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1. Introduction 

Accurately quantifying forest biomass is of crucial importance for climate change studies 
and forest conservation. By quantifying the amount of above and belowground biomass and 
consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon 
sequestration, emission and storage and help close the carbon budget.   
Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 
animal species, are also an important sink of biomass. Although they only constitute about 
3% of the total forested area globally, their carbon storage capacity-in forested biomass and 
soil carbon- is greater than that of tropical forests (Alongi, 2002; Lucas et al, 2007). In 
addition, the amount of mangrove carbon- in the form of litter and leaves- exported into 
offshore areas is immense, resulting in over 10% of the ocean’s dissolved organic carbon 
originating from mangroves (Dittmar et al, 2006).  
The measurement of forest aboveground biomass is carried out on two major scales: on the 
plot scale, biomass is measured from field measurements, allometric equation derivation 
and measurements of forest plots. On the larger scale, the field data are used to calibrate 
remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, 
biomass can be calculated using average stand biomass values and optical data, such as 
aerial photography or satellite images (Landsat, MODIS, IKONOS, etc.). More recent studies 
have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, 
Airsar) and/or Lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate 
and detailed measurements of forest biomass. The implementation of a generation of new 
active sensors, such as UAVSAR and ALOS/PALSAR has prompted the development of 
new techniques of biomass estimation that use the combination of multiple sensors and 
datasets, to quantify past, current and future biomass stocks.  
Focusing on mangrove forest biomass estimation, this book chapter has 3 main objectives:  
1. To describe in detail the field methodologies used to derive accurate estimates of 

biomass in mangrove forests. 
2. To explain how mangrove forest biomass can be measured using several remote 

sensing techniques and datasets. 
3. To describe the measurement challenges and errors that arise in estimates of forest 

biomass. 
Source: Biomass, Book edited by: Maggie Momba and Faizal Bux,  

 ISBN 978-953-307-113-8, pp. 202, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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2. Methodology 

2.1 Measurement of biomass in the field  

a. Deriving allometric equations of mangrove trees 
To calculate the biomass of an entire forest stand, the biomass (or weight) of individual trees 
in the must be calculated and summed. There are three main methods used to calculate 
stand biomass:  
The harvest method is a technique where all of the trees in are felled, cut into sections and 
components (such as trunk, bark, leaves, branches), dried and subsequently weighed. This 
method is very labor intensive when dealing with trees that weigh several tons (Brown, 
1997; Komiyama et al., 2005, 2008) and cannot be reproduced on a large scale because all of 
the trees within a set area have to be felled.  
The ‘mean tree method’ consists in the weighing of one (or several) trees considered to be 
average, and extrapolating the biomass to that of the entire stand. This method can only be 
used in plantations or other stands with trees of a homogeneous size. 
The most common method of stand biomass retrieval is using allometric equations. The 

allometric equations are derived from selective sampling of trees that are representative of 

the size-classes found in a forest. These equations then estimate the whole or partial weight 

of the trees relative to the tree metrics, such as diameter at breast height (DBH) and tree 

height. These equations have to be both site and species-specific, as even within-species 

biomass allocation can vary greatly depending on the location.  

Allometry implies that the size and growth rate of one part of a living organism is 
proportional to the size and growth rate of another. In the case of trees, allometric equations 
correlate tree diameter with height, leaf biomass, root biomass, branch biomass, etc. 
Allometric equations to estimate biomass and growth of mangroves have been developed 
for several decades. These equations are available and applicable for all of the structural 
forms of mangroves including dwarf trees (Ross et al., 2001) single–stemmed, and multi-
stemmed tree forms (Komiyama et al, 2008, Clough et al., 1997; Dahdouh-Guebas and 
Koedam, 2006). In their paper on mangrove allometry, Komiyama et al. (2008) describe the 
current state of knowledge on mangrove biomass and productivity equations based on 72 
published studies in great detail. In their 1993 paper, Saenger and Snedaker also reviewed 
43 aboveground biomass equations of mangroves worldwide, to derive a single, global 
height-biomass and height-productivity equation. Studies by Soares and Schaeffer-Novelli, 
Ong et al. (2004) and Comley and McGuiness (2005) describe the available species and site-
specific equations extensively. As opposed to the site and species specific equations, Chave 
et al. (2005) and Komiyama et al. (2005) have proposed the use of common allometric 
equations that are not dependent on either site or species.  These equations are dependend 
on wood density, the static model of plant form and the Shinozaki pipe model (Shinozaki et 
al., 1964; Oohata and Shinozaki, 1979).  These common equations are of the form:  
Komiyama et al., 2005: 

AGB = 0.251ρDBH 2.46 r2 = 0.98, with n = 104, Dmax = 49 cm, Relative error between 
3.99 % and 30.1 % 

(1)

Chave et al., 2005: 

AGB = ρ x exp [-1.39 + 1.980ln(DBH) + 0.207(ln(DBH))2 – 0.02081(ln(DBH))3]; standard 
error of 19.5 %   

(2)
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or 

AGB = exp (-2.977 +ln (ρDBH2H)) = 0.0509 x ρDBH2H; standard error of 12.5 % with 
n = 84, Dmax = 50 cm   

(3)

Where AGB is Aboveground biomass, ρ is wood density, (available at 
http://www.worldagroforestry.org/sea/Products/AFDbases/WD/index.htm), DBH is 
diameter at breast height and H is height of the tree. Figure 1 shows the allometric equations 
developed by Chave et al. (2005) and Komiyama et al (2008) for Avicennia marina mangrove 
trees.  
When comparing the common equations to site and species specific equations, Komiyama et 
al. (2008) found that the average error was within 10%, thereby showing that wood density 
may be a more important factor in the determination of biomass than site or species.  
 

 

Fig. 1. Allometric equations developed by Chave et al (2005) and Komiyama (2008) for 
Avicennia marina trees. This plot shows the strong correlation between the two equations 
that are based on wood density. 

b. Field Plots 
The plot measurement method is the most common in situ approach to deriving stand level 
biomass. The philosophy behind this approach is that a representative sample of forest can 
intensively and non-destructively measured and then scaled up to derive forest-wide 
values. To begin with, an appropriate number of plots must be determined based upon the 
total size of the stand. Additionally, the plots must be located within the entire range of 
topography to capture as much local variation within the ecosystem as possible. One way to 
achieve a representative sampling of forest is to divide the forest into a grid and then 
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establish and measure the same number of plots per grid square. The size of the grid would 
be determined by the total number of hectares that the study forest occupies. 
Once the method for establishing study plots is decided upon, the size and shape of the 
study plot can be determined. Plots can be small in diameter and circular in shape, or large 
and rectangular depending on the amount of field records needed. Within each plot, GPS 
location should be recorded along with qualitative boundary descriptions to indicate 
location, canopy gap effects, proximity to water and other geographical variation.  These 
qualitative descriptions can be useful in re-locating plots for additional study, and they can 
provide insight into explaining any drastic variation in biomass from stand-out plots.  It is 
not uncommon to remove the 5% outlying plots with respect to biomass before scaling up 
plot data to arrive a forest-wide value.  
After location data has been recorded, measurement of the trees in the plot can begin.  From 

plot center, basal area and percent canopy cover is recorded. For all trees greater than a 

certain threshold (often 5cm) in diameter at breast height (DBH) the following is recorded: 

species identification, DBH; distance and direction from plot center, height of the tree. Trees 

with buttresses, aerial roots or similar features that preclude the measurement at breast 

height are measured just above the obstacle.  Split trunk trees are treated as two trees if the 

split is below breast height and one tree if the split is above breast height. All regeneration 

5cm- at breast height and smaller present in the plot is counted and the species are listed.  

c. Wood density measurements  
One of the largest challenges posed to the scientific community in understanding rainforest 
dynamics worldwide is the ability to accurately measure and analyze tree growth in an 
evergreen hardwood ecosystem.  Few datasets exist on life histories of mangrove trees, as 
the ability to utilize dendrochronology techniques common to temperate forests is 
diminished by the absence of temperature driven seasonality in the tropics. In response to 
the need to understand how tree species in tropical forests worldwide grow, forest 
ecologists have developed alternative tools such as wood density analysis and cambial 
pinning techniques to measure mangrove tree species growth rates.  Wood density has been 
determined to be an important physical characteristic of wood and it is related to other 
wood properties, including: resistance, porosity, and the number, size, and chemical 
composition of the cells (Noguiera et al 2005).  In the tropics, wood density has been shown 
to relate to a tree’s resistance to physical impacts caused by wind or strong tides to relative 
growth rate and mortality (Muller-Landau, 2004).  
Density is measured and reported in a number of ways.  Most commonly, wood density is 
measured from the wet and dry weights of small wood samples taken with an increment 
borer.  The density is typically reported as the unit-less ratio. For tree biomass estimate 
derivation from forest volume data the appropriate density measurement is called ‘basic 
density’ or ‘basic specific gravity’, and is calculated as oven-dry weight divided by wet 
volume (Fearnside, 1997).  The wet volume is achieved through soaking to saturation in the 
laboratory after sampling.  This is because trees in a forest vary in moisture content depending 
on water availability, seasonal variation, competition and other physiological stress factors.   
In order to sample for wood density, 12 mm increment borers are used to extract a small 
cylindrical sample that does not harm the sampled tree. Two samples are taken 
perpendicular to each other at or around 140 cm above the ground. Care must be taken 
when using an increment borer to core straight into the tree toward the pith, though only a 
4-5cm sample is needed for density measurement.  If the ratio of sapwood to heartwood is 
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known for a given tree species, a further degree of accuracy can be achieved by coring to the 
pith and measuring sapwood and heartwood density separately. For most tropical tree 
species however, this ratio is unknown and therefore only one wood sample from each core 
(two per tree) need be obtained. Following extraction of wood samples, diameter and height 
of sampled trees will also need to be measured to calculate biomass.  When in situ wood 
extraction has been completed, samples are soaked overnight in distilled water in a 
laboratory. Wet weights are measured to the nearest one thousandth milligram.  Wood 
samples are then dried in an 80oC oven for 24 hours and dry weights are measured on the 
same scale. 

2.2 Measurement of biomass from optical remote sensing 

a. Using extent as a proxy for biomass 
Optical or passive remote sensing uses visible and near-infrared reflectance from the earth 
to form images. This type of remote sensing data forms the basis for much of current global 
scale vegetation mapping due to the large number of sensors such as Landsat, MODIS, 
ASTER, IKONOS, etc., the greater ease of image interpretation and increasing numbers of 
freely available data archives. Google Earth TM software for example, is based on a 
combination of optical remote sensing observations from MODIS, Landsat, Quickbird and in 
some instances aerial photography. Optical measurements have been widely used in studies 
that link AGB measurements from the field to satellite observations. The main challenge 
with optical data is the presence of persistent cloud cover, particularly in tropical regions, 
which make the use of optical data difficult.  
The simplest approach to derive biomass from this type of data is to derive landcover or 
forest type using the optical data, then assign a value to each landcover type (in the case of 
mangroves these types could be determined by zonation, canopy shape, average density per 
pixel).  To calculate biomass, the total area of each landcover type is then multiplied by the 
value. While this is the simplest method to estimate AGB, it does not take into account 
variations of structure and the error is great when looking at very large or very 
heterogeneous forests (Goetz et al, 2009).  
b. Using NDVI as a proxy for biomass productivity  
A variety of vegetation indices have been developed for retrieving vegetation structure from 
optical remote sensing. The most common way to estimate mangrove biomass is with the 
Normalized Difference Vegetation Index (NDVI) (Li et al 2007; Mather, 1999; Foody et al. 
2001). The index is based on the characteristics that vegetation has noticeable absorption in 
the red and very strong reflectance in the near infrared (NIR). The formula used to calculate 
NDVI is (Mather, 1999):  

 
NIR red

NDVI
NIR red

−
=

+
 (4) 

Different types of vegetation often show distinctive variability from one another due to such 
parameters as leaf shape, spacing of the plants, water content, and soil background. The use 
of NDVI has major drawbacks relating to biomass estimation - in addition to the problem 
arising from clouds, it has the problem of signal saturation at lower biomasses because of 
the shorter wavelengths that interact only with the canopy and do not take into account any 
effect of the trunk (Sader et al. 1989, Foody et al. 1996). Because the trunk is the main 
component of tree biomass, it is often underestimated. While the index has been shown to 
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be effective in retrieving biophysical variables of temperate, low biomass vegetation (Foody 
et al. 2001), it has proven difficult to use in tropical rainforests and mangroves. According Li 
et al (2007), the NDVI can measure coastal area biomass with R= 0.626 and RMSE = 0.99 kg 
m-2. However they found that using the optical data only significantly underestimated the 
biomass of some woody mangrove forests (e.g. Sonneratia apetala) because the NDVI reflects 
canopy properties rather than the trunk properties that are crucial for accurate biomass 
retrieval. 

2.3 Measurement of biomass using active remote sensing 

a. Polarimetric  SAR 
Synthetic Aperture Radar (SAR) uses microwaves emitted by an instrument and reflected by 
the earth to form an image. Polarized microwave signals can be horizontally (H) or 
vertically (V) transmitted and received, resulting in co (HH and VV) and cross (HV or VH) 

polarized data. In Polarimetric systems, the backscatter coefficient σ0 (sigma nought in 
decibels dB) and phase can be derived for each polarization.   
The backscatter coefficient of a forest canopy depends upon the interaction of microwaves 
with leaves, branches, trunks, and in the case of mangroves – aboveground roots. More 
specifically, the polarization, frequency and incidence angle of the microwaves and the size, 
density, orientation and dielectric constant of the vegetation components affect this 

backscatter coefficient σ0 (Lucas et al. 2007). Longer wavelenths (L- and P- band) are able to 
penetrate the canopy and are scattered by larger components, such as the trunk and the 
ground and thereby increase the returned signal. Shorter wavelengths interact with leaves 
and twigs resulting in a larger amount of signal absorbed and less signal return.  
Scattering refers to the interaction of microwaves with different surfaces and can range from 
direct scattering (mirror-like, when only one reflection occurs) to diffuse scattering (multiple 
reflections at different angles). In mangroves, the radar signature or backscattering 
coefficient can vary greatly depending on mangrove type and structure. In particular, 
increases in backscatter can be the result of: 

• high surface roughness resulting from aboveground roots and large amount of dead 
wood material during low tides and dry season. 

• double bounce effect resulting from scattering from tree trunks to the ground/water 
and back or scattering from the ground/water  to tree trunks and back (MacDonald, 
1980; Krohn et al, 1983; Imhoff, 1995; Simard et al 2002). This increases the 
backscattering coefficient beyond the saturation level (Mougin et al 1999; Proisy et al, 
2002). 

In forests, including mangroves, there is a positive relationship between measured 

backscattering coefficients σ0 and the aboveground biomass. However this relationship only 

exists up to a threshold biomass value after which the backscattering coefficient saturates. 

The threshold is dependent on the polarization and wavelength of the radar signal. In 

mangroves, P-band frequency and HV polarization has been found to have the highest 

sensitivity to biomass, with a saturation level of 160 Mg ha -1, followed by L – HV  (140 

Mg/ha) and C-HV (70 Mg/ha) (Mougin, 1999; Proisy, 2002, Lucas, 2007).  

The Japanese Aerospace Exploration Agency (JAXA) PALSAR (Phased Array L-Band 

Synthetic Aperture Radar) instrument on board the ALOS (ALOS (Advanced Land 

Observing Satellite)) platform is a fully polarimetric L-band SAR. The ALOS satellite was 

launched in 2006 and some preliminary studies have shown the use of L-band data to 

www.intechopen.com



Remote Characterization Of Biomass Measurements: Case Study Of Mangrove Forests   

 

71 

estimate forest biomass and structure (Lucas, 2007). The Kyoto and Carbon (K&C) Initiative 

initiated by the Earth Observation Research and Applications Center (EORC) in 2000 

(Rosenqvist et al. 2003) has developed and validated products derived from the PALSAR 

sensor to address land cover (forest) mapping, forest change mapping and biomass and 

structure estimations (Lowry et al, 2010). These products are freely available at 

http://www.eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_mosaic.htm.  

Because mangrove aboveground biomass often exceeds the threshold of 140 Mg/ha that is 

measurable using backscatter alone, other techniques, where tree height is measured instead 

of biomass directly, are often more appropriate. To derive tree height, two different types of 

active sensors- Radar and Lidar- can be used alone, or in combination, to increase the area of 

coverage. 

 
 
 
 
 
 

 
 
 
 
 

Fig. 2. Allometric equation relating the DBH to tree height in Avicennia marina trees. The 
equation relating DBH to height is ln(height) = 0.47*DBH +0.21, with an R2 of 0.79. 
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b. Interferometric SAR 
Forest structure (in terms of height and density) is a direct measurement that can be used to 

derive biomass, especially in high biomass systems, such as mangroves. To measure tree 

height using radar data, a technique known as interferometric Synthetic Aperture Radar 

(InSAR) is used (Graham, 1974). InSAR estimates the tree height by using interference 

patterns between two radar signals in order to derive terrain height. To derive biomass, the 

tree height is directly correlated to DBH (figure 2) and biomass through site-specific 

allometric equations or regional to global equations such as the one derived by Saenger and 

Snedaker (1993).  

To quantify forest structure and make estimations of biomass in mangroves, the Digital 

Elevation Model (DEM) derived from the Shuttle Radar Topography Mission (SRTM) has 

proven most successful. In 2006 and 2008, Simard et al. used the SRTM DEM in combination 

with field validation data and Lidar to estimate mangrove forest 3-D structure and 

aboveground biomass. Fatoyinbo et al. (2008) used the combination of field data, Landsat 

and SRTM data to derive mangrove height, extent and aboveground biomass storage for 

Mozambique. The use of InSAR data, such as the SRTM DEM (or any other interferometric 

SAR dataset) to derive tree height is based on the principle that the radar signal measures 

the height at some depth in the tree canopy. In the case of C-band data, such as SRTM, the 

microwave signal penetrates the canopy and measures height at some depth within. X-band 

signals do not penetrate as deeply and measure height at a more shallow depth, whereas P- 

and L-band penetrate the canopy completely and measure deeper in the canopy than C 

band. Therefore, in order to measure the “true” height of the tree canopy, the DEM has to be 

calibrated by shifting the DEM height up to the “actual canopy height”. 

The height measurement that can be derived from InSAR data is the sum of the tree canopy 

height and the height of the ground. In forests where there is significant topography, the 

height of the ground has to be subtracted before calculating the height of the canopy. In 

mangroves however, the topography is negligible and the ground is considered flat, as these 

trees grow at sea level.  

To calibrate the InSAR data, “real” canopy height measurements, from field measurements 

or Lidar data have to be used. Lidar (Light Detection and Ranging) measures vegetation 

height at very high accuracy (up to millimeters) and is considered the most accurate and 

consistent measurement of vegetation structure because of its systematic measurements and 

because field-based measurements are often limited in amount and spatial distribution. The 

ICESat/GLAS (Geoscience Laser Altimeter System) sensor is a spaceborne waveform Lidar 

system, which continuously records the amplitude of the lidar pulse returned through the 

different layers of the forest canopy. This provides a measurement of the vertical structure 

of the forest. The GLAS footprint has an ellipsoid form with a diameter of approximately 

70m, and each footprint is separated by 172 m along track and 7.5 km between tracks (at the 

equator). Because the lidar only measures relatively few and small areas, it is generally used 

to calibrate other datasets. This data provides the best alternative for global canopy height 

calibration and is freely available from the National Snow and Ice Data Center 

(http://nsidc.org/data/icesat). An example of GLAS shots over the mangroves of the Niger 

Delta in Nigeria is presented in Figure 3 and in Figure 4 the mangrove height map of 

Nigeria and Cameroon derived from SRTM and GLAS is shown. 
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Fig. 3. Example of the available GLAS footprints available over the mangrove forests in the 
Niger Delta. The GLAS footprints are shown in red, mangrove forests in bright green, the 
ocean in blue and other landcover in black. 
 

 

Fig. 4. Height map of mangrove forest in Nigeria and Cameroon derived from SRTM and 
GLAS. 
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2.4 Biomass measurement error 

There are several types of error that can arise and need to be considered when working with 

remote sensing data to estimate biomass: For optical remote sensing, classification errors 

due to omissions and commissions, and clouds are the most prevalent. In Fatoyinbo et al 

(2008), we found that the Landsat-derived mangrove map did have a high accuracy of 93%, 

however, there was still some misclassification of mangrove areas as nonmangrove and vice 

versa, with 3.6% commissions and 10.6% omissions. For active remote sensing, a systematic 

error can be introduced from sensor error and there is also a certain amount of random error 

due to biases in measurements. Additional error is introduced by the utilization of different 

datasets: each dataset has a different resolution and was taken at a different time, which 

 results in differences in measurement. Geolocation errors are introduced when using 

radar/lidar fusion of datasets in addition to error introduced due to the differing interaction 

of the radar and lidar signal with the canopy, soil and water in mangrove forests. 

When using InSAR, Lidar and/or field data to estimate mangrove structure, there is also the 

possibility of geolocation error between the data. For example both SRTM and ICESat have 

mean geolocation errors of better than 20 m and 2.4 m +/- 7.4 m respectively (Carabajal, 

2005). The error in geolocation can result in large differences in height measurements, which 

increases the total error. Furthermore, the natural variability of canopy height and structure  

 

 

Fig. 5. Illustration of the differences in measurement carried out by SRTM and GLAS 
instruments. 
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within a forest increases possible measurement errors between the two datastets. This is 

compounded by the natural variability of canopy height within a forest. Therefore, if the 

trees measured by each method are not exactly the same, the differences between the height 

measurements and therefore the error of the measurement can be high. The differences in 

physical parameters measured by radar and lidar, in addition to differences in resolution 

also increase the height and biomass estimation error. In their 2006 study in the Florida 

Everglades, Simard et al. were able to calculate mean tree height within 2.0 m RMSE and 

Fatoyinbo et al. (2008) were able to estimate mean tree height within 1.6 m RMSE. Although 

this RMSE is very good when looking at forests at a whole, this methodology is not 

applicable to very short forests as the error can in this case be larger than the actual tree 

height. The combinations of sources of error are illustrated in figure 5. 

Finally, when estimating the actual biomass of the mangroves from tree height, a large error 
can be introduced. The global height- biomass equation developed by Saenger and Snedaker 
(1993) for example, has a root mean square error of 65.4 Mg/ha due to the large variability 
of methodologies used to derive biomass in the dataset. Because the equation is applicable 
globally, it does not take into account local variations in species composition, height and 
biomass, thereby introducing potential error into the biomass estimate.  

3. Conclusions  

Measurement of aboveground biomass in forest ecosystems, including mangroves, is 
important for Carbon storage and cycling studies, mitigation of climate change and 
management of natural resources. In recent years, accurately quantifying biomass and 
carbon storage has become increasingly important for financial mechanisms of carbon 
emission mitigation such as Reduced Emissions from Deforestation and Degradation 
(REDD). In particular the UNFCCC and IPCC are pushing for increased large scale forest 
monitoring and development of carbon assessment methodologies. In this chapter, we 
highlight how field and remote sensing data can be used to estimate mangrove forest 
biomass. In particular, we concentrate on field measurement techniques and the application 
of active remote sensing using radar and lidar to better estimate mangrove height and  
biomass. While estimates of mangrove biomass have been achieved, even on a large scale, 
using different field and remote sensing techniques, challenges still remain. In particular, 
the potentially large error introduced by the combination of multiple datasets is a challenge 
when trying to estimate biomass with a low error. We therefore look forward to future 
satellite missions where radar and lidar data will be recorded simultaneously, such as the 
proposed NASA DesDynI mission. 
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