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1. Introduction 

Although the study of complex systems has increased significantly in recent years, it 
remains a great challenge for science, both theoretically and practically. The complexity is 
based on the fundamental idea that a system is different from the sum of its parts. In the real 
world, we observe complex phenomena that greatly influence society and/or the 
environment. As a result, several approaches, more and more sophisticated, were designed 
to model and simulate complex systems. We need to find ways to understand these 
phenomena, especially if we have to take actions in order to limit their damage or increase 
their benefits. Indeed, modelling and computer simulation are used to virtually reproduce 
one or several phenomena in order to study them. A computer simulation consists in 
designing models, implementing these models and analyzing the results of their execution 
(Fishwick, 1995). In addition, the simulation can be used to develop tools for decision 
support. We are particularly interested in using modelling and computer simulation to help 
public health policy makers to better understand the spread of infectious diseases. These 
diseases are the result of the transmission of a pathogen (e.g. virus, bacteria) from an 
infected individual ("host": human or animal) to a healthy individual. Moreover, the 
expansion of some zoonoses (diseases transmitted from animal to human) such as the West 
Nile virus (WNV) forced public health authorities to develop monitoring systems. These 
systems brought together field data on human and animal infection (Gosselin et al., 2005). 
While these monitoring activities were undertaken to better understand the epidemiology of 
the disease and the level of risk it can represent for the human population, they do not allow 
for forecasts of the probable propagation of the zoonosis on the territory. Such a forecast, if 
it proved to be reliable, would allow public health authorities to initiate preventive actions 
at the right time and places and at the appropriate level of expected risk. However, it 
remains difficult to determine the at-risk areas on a scientific basis and the efficacy of such 
measures has been challenged (Ruiz et al., 2004), not to mention their high cost and 
environmental impacts. The identification of vulnerable zones and risk levels in due time 
remains a significant challenge for public health management due to the complexity of the 
phenomena related to the disease transmission. 

9

www.intechopen.com



Advances in Risk Management174

 

Several approaches have been proposed to model and simulate the spread of infectious 
diseases. However, these approaches such as mathematical modelling, cellular automata 
and traditional multi-agent systems have some weaknesses when trying to model and 
simulate the influence of geographic and climatic features on the disease spread and the 
spatio-temporal interactions of various kinds of actors (i.e. mosquitoes, birds, mammals and 
humans in the WNV case). Indeed, the simulation based on mathematical models that 
generally uses differential equations (Bowman et al., 2005) does not take into consideration 
the geographical space in which populations operate, except in certain cases such as patchy 
models (Liu et al., 2006). In spite of the fact that a simulation based on cellular automata 
models the evolution of the spatial characteristics of a geographic area involved in the 
disease, it does not represent individuals and their mobility (White et al., 2009). On the other 
hand, traditional agent-based simulations of epidemics represent the disease vectors (e.g. 
animals) as agents, but usually do not take advantage of data provided by Geographic 
Information Systems (GIS) in order to properly locate the agents in the geographic space 
(Emrich et al., 2007). Besides, to be useful for practical decision-making, a system simulating 
an epidemic should provide a user with the ability to specify various scenarios in the 
context of a “what-if” analysis (Haddad & Moulin, 2008) in order to explore, for instance, 
the influence of climate changes and of various intervention strategies. Hence, there is a 
need for a simulation approach capable to model: 1) the various actors involved in an 
epidemic; 2) their locations in space based on accurate GIS data; 3) their interactions in space 
and time. Moreover, such simulations need also to deal with large (or very large) 
populations of various species (including humans in certain cases) and their biological 
cycles. The multi-agent geosimulation approach (see section 2.2) can be used to address 
these needs (Moulin et al., 2003; Benenson & Torrens, 2004; Hu et al., 2008). However, this 
approach has some limitations since it does not integrate the different levels of granularity 
to which the phenomenon can be observed by policymakers. Indeed, a multi-level system 
can help us broaden our spectrum of understanding of a complex phenomenon. Besides, 
new properties of this phenomenon can appear by changing the level of granularity, 
especially if data are available to do so. Moreover, the selection and specification of these 
levels of granularity influence the results of the simulation. In this context, we recommend 
using a multi-level geosimulation approach to remedy the shortcomings of current methods. 
We acquired some experience with the development of a public health management tool in 
order to simulate in a plausible way the behaviours and interactions of populations of 
indicator birds and of mosquitoes involved in the propagation and transmission of the 
WNV. Our approach takes into account the characteristics of the geographic environment 
and enables the user to explore various climatic scenarios and regimens of larvicide 
treatments. We are currently exploring avenues to produce a generic solution which can 
thus be applied to other zoonoses such as Lyme disease. To this end, we are doing a 
reengineering of our tool and approach in order to produce more realistic simulations at 
different levels of granularity. We present in the next section an overview of complex 
systems and the various approaches used to model and simulate such systems. In Section 3 
we present an overview of the spread of infectious diseases and the particular approaches 
used to model and simulate zoonosis propagation. In Section 4 we present the multi-level 
geosimulation approach that we propose. In Section 5 we explain how such an approach has 
been used to take into account the peculiarities of the animal populations involved in the 
WNV propagation. In Section 6 we present our current work including the reengineering of 

 

our system and how we plan to develop a generic solution which might be applied to other 
zoonoses such as Lyme disease. We conclude this chapter with some recommendations. 

 
2. Modelling and Simulation of Complex Systems 

In this section, we present an overview of complex systems in order to understand and 
characterize them. We also try to explain the concept of complexity which is a source of 
controversy among scientists. We subsequently present the main approaches and methods 
used to model and simulate this kind of systems. The figures that we present in this section 
and the next sections are our proposals of synthetic views of phenomena of interest.  

 
2.1 Overview of Complex Systems 
The real world offers a large variety of complex systems ranging from the infinitely small to 
the infinitely large. In addition, the expansion of new technologies and the emergence of 
intelligent machines encourage us to make more sophisticated systems (Axelrod & Cohen, 
1999). Therefore, the study of complex systems has become a large discipline. However, 
there is no clear definition of complex systems, since authors do not fully agree on the 
notion of complexity. They seem to have the same opinion when it comes to the difference 
between a complex and complicated system. Indeed, it is not because we do not understand 
the processes or factors that are involved in a system that it is necessarily complex. It may be 
simply complicated by the degree of understanding of the observer or of the user of the 
system. Etymologically speaking, the word "complicated" (from the Latin cum pliare, stack 
with) means that it takes time and talent to understand the object of study while the word 
"complex" (from Latin cum plexus, tied with) means that there are many intricacies, that 
"everything is connected" and that we cannot study a small part of the system in isolation. 
Thus, complex systems are usually complicated, but the opposite is not necessarily true. 
Some authors describe a complex system by the following three properties: (1) if it has many 
components, (2) whether his behaviour is not immediately foreseeable, and (3) if it emerges 
some self-organized properties (Murray, 1995). Thus, a complex system has several 
characteristics. Perhaps among the important ones are the self-organization and the 
emergence of coherent structures, such as the appearance of certain motifs at a higher level 
(Parrott, 2002). To better understand such phenomena, we can mention the example of a 
bowl filled with rice and raisins. If the container is shaken, we can easily notice that the 
raisins will gather together to form a group over the rice. Thus, this group emerged as a 
result of the interactions of the system components. 

 
2.2 Approaches to Model and Simulate Complex Systems 
Designers use modelling and computer simulation to virtually reproduce one or several 
phenomena in a computer for analysis purposes. A real phenomenon can be represented by 
one or several complex systems, since it can be modelled according to several points of view 
and according to the vision of the observer of the real world. It can also be modelled using 
different techniques and/or different approaches (Figure 1). Besides, modelling a complex 
phenomenon is the first step before simulating it in a computer in order to understand it 
and analyze it. Indeed, computer simulation can be defined as a technique used to mimic 
the behaviour of a system. This process consists of three main interrelated steps. The first 
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Several approaches have been proposed to model and simulate the spread of infectious 
diseases. However, these approaches such as mathematical modelling, cellular automata 
and traditional multi-agent systems have some weaknesses when trying to model and 
simulate the influence of geographic and climatic features on the disease spread and the 
spatio-temporal interactions of various kinds of actors (i.e. mosquitoes, birds, mammals and 
humans in the WNV case). Indeed, the simulation based on mathematical models that 
generally uses differential equations (Bowman et al., 2005) does not take into consideration 
the geographical space in which populations operate, except in certain cases such as patchy 
models (Liu et al., 2006). In spite of the fact that a simulation based on cellular automata 
models the evolution of the spatial characteristics of a geographic area involved in the 
disease, it does not represent individuals and their mobility (White et al., 2009). On the other 
hand, traditional agent-based simulations of epidemics represent the disease vectors (e.g. 
animals) as agents, but usually do not take advantage of data provided by Geographic 
Information Systems (GIS) in order to properly locate the agents in the geographic space 
(Emrich et al., 2007). Besides, to be useful for practical decision-making, a system simulating 
an epidemic should provide a user with the ability to specify various scenarios in the 
context of a “what-if” analysis (Haddad & Moulin, 2008) in order to explore, for instance, 
the influence of climate changes and of various intervention strategies. Hence, there is a 
need for a simulation approach capable to model: 1) the various actors involved in an 
epidemic; 2) their locations in space based on accurate GIS data; 3) their interactions in space 
and time. Moreover, such simulations need also to deal with large (or very large) 
populations of various species (including humans in certain cases) and their biological 
cycles. The multi-agent geosimulation approach (see section 2.2) can be used to address 
these needs (Moulin et al., 2003; Benenson & Torrens, 2004; Hu et al., 2008). However, this 
approach has some limitations since it does not integrate the different levels of granularity 
to which the phenomenon can be observed by policymakers. Indeed, a multi-level system 
can help us broaden our spectrum of understanding of a complex phenomenon. Besides, 
new properties of this phenomenon can appear by changing the level of granularity, 
especially if data are available to do so. Moreover, the selection and specification of these 
levels of granularity influence the results of the simulation. In this context, we recommend 
using a multi-level geosimulation approach to remedy the shortcomings of current methods. 
We acquired some experience with the development of a public health management tool in 
order to simulate in a plausible way the behaviours and interactions of populations of 
indicator birds and of mosquitoes involved in the propagation and transmission of the 
WNV. Our approach takes into account the characteristics of the geographic environment 
and enables the user to explore various climatic scenarios and regimens of larvicide 
treatments. We are currently exploring avenues to produce a generic solution which can 
thus be applied to other zoonoses such as Lyme disease. To this end, we are doing a 
reengineering of our tool and approach in order to produce more realistic simulations at 
different levels of granularity. We present in the next section an overview of complex 
systems and the various approaches used to model and simulate such systems. In Section 3 
we present an overview of the spread of infectious diseases and the particular approaches 
used to model and simulate zoonosis propagation. In Section 4 we present the multi-level 
geosimulation approach that we propose. In Section 5 we explain how such an approach has 
been used to take into account the peculiarities of the animal populations involved in the 
WNV propagation. In Section 6 we present our current work including the reengineering of 

 

our system and how we plan to develop a generic solution which might be applied to other 
zoonoses such as Lyme disease. We conclude this chapter with some recommendations. 

 
2. Modelling and Simulation of Complex Systems 

In this section, we present an overview of complex systems in order to understand and 
characterize them. We also try to explain the concept of complexity which is a source of 
controversy among scientists. We subsequently present the main approaches and methods 
used to model and simulate this kind of systems. The figures that we present in this section 
and the next sections are our proposals of synthetic views of phenomena of interest.  

 
2.1 Overview of Complex Systems 
The real world offers a large variety of complex systems ranging from the infinitely small to 
the infinitely large. In addition, the expansion of new technologies and the emergence of 
intelligent machines encourage us to make more sophisticated systems (Axelrod & Cohen, 
1999). Therefore, the study of complex systems has become a large discipline. However, 
there is no clear definition of complex systems, since authors do not fully agree on the 
notion of complexity. They seem to have the same opinion when it comes to the difference 
between a complex and complicated system. Indeed, it is not because we do not understand 
the processes or factors that are involved in a system that it is necessarily complex. It may be 
simply complicated by the degree of understanding of the observer or of the user of the 
system. Etymologically speaking, the word "complicated" (from the Latin cum pliare, stack 
with) means that it takes time and talent to understand the object of study while the word 
"complex" (from Latin cum plexus, tied with) means that there are many intricacies, that 
"everything is connected" and that we cannot study a small part of the system in isolation. 
Thus, complex systems are usually complicated, but the opposite is not necessarily true. 
Some authors describe a complex system by the following three properties: (1) if it has many 
components, (2) whether his behaviour is not immediately foreseeable, and (3) if it emerges 
some self-organized properties (Murray, 1995). Thus, a complex system has several 
characteristics. Perhaps among the important ones are the self-organization and the 
emergence of coherent structures, such as the appearance of certain motifs at a higher level 
(Parrott, 2002). To better understand such phenomena, we can mention the example of a 
bowl filled with rice and raisins. If the container is shaken, we can easily notice that the 
raisins will gather together to form a group over the rice. Thus, this group emerged as a 
result of the interactions of the system components. 

 
2.2 Approaches to Model and Simulate Complex Systems 
Designers use modelling and computer simulation to virtually reproduce one or several 
phenomena in a computer for analysis purposes. A real phenomenon can be represented by 
one or several complex systems, since it can be modelled according to several points of view 
and according to the vision of the observer of the real world. It can also be modelled using 
different techniques and/or different approaches (Figure 1). Besides, modelling a complex 
phenomenon is the first step before simulating it in a computer in order to understand it 
and analyze it. Indeed, computer simulation can be defined as a technique used to mimic 
the behaviour of a system. This process consists of three main interrelated steps. The first 
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step is the design or selection of models that can represent the studied phenomenon. This 
includes identifying and collecting data that will be used to feed the system to simulate. 
Some data are obtained using specific sensors or through human collection. Other data are 
obtained by interviewing experts of the domain or by applying knowledge acquisition 
techniques. The design of models is therefore based on these data and on knowledge gained 
from previous experiences with similar systems. The second step is the implementation of 
these models in a computer. Finally, the last step is the analysis of the results from the 
simulation of these models. Tests are done on the data generated by the above mentioned 
models, using for example statistical analysis. The most basic analysis would be to just 
observe the data and derive conclusions (Fishwick, 1995). 
 

 
Fig. 1. Modelling a complex phenomenon. 
 
Besides, several approaches have been proposed to simulate complex phenomena. Among 
the approaches to simulate nonlinear continuous systems, we can mention the mathematical 
models and system dynamics. The simulation based on mathematical models is 
schematically carried out following 5 steps. (1) We start by defining the physical problem to 
be simulated. (2) We then describe this problem using a system of differential equations and 
set of boundary conditions which are properly chosen. (3) We replace the differential 
equations by algebraic equations. The numerical resolution of these equations can provide 
solutions that adequately describe the physical reality of the system. (4) We solve the 
algebraic equations using numerical algorithms chosen according to their calculation 
efficiency. (5) Finally, we test the numerical model in order to confirm that the selected 
algorithms converge towards a satisfactory solution (Farge, 1988). On the other hand, 
System Dynamics is an approach which deals with internal feedback loops, stocks, flows 
and time delays that affect the behaviour of the entire system. In order to use this approach, 
we have to begin by identifying all the elements of the problem that can be represented as 
system variables. This is the step of causal analysis which aims obtaining a simple 
qualitative model representing the system by some feedback loops. Then, we have to 
identify which among the system variables, are variables that appear to be accumulating. 
These are the state variables, also called "levels" by reference to the level of liquid in a 
container. We also have to identify flows that empty or fill the variable level. In addition, we 
have to identify the variables that influence these flows, which are typically information or 

 

decision variables. We then go through a stage of formalization and quantification using 
differential equations that can represent the system dynamics as continuous change. Finally, 
we have to validate and calibrate the model (Kirkwood, 1998). 
Moreover, cellular automata are considered as a standard approach to study complex 
systems. Indeed, a cellular automaton represents a grid of "cells" that can each take a "state" 
among a finite set. The state of a cell ci at time t + 1 depends on the state at time t of a finite 
number of cells called the "neighborhood" of ci. The advantage of cellular automaton 
compared to the above mentioned approaches (mathematical models and system dynamics) 
is to add a spatial component to the simulation. However, there are two limits to the use of 
cellular automata. Indeed, the grid is usually artificial (not related to the studied 
phenomenon). This drawback has been circumvented by the implementation of cellular 
automata using irregular grid such as the Voronoi diagram (Shi & Pang, 2000). The second 
limit is that cellular automata can not manage individuals and their mobility in the 
geographic environment. This seems to be an important constraint when considering social 
phenomena in which individuals’ mobility needs to be simulated. Traditional agent-based 
approach tries to solve this problem by simulating the individuals as agents. Thus, the 
advantage of multi-agent systems compared to cellular automata is to explicitly take into 
account the trajectories of each individual or group of individuals in a virtual geographic 
environment (VGE). In such approach, agents are able to navigate and explore in the VGE. 
This is because the spatial behaviour of agents is not constrained by a grid of cells 
(Badariotti & Weber, 2002). 
Besides, multi-agent geosimulation (MAGS) provides a new kind of simulation based on a 
combination of various techniques and theories (cellular automata, multi-agent system, etc.) 
and might offer a unique perspective that is lacking in traditional simulations. Moreover, 
MAGS approach emerged in response to deficiencies of the traditional multi-agent systems. 
In fact, multi-agent geosimulation has the advantage of structuring the spatial knowledge of 
the environment using data provided by geographic information systems. In addition, 
MAGS extends the scope of traditional simulations that aim to predict results from a set of 
hypotheses by allowing the user to specify various scenarios, assess and compare their 
outcomes. Thus, multi-agent geosimulation becomes a tool for decision support (Moulin et 
al., 2003; Benenson & Torrens, 2004). Let us mention here the MAGS platform which has 
been developed by our research group (Moulin et al., 2003). It can simulate the interactions 
of thousands of software agents interacting in virtual geographic environment. The agents 
have spatial and cognitive abilities such as perception, memory and navigation. Although 
one of the first applications of MAGS was the simulation of crowd behaviours in urban 
environments, it is a generic platform allowing the simulation of several types of behaviours 
in geo-referenced virtual environments. It has been used for example to simulate the 
behaviour of consumers visiting a shopping center, road traffic or the propagation of forest 
fires (Sahli et al., 2004; Moulin, 2008). Besides, MAGS system is composed of several 
modules performing various tasks, including a module used to simulate particle systems 
(Reeves, 1983). This module was added as part of a former work (Bouden, 2004) to simulate 
irregular shapes such as smoke or gas spreading through the simulation environment. 
Although particle systems were initially used to simulate tear gas for crowd simulation, 
their scope has been greatly expanded in MAGS system. Indeed, particle systems can be 
used to simulate animal behaviours such as flight of birds, moving herds and fish schools 
(Reynolds, 1987). It is precisely one of the reasons that led us to use MAGS system, and its 
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step is the design or selection of models that can represent the studied phenomenon. This 
includes identifying and collecting data that will be used to feed the system to simulate. 
Some data are obtained using specific sensors or through human collection. Other data are 
obtained by interviewing experts of the domain or by applying knowledge acquisition 
techniques. The design of models is therefore based on these data and on knowledge gained 
from previous experiences with similar systems. The second step is the implementation of 
these models in a computer. Finally, the last step is the analysis of the results from the 
simulation of these models. Tests are done on the data generated by the above mentioned 
models, using for example statistical analysis. The most basic analysis would be to just 
observe the data and derive conclusions (Fishwick, 1995). 
 

 
Fig. 1. Modelling a complex phenomenon. 
 
Besides, several approaches have been proposed to simulate complex phenomena. Among 
the approaches to simulate nonlinear continuous systems, we can mention the mathematical 
models and system dynamics. The simulation based on mathematical models is 
schematically carried out following 5 steps. (1) We start by defining the physical problem to 
be simulated. (2) We then describe this problem using a system of differential equations and 
set of boundary conditions which are properly chosen. (3) We replace the differential 
equations by algebraic equations. The numerical resolution of these equations can provide 
solutions that adequately describe the physical reality of the system. (4) We solve the 
algebraic equations using numerical algorithms chosen according to their calculation 
efficiency. (5) Finally, we test the numerical model in order to confirm that the selected 
algorithms converge towards a satisfactory solution (Farge, 1988). On the other hand, 
System Dynamics is an approach which deals with internal feedback loops, stocks, flows 
and time delays that affect the behaviour of the entire system. In order to use this approach, 
we have to begin by identifying all the elements of the problem that can be represented as 
system variables. This is the step of causal analysis which aims obtaining a simple 
qualitative model representing the system by some feedback loops. Then, we have to 
identify which among the system variables, are variables that appear to be accumulating. 
These are the state variables, also called "levels" by reference to the level of liquid in a 
container. We also have to identify flows that empty or fill the variable level. In addition, we 
have to identify the variables that influence these flows, which are typically information or 

 

decision variables. We then go through a stage of formalization and quantification using 
differential equations that can represent the system dynamics as continuous change. Finally, 
we have to validate and calibrate the model (Kirkwood, 1998). 
Moreover, cellular automata are considered as a standard approach to study complex 
systems. Indeed, a cellular automaton represents a grid of "cells" that can each take a "state" 
among a finite set. The state of a cell ci at time t + 1 depends on the state at time t of a finite 
number of cells called the "neighborhood" of ci. The advantage of cellular automaton 
compared to the above mentioned approaches (mathematical models and system dynamics) 
is to add a spatial component to the simulation. However, there are two limits to the use of 
cellular automata. Indeed, the grid is usually artificial (not related to the studied 
phenomenon). This drawback has been circumvented by the implementation of cellular 
automata using irregular grid such as the Voronoi diagram (Shi & Pang, 2000). The second 
limit is that cellular automata can not manage individuals and their mobility in the 
geographic environment. This seems to be an important constraint when considering social 
phenomena in which individuals’ mobility needs to be simulated. Traditional agent-based 
approach tries to solve this problem by simulating the individuals as agents. Thus, the 
advantage of multi-agent systems compared to cellular automata is to explicitly take into 
account the trajectories of each individual or group of individuals in a virtual geographic 
environment (VGE). In such approach, agents are able to navigate and explore in the VGE. 
This is because the spatial behaviour of agents is not constrained by a grid of cells 
(Badariotti & Weber, 2002). 
Besides, multi-agent geosimulation (MAGS) provides a new kind of simulation based on a 
combination of various techniques and theories (cellular automata, multi-agent system, etc.) 
and might offer a unique perspective that is lacking in traditional simulations. Moreover, 
MAGS approach emerged in response to deficiencies of the traditional multi-agent systems. 
In fact, multi-agent geosimulation has the advantage of structuring the spatial knowledge of 
the environment using data provided by geographic information systems. In addition, 
MAGS extends the scope of traditional simulations that aim to predict results from a set of 
hypotheses by allowing the user to specify various scenarios, assess and compare their 
outcomes. Thus, multi-agent geosimulation becomes a tool for decision support (Moulin et 
al., 2003; Benenson & Torrens, 2004). Let us mention here the MAGS platform which has 
been developed by our research group (Moulin et al., 2003). It can simulate the interactions 
of thousands of software agents interacting in virtual geographic environment. The agents 
have spatial and cognitive abilities such as perception, memory and navigation. Although 
one of the first applications of MAGS was the simulation of crowd behaviours in urban 
environments, it is a generic platform allowing the simulation of several types of behaviours 
in geo-referenced virtual environments. It has been used for example to simulate the 
behaviour of consumers visiting a shopping center, road traffic or the propagation of forest 
fires (Sahli et al., 2004; Moulin, 2008). Besides, MAGS system is composed of several 
modules performing various tasks, including a module used to simulate particle systems 
(Reeves, 1983). This module was added as part of a former work (Bouden, 2004) to simulate 
irregular shapes such as smoke or gas spreading through the simulation environment. 
Although particle systems were initially used to simulate tear gas for crowd simulation, 
their scope has been greatly expanded in MAGS system. Indeed, particle systems can be 
used to simulate animal behaviours such as flight of birds, moving herds and fish schools 
(Reynolds, 1987). It is precisely one of the reasons that led us to use MAGS system, and its 
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particle system to simulate the behaviour of birds involved in the transmission of the WNV 
(see Section 5.3). 
However, the majority of current simulation approaches, such as those presented in this 
section, ignores the multi-level aspect of complex phenomena and thus, in many cases, is not 
able to capture some important aspects of these phenomena. Indeed, multi-level systems can 
simulate phenomena at different levels of granularity. Each level provides a different degree 
of precision to model, simulate and analyse the phenomenon (An et al., 2005). Depending on 
the expectations of their users, a phenomenon can be studied at three different levels of 
detail (Macro, Meso and Micro): (1) Macroscopic models represent the phenomenon with 
the highest abstraction level. They are often used to assess the global dynamics of 
aggregates of individuals located on a vast territory. (2) Mesoscopic models are used to 
simulate groups of individuals through aggregated behaviours. (3) Microscopic models are 
used to simulate individuals characterized by relatively detailed behaviours and have a 
capacity of interaction with and perception of the environment. Moreover, the level of 
granularity may be related to different spatial scales when simulating a phenomenon at a 
macro, a meso or a micro level. It can also be linked to changes in the time scale. For 
example, people’s change of residence occurs over years, while the variation of traffic on a 
road section occurs every minute (Jakovljevic & Basch, 2004). Multi-level systems and their 
different levels of granularity can be modeled using the holonic approach. The term "Holon" 
comes from the Greek word "Holos" meaning "together" and the suffix "-on" which means 
"part". Indeed, a holon can be thought of as a fractal structure that is stable, coherent, and 
consists of several holons as sub-structures; each holon being part of another larger holon. 
Most agent-based systems consider agents interactions from a micro level perspective. 
However, a group or a population of agents, at a certain level of abstraction, can behave as 
separate entities. Many approaches have attempted to model the concept of agents 
composed of agents as collective agents or meta-agents. However, considering such agents 
as a holon is a promising approach that has continued to evolve, especially to model 
complex systems (Rodriguez et al., 2006). 

 
3. Spread of Infectious Diseases 

In this section, we provide an overview of phenomena related to the spread of infectious 
diseases, by trying to define and characterize them. We also present two types of diseases 
that will be used for illustrative purposes. Then, we present the main approaches and tools 
that are currently used to simulate the spread of these diseases. 

 
3.1 Overview of Infectious Diseases 
Infectious diseases are the leading cause of death on the planet, especially after their 
proliferation due to global warming. Indeed, millions of people die each year worldwide as 
a result of an infection. The list of such diseases that punctuate the history of men's health is 
so long. Some diseases recently resurfaced with the proliferation of international trade and 
travel or with the increase of the resistance to antibiotics. Other newly appeared with the 
emergence of infectious agents previously unknown. Major diseases such as AIDS, 
tuberculosis, malaria and measles continue to weigh heavily on economies and societies in 
the world, especially in developing countries. For several of these diseases, there is still no 
drug, vaccine or other effective treatment. As already mentioned in the introduction, 

 

infectious diseases result from the transmission of a micro-organism representing the 
pathogen (bacterium, virus, fungus or parasite) from an infected individual (host: human or 
animal) to a healthy individual. We are particularly interested in zoonotic diseases that can 
be transmitted from animals to humans via a vector which is precisely responsible for the 
spread of the disease. Such a vector is most often an arthropod (e.g. insect, tick, etc.). 
As an example of a zoonosis of interest, WNV is a flavivirus which was isolated for the first 
time in 1937. Its name comes from the district of West Nile in Uganda. It was detected in 
human, birds and mosquitoes in Egypt in the early fifties, and has then been found in 
various European countries. WNV was detected on the American continent in 1999 and 
more specifically in New York (Nash et al., 2001). In Canada, WNV reached southern 
Ontario in 2001, while the first human cases were detected in August 2002. WNV made its 
appearance in Quebec in July 2002 (Gosselin et al., 2005). There are mainly two populations 
involved in the transmission of the WNV: the population of mosquitoes (Culex sp.) and the 
population of birds (we mainly consider the Corvidae family and more specifically crows 
which have been chosen by public health authorities as indicator birds for the WNV). The 
transmission of the WNV occurs mainly when mosquitoes bite birds. An infected mosquito 
can infect a bird, which can in turn infect healthy mosquitoes that will subsequently bite the 
infected bird before its death (Bouden et al., 2008). 
Another example of a zoonosis of interest is the Lyme disease which is a borreliosis caused 
by a bacterium (Borrelia burgdorferi) that is carried and transmitted to human by ticks (Ixodes 
scapularis). The first description of this disease has been made in the United States in 1977 in 
the town of Lyme, Connecticut. Ticks generally live in wooded areas or tall grass. Small 
rodents and certain types of birds (especially migratory species) are considered as the 
natural reservoirs of the bacterium. Moreover, White-tailed deer (Odocoileus virginianus) is 
the most common host for the adult stage of ticks (Ogden et al., 2005; Ogden et al., 2008). 

 
3.2 Approaches and Tools to Simulate Zoonosis Propagation 
We have already presented in Section 2.2 the basics of the main approaches that are used to 
model and simulate complex systems. We present in Figure 2 our synthetic view of the 
approaches that are currently used to model and simulate the spread of infectious diseases. 
Indeed, mathematical models are frequently used to study the propagation of zoonoses. We 
can mention three kinds of mathematical models: (1) Compartment models which are the 
basis of mathematical modelling in epidemiology. For example, the two-compartment 
model (SI) considers only the susceptible and infected individuals. This is the simplest model, 
but there are other more complex models involving several parameters such as the SIS, SEI, 
SEIS, SEIR and SEIRS model. The compartment "E" represents exposed individuals which are 
not contagious because the pathogen needs an incubation period. However, the 
compartment "R" represents recovered individuals which, in some instances, develop some 
immunity to the infection (Noël, 2007). (2) Patchy models attempt to simulate "patterns of 
spatial dispersion" of disease spread. These patterns reflect the presence of the disease in 
areas not necessarily contiguous in space. The patches are characterized in most cases, by 
administrative regions, whose number and boundaries are selected, based on availability of 
data to feed models (Liu et al., 2006). (3) Metapopulation models, in epidemiology, represent 
graphs in which each vertex is associated with systems of differential equations. Vertices are 
also called "patches". Indeed, a patch is a unit within which the population is considered 
homogeneous. Such a patch may also represent a geographic location (e.g. city, region, 
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particle system to simulate the behaviour of birds involved in the transmission of the WNV 
(see Section 5.3). 
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road section occurs every minute (Jakovljevic & Basch, 2004). Multi-level systems and their 
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Most agent-based systems consider agents interactions from a micro level perspective. 
However, a group or a population of agents, at a certain level of abstraction, can behave as 
separate entities. Many approaches have attempted to model the concept of agents 
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country, etc.). The patches may or may not overlap. They can be contiguous or separated in 
space. They are normally connected by the movement of species between patches using arcs 
connecting the vertices of graphs. Therefore, each vertex (or each patch) contains a number 
of sub-populations of species (Arino, 2009). 
 

 
Fig. 2. Main approaches used for the simulation of infectious diseases. 
 
As alternative approaches, cellular automata are often used to simulate the spread of 
infectious diseases (Fu & Milne, 2003; Beauchemin et al., 2005; Liu et al., 2006b). Let us 
mention, for example, the recent work of White et al. (2009) who used a two-dimensional 
cellular automaton to simulate the spread of a generic infectious disease. Although 
promising, this work lacks a careful calibration of the models (While et al., 2009). Moreover, 
other studies have simulated the spread of infectious diseases using traditional multi-agent 
systems (Emrich et al., 2007; Deng et al., 2008; Bauer et al., 2009). Let us mention, for example, 
the work of Liu et al. (2008) who proposed an agent-based model to simulate the spatio-
temporal transmission process of an epidemic. These authors used four groups of agents: (1) 
suceptible agents, (2) exposed agents, (3) infected agents and (4) recovered agents (Liu et al., 
2008). However, this kind of simulation can not be used to simulate a population with a 
large number of individuals. 
Furthermore, authors who developed mathematical models in order to simulate the spread 
of infectious diseases typically use tools such as Stella, Powersim, Vensim or AnyLogic. 
They often use a systems dynamics approach (presented in Section 2.2) in order to represent 
and simulate their models. For example, Odgen et al. (2005) used Stella in order to model the 
influence of temperature on the evolution of tick populations which are responsible of the 
spread of Lyme disease. Alternatively, other authors develop new tools or new components 
for existing tools such as STEM (Spatiotemporal Epidemiological Modeler: 
www.eclipse.org/stem) or SELES (Spatially Explicit Landscape Event Simulator: 
www.seles.info). Although these tools are interesting, they still present some constraints 

 

since their use requires technical skills and their execution is usually very slow. Moreover, 
these tools can not be used to model phenomena at different levels of granularity. The 
generic approach that we present in the next section aims at offering the possibility to 
remedy shortcomings of current methods and tools. 

 
4. Presentation of our Approach: Multi-Level Geosimulation 

In this section, we present an overview of our multi-level geosimulation approach. Indeed, 
we propose a multi-model approach which can simulate the propagation of infectious 
disease at different levels of granularity. This new approach aims at overcoming the 
drawbacks of existing methods when used alone and benefiting from their advantages when 
used together. We also present the model that we propose to simulate the spatio-temporal 
interactions of actors of various types, including those representing populations containing 
a large number of individuals. 

 
4.1 Overview of our Approach 
Before presenting our approach, we would like to explain the usefulness of a tool for 
decision support since it is one of the main goals of our work. Indeed, we showed in Section 
3.2 (Figure 2) that policymakers observe the spread of infectious disease, using monitoring 
system, before they can decide how, when and where to act in order to intervene on the 
spread phenomenon. However, it is not easy to make informed decisions in order to 
establish a strategic, tactical or operational plan, if decision makers only rely on the 
observation of the phenomenon. Thus, there is a need for tools for decision support which 
are able to simulate the phenomenon under various alternative scenarios of intervention. 
Using such tools, decision makers may specify different scenarios and carry out simulations 
in order to understand the phenomenon and analyze the simulation results (Figure 3). 
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remedy shortcomings of current methods and tools. 

 
4. Presentation of our Approach: Multi-Level Geosimulation 

In this section, we present an overview of our multi-level geosimulation approach. Indeed, 
we propose a multi-model approach which can simulate the propagation of infectious 
disease at different levels of granularity. This new approach aims at overcoming the 
drawbacks of existing methods when used alone and benefiting from their advantages when 
used together. We also present the model that we propose to simulate the spatio-temporal 
interactions of actors of various types, including those representing populations containing 
a large number of individuals. 
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system, before they can decide how, when and where to act in order to intervene on the 
spread phenomenon. However, it is not easy to make informed decisions in order to 
establish a strategic, tactical or operational plan, if decision makers only rely on the 
observation of the phenomenon. Thus, there is a need for tools for decision support which 
are able to simulate the phenomenon under various alternative scenarios of intervention. 
Using such tools, decision makers may specify different scenarios and carry out simulations 
in order to understand the phenomenon and analyze the simulation results (Figure 3). 
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Fig. 4. The different levels of granularity (Macro, Meso and/or Micro) that are used to 
establish the different plans (strategic, tactical and/or operational). 
 
In Figure 4, we present an overview of various simulation approaches that might be used to 
develop a support tool allowing decision makers to create action plans at different levels of 
abstraction (strategic, tactical and/or operational). Indeed, the simulation based on 
mathematical models can only give results at a macro level. It may help to establish 
guidelines for actions at the strategic level (e.g. political decisions). As examples of such 
mathematical models, we have already mentioned compartment models, patchy models and 
metapopulation models (Section 3.2). These two last types of models use an aggregated 
space that is not based on GIS data. On the other hand, the multi-level geosimulation uses a 
geo-referenced virtual geographical environment generated from GIS data. Moreover, it is 
characterized by several aspects (e.g. using scenarios, analyzing the simulation results, using 

 

mathematical models and data to feed them, etc.). In addition, given that this approach 
should produce simulations at different levels of granularity (e.g., Macro, Meso and/or 
Micro), it will not only help policymakers to establish guidelines for action at the strategic 
level, but also help tactical or operational decision makers to develop plans for intervention. 
Besides, surveillance systems can not make predictions of the probable spread of an 
infectious disease in order to initiate preventive action at the right time. However, these 
systems are essential to the multi-level geosimulation since they are used to calibrate the 
data feeding the mathematical models (Figure 4). 
 

 
Fig. 5. The different combinations of levels of granularity. 
 
Moreover, we suggest that in a multi-level approach the choice of levels depends on three 
main factors: (1) the users’ needs in relation to their understanding of the phenomenon, (2) 
the availability of models representing the actors and their behaviours and (3) the 
availability of data to feed. Furthermore, these levels may vary with: (1) the spatial scales of 
the geo-referenced virtual geographic environment, (2) the temporal scales characterizing 
the steps of the simulation and the (3) different categories of actors (individuals, groups or 
populations) involved in the phenomenon. For example, the temporal scale can be used 
differently depending on the simulated disease. Indeed, in the case of WNV, using a day or 
at most a week for the simulation steps appears satisfactory for the needs of public health 
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decision makers. Culex that are involved in the spread of WNV have a relatively rapid life 
cycle (few weeks). However, the case of Lyme disease is different. The life cycle of ticks 
responsible for spreading the disease is much longer (2.5 years on average). Hence, a 
simulation using for example a month as a simulation step should be considered so that 
decision makers can quickly grasp the evolution of the populations of ticks. 
Thus, an infectious disease can be simulated using one or several levels of granularity. We 
present in Figure 5, different combinations of levels of granularity using three axes 
representing three dimensions: Spatial Scale (SS), Time Scale (TS) and level of granularity of 
actors' categories (LGAC). We know that the different levels (Macro, Meso and Micro) 
belonging to the same dimension are determined by the three main factors that have been 
already mentioned (the user's needs, availability of models and data feeding these models). 
Moreover, given a simulation carried out at a particular dimension (e.g. Spatial Scale at 
Macro level), we can use different levels of another dimension (e.g. Temporal Scale at 
Macro, Meso and Micro level). For example, the spread of disease can be simulated in a 
large area such as the province of Quebec using multiple time scales representing different 
simulation steps (months, weeks and days). Besides, in addition to the choice of the levels of 
granularity, we have to choose models that are used to represent these different levels. 
Indeed, different models can provide different levels of abstraction. For example, the spread 
of a zoonosis can be simulated using a model showing only the propagation flows of the 
infection. This spread can also be simulated using a model providing more details and thus 
can generate simulations at a finer level of abstraction (Figure 5). 

 
4.2 Multi-Actor Spatio-Temporal Interaction Model (MASTIM) 
In Figure 6, we present a new theoretical model (called MASTIM: Multi-Actor Spatio-
Temporal Interaction Model) to simulate the interactions of various types of actors, 
including those representing populations containing a large number of individuals. Indeed, 
the large number of individuals of some populations involved in the spread of infectious 
diseases is a major modelling problem. Existing approaches such as traditional agent-based 
systems are not able to simulate this kind of populations. Given the limitations of 
computational resources of computers and the lack of data, we can not represent each 
individual by an agent, especially if we have to simulate a population composed of millions 
or even billions of individuals. This is the case of the mosquitoes populations involved in 
the transmission of the WNV. In this context, we propose our MASTIM model which can be 
used to simulate huge populations. 
Besides, we use a qualitative classification to distinguish different types of populations 
according to their characteristics (quantity and mobility of individuals). Indeed, we 
distinguish the following two kinds of populations. We first consider populations with a 
large number of individuals for which it is often unnecessary and generally impossible to 
represent individuals or even groups of individuals. Thus, we propose to model this kind of 
population by associating it with what we called an "occupied area". Indeed, the population 
is linked to the density of individuals located in this area. For example, mosquitoes do not 
travel much and they are present almost everywhere in the territory. Hence, mosquitoes can 
be considered as a feature of the simulation environment. Moreover, we distinguish two 
types of populations among those containing a large number of individuals. Slow moving 
population with a large number of individuals (SMP-LNI) such as mosquitoes and fast 
moving population with a large number of individuals (FMP-LNI) such as locusts. 

 

Therefore, we propose to model a SMP-LNI by associating it with what we called a "static 
occupied area", and model a FMP-LNI by associating it with what we called a "dynamic 
occupied area". A dynamic occupied area can be modelled by the spread of a gas cloud. 
We also consider populations with a small number of individuals which can be modelled by 
decomposing it into groups of individuals or even into individuals, and depending on the 
desired level of granularity. We also distinguish two types of populations among those 
containing a small number of individuals. Fast moving population with a small number of 
individuals (FMP-SNI) such as deers (relatively when compared to ticks) and slow moving 
population with a small number of individuals (SMP-SNI) such as rodents. Therefore, we 
propose to model a FMP-SNI by associating it with what we called a "deployment area" in 
order to represent the mobility of individuals or groups belonging to such population. 
Moreover, we propose to model a SMP-SNI by associating it with either a deployment area 
or a static occupied area, depending on the desired level of granularity. 
 

 

Fig. 6. Multi-Actor Spatio-Temporal Interaction Model. 
 
Besides, the different possibilities of interactions between populations, groups and 
individuals are illustrated in Figure 6. Indeed, interactions are modelled by combining 
elementary interactions. Moreover and according to the desired level of granularity, the 
different categories of actors (individuals groups, populations) can be represented by 
agents. We will then have n agents in the simulation. Each of these agents may be either a 
source or a target of an elementary interaction. Hence, an interaction occurs between a 
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decision makers. Culex that are involved in the spread of WNV have a relatively rapid life 
cycle (few weeks). However, the case of Lyme disease is different. The life cycle of ticks 
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Thus, an infectious disease can be simulated using one or several levels of granularity. We 
present in Figure 5, different combinations of levels of granularity using three axes 
representing three dimensions: Spatial Scale (SS), Time Scale (TS) and level of granularity of 
actors' categories (LGAC). We know that the different levels (Macro, Meso and Micro) 
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granularity, we have to choose models that are used to represent these different levels. 
Indeed, different models can provide different levels of abstraction. For example, the spread 
of a zoonosis can be simulated using a model showing only the propagation flows of the 
infection. This spread can also be simulated using a model providing more details and thus 
can generate simulations at a finer level of abstraction (Figure 5). 
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types of populations among those containing a large number of individuals. Slow moving 
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Therefore, we propose to model a SMP-LNI by associating it with what we called a "static 
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desired level of granularity. We also distinguish two types of populations among those 
containing a small number of individuals. Fast moving population with a small number of 
individuals (FMP-SNI) such as deers (relatively when compared to ticks) and slow moving 
population with a small number of individuals (SMP-SNI) such as rodents. Therefore, we 
propose to model a FMP-SNI by associating it with what we called a "deployment area" in 
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Moreover, we propose to model a SMP-SNI by associating it with either a deployment area 
or a static occupied area, depending on the desired level of granularity. 
 

 

Fig. 6. Multi-Actor Spatio-Temporal Interaction Model. 
 
Besides, the different possibilities of interactions between populations, groups and 
individuals are illustrated in Figure 6. Indeed, interactions are modelled by combining 
elementary interactions. Moreover and according to the desired level of granularity, the 
different categories of actors (individuals groups, populations) can be represented by 
agents. We will then have n agents in the simulation. Each of these agents may be either a 
source or a target of an elementary interaction. Hence, an interaction occurs between a 
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source entity and a target entity. An entity can be an agent or a group of agents. It may also 
be a particle representing a group of individuals or a group of particles. In addition, an 
elementary interaction can modify the source, target or both entities. The action which 
represents the interactions between the target and the source can be carried out through 
what we called a "vector of interactions" (Figure 6) which transfers the effect of the action 
from the source entity to the target entity. This transmission can be done in a discrete 
manner (e.g. a pathogen vector) or in continuous manner (e.g. energy flow). The MATSIM 
model is an original contribution of our work since classical models of interactions, such as 
the influences and reaction model of Ferber & Müller (1996), are only able to model 
interactions between agents. Such models cannot be used to simulate large population. 

 
5. A Method and Tool for the Geosimulation of Large Populations 

Using the MAGS platform, we developed the WNV-MAGS system to simulate the 
interactions between large populations of mosquitoes and birds which are involved in the 
spread of the WNV. To do so, we applied an 'Agile' (Ambler, 2002) analysis and design 
method which favours the collaboration with domain specialists and users, as well as quick 
adaptations of the software under development. But before developing WNV-MAGS, we 
had to collect data from various heterogeneous sources in order to create plausible 
populations of mosquitoes and birds. Thus, we present in this section how we collected such 
data. Then, we briefly present the mathematical model which is used by WNV-MAGS. We 
also present the results of the geosimulation of the WNV propagation and the calibration of 
the system.  

 
5.1 Collecting Information and Data Preparation 
We applied classical knowledge engineering techniques (Plant et al., 2002) in order to 
acquire domain knowledge from the specialized literature and from domain experts 
(entomologists and ornithologists) and after many work sessions. We then went through an 
exploration phase of the field by collecting all available information in order to understand 
the phenomena which are related to the spread of WNV. However, given the enormous 
complexity involved in representing such phenomena and the lack of detailed data, we had 
to raise a number of reasonable simplifying hypotheses with regard to the species of 
interest, the factors influencing the evolution of the populations, the geographical region 
selected for the analysis, the period of simulation and the space-time scale. Then, we 
designed a conceptual model representing a synthetic view of the phenomena of interest 
while taking into account the above mentioned simplifying hypotheses. For example, we 
considered only Culex (pipiens/restuans) and crows as the main two populations of 
mosquitoes and corvidae birds involved in the transmission of the WNV. Another useful 
simplification was about the displacements of crows. Indeed, we only considered the period 
of the year when crows regroup in roosts in order to spend the night in large gathering 
(Caccamise et al., 1997). This social behaviour takes place during the July to September 
season when the mosquitoes are most active, numerous, and susceptible of transmitting the 
WNV. Taking advantage of our conceptual model, we designed the system architecture, 
which helped us to implement the WNV-MAGS tool. 

 

 

 
 

Fig. 7. Initial population of Culex for (a) the southern part of the province of Quebec and (b) 
the Ottawa metropolitan area (Ontario). 
 
In order to create the virtual geographic environment representing the area of interest, we 
used GIS data to generate the various spatial data layers needed by the system. Moreover, 
we used the Geomedia GIS software to handle the geo-referenced data of the DMTI Spatial 
(CanMap Streetfiles), the digital maps of Institut national de santé publique du Québec (INSPQ), 
and the census shapefiles. Using this data, we created the bitmap from which the MAGS 
platform generates the simulation environment. This bitmap contains polygons representing 
either municipalities or census tracts, depending on the area of interest: municipalities are 
used to cover large areas such as the southern part of the province of Quebec whereas 
census tracks are used to characterize smaller areas such as Ottawa metropolitan area. In 
addition, we had to pre-process all the data needed to create the two populations (Culex and 
crows) involved in the WNV spread. We first estimated the initial number of individuals of 
each population at the beginning of the simulation which starts at the end of June (Figure 7). 
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For the Culex population, we estimated the number of adults that emerge from the larvae 
laid down in sumps (which we supposed to be the main reservoirs of mosquitoes in urban 
and sub-urban areas). To this end, we developed a Visual Basic application in order to query 
the geo-referenced databases in Geomedia and to compute the total length of roads for each 
polygon (municipality or census tract). We then computed the number of sumps in each 
polygon by using the total length of roads. Considering the population of crows, we used 
the SAS statistical software and the MapInfo GIS to compute a specific density of birds per 
region (number of individuals by square kilometer). This was done by estimating an 
average of the sighting mentions provided by professional and amateur ornithologists using 
the ÉPOQ database (Étude des populations d'oiseaux du Québec: www.oiseauxqc.org/epoq.jsp) 
for the southern part of the province of Quebec and the ebird database (www.ebird.org) for 
the Ottawa metropolitan area. After the data preparation, we implemented the WNV-MAGS 
system using the MAGS platform which is developed in C++. 

 
5.2 Using a Compartment Mathematical Model 
We used a compartment mathematical model (Wonham et al., 2004) in order to compute the 
dynamics of the two populations. This model is based on 8 differential equations which can 
compute over time the evolution of the different types of individuals: susceptible, infected, 
recovered and dead birds, the larvae of mosquitoes and the susceptible, exposed and 
infected adult mosquitoes. However, we proposed some modifications in order to correct 
some discrepancies that we found in the model. We also included in the model the climate 
effects. This was a difficult task because when considering the effects of temperature 
variations, the model in not in equilibrium anymore. Hence, we had to modify the 
differential equations (Noël, 2007). The adjusted model gives satisfactory results in terms of 
quality (e.g. distribution of the mosquitoes generations). Indeed, the pace of the established 
curves reflects the biological behaviours of the studied species according to domain experts. 
However, the quantitative results provided by our initial simulations of the evolution of the 
mosquitoes and crows populations (e.g. the number of larvae, eggs, emerged Culex, dead 
crows, etc.) were not completely satisfactory. We corrected this problem by calibrating the 
system (see Section 5.4). 

 
5.3 Geosimulation of Large Populations 
We had to model the two populations (Culex and crows) involved in the transmission of the 
WNV as well as their interactions in the virtual geographic environment (VGE). Indeed, the 
population of Culex represents an extremely large number of individuals and cannot be 
represented using individual agents (this kind of population corresponds to SMP-LNI in the 
MASTIM model: Section 4.2). In fact, we decided to model the mosquito population using 
what we called an "intelligent density map" which is characterized by population data being 
attached to reference areas (static occupied areas in the MASTIM model) in the VGE. This 
intelligent density map is a kind of cellular automaton in which a tessellation of irregular 
cells (municipalities or census tracts obtained from GIS data) is associated with rules that 
enable the system to simulate the evolution of the different categories or compartments of 
mosquitoes (adults, larvae, healthy, infected, etc.) using the compartment mathematical 
model. When considering the population of crows (this kind of population is a FMP-SNI in 
the MASTIM model), we used agents to model groups of crows associated with a spatial 

 

base location (which represents a deployment area in the MASTIM model) corresponding to 
roosts that have been observed in the field. 
 

 

 
Fig. 8. Geosimulation of the WNV propagation for (a) the southern part of the province of 
Quebec and (b) the Ottawa metropolitan area (Ontario). 

 
 
 
   
 
 
 
 
 
(a)
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
(b) 

www.intechopen.com



Multi-level geosimulation of zoonosis propagation:  
A multi-agent and climate sensitive tool for risk management in public health 189

 

For the Culex population, we estimated the number of adults that emerge from the larvae 
laid down in sumps (which we supposed to be the main reservoirs of mosquitoes in urban 
and sub-urban areas). To this end, we developed a Visual Basic application in order to query 
the geo-referenced databases in Geomedia and to compute the total length of roads for each 
polygon (municipality or census tract). We then computed the number of sumps in each 
polygon by using the total length of roads. Considering the population of crows, we used 
the SAS statistical software and the MapInfo GIS to compute a specific density of birds per 
region (number of individuals by square kilometer). This was done by estimating an 
average of the sighting mentions provided by professional and amateur ornithologists using 
the ÉPOQ database (Étude des populations d'oiseaux du Québec: www.oiseauxqc.org/epoq.jsp) 
for the southern part of the province of Quebec and the ebird database (www.ebird.org) for 
the Ottawa metropolitan area. After the data preparation, we implemented the WNV-MAGS 
system using the MAGS platform which is developed in C++. 

 
5.2 Using a Compartment Mathematical Model 
We used a compartment mathematical model (Wonham et al., 2004) in order to compute the 
dynamics of the two populations. This model is based on 8 differential equations which can 
compute over time the evolution of the different types of individuals: susceptible, infected, 
recovered and dead birds, the larvae of mosquitoes and the susceptible, exposed and 
infected adult mosquitoes. However, we proposed some modifications in order to correct 
some discrepancies that we found in the model. We also included in the model the climate 
effects. This was a difficult task because when considering the effects of temperature 
variations, the model in not in equilibrium anymore. Hence, we had to modify the 
differential equations (Noël, 2007). The adjusted model gives satisfactory results in terms of 
quality (e.g. distribution of the mosquitoes generations). Indeed, the pace of the established 
curves reflects the biological behaviours of the studied species according to domain experts. 
However, the quantitative results provided by our initial simulations of the evolution of the 
mosquitoes and crows populations (e.g. the number of larvae, eggs, emerged Culex, dead 
crows, etc.) were not completely satisfactory. We corrected this problem by calibrating the 
system (see Section 5.4). 
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In our model, a roost is considered as the spatial base location of a group of crows. Such 
groups which may be numerous (several thousand) gather in the roost during the summer 
season. During the day, crows disperse around the roost in search of food, returning at 
night. Hence, the spatial phenomenon of gathering and dispersion of this subpopulation of 
crows can be represented in a synthetic way in the form of an expansion and a contraction of 
the area occupied by this sub-population, varying by roost size (hence, we can model the 
variable density of crows in this dynamically changing area). In WNV-MAGS, each roost 
agent is implemented as a particle system which simulates the way crows spread around a 
roost during the day. Besides, a particle represents one or several crows, depending on the 
number of individuals attached to the roost. Each particle has different characteristics 
(velocity, movement direction) that enable it to travel at a distance from the roost location 
during a number of simulation steps representing a day. Hence, the set of particles 
associated with a given roost covers a circular area with a maximal radius set by the 
operating range parameter. Besides, the interactions of the mosquitoes and crows 
populations have also been modeled thanks to the geosimulation which enables the system 
to automatically determine the places and times where groups of crows (pertaining to 
roosts) will cross areas in which the Culex sub-populations are located. Therefore, the system 
can estimate the number of new infected individuals, based on the likelihood that a number 
of individual crows be bitten by Culex and be infected with WNV. To this end, certain 
equations of the compartment model are applied at each simulation step, for each particle 
crossing a cell of the intelligent density map where mosquitoes are located. 
Moreover, the user can visualize the extent of the spread of WNV on the map of the study 
area in different ways. The system can either change the color of the particles representing 
the infected crows or the color of the polygon representing a municipality or a census tract 
containing a high density of infected Culex (Figure 8). Besides, the WNV-MAGS System 
offers a variety of functionalities to the user in order to modify the parameters of the 
mathematical model, to visualize the progress of the infection in and around the crows' 
roosts, to extract data from the simulation and to generate graphs showing the evolution of 
the involved populations. 

 
5.4 Applying Different Scenarios and Calibration of the Simulations 
In our system, the multi-agent geosimulation is at the heart of a decision support tool. 
Hence, our approach is somewhat different from more traditional simulations used for 
prediction purposes (Benenson & Torrens, 2004). Since WNV is particularly sensitive to 
environmental changes (El Adlouni et al., 2007), our tool allows a user to explore various 
climate scenarios (temperature and precipitation variations) in addition to public heath 
intervention scenarios (larvicide treatments). The assessment and comparison of different 
simulation scenarios can help decision makers to make more informed decisions. 
Currently, a user may choose one among five different scenarios which influence the 
dynamics of the Culex population. The first scenario is the default scenario which can be set 
in order to use average conditions of temperature and precipitations (using in this case the 
Canadian Climate Normals). The second type of scenario allows the user to choose a date 
during which abundant rains may flush sumps in some municipalities or census tracts. 
Sumps offer ideal locations for the maturation of larvae and the emergence of adult 
mosquitoes. They are also the main targets where public health authorities may request 
specialized private companies to spray larvicides. Moreover, abundant rains may flush 

 

sumps, killing a large proportion of larvae. In the same way, the third scenario is used to 
simulate the application of larvicides in certain areas (municipality or census tract). The 
fourth scenario is a combination of the second and third scenarios. Hence, it is possible to 
choose a date for the flushing of sumps and another date for the application of larvicides. 
Most larvae are supposed to die after the flushing of a sump, although the dynamics of the 
larval populations starts all over again since there are always Culex adults in the vicinity of 
the sump that will spawn new eggs. The last scenario allows multiple applications of 
larvicides (Figure 9). 
 

 
Fig. 9. Using the scenario involving several applications of larvicides 
 
Besides, we carried out calibrations of the models by using monitoring data (capture of 
Culex, collection of dead crows and application of larvicides on the ground) provided by 
various public health agencies for the southern part of the province of Quebec and the 
Ottawa metropolitan area. Indeed, we compared simulation results and field observations. 
For example, we evaluated the ratio between the real populations of Culex and the samples 
of Culex captured in traps (a captured mosquito was considered to represent a population of 
300 Culex over one km2 (Reisen et al., 1991; Reisen et al., 1992) and as well as between crows 
and the collected dead crows. Concerning the southern part of the province of Quebec, we 
chose some key municipalities where human infections had occurred. It appeared thereafter 
that there was a significant difference between the data generated by the model and those 
obtained from the field. Hence, we tuned up the initial settings of the simulation (e.g. the 
initial percentage of infected Culex or infected crows, number of emerged Culex per sump, 
percentage of sumps containing larvae, etc.) as well as some parameters of the mathematical 
model (e.g. mosquitoes biting rate of crows per capita, WNV transmission probabilities from 
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Culex to crows or from crows to Culex, etc.). This approximate sensitivity analysis was done 
by changing only some parameters in order to observe their effects on the results of the 
simulation. Indeed, we have been careful when choosing certain parameters that should not 
be changed, especially those who have an impact on the biological cycle of the studied 
species (e.g. birth rate, maturation rate, mortality rate, etc.). 
 

 

 
Fig. 10. (a) The trap stations of Culex for the Ottawa metropolitan area (the tract 5050011.04 
which is highlighted in dark blue contains 4 stations). (b) Model calibration using the total 
number of Culex captured in traps during the simulation period (1 July – 1 October) for the 
tract 5050011.04 in 2006. 
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The variation of parameters, that can be changed, helped us to quantitatively calibrate the 
model for the processed municipalities. Thus, the parameters adjusted for calibration 
provide reasonable results (Bouden et al., 2008). Concerning the Ottawa metropolitan area, 
since we lacked data, we chose only one census tract (number: 5050011.04) in order to 
validate the model using the parameters already adjusted for the southern part of the 
province of Quebec. This tract contains the largest roost of crows (situated in the General 
Hospital Campus) and four trap stations of Culex. The modelling results show again a good 
fit with observed data (Figure 10). 
Besides, we have to mention that we used the parameters calibrated for the southern part of 
the province of Quebec in order to simulate the propagation of WNV in the Ottawa 
metropolitan area because the two regions are similar in terms of ecology and climate. 
Moreover, the simulations carried out at two different spatial scales highlighted similar 
problems related to the calibration process. Indeed, whatever the chosen scale, we were not 
able to calibrate the entire geographic area of interest. We had to select some key 
municipalities for the large-scale simulation (southern part of the province of Quebec) and 
only one census tract for the small-scale simulation (Ottawa metropolitan area). The lack of 
data is the explanation of the limits of the calibration process. This led us to propose some 
recommendations in Section 7. 

 
6. Reengineering and Adapting the System to Other Zoonoses 

Our MAGS approach and geosimulation tool can be used not only to simulate the 
propagation of the WNV, but it can also be adapted to various other vector-borne diseases. 
We are currently exploring avenues to produce a generic solution which can thus be applied 
to other zoonoses such as Lyme disease. To this end, we are doing a reengineering of our 
tool in order to produce more realistic simulations at different levels of granularity. 
Besides, we have completed the conceptual architecture of our new system (called Zoonosis-
MAGS) which allows for a multi-level geosimulations of different types of infectious 
diseases. This architecture is based on the IPSO (Input/Process/Store/Output) modelling 
method (Moulin, 1985) which can represent all the needed system components and their 
relationships. While constructing this architecture, we identified all the processes to be 
developed (represented as green rectangles with regular contour and numbered as Pi in 
Figure 11) and all the data stores (represented as blue rectangles with oval contour and 
numbered as Ai in Figure 11) that gather data and feed the system processes. Moreover, the 
IPSO method is based on a refinement approach which consists on representing first the 
overall process of the system that we have to develop. Then, we can detail each of the sub-
processes belonging to this overall process. This hierarchical decomposition allows us to 
progressively detail the system in order to reach the required precision with the possibility 
of a feedback refinement. 
In Figure 11, we present the overall process of the architecture of our new tool (represented 
as a large rectangle with thick lines). Indeed, most of the necessary data are obtained from 
external databases (represented as cylinders at the bottom of Figure 11) such as the ÉPOQ 
and the weather databases. The other sources of data are the GIS and the monitoring system 
(represented as rectangles with a shadow). On the other hand, the sub-processes P7 to P11 
deal with data preparation, including the extraction of data from all the required databases. 
These sub-processes produce the data stores A06 to A09 which feed the internal database of 
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Culex to crows or from crows to Culex, etc.). This approximate sensitivity analysis was done 
by changing only some parameters in order to observe their effects on the results of the 
simulation. Indeed, we have been careful when choosing certain parameters that should not 
be changed, especially those who have an impact on the biological cycle of the studied 
species (e.g. birth rate, maturation rate, mortality rate, etc.). 
 

 

 
Fig. 10. (a) The trap stations of Culex for the Ottawa metropolitan area (the tract 5050011.04 
which is highlighted in dark blue contains 4 stations). (b) Model calibration using the total 
number of Culex captured in traps during the simulation period (1 July – 1 October) for the 
tract 5050011.04 in 2006. 
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since we lacked data, we chose only one census tract (number: 5050011.04) in order to 
validate the model using the parameters already adjusted for the southern part of the 
province of Quebec. This tract contains the largest roost of crows (situated in the General 
Hospital Campus) and four trap stations of Culex. The modelling results show again a good 
fit with observed data (Figure 10). 
Besides, we have to mention that we used the parameters calibrated for the southern part of 
the province of Quebec in order to simulate the propagation of WNV in the Ottawa 
metropolitan area because the two regions are similar in terms of ecology and climate. 
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problems related to the calibration process. Indeed, whatever the chosen scale, we were not 
able to calibrate the entire geographic area of interest. We had to select some key 
municipalities for the large-scale simulation (southern part of the province of Quebec) and 
only one census tract for the small-scale simulation (Ottawa metropolitan area). The lack of 
data is the explanation of the limits of the calibration process. This led us to propose some 
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to other zoonoses such as Lyme disease. To this end, we are doing a reengineering of our 
tool in order to produce more realistic simulations at different levels of granularity. 
Besides, we have completed the conceptual architecture of our new system (called Zoonosis-
MAGS) which allows for a multi-level geosimulations of different types of infectious 
diseases. This architecture is based on the IPSO (Input/Process/Store/Output) modelling 
method (Moulin, 1985) which can represent all the needed system components and their 
relationships. While constructing this architecture, we identified all the processes to be 
developed (represented as green rectangles with regular contour and numbered as Pi in 
Figure 11) and all the data stores (represented as blue rectangles with oval contour and 
numbered as Ai in Figure 11) that gather data and feed the system processes. Moreover, the 
IPSO method is based on a refinement approach which consists on representing first the 
overall process of the system that we have to develop. Then, we can detail each of the sub-
processes belonging to this overall process. This hierarchical decomposition allows us to 
progressively detail the system in order to reach the required precision with the possibility 
of a feedback refinement. 
In Figure 11, we present the overall process of the architecture of our new tool (represented 
as a large rectangle with thick lines). Indeed, most of the necessary data are obtained from 
external databases (represented as cylinders at the bottom of Figure 11) such as the ÉPOQ 
and the weather databases. The other sources of data are the GIS and the monitoring system 
(represented as rectangles with a shadow). On the other hand, the sub-processes P7 to P11 
deal with data preparation, including the extraction of data from all the required databases. 
These sub-processes produce the data stores A06 to A09 which feed the internal database of 
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the Zoonosis-MAGS system. This database is used by the sub-processes P2 to P4 in order to 
generate additional data stores. 
 

 
Fig. 11. The overall process of the architecture of Zoonosis-MAGS. 

 

For example, the sub-process P2 uses environmental data which is produced using GIS (A09), 
weather data including temperature and precipitation (A08), zoonosis data such as the 
parameters of the selected mathematical model (A03) and data characterizing actors involved 
in the zoonosis propagation and their behaviours (A02). Thus, P2 produces the data store A01 
containing the different scenarios that the user wants to apply to the geosimulation. Besides, 
the data stores A01 to A04 are the input of the most important sub-process of our system. It is 
the sub-process P1 which has the main task of geosimulating the zoonosis propagation using 
our new approach. For example, we can find in this sub-process the geosimulation engine 
which uses, among other things, our MASTIM model. Moreover, the sub-process P1 will of 
course produce results (A05) which will be analyzed by the sub-process P5. The analyzed data 
(A010) may be used by the sub-process P6 to calibrate the different models. This sub-process 
uses the data produced by the monitoring system (A011) and the data containing in the 
Zoonosis-MAGS database (A06 to A09). 
Besides, we are currently developing our new system. Indeed, we follow an iterative analyses 
and development approach which is in line with recent methods of complex system 
engineering (Kuras, 2007). 

 
7. Conclusion and Recommendations 

The solution that we propose (using a multi-level geosimulation approach) can bring 
significant contributions to the advancement of knowledge especially for risk management. 
Indeed, our strategy to manage the risk of an infection outbreak triggered by a virus or 
bacteria is to help health policy makers to better understand a complex phenomenon such as 
the spread of a zoonosis and therefore to be able to make informed decisions. These decisions 
can initiate preventive actions at the right time and places in order to avoid or reduce the 
negative effect of the risk which is in our case the propagation of an infectious disease. 
However, the lack of data to feed the simulation models and the quality of data that are 
available to calibrate these models are among the main limits of the simulation of a complex 
system such as the spread of an infectious disease. Indeed, it is sometimes impossible to find 
such data in the literature or even to get if from experts. As a result, making assumptions is 
unavoidable in order to address the problem of missing data. Some of these assumptions may 
reduce the realism of the simulation. To solve this problem, it is important that additional field 
studies be carried out by domain experts (as for examples entomologists and ornithologists). 
Moreover, the data needed to calibrate simulation models and obtained from monitoring 
systems have some bias. For example, the collection or analysis of data regarding the infected 
animals is not carried out on a regular basis and usually in only a small subset of geographic 
areas. Sampling is often determined inconsistently in time and space. Therefore, the very high 
variability of the data collected by monitoring systems often causes a lack of adequate data to 
feed the simulations. The problem lies in the fact that designers of monitoring systems do not 
always think about the usefulness of data collected in order to adequately interpret them. To 
solve this problem, it is important to enhance monitoring systems and the way field analyses 
are carried out. For simulation purposes, we suggest to focus on certain areas (e.g. some 
municipalities, some census tracts) instead of trying to monitor everything on a large territory. 
Therefore, rather then getting huge data sets which are for the most part unusable, we would 
obtain more complete and consistent data sets from samples, well distributed in time and 
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the Zoonosis-MAGS system. This database is used by the sub-processes P2 to P4 in order to 
generate additional data stores. 
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which uses, among other things, our MASTIM model. Moreover, the sub-process P1 will of 
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uses the data produced by the monitoring system (A011) and the data containing in the 
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and development approach which is in line with recent methods of complex system 
engineering (Kuras, 2007). 
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The solution that we propose (using a multi-level geosimulation approach) can bring 
significant contributions to the advancement of knowledge especially for risk management. 
Indeed, our strategy to manage the risk of an infection outbreak triggered by a virus or 
bacteria is to help health policy makers to better understand a complex phenomenon such as 
the spread of a zoonosis and therefore to be able to make informed decisions. These decisions 
can initiate preventive actions at the right time and places in order to avoid or reduce the 
negative effect of the risk which is in our case the propagation of an infectious disease. 
However, the lack of data to feed the simulation models and the quality of data that are 
available to calibrate these models are among the main limits of the simulation of a complex 
system such as the spread of an infectious disease. Indeed, it is sometimes impossible to find 
such data in the literature or even to get if from experts. As a result, making assumptions is 
unavoidable in order to address the problem of missing data. Some of these assumptions may 
reduce the realism of the simulation. To solve this problem, it is important that additional field 
studies be carried out by domain experts (as for examples entomologists and ornithologists). 
Moreover, the data needed to calibrate simulation models and obtained from monitoring 
systems have some bias. For example, the collection or analysis of data regarding the infected 
animals is not carried out on a regular basis and usually in only a small subset of geographic 
areas. Sampling is often determined inconsistently in time and space. Therefore, the very high 
variability of the data collected by monitoring systems often causes a lack of adequate data to 
feed the simulations. The problem lies in the fact that designers of monitoring systems do not 
always think about the usefulness of data collected in order to adequately interpret them. To 
solve this problem, it is important to enhance monitoring systems and the way field analyses 
are carried out. For simulation purposes, we suggest to focus on certain areas (e.g. some 
municipalities, some census tracts) instead of trying to monitor everything on a large territory. 
Therefore, rather then getting huge data sets which are for the most part unusable, we would 
obtain more complete and consistent data sets from samples, well distributed in time and 

www.intechopen.com



Advances in Risk Management196

 

space. The data collection should also be carried out repetitively in the same areas in order to 
insure a better quality, and continuity of the data. 
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