40) 
 
The first component of the vector u is considered as the current control increment u(t), 
which is applied to the process and the calculations are repeated at the next sampling 
instant. The schematic of GPC control law is shown in Figure 6, where K is the first row of 
the matrix 1( )T TG G I G  .   

 
 

 
 
 
 
 
 
 
 
 

 

Fig. 6. The GPC control law 
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4.2 Constrained GPC design  
In practice, all processes are subject to constraints. Control valves are limited by fully closed 
and fully open positions and maximum slew rates. Constructive and safety reasons as well 
as sensor ranges cause limits in process variables. Moreover, the operating points of plants 
are determined in order to satisfy economic goals and usually lie at the intersection of 
certain constraints. Thus, the constraints acting on a process can be manipulated variable 
limits (umin, umax ), slew rate limits of the actuator (dumin, dumax), and limits on the output 
signal (ymin, ymax ) as given by 
 
 maxmin )( utuu   

 maxmin )1()( dututudu    (41) 

 maxmin )( ytyy   
 
These constraints can be expressed as 
 
 maxmin )1( lultuTulu   

 maxmin lduuldu         (42) 

 maxmin lyfGuly   
 
where l is an N  vector containing ones, and T is an N x N lower triangular matrix containing 
ones. By defining a new vector x = u - ldumin, the constrained equations can be transformed 
as 
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Eq. (39) can be expressed as 
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The minimization of J with no constraints on the control signal gives 
 

 bHu 1   (46) 
Eq. (45) in terms of the newly defined vector x becomes 
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The solution of the problem can be obtained by minimization of Eq. (47) subject to the 
constraints of Eq. (43). By using the Lagrangian multiplier vectors v1 and v for the 
constraints, x ≥ 0 and Rx ≤ c, respectively, and introducing the slack variable vector v2, the 
Kuhn-Tucker conditions can be expressed as 
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Camacho (1993) has proposed the solution of this problem with the help of Lemke’s 
algorithm (Bazaraa and Shetty, 1979) by expressing the Kuhn-Tucker conditions as a linear 
complementarity problem starting with the following tableau 
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Here, z0 is the artificial variable which will be driven to zero iteratively. 
 
In this study, the above stated constrained generalized predictive linear control of Camacho 
(1993) is extended to open-loop unstable constrained control of nonlinear processes. In this 
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strategy, process nonlinearities are accounted through adaptation of model parameters 
while taking care of input and output constraints acting on the process. The following 
recursive least squares formula (Hsia, 1977) is used for on-line estimation of parameters and 
the covariance matrix after each new sample: 
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where θ is the parameter vector, γ is the intermediate estimation variable, P is the covariance 
matrix, v is the vector of input-output variables, y is the output variable, and 0 <  < 1 is the 
forgetting factor. The initial covariance matrix and exponential forgetting factor are selected 
based on various trials so as to provide reasonable convergence in parameter estimates. 
 
The CGPC strategy of nonlinear processes is described in the following steps: 
 

1. Specify the controller design parameters N1, N2, N3 and also the initial parameter   
estimates and covariance matrix for recursive identification of model parameters. 

2.  Update the model parameters using recursive least squares method. 
3.  Initialize the polynomials E1 and F1 of Diophantine identity, Eq. (37), using the estimated 

parameters. Further initialize G1 as E1 B. 
4.  Compute the polynomials Ej , Fj and Gj over the prediction horizon and control horizon 

using the recursion of Diophantine. 
5.  Compute matrices H, R, and G, and  vectors f and c using the polynomials determined in 

step 4. 
6.  Compute the unconstrained solution xmin = - H-1 a. 
7.  Compute v2min = c - Rxmin . If xmin and v2min are nonnegative, then go to step 10. 
8.  Start Lemke’s algorithm with x and v2 in the basis with the tableau, Eq. (49). 
9.  If x1 is not in the first column of the tableau, make it zero; otherwise, assign it the  

corresponding value. 
10. Compute u(t) = x1 + dumin + u(t - 1). 
11. Implement the control action, then shift to the next sampling instant and go to step 2. 

         
4.3 Case study: constrained generalized predictive control (CGPC) of open-loop 
unstable CSTR 
The design and implementation of the CGPC strategy is studied by applying it for the 
control of a nonlinear open-loop unstable chemical reactor (Venkateswarlu and Gangiah, 
1997).  
 
Reactor 
A continuous stirred tank reactor (CSTR) in which a first order exothermic irreversible 
reaction occurs is considered as an example of an unstable nonlinear process. The dynamic 
equations describing the process can be written as 
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where CA and Tr are reactant concentration and temperature, respectively. The coolant 
temperature Tc is assumed to be the manipulated variable. Following the analysis of Uppal 
et al. (1974), the model is made dimensionless by introducing the parameters as 
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where Fo, CAfo and Tfo are the nominal characteristic values of volumetric flow rate, feed 
composition and feed temperature, respectively. The corresponding dimensionless variables 
are defined by 
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where Tco is some reference value for the coolant temperature.  
The modeling equations can be written in dimensionless form (Calvet and Arkun, 1988; 
Hernandez and Arkun, 1992) as 
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 y = x1 
 
where x1 and x2 are the dimensionless reactant concentration and temperature, respectively. 
The input u is the cooling jacket temperature, Da is the Damkohler number,  is the 
dimensionless activation energy, Bh is the heat of reaction and  is the heat transfer coeffi- 
cient. If the physical parameters chosen are Da = 0.072,  = 20.0, Bh = 8.0, and  = 0.3, then the 
system can exhibit up to three steady states,  one of which is unstable as shown in Figure 7. 
Here the task is to control the reactor at and around the unstable operating point. The 
cooling water temperature is the input u, which is the manipulated variable to control the 
reactant concentration, x1.  
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composition and feed temperature, respectively. The corresponding dimensionless variables 
are defined by 
 

 
fo

coc

fo

for

Afo

AAfoo

T
TTu

T

TT
x

C
CC

x
V
Ft

t 









    ,   ,   , 21

   (54) 

 
where Tco is some reference value for the coolant temperature.  
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where x1 and x2 are the dimensionless reactant concentration and temperature, respectively. 
The input u is the cooling jacket temperature, Da is the Damkohler number,  is the 
dimensionless activation energy, Bh is the heat of reaction and  is the heat transfer coeffi- 
cient. If the physical parameters chosen are Da = 0.072,  = 20.0, Bh = 8.0, and  = 0.3, then the 
system can exhibit up to three steady states,  one of which is unstable as shown in Figure 7. 
Here the task is to control the reactor at and around the unstable operating point. The 
cooling water temperature is the input u, which is the manipulated variable to control the 
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Fig. 7.  Steady state output vs. steady state input for CSTR system. 
 
Analysis of Results 
Simulation studies are carried out in order to evaluate the performance of the Constrained 
Generalized Predictive Control (CGPC) strategy. The results of unconstrained Generalized 
Predictive Control (GPC) are also presented as a reference. The CGPC strategy considers an 
adaptation mechanism for model parameters.  
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N2                                                                     7 
N3                                                                                                       6 
                                                                                                        0.2 
umin                                                                                                -1.0 
umax                                                                                                 1.0 

dumin                                                                                             -0.5 
dumax                                                                                              0.5 

ymin                                                                                                   0.1 

ymax                                                                                                  0.5 

Forgetting factor                                             0.95 
Initial covariance matrix                                 1.0x109 
Sample time                                                    0.5 

 

Table 2. Constraints and parameters of CSTR system. 
 
The controller and design parameters as well as the constraints employed for the CSTR 
system are given in Table 2. The same controller and design parameters are used for both 
the CGPC and GPC. Two set-point changes are introduced for the output concentration of 
the system and the corresponding results of CGPC and GPC are analyzed. A step change is 

introduced in the output concentration of CSTR from a stable equilibrium point (x1 = 0.2, x2 
= 1.33, u = 0.42) to an unstable operating point (x1 = 0.5, x2 = 3.303, u = - 0.2). The input and 
output responses of both CGPC and GPC are shown in Figure 8. Another step change is 
introduced for the set-point from a stable operating point (x1 = 0.144, x2 = 0.886, u = 0.0) to 
an unstable operating point (x1 = 0.445, x2 = 2.75, u = 0.0). The input and output responses of 
CGPC and GPC for this case are shown in Figure 9. The results show that for the specified 
controller and design parameters, CGPC provides better performance over GPC.  
 

 
Fig. 8. Cooling water temperature and concentration plots of CSTR for a step change in 
concentration from 0.20 to 0.50. 
 

 
Fig. 9. Cooling water temperature and concentration plots of CSTR for a step change in 
concentration from 0.144 to 0.445.   
 
The results illustrate the better performance of CGPC for SISO control of nonlinear systems 
that exhibit multiple steady states and unstable behavior. 

 
5. Nonlinear model predictive control 

Linear MPC employs linear or linearized models to obtain the predictive response of the 
controlled process. Linear MPC is proved useful for controlling processes that exhibit even 
some degree of nonlinear behavior (Eaton and Rawlings, 1992; Venkateswarlu and Gangiah, 
1997). However, the greater the mismatch between the actual process and the representative 
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model, the degree of deterioration in the control performance increases. Thus the control of 
a highly nonlinear process by MPC requires a suitable model that represents the salient 
nonlinearities of the process. Basically, two different approaches are used to develop 
nonlinear dynamic models. These approaches are developing a first principle model using 
available process knowledge and developing an empirical model from input-output data. 
The first principle modeling approach results models in the form of coupled nonlinear 
ordinary differential equations and various model predictive controllers based on this 
approach have been reported for nonlinear processes (Wright and Edgar, 1994 ; Ricker and 
Lee, 1995). The first principle models will be larger in size for high dimensional systems thus 
limiting their usage for MPC design. On the other hand, the input-output modeling 
approach can be conveniently used to identify nonlinear empirical models from plant data, 
and there has been a growing interest in the development of different types of MPCs based 
on this approach (Hernandez and Arkun, 1994; Venkateswarlu and Venkat Rao, 2005). The 
other important aspect in model predictive control of highly nonlinear systems is the 
optimization algorithm. Efficient optimization algorithms exist for convex optimization 
problems. However, the optimization problem often becomes nonconvex in the presence of 
nonlinear characteristics/constraints and is usually more complex than convex 
optimization. Thus, the practical usefulness of nonlinear predictive control is hampered by 
the unavailability of suitable optimization tools (Camacho and Bordons, 1995). Sequential 
quadratic programming (SQP) is widely used classical optimization algorithm to solve 
nonlinear optimization problems. However, for the solution of large problems, it has been 
reported that gradient based methods like SQP requires more computational efforts (Ahn et 
al., 1999). More over, classical optimization methods are more sensitive to the initialization 
of the algorithm and usually leads to unacceptable solutions due to convergence to local 
optima. Consequently, efficient optimization techniques are being used to achieve the 
improved performance of NMPC.  
This work presents a NMPC based on stochastic optimization technique. Stochastic 
approach based genetic algorithms (GA) and simulated annealing (SA) are potential 
optimization tools because of their ability to handle constrained, nonlinear and nonconvex 
optimization problems. These methods have the capacity to escape local optima and find 
solutions in the vicinity of the global optimum. They have the ability to use the values from 
the model in a black box optimization approach with out requiring the derivatives. Various 
studies have been reported to demonstrate the ability of these methods in providing 
efficient optimization solutions (Hanke and Li, 2000 ;  Shopova and Vaklieva-Bancheva, 
2006). 

 
5.1 NMPC design  
In NMPC design, the identified input-output nonlinear process model is explicitly used to 
predict the process output at future time instants over a specified prediction horizon. A 
sequence of future control actions over a specified control horizon is calculated using a 
stochastic optimizer which minimizes the objective function under given operating 
constraints. In this receding horizon approach, only the first control action in the sequence is 
implemented. The horizons are moved towards the future. The structure of the stochastic 
optimizer based NMPC is shown in Figure 10. 
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Simulated Annealing 
Simulated annealing (SA) is analogous to the process of atomic rearrangement of a 
substance into a highly ordered crystalline structure by way of slowly cooling-annealing the 
substance through successive stages. This method is found to be a potential tool to solve a 
variety of optimization problems (Kirkpatrick et al., 1983 ; Dolan et al., 1989).  Crystalline 
structure with a high degree of atomic order is the purest form of the substance, indicating 
the minimum energy state. The principle of SA mimics the annealing process of slow 
cooling of molten metal to achieve the minimum function value. The cooling phenomena is 
simulated by controlling a temperature like parameter introduced with the concept of the 
Bolzmann probability  distribution, which determines the energy distribution probability, P 
of the system at the temperature, T according to the equation:    
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where kB is the Bolzmann constant. The Bolzmann distribution concentrates around the state 
with the lowest energy. For T  0, P(E)  0 and only the state with the lowest energy can 
have a probability greater than zero. However, cooling the system too fast could result in a 
higher state of energy and may lead to frozen the system to a metastable state.  
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model, the degree of deterioration in the control performance increases. Thus the control of 
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The SA is a point by point method based on Monte Carlo approach. The algorithm begins at 
an initial random point called u and a high temperature T, and the function value at this 
point is evaluated as E(k). A second point is created in the vicinity of the initial point u and 
the function value corresponding to this point is obtained as E(k+1). The difference in 
function values at these points E is obtained as  
 
 E = E(k+1) – E(k)   (57) 
 
If E  0, the second point is accepted, otherwise the point is accepted probabilistically, 
governed by the temperature dependent Bolzmann probability factor   
 
 )/exp( ABr TkEP    (58) 
 
The annealing temperature, TA  is a parameter  in the optimization algorithm and is set by a 
predefined annealing schedule which starts at a relatively high temperature  and steps 
slowly downward at a prescribed rate in accordance with the equation 
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As the temperature decreases, the probability of the acceptance of the point u will be 
decreased according to Eq. (58). The parameter  is set such that at the point of convergence, 
the temperature TA reaches a small value. The procedure is iteratively repeated at each 
temperature with the generation of new points and the search is terminated when the 
convergence criterion set for the objective is met.  
 
Nonlinear modeling and model identification 
Various model structures such as Volterra series models, Hammerstein and Wiener models, 
bilinear models, state affine models  and  neural network models have been reported in 
literature for identification of nonlinear systems. Haber and Unbehauen (1990) presented a 
comprehensive review on these model structures. The model considered in this study for 
identification of a nonlinear process has a polynomial ARMA structure of the form 
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or simply 
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Here k refers the sampling time, y and  u are the output and input variables, and  ny and nu  
refer the number of output and input lags, respectively. This type of polynomial model 
structures have been used by various researchers for process control (Morningred et al., 

1992 ; Hernandez and Arkun, 1993).  The main advantage of this model is that it represents 
the process nonlinearities in a structure with linear model parameters, which can be 
estimated by using efficient parameter estimation methods such as recursive least squares. 
Thus the model in (61) can be rearranged in a linear regression form as  
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where  is a parameter vector,    represents input-output process information and  is  the 
estimation error. The parameters in the model can be estimated by using recursive least 
squares based on a priori process knowledge representing the process characteristics over a 
wide range of operating conditions.  
 
Predictive Model Formulation 
The primary purpose of NMPC is to deal with complex dynamics over an extended horizon. 
Thus, the model must predict the process dynamics over a prediction horizon enabling the 
controller to incorporate future set point changes or disturbances. The polynomial input-
output model provides one step ahead prediction for process output. By feeding back the 
model outputs and control inputs, the one step-a head predictive model can be recurrently 
cascaded to itself to generate future predictions for process output.  The N step predictions 
can be obtained as follows 
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where N is the prediction horizon and M is the control horizon.   
 
Objective function 
The optimal control input sequence in NMPC is computed by minimizing an objective 
function based on a desired output trajectory over a prediction horizon: 
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subject to constraints:  
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The SA is a point by point method based on Monte Carlo approach. The algorithm begins at 
an initial random point called u and a high temperature T, and the function value at this 
point is evaluated as E(k). A second point is created in the vicinity of the initial point u and 
the function value corresponding to this point is obtained as E(k+1). The difference in 
function values at these points E is obtained as  
 
 E = E(k+1) – E(k)   (57) 
 
If E  0, the second point is accepted, otherwise the point is accepted probabilistically, 
governed by the temperature dependent Bolzmann probability factor   
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The annealing temperature, TA  is a parameter  in the optimization algorithm and is set by a 
predefined annealing schedule which starts at a relatively high temperature  and steps 
slowly downward at a prescribed rate in accordance with the equation 
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Various model structures such as Volterra series models, Hammerstein and Wiener models, 
bilinear models, state affine models  and  neural network models have been reported in 
literature for identification of nonlinear systems. Haber and Unbehauen (1990) presented a 
comprehensive review on these model structures. The model considered in this study for 
identification of a nonlinear process has a polynomial ARMA structure of the form 
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Here k refers the sampling time, y and  u are the output and input variables, and  ny and nu  
refer the number of output and input lags, respectively. This type of polynomial model 
structures have been used by various researchers for process control (Morningred et al., 

1992 ; Hernandez and Arkun, 1993).  The main advantage of this model is that it represents 
the process nonlinearities in a structure with linear model parameters, which can be 
estimated by using efficient parameter estimation methods such as recursive least squares. 
Thus the model in (61) can be rearranged in a linear regression form as  
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where  is a parameter vector,    represents input-output process information and  is  the 
estimation error. The parameters in the model can be estimated by using recursive least 
squares based on a priori process knowledge representing the process characteristics over a 
wide range of operating conditions.  
 
Predictive Model Formulation 
The primary purpose of NMPC is to deal with complex dynamics over an extended horizon. 
Thus, the model must predict the process dynamics over a prediction horizon enabling the 
controller to incorporate future set point changes or disturbances. The polynomial input-
output model provides one step ahead prediction for process output. By feeding back the 
model outputs and control inputs, the one step-a head predictive model can be recurrently 
cascaded to itself to generate future predictions for process output.  The N step predictions 
can be obtained as follows 
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where N is the prediction horizon and M is the control horizon.   
 
Objective function 
The optimal control input sequence in NMPC is computed by minimizing an objective 
function based on a desired output trajectory over a prediction horizon: 
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subject to constraints:  
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  1  .......,  ,0                  )( maxmin  Miuikuu   
 
where )(ˆ ikyp  , i=1, …., N, are the future process outputs predicted over the prediction 

horizon, wk+i , i=1, …., N, are the setpoints and u(k+i), i=0, .…., M-1, are the future control 
signals. The  and   represent  the output and input weightings, respectively. The umin and 
umax are the minimum and maximum values of the manipulated inputs,  and umin and umax 
represent their corresponding changes, respectively. Computation of future control signals 
involves the minimization of the objective function so as to bring and keep the process 
output as close as possible to the given reference trajectory, even in the presence of load 
disturbances. The control actions are computed at every sampling time by solving an 
optimization problem while taking into consideration of constraints on the output and 
inputs. The control signal, u is manipulated only with in the control horizon,  and  remains  
constant  afterwards,  i.e., u(k+i) = u(k+M-1) for i = M, …., N-1.  Only the first control move 
of the optimized control sequence is implemented on the process and the output 
measurements are obtained. At the next sampling instant, the prediction and control 
horizons are moved ahead by one step, and the optimization problem is solved again using 
the updated measurements from the process. The mismatch dk between the process  y(k)  
and the model )(ˆ ky is computed as 

 ))(ˆ)(( kykybdk     (65) 
 
where b is a tunable parameter lying between 0 and 1. This mismatch is used to compensate 
the model predictions in Eq. (62): 
 
 )  to1 all(for            )(ˆ)(ˆ Nidikyiky kp   (66) 

These predictions are incorporated in the objective function defined by Eq. (64) along with 
the corresponding setpoint values. 
 
NMPC based on stochastic optimization  
NMPC design based on simulated annealing (SA) requires to specify the energy function 
and random number selection for control input calculation. The control input is normalized 
and constrained with in the specified limits. The random numbers used for the control 
input, u equals the length of the control horizon, and these numbers are generated so that 
they satisfy the constraints. A penalty function approach is considered to satisfy the 
constraints on the input variables. In this approach, a penalty term corresponding to the 
penalty violation is added to the objective function defined in Eq. (64). Thus the violation of 
the constraints on the variables is accounted by defining a penalty function of the form 
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where the penalty parameter,  is selected as a high value. The penalized objective function 
is then given by 
 f(x) = J + P  (68) 

 
where J is defined by Eq. (64). At any instant, the current control signal, uk and the 
prediction output based on this control input, )(ˆ iky   are used to compute the objective 
function f(x) in Eq. (68) as the energy function, E(k+i). The E(k+i)  and the previously 
evaluated E(k) provides the E as 
 

 E(k) = E(k+i) – E(k)     (69) 
 

The comparison of the E with the random numbers generated between 0 and 1 determines 
the probability of acceptance of u(k). If E  0, all u(k) are accepted. If E  0,  u(k) are 
accepted with a probability of exp(-E/TA). If nm be the number of variables, nk be the 
number of function evaluations and nT be the number of temperature reductions, then the 
total number of function evaluations required for every sampling condition are (nT x nk x nm). 
Further details of NMPC based on stochastic optimization can be referred elsewhere 
(Venkateswarlu and Damodar Reddy, 2008). 
 
Implementation procedure 
The implementation of  NMPC based on SA proceeds with the following steps. 
 
1.  Set TA as a sufficiently high value and let nk be the number of function evaluations to be 

performed at a particular TA. Specify the termination criterion, . Choose the initial 
control vector, u and obtain the  process output predictions using Eq. (63). Evaluate the 
objective function, Eq. (68) as the energy function E(k).  

2. Compute the incremental input vector uk stochastically and update the control vector as  
 

  u(k+i) =   u(k)  + u(k)    (70) 
 

Calculate the objective function, E(k+i)  as the energy function based on this vector. 
3. Accept u(k+i)  unconditionally if the energy function satisfies the condition 
 

  E(k+i)  E(k)   (71) 
 

Otherwise, accept u(k+i)  with the probability according to the Metropolis criterion  
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where
'
AT  is the current annealing temperature and r represents random number. This step 

proceeds until the specified function evaluations, nk are completed. 
4.  Carry out the temperature reduction in the outer loop according to the decrement 

function 
        AA TT /     (73) 
where  is temperature reduction factor. Terminate the algorithm if all the differences are 
less than the prespecified .  
5. Go to step 2 and repeat the procedure for every measurement condition based on the 

updated control vector and its corresponding process output.  
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signals. The  and   represent  the output and input weightings, respectively. The umin and 
umax are the minimum and maximum values of the manipulated inputs,  and umin and umax 
represent their corresponding changes, respectively. Computation of future control signals 
involves the minimization of the objective function so as to bring and keep the process 
output as close as possible to the given reference trajectory, even in the presence of load 
disturbances. The control actions are computed at every sampling time by solving an 
optimization problem while taking into consideration of constraints on the output and 
inputs. The control signal, u is manipulated only with in the control horizon,  and  remains  
constant  afterwards,  i.e., u(k+i) = u(k+M-1) for i = M, …., N-1.  Only the first control move 
of the optimized control sequence is implemented on the process and the output 
measurements are obtained. At the next sampling instant, the prediction and control 
horizons are moved ahead by one step, and the optimization problem is solved again using 
the updated measurements from the process. The mismatch dk between the process  y(k)  
and the model )(ˆ ky is computed as 
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they satisfy the constraints. A penalty function approach is considered to satisfy the 
constraints on the input variables. In this approach, a penalty term corresponding to the 
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where the penalty parameter,  is selected as a high value. The penalized objective function 
is then given by 
 f(x) = J + P  (68) 

 
where J is defined by Eq. (64). At any instant, the current control signal, uk and the 
prediction output based on this control input, )(ˆ iky   are used to compute the objective 
function f(x) in Eq. (68) as the energy function, E(k+i). The E(k+i)  and the previously 
evaluated E(k) provides the E as 
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The comparison of the E with the random numbers generated between 0 and 1 determines 
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Further details of NMPC based on stochastic optimization can be referred elsewhere 
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performed at a particular TA. Specify the termination criterion, . Choose the initial 
control vector, u and obtain the  process output predictions using Eq. (63). Evaluate the 
objective function, Eq. (68) as the energy function E(k).  

2. Compute the incremental input vector uk stochastically and update the control vector as  
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Calculate the objective function, E(k+i)  as the energy function based on this vector. 
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where
'
AT  is the current annealing temperature and r represents random number. This step 

proceeds until the specified function evaluations, nk are completed. 
4.  Carry out the temperature reduction in the outer loop according to the decrement 

function 
        AA TT /     (73) 
where  is temperature reduction factor. Terminate the algorithm if all the differences are 
less than the prespecified .  
5. Go to step 2 and repeat the procedure for every measurement condition based on the 

updated control vector and its corresponding process output.  
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5.2 Case study: nonlinear model predictive control of reactive distillation column 
The performance of NMPC based on stochastic optimization is evaluated through 
simulation by applying it to a ethyl acetate reactive distillation column.  
 
Analysis of Results 
The process, the column details, the mathematical model and the control scheme of ethyl 
acetate reactive distillation column given in Section 3.2 is used for NMPC implementation.  
In this operation, since the ethyl acetate produced is withdrawn as a product in the distillate 
stream, controlling the purity of this main product is important in spite of disturbances in 
the column operation. This becomes the main control loop for NMPC in which reflux flow 
rate is used as a manipulated variable to control the purity of ethyl acetate. Since reboiler 
and condenser holdups act as pure integrators, they also need to be controlled. These 
become the auxiliary control loops and are controlled by conventional PI controllers in 
which the distillate flow rate is considered as a manipulated variable to control the 
condenser molar holdup and the bottom flow rate is used to control the reboiler molar 
holdup. The tuning parameters used for both the PI controllers of reflux drum and reboiler 
holdups are kc = - 0.001 and I = 1.99 x 104 (Vora and Dauotidis, 2001). The SISO control 
scheme for the column with the double feed configuration used in this study is shown in the 
Fig. 3. 
The input-output data to construct the nonlinear empirical model is obtained by solving the 
model equations using Euler's integration with a step size of  2.0 s. A PI controller with a 
series of step changes in the set point of ethyl acetate composition is used for data 
generation. The input data (reflux flow) is normalized and used along with the outputs 
(ethyl acetate composition) in model building. The reflux flow rate is constrained with in the 
limits of 20 mol/s and 5 mol/s. A total number of 25000 data sets is considered to develop 
the model. The model parameters are determined by using the well known recursive least 
squares algorithm (Goodwin and Sin, 1984), the application of which has been shown 
elsewhere (Venkateswarlu and Naidu, 2001). After evaluating model structure in Eq. (60) for 
different orders of ny and nu , the model with the order ny=2 and nu=2 is found to be more 
appropriate to design and implement the NMPC with stochastic optimization. The structure 
of the model is in the form  
 

 21522411312110ˆ   kkkkkkkkk uuuyuyuyy   (74) 
 

The parameters of this model are determined as θ0=-0.000774, θ1=1.000553, θ2=0.002943, θ3=-
0.003828, θ4=0.000766 and θ5=-0.000117. This identified model is then used to derive the 
future predictions for the process output by cascading the model to it self as in Eq. (63). 
These model predictions are added with the modeling error, d(k) defined by Eq. (65), which 
is considered to be constant for the entire prediction horizon. The weightings  and  in the 
objective function, Eq. (64) are set as 1.0 x 107  and 7.5 x 104, respectively. The penalty 
parameter,   in Eq. (67) is assigned as 1.0 x 105. The cost function used in NMPC is the 
penalized objective function, eq. (68), based on which the SA search is computed. The 
incremental input, u in SA search is constrained with in the limits -0.0025 and 0.0025, 
respectively. The actual input, u involved with the optimization scheme is a normalized 
value and is constrained between 0 and 1. The objective function in Eq. (68) is evaluated as 
the energy function at each instant. The initial temperature T is chosen as 500 and the 

number of iterations at each temperature is set as 250.  The temperature reduction factor,  
in Eq. (73) is set as 0.5. The control input determined by the stochastic optimizer is 
denormalized and implemented on the process. A sample time of 2 s is considered for the 
implementation of the controller. 
The performance of NMPC based on SA is evaluated by applying it for the servo and 
regulatory control of ethyl acetate reactive distillation column. On evaluating the results 
with different prediction and control horizons, the NMPC with a prediction horizon of 
around 10 and a control horizon of around 1 to 3 is observed to provide better performance. 
The results of NMPC are also compared with those of LMPC presented in Section 3 and a PI 
controller. The tuning parameters of the PI controller are set as kC = 10.0 and I = 1.99 x 104 
(Vora and Dauotidis, 2001). The servo and regulatory results of NMPC along with the 
results of LMPC and PI controller are shown in Figures 11-14. Figure 11 compares the input 
and output profiles of NMPC with LMPC and PI controller for step change in ethyl acetate 
composition from 0.6827 to 0.75. The responses in Figure 12 represent 20% step decrease in 
ethanol feed flow rate, and the responses in Figure 13 correspond to 20% step increase in 
reboiler heat load. These responses show the better performance of NMPC over LMPC and 
PI controller. Figure 14 compares the performance of NMPC and LMPC in tracking multiple 
step changes in setpoint of the controlled variable. The results thus show the stability and 
robustness of NMPC towards load disturbances and setpoint changes.   
 

 
Fig.11. Output and input profiles for step increase in ethyl acetate composition setpoint. 
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0.003828, θ4=0.000766 and θ5=-0.000117. This identified model is then used to derive the 
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is considered to be constant for the entire prediction horizon. The weightings  and  in the 
objective function, Eq. (64) are set as 1.0 x 107  and 7.5 x 104, respectively. The penalty 
parameter,   in Eq. (67) is assigned as 1.0 x 105. The cost function used in NMPC is the 
penalized objective function, eq. (68), based on which the SA search is computed. The 
incremental input, u in SA search is constrained with in the limits -0.0025 and 0.0025, 
respectively. The actual input, u involved with the optimization scheme is a normalized 
value and is constrained between 0 and 1. The objective function in Eq. (68) is evaluated as 
the energy function at each instant. The initial temperature T is chosen as 500 and the 
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in Eq. (73) is set as 0.5. The control input determined by the stochastic optimizer is 
denormalized and implemented on the process. A sample time of 2 s is considered for the 
implementation of the controller. 
The performance of NMPC based on SA is evaluated by applying it for the servo and 
regulatory control of ethyl acetate reactive distillation column. On evaluating the results 
with different prediction and control horizons, the NMPC with a prediction horizon of 
around 10 and a control horizon of around 1 to 3 is observed to provide better performance. 
The results of NMPC are also compared with those of LMPC presented in Section 3 and a PI 
controller. The tuning parameters of the PI controller are set as kC = 10.0 and I = 1.99 x 104 
(Vora and Dauotidis, 2001). The servo and regulatory results of NMPC along with the 
results of LMPC and PI controller are shown in Figures 11-14. Figure 11 compares the input 
and output profiles of NMPC with LMPC and PI controller for step change in ethyl acetate 
composition from 0.6827 to 0.75. The responses in Figure 12 represent 20% step decrease in 
ethanol feed flow rate, and the responses in Figure 13 correspond to 20% step increase in 
reboiler heat load. These responses show the better performance of NMPC over LMPC and 
PI controller. Figure 14 compares the performance of NMPC and LMPC in tracking multiple 
step changes in setpoint of the controlled variable. The results thus show the stability and 
robustness of NMPC towards load disturbances and setpoint changes.   
 

 
Fig.11. Output and input profiles for step increase in ethyl acetate composition setpoint. 
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Fig.12. Output and input profiles for step decrease in ethanol feed flow rate. 
 

 
Fig.13. Output and input profiles for step increase in reboiler heat load. 

 
Fig. 14. Output responses for multiple setpoint changes in ethyl acetate composition 

 
6. Conclusions 

Model predictive control (MPC) is known to be a powerful control strategy for a variety of 
processes. In this study, the capabilities of linear and nonlinear model predictive controllers 
are explored by designing and applying them to different nonlinear processes. A linear 
model predictive controller (LMPC) is presented for the control of an ethyl acetate reactive 
distillation. A generalized predictive control (GPC) and a constrained generalized predictive 
control (CGPC) are presented for the control of an unstable chemical reactor. Further, a 
nonlinear model predictive controller (NMPC) based on simulated annealing is presented 
for the control of a highly complex nonlinear ethyl acetate reactive distillation column. The 
results of these controllers are evaluated under different disturbance conditions for their 
servo and regulatory performance and compared with the conventional controllers. From 
these results, it is observed that though linear model predictive controllers offer better 
control performance for nonlinear processes over conventional controllers, the nonlinear 
model predictive controller provides effective control performance for highly complex 
nonlinear processes. 

 
Nomenclature  

ARX     autoregressive moving average  
Ah   heat transfer area, m2                                                  
Atray        tray area, m2 
B          bottom flow rate, mol s-1 

Bh   dimensionless heat of reaction 

C         concentration, mol m-3   

CA  reactant concentration, mol m-3 
CAf   feed concentration, mol m-3 
Ck        catalyst concentration, % vol   
Cp    specific heat capacity, J kg-1 K-1 
D         distillate flow rate, mol s-1 

Da   Damkohler number 
dumin   lower limit of slew rate 
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Fig.13. Output and input profiles for step increase in reboiler heat load. 

 
Fig. 14. Output responses for multiple setpoint changes in ethyl acetate composition 
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dumax   upper limit of slew rate 
E          total enthalpy of liquid on plate, kJ 
FL        liquid feed flow rate on plate, mol s-1 

FV       vapor feed on plate, mol s-1 

FAc       acetic acid feed flow rate, mol s-1 

FEth      ethanol feed flow rate, mol s-1 

Fo    volumetric feed rate, m3 s-1 
H          molar enthalpy of vapor stream, kJ mol-1 

 h          molar enthalpy of liquid stream, kJ mol-1 

 k1         reaction rate constant, m3  mol-1 s-1 

 hweir     weir height, m 
 KC        constant of reaction equilibrium 

 L          molar liquid flow rate, mol s-1 

 Lweir     weir length, m 
 Lliquid   liquid level on tray, m 
 M        molar holdup on plate, m 
 MWav  average molecular weight, g mol-1 

N1   minimum costing horizon 
N2   maximum costing horizon 
N3   control horizon 
P         pressure on plate, pascal 

Q         heat exchange, kJ 
R         number of moles reacted, mol s-1 

Rg   gas constant, J mol-1 K-1 
RLS     recursive least squares 
r          rate of reaction, mol s-1 m-3    
av       average density, g m-3 
T         temperature, K 
Tc   coolant temperature, K 
Tf   feed temperature, K 
Tr   reactor temperature, K 
U   heat transfer coefficient, J m-2 s-1 K-1 
u  controller output 
umin   lower limit of manipulated variable 
umax   upper limit of manipulated variable 
VLE     vapor-liquid equilibrium 
V          molar vapor flow rate, mol s-1 

x          mole fraction in liquid phase 
x1   dimensionless reactant concentration 
x2   dimensionless reactant temperature 
y          mole fraction in vapor phase 
ymin   lower limit of output variable 
ymax   upper limit of output variable 
av        average density, g m-3 

 

7. References 

Ahn, S.M., Park, M.J., Rhee, H.K. Extended Kalman filter based nonlinear model predictive 
control of a continuous polymerization reactor. Industrial &. Engineering Chemistry 
Research,  38: 3942-3949, 1999. 

Alejski, K., Duprat, F. Dynamic simulation of the multicomponent reactive distillation.   
Chemical Engineering Science, 51: 4237-4252, 1996. 

Bazaraa, M.S., Shetty, C.M. Nonlinear Programming, 437-443 (John Wiley & Sons, New York), 
1979. 

Calvet, J P., Arkun, Y. Feedforward and feedback linearization of nonlinear systems and its 
implementation using internal model control (IMC). Industrial &. Engineering 
Chemistry Research, 27: 1822-1831, 1988. 

Camacho, E. F. Constrained generalized predictive control. IEEE Trans Aut Contr, 38: 327-
332, 1993. 

Camacho, E. F., Bordons, C. Model Predictive Control in the Process Industry; Springer Verlag: 
Berlin, Germany, 1995.  

Clarke, D.W., Mohtadi, C and Tuffs, P.S. Generalized predictive control – Part I. The basic 
algorithm. Automatica,  23: 137-148, 1987. 

Cutler, C.R. and Ramker, B.L. Dynamic matrix control – a computer control algorithm, 
Proceedings Joint Automatic Control Conference, Sanfrancisco, CA.,1980. 

Dolan, W.B., Cummings, P.T., Le Van, M.D. Process optimization via simulated annealing: 
application to network design. AIChE Journal. 35: 725-736, 1989. 

Garcia, C.E., Prett, D.M., and Morari, M. Model predictive control: Theory and Practice - A 
survey.  Automatica, 25: 335-348, 1989. 

Eaton, J.W., Rawlings, J.B. Model predictive control of chemical processes. Chemical 
Engineering Science, 47: 705-720, 1992. 

Goodwin, G.C., Sin, K.S. Adaptive Filtering Prediction and Control (Printice Hall, 
Englewood Cliffs, New Jersey), 1984. 

Haber, R.,  Unbehauen, H. Structure  identification of  nonlinear dynamical systems -a 
survey on input/output approaches.  Automatica, 26: 651-677, 1990. 

Hanke, M., Li, P. Simulated annealing for the optimization of batch distillation process.   
Computers and Chemical Engineering, 24: 1-8, 2000. 

Hernandez, E., Arkun, Y., Study of the control relevant properties of backpropagation 
neural network models of nonlinear dynamical systems. Computers & Chemical 
Engineering, 16: 227-240, 1992. 

Hernandez, E., Arkun, Y. Control of nonlinear systems using polynomial ARMA models. 
AIChE Journal, 39: 446-460, 1993. 

Hernandez, E., Arkun, Y. On the global solution of nonlinear model predictive control 
algorithms that use polynomial models. Computers and Chemical Engineering, 18: 
533-536, 1994. 

Hsia, T.C. System Identification: Least Square Methods (Lexington Books, Lexington, MA), 
1977. 

Kirkpatrick, S., Gelatt Jr, C.D., Veccchi, M.P. Optimization by simulated annealing. Scienc, 
220: 671-680, 1983. 

Morningred, J.D., Paden, B.E., Seborg D.E., Mellichamp, D.A., An adaptive nonlinear 
predictive controller. Chemical Engineering Science, 47: 755-762, 1992. 

www.intechopen.com



Model predictive control of nonlinear processes 139

dumax   upper limit of slew rate 
E          total enthalpy of liquid on plate, kJ 
FL        liquid feed flow rate on plate, mol s-1 

FV       vapor feed on plate, mol s-1 

FAc       acetic acid feed flow rate, mol s-1 

FEth      ethanol feed flow rate, mol s-1 

Fo    volumetric feed rate, m3 s-1 
H          molar enthalpy of vapor stream, kJ mol-1 

 h          molar enthalpy of liquid stream, kJ mol-1 

 k1         reaction rate constant, m3  mol-1 s-1 

 hweir     weir height, m 
 KC        constant of reaction equilibrium 

 L          molar liquid flow rate, mol s-1 

 Lweir     weir length, m 
 Lliquid   liquid level on tray, m 
 M        molar holdup on plate, m 
 MWav  average molecular weight, g mol-1 

N1   minimum costing horizon 
N2   maximum costing horizon 
N3   control horizon 
P         pressure on plate, pascal 

Q         heat exchange, kJ 
R         number of moles reacted, mol s-1 

Rg   gas constant, J mol-1 K-1 
RLS     recursive least squares 
r          rate of reaction, mol s-1 m-3    
av       average density, g m-3 
T         temperature, K 
Tc   coolant temperature, K 
Tf   feed temperature, K 
Tr   reactor temperature, K 
U   heat transfer coefficient, J m-2 s-1 K-1 
u  controller output 
umin   lower limit of manipulated variable 
umax   upper limit of manipulated variable 
VLE     vapor-liquid equilibrium 
V          molar vapor flow rate, mol s-1 

x          mole fraction in liquid phase 
x1   dimensionless reactant concentration 
x2   dimensionless reactant temperature 
y          mole fraction in vapor phase 
ymin   lower limit of output variable 
ymax   upper limit of output variable 
av        average density, g m-3 

 

7. References 

Ahn, S.M., Park, M.J., Rhee, H.K. Extended Kalman filter based nonlinear model predictive 
control of a continuous polymerization reactor. Industrial &. Engineering Chemistry 
Research,  38: 3942-3949, 1999. 

Alejski, K., Duprat, F. Dynamic simulation of the multicomponent reactive distillation.   
Chemical Engineering Science, 51: 4237-4252, 1996. 

Bazaraa, M.S., Shetty, C.M. Nonlinear Programming, 437-443 (John Wiley & Sons, New York), 
1979. 

Calvet, J P., Arkun, Y. Feedforward and feedback linearization of nonlinear systems and its 
implementation using internal model control (IMC). Industrial &. Engineering 
Chemistry Research, 27: 1822-1831, 1988. 

Camacho, E. F. Constrained generalized predictive control. IEEE Trans Aut Contr, 38: 327-
332, 1993. 

Camacho, E. F., Bordons, C. Model Predictive Control in the Process Industry; Springer Verlag: 
Berlin, Germany, 1995.  

Clarke, D.W., Mohtadi, C and Tuffs, P.S. Generalized predictive control – Part I. The basic 
algorithm. Automatica,  23: 137-148, 1987. 

Cutler, C.R. and Ramker, B.L. Dynamic matrix control – a computer control algorithm, 
Proceedings Joint Automatic Control Conference, Sanfrancisco, CA.,1980. 

Dolan, W.B., Cummings, P.T., Le Van, M.D. Process optimization via simulated annealing: 
application to network design. AIChE Journal. 35: 725-736, 1989. 

Garcia, C.E., Prett, D.M., and Morari, M. Model predictive control: Theory and Practice - A 
survey.  Automatica, 25: 335-348, 1989. 

Eaton, J.W., Rawlings, J.B. Model predictive control of chemical processes. Chemical 
Engineering Science, 47: 705-720, 1992. 

Goodwin, G.C., Sin, K.S. Adaptive Filtering Prediction and Control (Printice Hall, 
Englewood Cliffs, New Jersey), 1984. 

Haber, R.,  Unbehauen, H. Structure  identification of  nonlinear dynamical systems -a 
survey on input/output approaches.  Automatica, 26: 651-677, 1990. 

Hanke, M., Li, P. Simulated annealing for the optimization of batch distillation process.   
Computers and Chemical Engineering, 24: 1-8, 2000. 

Hernandez, E., Arkun, Y., Study of the control relevant properties of backpropagation 
neural network models of nonlinear dynamical systems. Computers & Chemical 
Engineering, 16: 227-240, 1992. 

Hernandez, E., Arkun, Y. Control of nonlinear systems using polynomial ARMA models. 
AIChE Journal, 39: 446-460, 1993. 

Hernandez, E., Arkun, Y. On the global solution of nonlinear model predictive control 
algorithms that use polynomial models. Computers and Chemical Engineering, 18: 
533-536, 1994. 

Hsia, T.C. System Identification: Least Square Methods (Lexington Books, Lexington, MA), 
1977. 

Kirkpatrick, S., Gelatt Jr, C.D., Veccchi, M.P. Optimization by simulated annealing. Scienc, 
220: 671-680, 1983. 

Morningred, J.D., Paden, B.E., Seborg D.E., Mellichamp, D.A., An adaptive nonlinear 
predictive controller. Chemical Engineering Science, 47: 755-762, 1992. 

www.intechopen.com



Model Predictive Control140

Qin, J., Badgwell, T. An overview of industrial model predictive control technology; In: V th 
International Conference on Chemical Process Control (Kantor, J.C., Garcia, C.E., 
Carnhan, B., Eds.): AIChE Symposium Series,  93: 232-256, 1997. 

Richalet, J., Rault, A., Testud, J. L. and Papon, J. Model predictive heuristic control: 
Application to industrial processes. Automatica, 14: 413-428, 1978. 

Ricker, N.L., Lee, J.H. Nonlinear model predictive control of the Tennessee Eastman 
challenging process. Computers and Chemical Engineering,  19: 961-981, 1995. 

Smith, J.M., Van Ness, H.C. Abbot, M.M., A Text Book on Introduction to Chemical 
Engineering Thermodynamics, 5 th Ed., Mc-Graw Gill International. 1996. 

Shopova, E.G., Vaklieva-Bancheva, N.G. BASIC-A genetic algorithm for engineering 
problems solution. Computers and Chemical Engineering,  30: 1293-1309, 2006. 

Venkateswarlu, Ch., Gangiah, K. Constrained generalized predictive control of unstable  
nonlinear processes. Transactions of Insitution of Chemical Engineers, 75: 371-376, 
1997. 

Venkateswarlu, Ch., Naidu, K.V.S. Adaptive fuzzy model predictive control of an 
exothermic batch chemical reactor. Chemical Engineering Communications, 186: 1-23, 
2001. 

Venkateswarlu, Ch., Venkat Rao, K. Dynamic recurrent radial basis function network model 
predictive control of unstable nonlinear processes. Chemical Engineering Science, 60: 
6718-6732, 2005. 

Venkateswarlu, Ch., Damodar Reddy, D. Nonlinear model predictive control of reactive 
distillation based on stochastic optimization. Industrial Engineering & Chemistry 
Research, 47: 6949-6960, 2008. 

Vora, N., Daoutidis, P.  Dynamics and control of ethyl acetate reactive distillation column. 
Industrial &. Engineering  Chemistry Research, 40: 833-849, 2001. 

Uppal, A., Ray, W.H., Poore, A. B. On the dynamic behavior of continuous stirred tank 
reactors. Chemical Engineering Science, 29: 967- 985,1974. 

Wright, G. T., Edgar, T. F.  Nonlinear model predictive control of a fixed-bed water-gas shift 
reactor: an experimental study.  Computers and Chemical Engineering, 18: 83-102, 
1994. 

www.intechopen.com



Model Predictive Control

Edited by Tao Zheng

ISBN 978-953-307-102-2

Hard cover, 304 pages

Publisher Sciyo

Published online 18, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Frontiers of Model Predictive Control Robust Model Predictive Control Nonlinear Model Predictive Control

Excellent Applications Guide for Researchers and Engineers Recent Achievements of Authors over the World

Theory with Practical Examples Kinds of Algorithms for Choice

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Venkateswarlu Ch. (2010). Model Predictive Control of Nonlinear Processes, Model Predictive Control, Tao

Zheng (Ed.), ISBN: 978-953-307-102-2, InTech, Available from: http://www.intechopen.com/books/model-

predictive-control/-dr-ch-venkateswarlu-scientist-f-chemical-engineering-sciences-indian-institute-of-chemical-

technolo



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


