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1. Introduction 

The measurement and assessment of aboveground tree biomass (bole, branches, and 
foliage), or M, plays a key role in the management of forest resources. Estimates are required 
for evaluating: a) the stocks and fluxes of several biogeochemical elements and b) the 
amount of primary energy obtainable from forests as an alternative to fossil fuels. Moreover, 
biomass is a fundamental state variable in several ecological and eco-physiological models 
(Brown, 1997; Chavé et al., 2005; Návar, 2009a,b; Richardson et al., 2002). The development 
and use of allometric equations is the standard methodology for the estimation of tree, plot, 
and regional aboveground biomass (Brown, 1997). Dry weight measurements conducted on 
harvested trees, fresh and dry weights of biomass components and recording independent 
tree variables are required to construct allometric equations at the species, stands or tree 
community levels. Alternate M assessment methods include the multiplication of bole 
volume by its wood specific gravity; with branch and foliage biomass integrated using other 
approaches. Standing bole volume, V, can be also multiplied by biomass expansion factors, 
BEF, at the tree level or stand scale to compute M. Allometric biomass equations can be 
classified according to the parameter estimation method as empirical, semi-empirical and 
process, theoretical models. Using three meta-analysis datasets, empirical equations are 
reported in log-linear (82.6%), non-linear (12.0%), seemingly un-related (3.9%), linear (0.7%), 
and non-linear seemingly un-related (0.6%) regression. Diameter at breast height, D, and at 
the bole base, Db, canopy height, H, canopy area, CA, and wood specific gravity, ρw, are 
common exogenous variables that individually or in combination explain M with deviations 
larger than 16% of the mean measured tree aboveground biomass value (Chavé et al., 2005). 
A fully theoretical, physically parameterized model is available (West et al., 1997), although 
preliminary evaluations demonstrate that it requires further refinement before can be 
recommended as a non-destructive M assessment methodology. More flexible, restrictive 
models that make use of only a small number of harvested trees and fit available allometric 
equations result in good M approximations (Zianis & Mencuccini, 2004). Semi-empirical 
non-destructive models based on shape-dimensional analysis and assuming a constant 
exponent value are being tested for simple and complex forests with compatible preliminary 
M assessments (Návar, 2010a,b). This wealth of information on biomass allometry 
necessitates be properly describing, organizing, and classifying in order to better 
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understand weakness and robustness of available methods to compute tree and eventually 
plot and regional aboveground biomass. For places deprived of tree allometry, a 
combination of a wide range of allometric equations developed off site appears to improve 
tree M evaluations according to the Central Limit Theorem. 
Biomass stocks and their spatial distribution remain poorly evaluated at the plot scale 
regardless of the wealth of information on tree biomass allometry (Chavé et al., 2003; 
Houghton et al., 2001, 20015; Návar et al., 2010). The conventional methodology that 
expands tree M to sample inventory stands is: a) a grid of sampling plots and b) allometric 
equations fit tree data recorded in the forest inventory, since there is scarce information on 
allometric equations that straightforward calculate plot or stand M. New approaches that 
employ timber volume are named BEF and at the present they require calibration to 
appraise local plot M (Brown, 2002). Uncertainties of more than two orders of magnitude are 
identified when calculating plot M by applying different off site allometric models to forest 
inventory datasets and main sources of variation are: a) the error due to tree measurements, 
b) ground sampling uncertainty, and above all, c) the error due to the choice of an allometric 
model relating M to other tree dimensions (Chavé et al., 2003; Návar et al., 2010). 
Tree or plot M interpolates at larger spatial scales, AGB, by a variety of field measurements, 
environmental gradients and remote sensing techniques (Houghton, 2005a,b). A diversity of 
remote sensing techniques, spatial resolutions, tree and forest attributes, and interpolation 
methodologies make AGB assessment highly variable, with uncertainties as large as three 
orders of magnitude. Main sources of variation are attributable to: a) the precision of 
estimated tree or stand M, b) the interpolation method applied, c) the lack of a good 
correlation between ground and remote sensing data, d) the correct location of ground data, 
e) the representativeness of plots across the landscape, f) temporal variations in the satellite 
image, g) the correct area of each forest class, and h) others. Combining remote field data 
collection techniques (LIDAR) with locally-derived tree allometry and the semi-empirical 
shape-dimensional non-destructive model of tree M assessment would eventually improve 
AGB at the spatial scale of interest. 
Given this brief literature review, the reliable M estimation of trees, plots, stands or tree 
communities remains a key challenge for the successful implementation of sustainable forest 
management plans. This paper deals with the description of available tree allometry, how 
they contrast to provide tree, plot and regional M assessments and what are the future 
challenges ahead. Preliminarily observations point towards the combination of available 
conventional allometric models with restrictive, semi-empirical and theoretical non-
destructive methods of tree or plot M evaluation while universally-applied functions 
emerge. In addition, the interpolation of improved tree or plot M appraisals to regional 
scales with a combination of field techniques, environmental gradient approaches and 
remote sensing methods must eventually improve AGB assessments at regional and 
national spatial scales. 
Key words: Measuring and assessing aboveground biomass, empirical, semi-empirical, 
theoretic models, tree, stand and regional scales.  

2. Aboveground tree biomass allometry 

2.1 Introduction 
Aboveground tree and forest biomass is the living and dead matter in standing trees and 
shrubs and can be classified in foliage, branches, and boles. Bark, hardwood and softwood 
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are timber biomass components. The evaluation of conventional goods and environmental 
services furnished by forests entails the assessments of tree, stand and regional M. The 
stocks and fluxes of several biogeochemicals are calculated with the evaluation of M 
(Brown, 1997; Houghton, 2005). So is the amount of primary energy obtainable from forests 
as an alternative to fossil fuels (Richardson et al., 2002). In addition, standing aboveground 
biomass is a fundamental state variable in several ecological and eco-physiological models 
(Zianis & Mencuccini, 2004). 
The development and application of allometric equations is the standard methodology for 
aboveground tree biomass estimation (Brown et al., 1989; Chavé et al., 2001; 2003; Návar, 
2009a). A simple classification of allometric equations based on methods of parameter 
estimation is: empirical, semi-empirical and theoretical models. Meta-analysis studies report 
examples of empirical functions (Ter Mikaelian & Korzukhin, 1997; Jenkins et al., 2003; 
Zianis & Mencuccini, 2004; Zianis et al., 2005; Návar, 2009b). Non-destructive models such 
as the empirical reductionist (Zianis & Mencuccini, 2004); the semi-empirical shape-
dimensional analysis (Návar, 2010a), the constant B-slope approach (Návar, 2010b) and 
process, theoretical methods (West et al., 1999) are also available in the scientific literature. 
Empirical allometric equations are statistically parameterized with measured, weighted and 

recorded field and laboratory tree biomass data. The conventional allometric biomass model 

(Ln(M) = Ln(a) + BLn(D) ± ei); where M and D are log transformed and the a and B the scalar 

coefficients estimated by least square techniques in linear regression, is the most commonly 

fitted and reported equation. Other parameter-fitting techniques and mathematical forms of 

biomass equations are classified as: non-linear, seemingly un-related linear, linear and non-

linear seemingly un-related regression, power and exponential functions. Tree diameter 

recorded at breast height, basal diameter, canopy cover, canopy height and wood specific 

gravity commonly explain individually or in conjunction tree M with deviations larger than 

16% of the mean measured tree M. 

Semi-empirical non-destructive methods of tree M computations that focus on independent 

and easy ways to calculate the conventional allometric scalar coefficients had been recently 

proposed. They require both physical and statistical parameters. The fractal methodology 

coupled with shape-dimensional relations was preliminary explored with good degree of 

precision for temperate trees of northwestern Mexico (Návar, 2010a) and for Mexican 

tropical forests (Návar et al., 2010). This procedure assumes that bole volume and top height 

allometric relations suffice to calculate the a and B scalar coefficients. When contrasted with 

the conventional allometric model, this method results in compatible tree M assessments. A 

reduced semi-empirical, non-destructive model that assumes the B-scalar exponent is a 

constant value and the a-scalar intercept is a function of the standard wood specific gravity 

value is also under close mathematical advancement with good preliminary precision for 

North American temperate trees (Návar, 2010b). 

The classic theoretical allometric model, WBE, was developed with the use of fractal 

techniques (West et al., 1999). Two variables, a C-scalar coefficient and the entire tree 

specific gravity, ρ, suffice to calculate tree M; since it assumes the B-scalar exponent is a 

fixed value of 8/3. The WBE equation is physically parameterized but, at the present, it 

needs further refinement before can be recommended as non-destructive method of M 

assessment. Discussions regarding its application are ongoing and they center on the right 

value of the B-slope scalar coefficient that it has been shown to be smaller than 2.67 (Zianis 

& Mencuccini, 2004, Pilli et al., 2006; Návar, 2009a,b; 2010b). 
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Other approaches involve the bole volume estimation and then multiplied by the standard 
wood specific gravity value (Mohren & Klein Goldewijkt, 1990). A dimensionless biomass 
expansion factor, BEF, escalates bole volume to total tree M (Brown, 1997). Gracia et al. 
(2004); Lehtonen (2005); Návar-Cháidez (2009); Silva-Arredondo and Návar-Cháidez, (2009) 
reported independent BEF at the tree level or plot scales, which are developed by employing 
biomass of the entire tree in conjunction with bole volume allometry. 
Tree M assessments are variable regardless of the wealth of information on biomass 
allometry. For harvested trees, deviations have been reduced to close to 16% with the use of 
D, H and ρw, (Chavé et al., 2005). However, the expansion of these equations to trees with 
other dimensions or outside the forest area where the equation was developed deserves 
more attention. 

2.2 The need for tree allometry 
A great number of allometric equations have been reported for North American and 
European tree species and forests (Ter Mikaelian & Korzukhin, 1997; Jenkins et al., 2003; 
Zianis & Mencuccini, 2004; Zianis et al., 2005; Fehrmann & Klein, 2006; Chojnaky, 2009; 
Návar, 2009a). Tree allometry for complex tropical (Brown, 1997; Chavé et al., 2001; 2003; 
2005) and semi-arid, sub-tropical tree species (Návar et al., 2002a; 2004; Návar, 2009b) and 
forest plots (Martínes-Yrizar et al., 1992; Návar et al., 2002b) are less represented. At regional 
scales, current allometric data for complex, diverse tropical forests are almost entirely based 
on Southeast Asian (Brown, 1997; Ketterings et al., 2001) and South American measurements 
(Overmann et al., 1994; Araujo et al., 1999; Chavé et al., 2001; 2005; Chambers et al., 2001; 
Brandeis et al., 2006; Feldpausch et al., 2006). Brown (1997) and Chave et al. (2005) reported 
a set of allometric equations for tropical world forests; however, several sites were not well 
typified in this data set. For example, with the exception of the report published by Cairns et 
al. (2000), most Mexican tropical forests remains with limited information on tree and stand 
M development, analysis and comparisons. 

2.3 Development of tree allometry 
The development of conventional biomass allometry compels that trees are harvested. 

Measurements of diameter at breast height and at the bole base are carried out on each 

standing tree. Top height is better measured once the tree is felled down. Tree dissection 

into the main biomass components: stem or bole, foliage, and branches are performed on 

felled trees. Boles are logged into smaller sizes to facilitate weighting. Foliage, branches, and 

dissected logs are fresh weighted separately per tree. The total fresh weight of each 

component for each tree is obtained in the field using scales. Samples of each component of 

each tree are fresh weighted and oven-dried in the laboratory (to constant weight at 700C). 

Sample fresh and dry weights must be precisely recorded, since dry to fresh weight ratios 

for each sample of each component multiplied by the total fresh weight of each biomass 

component calculate total dry biomass per each tree component. Deviations of this 

methodology have been proposed where only small portions of each biomass component 

are weighted and the remaining is calculated by dimensional analysis. 

2.4 Fitting allometric equations 
A data matrix of exogenous, independent variables (D, Db, H, CA, ρw, etc.) and dependent 
variables (dry foliage, branch, bole, and/or total aboveground biomass) for n, number of 
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harvested trees are available for fitting tree biomass equations. That is, allometry relates one 
measurement of an organism to another. Easily measured variables such as diameter and 
top height relates to volume, biomass, etc, which are more difficult to make. 
A wide range of empirical allometric models are available in the scientific literature to fit 
collected biomass data using the independent variables described above. They can be classified 
as simple log-linear, simple linear, simple non-linear, multiple linear and non-linear, 
seemingly un-related linear and non-linear regression equations. Power or exponential 
functions also projects tree M, although they are scarcely reported in the scientific literature. 
Allometric equations quite often fit each individual biomass component (i.e., see for example 
the biomass equations compiled by Ter Mikaelian & Korzukhin, 1997; and Návar, 2009b). 
However, Cunnia and Briggs (1964) showed that when summing the equations for boles, 
branches, and foliage, results would often deviate from the recorded total aboveground 
biomass. Therefore, Cunnia & Briggs (1984; 1985) and Parresol (1999; 2001) developed 
advanced regression techniques and computer programs for estimating coefficient values for 
endogenous variables that simultaneously calculate individual equation parameters and 
restrict scalar coefficients to add total tree M. Biomass datasets are also a vital source of 
information to fit theoretical, semi-empirical non-destructive and restrictive methods of tree M 
assessment but sometimes other independent variables must be collected. 
Biomass datasets should be split into: a) fitting and b) validating models. However, biomass 
studies are expensive and quite often data is not sufficient to calculate scalar coefficients 
with small variance that are consistent with population mean parameters. These issues 
addressed further below must be the center of future allometric studies. 
The Log-linear equation. The most commonly reported mathematical model for biomass 
allometry takes the form of the Log linear-transformed function: 

 ( ) ( ) ( ) iLn M Ln a BLn D e= + ±  (1) 

Equation [1] and [2] are similar but not mathematically equivalent: 

 

( ) ( ) ( )

exp( ( ) ( ))
i

i

B
i

Ln M Ln a BLn D e

M Ln a BLn D e

M aD e

= + ±
= + ±

= ±

 (2) 

Where Ln = the logarithmic transformation function; ei = error. 
The scalar coefficients a and B of equations [1] and [2] are calculated by least square 
techniques in linear regression. Before conducting this statistical test; M and D data is log 
transformed. The transformation improves parameter estimation by reducing variability 
and heteroscedasticity. This technique frequently named the intrinsic linear regression 
entails a weighting parameter to further reduce heterogeneous variance since the 
logarithmic transformation compresses the data in both axes. When the biomass units are re-
transformed back to the original units, the largest data values are often underestimated. 
Beskersville (1965) recommended to multiply equation [1] by a correction factor, CF, that is 
calculated as CF = exp(MSE/2), where: MSE = mean square error of the regression analysis of 
variance. Equation [1] is the standard, classical allometric biomass model reported in 
compiled equations by Ter Mikaelian & Korzukhin (1997); Jenkins et al. (2003); Zianis & 
Mencuccini (2004); and Návar (2009b). The standard error, Sy, of equation [1] is in 
logarithmic M units and consequently it is not equivalent to: Sy = √MSE where MSE = mean 
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square error. Therefore, equation [1] has to be fitted to the original tree data to evaluate M 
and with measured and estimated M, Sy can be calculated in conventional M dimensions. 
The Linear equation. Linear equations frequently reported in allometric studies take the 
following form: 

 i iM a BX e M BX e= + ± ∴ = ±  (3) 

Where X = D2H (m3), BA (m2), Canopy Cover (%). 
Least square techniques in linear regression conventionally estimates the scalar coefficients, 
a and B. Basal area, the combined variable, D2H, or canopy cover are the explanatory, 
exogenous variables of equation [3]. The allometric function that entails basal area was 
originally calculated by measuring M in plots and it has the advantage that can be escalated 
down to the individual tree level. Examples of this equation are found in Martínez-Yrizar et 
al. (1992). When using D2H as independent variable, examples are reported in Padron and 
Navarro (2004) and in Návar-Cháidez et al. (2004a). Flombaum and Sala (2007) found 
canopy cover (%) predicted better shrub M for Argentinean semi-arid shrublands. The 
standard error, Sy, of equation [3] is evaluated in conventional M units. 
The Non Linear equation. The non-linear equation takes the form of the end portion of 
model [2], although the error is multiplicative: 

 B
iM aD e= ⋅  (4) 

Equation [4] is similar but mathematically not equivalent to equation [2], since scalar 
coefficients are estimated using one of the several non-linear parameter-fitting techniques 
available such as Newton, Gauss-Newton, Marquardt, etc. That is, scalar coefficient values 
differ if estimated in linear or non-linear regression techniques. Návar (2009a) reported 
several examples for temperate tree species of northwestern Mexico. Non-linear models 
report the analysis of variance in conventional M units and therefore Sy can be 
straightforwardly computed. 
The multiple linear or non linear equations. The multiple linear or intrinsically linear 
equations take the form: 

 1 2 3 ... n iM a BX CX DX ZX e= + + + + + ±  (5) 

Or 

 1 2 3( ... )(exp )na BX CX DX ZX
iM e+ + + + += ±  (6) 

Or a combination of both. Where: X1, X2, X3,.., Xn = D, D2, D2H, ρw, ρwD2H …. 
Least square techniques in linear or intrinsically linear multiple regression calculates scalar 
coefficients a, B, C, D, Z. Brown (1997) and Chavé et al. (2005) reported classical examples for 
world dry, moist and rain tropical forests that use D, H, and ρw as exogenous variables. 
Multiple linear models supply the standard error of M as the root mean square. Intrinsically 
linear multiple regression models require a similar procedure to that described in model [1] 
to calculate Sy in standard M units. 
Seemingly un-related linear regression. Seemingly un-related regression is the 
recommended statistical technique to develop tree allometry for endogenous variables, since 
biomass components are related each other; i.e., leaf biomass relates to branch biomass, 
these associates to bole biomass, and all these components make total aboveground biomass 
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(Cunnia & Briggs, 1984; 1985; Parresol, 1999; 2001). Therefore, a simple example of a set of 
biomass component equations that are linearly related takes the following forms: 

 

2

2

2

2 2 2

2

2

( )

( )

( )

( ) ( ) ( )

( ) ( )( )

( )

l br bo i

l l l i

br br br i

bo bo bo i

l l br br bo bo i

l br bo l br bo i

i

M M M M e

M a B D H e

M a B D H e

M a B D H e

M a B D H a B D H a B D H e

M a a a B B B D H e

M a B D H e

= + + ±

= + ±

= + ±

= + ±

= + + + + + ± =

= + + + + + ±

= + ±

 (7) 

Where: l = leaf or foliage, br = branch, bo = bole or stem. All six scalar coefficients, al, abr, abo, 
Bl, Bbr, and Bbo are independently and simultaneously estimated by least square techniques 
in linear regression with the constraint that M = Ml+Mbr+Mbo. That is, the sum of each 
component equals the total tree M. 
Parresol (1999) developed and reported this regression technique in computer programs 
using examples for P. eliottii trees. Návar et al. (2004a) fitted this technique for young pine 
trees of Durango, Mexico and Návar et al. (2004b) did it for semi-arid, sub-tropical shrub 
species of northeastern Mexico. 
Seemingly un-related non-linear regression. For un-related non-linear regression, a set of 
equations written in a simple format are: 

 

( )

( )

l

br

bo

l br bo

l br bo i

B
l l i

B
br br i

B
bo bo i

B B B
l br bo i

M M M M e

M a D e

M a D e

M a D e

M a D a D a D e

= + + ⋅

= ⋅

= ⋅

= ⋅

= + + ⋅

 (8) 

Where: Ml = foliage biomass, Mbr = branch biomass; Mbo = bole biomass; and a and B are 
statistical parameters that are independently and simultaneously estimated by least square 
techniques in non-linear regression and restricted to provide total aboveground biomass.  
Parresol (2001) reported the mathematical development and computer programs for this 
technique and empirical examples can be found in Návar (2009b). 

2.5 Examples of empirical equations fitted to an independent dataset 
Empirical allometric equations should be cautiously fitted since they may significantly 
deviate from tree M records. For example, Návar (2009b) reported applications of these 
empirical equations to a biomass dataset taken for complex semi-arid, sub-tropical shrub 
species of northeastern Mexico (Figure 1). 
All statistical techniques previously described converge into a single equation for more 
compact biomass datasets as it was shown for young pine trees of northwestern Mexico by 
Návar (2009b). Note that all equations mimic well the non-linear nature of this M-Db 
relationship even though multiple linear and seemingly un-related linear equations are 
fitted to this data. 
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Fig. 1. Five empirical allometric equations fitted to aboveground biomass for 913 shrubs and 
small trees harvested in northeastern Mexico (NL = Non linear regression, SUR = Seemingly 
un-related non-linear regression, LR = Linear regression, WLR = weighted linear regression, 
NSUR = non-linear seemingly un-related regression). 

2.6 Other allometric models reported in the scientific literature 
Other empirical allometric equations reported in the scientific literature were compiled for 
European tree species by Zianis et al. (2005) but they fall within these major power and 
exponential classifications: M=a+bDc; M=a+b[D/(D+cf)]+dX1+…+nXn; 
M=a·(D+1)[b+c·log(D)]·Hd; M=a·(1–exp(–b·D))c. 
Where: cf is a standard coefficient; a,b,c are statistical coefficients to be estimated; X1, .. Xn 
are the independent variables described by D, D2, DH, DH2, etc. 
Multicollinearity problems arise when several related exogenous variables explain M 
making the model unstable in the correct coefficient values. 

2.7 Examples of the application of empirical tree allometry to biomass data sets 
The application of several available allometric equations to independent biomass datasets 
often results in M assessments with large deviations. Figure 2 shows examples for tropical 
dry and rain forests as well as for the IAN 710 Hevea brasiliensis hybrid trees. Tree allometry 
is frequently developed with sample data that does not meet the probabilistic sampling 
requirements. Therefore, local tree allometry improves tree M predictions in contrast to 
biomass equations developed for tree species with a wide spatial distribution range (Návar-
Cháidez, 2010). As a consequence fitting off-site allometric equations often show large tree 
M uncertainties, which are addressed in the following section of this chapter. Deviations 
have also been explained by changes in wood specific gravity values and shifts in bole 
tapering and slenderness. Local, specific tree M allometry has been recommended by Návar-
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Cháidez (2010) but further contrasting studies are required in order to understand 
variations between on-site and off-site equations. 
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Fig. 2. Aboveground biomass estimates for tropical dry and rain forests as well as for the 
IAN 710 Hevea brasiliensis Muell. hybrid trees of Mexico (Data Sources: Návar, 2009a; 
Brown, 1997 and Monroy & Návar, 2005). 
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2.8 Randomness of scalar coefficients with sample size 
Empirical allometric equations pose scalar coefficients that are statistically calculated. For 
example, the conventional model [1] has the a–intercept and the B-slope scalar values. The 
scalar coefficients vary with the species, diameter structure, structural tree diversity, the 
parameter-fitting techniques, sample size, etc. Indeed, scalar parameters show large variations 
in meta-analysis studies even though they are calculated with the same regression technique. 
For example, the B-scalar exponent has a mean (standard deviation) value of 2.37 (0.27), 2.38 
(0.23), and 2.40 (0.22) reported by Zianis & Mencuccini (2004), Návar (2009b), and Fehrmann & 
Klein (2006), respectively. Návar-Cháidez (2010), in a biomass simulation study with 600 trees, 
found that the a and B scalar values randomly oscillate with sample sizes of less than 60 trees 
pointing out at the need for harvesting sufficient trees to calculate parameter values that are 
consistent with population means and that have the least variance (Figure 3). Tree M 
calculations with this set of scalar parameters produce deviations as large as 30%. 

2.9 Alternate tree allometry models 
2.9.1 Reduced number of harvested trees to develop M assessment models 
Zianis and Mencuccini (2004) proposed the small tree sampling scheme to simplify 
allometric analysis irrespective of tree species and forest site. The methodology harvests 
only two small trees that quite often are D < 25 cm. With recorded D and M, available 
allometric equations for similar tree species and for similar data ranges found in the forest 
inventory are fitted. Those equations that predict tree M as close as to the measured values 
are selected and an average of scalar coefficients a and B values are estimated to come up 
with an individual allometric model. This approach was tested with a good balance between 
acceptable biomass predictions and low data requirements (Návar-Cháidez, 2010). 
Contrasting results are reported in Figure 6.  

2.9.2 The empirical non-destructive model of M assessment 
Zianis and Mencuccini (2004) developed de reductionist model [9] by fitting empirical 
relationships between the B-scalar exponent and the slope of the power relationship between 
H-D, B*. The resulting equation was B = 1.9262 + 0.6972B*; r2=0.42. In a similar fashion, the 
scalar intercept was projected with the calculated B–scalar exponent taking advantage of the 
good relationship between these coefficients; a = 7.0281B-4.7558; r2=0.70. These two equations 
empirically describe the conventional model [1] scalar coefficients, as follows: 

 
(1.9262 0.6972 *)4.7558(7.0281 * )

B

B

M aD

B D +−

=

⎡ ⎤
⎣ ⎦

 (9) 

Where: B* is the scalar exponent of the H-D power relationship; B = is the scalar exponent 
derived from the empirical equation that relates B vs. B*. 

2.9.3 The theoretical model of tree M assessment 
The West et al. (1999) theoretical model, WBE, was developed using the fractal geometry 
analysis that applies to natural occurring networks that carry sustaining fluids in organisms, 
in which each small part of the network is a self-similar replicate of the whole. Hence the 
fractal model offers much proportionality relating components of structure and function. 
The WBE framework describes aboveground biomass with the following equation: 
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Fig. 3. Randomness of the scalar coefficients a and B as function of the percentage of data 
sampled for fitting the conventional allometric model. 
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8/3

( )

( )

BM C D

M C D

ρ

ρ

=

=
 (10) 

The scalar exponent, B, is fixed to 8/3 (2.67); ρ is the wood specific gravity that is referred as 
the total tree specific gravity (an average of the specific gravity for wood, bark, branches and 
leaves); and C = is a proportionality constant. Note that B = 2.67. 
Comparisons between measurements and predictions by the WBE and other empirical 
equations were carried out for several biomass data sets. In general, empirical models 
approximated better recorded tree M values than the WBE one (Zianis and Mencuccini, 
2004). Pilli et al. (2006) suggested that M could be estimated by using universal B parameters 
that change with the forest age. Návar (2009b) found evidence that B is a function of 
diameter at breast height and Návar (2010b) successfully tested the hypothesis that B is a 
function of the place where diameter is measured. 

2.9.4 Semi-empirical non-destructive models of tree M assessment 
a) The shape-dimensional relationships derived from fractal geometry. Návar (2010a) 
proposed according to the classical physics equation, that mass is a function of volume x 
specific gravity. Analogous, the aboveground biomass components are linearly and 
positively related to stem volume, V, and the entire bole wood specific gravity, ρ; M = (V*ρ). 
A simple dimensional analysis shows that the volume of a tree bole is V=(avD2H); where av 
= 0.7854 if the bole volume is a perfect cylinder. For temperate tree species of northwestern 
Mexico, mean av values of 0.55 have been calculated demonstrating that tree boles or pieces 
of stems have a non-standard shape that is only approximated by ideal objects. Therefore, 
the description of natural items falls beyond the principles provided by Euclidean geometry. 
Mandelbrot (1983) introduced the neologism of fractal geometry to facilitate the 
understanding of the form and shape of such objects. A positive number between two and 
three is a better estimation of the tree’s crown dimension, and it is assumed that the overall 
shape of a tree (stem and crown) may possess a similar fractal dimension. In mathematical 
terms: 

 ( )d h
vV f a D H=  (11) 

Where: av is a positive number that describes the taper and d and h are positive numbers 
with 2 ≤ d+h ≤ 3. 
Since 2 ≤ d+h ≤ 3, tree shapes can be described as hybrid objects of surface and volume 
because they are neither three-dimensional solids, nor two-dimensional photosynthetic 
surfaces and indentations and gaps are the main characteristics of their structure (Zeide, 
1998). 
The scaling of H with respect to D has been examined in terms of stress and elastic similarity 
models following biomechanical principles. When stress-similarity for self-loading dictates 
the mechanical design of a tree, H is predicted to scale as the ½ power of D (McMahon, 
1973) and a final steady state H is attained in old trees that reflects an evolutionary balance 
between the costs and benefits of stature (King, 1990). Empirical data found that H scales to 
the 0.535 power of D for a wide range of plant sizes, supporting this hypothesis (Niklas, 
1994). However, for local biomass studies, the B* coefficient diverges from the ½ power and 
it is a function of several variables. Hence, if H=f(ahDB*) with 0<B*≤1 ≈ 1/2, then Eq. (2) 
becomes 
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 *( ) ( )d h d hB
v v hV f a D H a a D += =  (12) 

Furthermore, if tree biomass is assumed to be proportional to V (with the tree specific 
gravity as the proportionality constant), then M =f(avahDd+HB* x ρ) and in conjunction with 
Eq. (1), the B-scalar exponent, Btheoric, is: 

 *theoricB d hB= +  (13) 

And the a-scalar intercept, atheoric, is: 

 ( * )theoric v ha a a=  (14) 

Finally, a fully theoretical model that requires the following relationships V = f(D, H) and  
H = f (D), in addition to the wood specific gravity of the entire aboveground biomass is; 

 *( ) d hB
v hM a a Dρ +=  (15) 

Model [15] was described as the shape-dimensional analysis approach (Návar, 2010a). In the 
absence of total aboveground tree ρ and ah data, the intercept coefficient can be 
preliminarily derived taking advantage of the good relationship between the scalar 
coefficients, as follows; 

 ( * ) ( *)theoric v h theorica a a f B d hBρ= = = +  (16) 

With this empirical relationship, a final non-destructive semi-empirical model of 
aboveground biomass assessment is; 

 

( * )

( *)

theoric

theoric v h

theoric

B
theoric

M a a a

f B d hB

M a D

ρ= = =
= +

=

 (17) 

Meta-analysis studies noted that the scalar coefficients a and B are negatively related to one 
another in a power fashion because high values of both a and B would result in large values 
of M for large diameters that possibly approach the safety limits imposed by mechanical self 
loading (Zianis & Mencuccini, 2004; Pilli et al., 2006; and Návar, 2009a; 2009b). This 
mathematical artifact offers the basic tool for simplifying the allometric analysis of forest 
biomass in this approach. 
In the meantime tree ρ and ah data is collected, model [17] is a preliminary non-destructive 
semi-empirical method for assessing M for trees of any size. The procedure can be applied 
as long as volume allometry is available in addition to the relationship between a-B that has 
to be developed preferentially on-site. The methodology is flexible and provides compatible 
tree M evaluations since large estimated B values would have small a figures and vice versa. 
Site-specific allometry can be derived with this model that may improve tree M estimates in 
contrast to conventional biomass equations developed off-site. Three major disadvantages of 
this non-destructive approach are: a) the inherent colinearity problems of estimating a with 
B, b) the log-relationships between V = f(D, H) and D = f (H) are required in order to 
estimate B, and c) an empirical equation that relates a to B should be developed on site or 
alternatively use preliminary reported functions by Zianis & Mencuccini (2004) and by 
Návar (2009a; 2010a). All these three equations estimate compatible a-intercept values with 
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an estimated B slope coefficient. Examples of the application of this semi-empirical model 
are reported in Figure 6. 
b) Reducing the dimensionality of the conventional allometric equation by assuming a 
constant B slope coefficient value. The development of a model that is consistent with the 
WBE (model [10]) and the conventional log-transformed, most popular equation (model [1]) 
was proposed by Návar (2010b). Models [1] and [10] have the following common properties: 
a = Cρ; BWBE ≠ B; BWBE = 2.67 and B is a variable that it is a function of several tree and forest 
attributes, including sample size; they both feed on diameter at breast height as the only 
independent variable. The main WBE model assumption is that the BWBE-scalar slope 
coefficient is a constant value. This assumption has spurred recent research on semi-
empirical allometric models. Hence, Ketterings et al. (2003) and Chavé et al. (2005) reduced 
the dimensionality of model [1] by proposing a constant B-slope coefficient, as well. Tree 
geometry analysis and assuming that D scales to 2.0H; where H is the slope value of the H = 
f(D) relationship; i.e., D2.0H are some methods justified for finding this constant. In this 
report, I hypothesized, according to the Central Limit Theorem, that compilations and Meta 
analysis studies on biomass equations should shed light onto the population mean B-scalar 
slope coefficient value. 
Návar (2010b) summarized several Meta analysis studies on aboveground biomass. Table 1 
shows statistical results of these studies compiled from the work conducted by Jenkins et al. 
(2003); Zianis and Mencuccini (2004); Pilli et al. (2006); Fehrmann and Kleinn (2006); Návar 
(2009a,b) where there is increasing evidence that the population mean B-value is around 
2.38. This coefficient differs from the WBE scaling exponent. The Návar (2010b) equation, 
 

  Scalar coefficients 

  a a-re-calculated B 

 N x σ CI x  σ CI x  σ CI 

Jenkins et al. (2003) 10(2456) 0.11 0.03 0.02 0.12 0.03 0.02 2.40 0.07 0.05 

Ter Mikaelian and Korzukhin (1997) 41 0.15 0.08 0.03 0.11 0.04 0.01 2.33 0.17 0.05 

Fehrmann and Klein (2006) 28 0.17 0.16 0.06 0.12 0.02 0.01 2.40 0.25 0.09 

Návar (2009b) 78 0.16 0.15 0.03 0.14 0.09 0.02 2.38 0.23 0.05 

Návar (2010a) 34 0.10 0.11 0.04 0.12 0.05 0.02 2.42 0.25 0.08 

Zianis and Mencuccini (2004) 277 0.15 0.13 0.01 0.12 0.04 0.01 2.37 0.28 0.03 

μ  0.14 0.11 0.03 0.12 0.05 0.01 2.38 0.21 0.06 

N = number of biomass equations; x = average coefficient value; σ = Standard deviation; CI = 

confidence interval values (α = 0.05; D.F = n-1); μ = population mean. Jenkins et al. (2003) compiled 2456 
grouped in 10 biomass equations for temperate North American clusters of tree species. Ter Mikaelian 
and Korzukhin (1997) reported equations for 67 North American tree species but I employed only 41 
equations that describe total aboveground biomass. Návar (2009b) reported a Meta-analysis for 229 
allometric equations for Latin American tree species but only 78 fitted the conventional model for 
aboveground biomass. Návar (2010) reported B-scalar exponent values for 34 biomass equations 
calculated from shape-dimensional analysis. Zianis and Mencuccini (2004) reported equations for 279 
worldwide species. It is recognized that several studies report the equations that were compiled by 
Jenkins et al. (2003). 

Table 1. Scalar coefficients of the allometric conventional model and re-calculated a-scalar 
intercept values assuming that B = 2.38 for six meta-analysis studies. 
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consistent with the work conducted by Burrows (2000) and Fehrmann and Kleinn (2006), 

shows that the scaling exponent of the WBE model is correct as long as D0.10 m is reported in 

the allometric model. Enquist et al. (1998) and West et al. (1999) defined that the WBE 

approach was derived on the assumption that the relationship between diameter and tree 

height, H, scales with the assumed exponent value of 2/3. This coefficient has been found to 

be close to ½ as it was discussed above. 

The assumption of a constant B-scaling exponent value necessitates the re-calculation of the 

a–scalar intercept value for available allometric equations. A graphical example for this 

approach is shown in Figure 4 for 41 total aboveground biomass equations reported by Ter 

Mikaelian & Korzukhin (1997). 
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Fig. 4. Total aboveground biomass equations for 41 North American tree species reported by 
Ter Mikaelian and Korzukhin (1997) overlapped with allometric equations that assume a 
constant B-slope value of 2.38 and re-calculating the a-intercept scalar coefficients. Note the 
suitability of the reduced semi-empirical, non-destructive model of tree M assessment. 

The re-calculation of the a-intercept is not straightforward. That is, the mathematical 

solution for the a-scaling intercept is not unique. For a reported biomass equation, it is a 

function of D, as it is described in the following example: 

 

2.38

( 2.38)
2.38

kn

kn

kn

b
kn ukn

b
bkn

ukn kn

M a D M a D

a D
a a D

D

−

= ∴ =

= =
 (18) 
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Using the example for the Alnus rugosa, Ter Mikaelian and Korzukhin (1997) reported the 

following equation: Ln(M) = 0.2612+2.2087Ln(D). Then, by assuming that the B-scalar 

exponent value is 2.38 instead of 2.2087, the new aunk-intercept figure is mathematically 

solved as follows: 

 

2.2087

2.38

(2.2087 2.38)

0.2612

0.2612

10 ; 0.1760

70 ; 0.1261

unk

unk

unk

D
a

D

D

if D cm a

if D cm a

−

= =

=
= =
= =

 (19) 

 

Using simulated M-D data, the statistical aunk-intercept value would be 0.1229. Therefore, 

the mathematical method of finding the value of aunk is skewed. In the absence of a statistical 

program, it is recommended to estimate the a-scaling intercept by mathematically solving 

equation [19] with the largest D value recorded in the biomass study or in the forest 

inventory. The re-calculation of the a-scalar intercept can also be derived with the 

assumption that B = 2.67 or any other B-constant coefficient and produce similar goodness 

of fit. For 41 allometric aboveground equations reported by Ter Mikaelian and Korzukhin 

(1994), the mean (confidence interval) a-scalar intercept value is 0.1458 (0.026). Re-calculated 

values with the assumption that B = 2.38 and that B = 2.67 result in mean values of 0.1174 

(0.012) and 0.042 (0.0045), respectively. The recalculated a-value with the assumption that B 

= 2.38 outcome consistent and unbiased a-intercept figures, statistically similar to those of 

the original equations (Table 1). The assumption that B = 2.67 deviates notoriously the 

intercept coefficient values by 3.5 orders of magnitude. That is, the WBE model has to be re-

defined in either the B-scalar exponent to 2.38 or the C coefficient to a higher value. 

A set of biomass equations would have a constant B-scalar exponent, a set of re-calculated 

aunk figures and standard ρw values, a data source sufficient to construct the reduced semi-

empirical, non-destructive method of M assessment. This methodology assumes: a) that 

the bole wood specific gravity, ρw, is similar to the entire tree specific gravity, ρ, value; 

and b) that aunk and ρw are linearly related with a 0 intercept, and a slope coefficient that 

describes the C proportionality constant of the WBE model. Návar (2010b) derived the 

following relationship: M = (0.2457(±0.0152))ρw*D2.38 for 39 biomass equations for 

temperate North American tree species. That is, the equation within brackets computes 

the a-scalar intercept with only ρw values. This mathematical function is called the Návar 

(2010b) reduced equation and it is expected to vary between forests and between forest 

stands. Therefore, this relationship must be locally developed when information is 

available. Brown (1997) and Chavé et al. (2005) for worldwide tropical species and Miles 

and Smith (2009) for North American tree species reported comprehensive lists of ρw 

values. If for one moment, it is again assumed that ρw = ρ, and that B = 2.38, then the C 

coefficient of the Návar (2010) model would have confidence bounds of 0.2304 and 0.2609 

for North American temperate tree species, respectively. The application of this model to 

10 clusters of species reported by Jenkins et al., (2003) is reported in Figure 5. The Návar 

(2010b) reduced model deviates notoriously for the woodland tree species showing that it 

is specific in nature. 
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Fig. 5. Contrasts between the reduced semi-empirical, non-destructive model of Návar 
(2010b) and empirical equations for 10 clusters of tree species reported by Jenkins et al., 
(2003) for North American tree species. 
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2.10 Examples of semi-empirical methods of tree M assessment 
Projected tree M values by the restrictive, the reduced, and the shape-dimensional non-

destructive, semi-empirical models reside within the confidence bounds of the conventional 

model for most allometric equations tested for northern Mexico (Figure 6). The shape-

dimensional non-destructive model proposed by Návar (2010a) fits better biomass datasets 

than the reduced or the restrictive models, since the later model estimates the a-intercept 

coefficient with an r2 = 0.65. Equations reported to estimate a with B, instead of with ρw has 

an r2 value > than 0.70 (Zianis and Mencuccini, 2004; Fehrmann and Klein, 2006; Pilli et al., 

2006; Návar, 2010a). Indeed, Návar (2010a), in a simulation study, observed that r2 > 0.90 for 

relationships derived for temperate tree species of northwestern Mexico. 

The reduced non-destructive, semi-empirical model reported in here can be additionally 
employed for checking the consistency of available conventional allometric models. That is, 
equations that trespass a-intercept lines would biased M estimates. The limits of most 
empirical allometric equations can be easily determined using this non-destructive 
approach. The limits of biomass equations can be found just before they trespass a lines. 
Hence, this technique is handy for finding the right equations, their limits and as a 
consequence M estimates would be improved for any forest. 

2.11 Future directions in the development of semi-empirical methods of M 
assessment  
The tendency of semi-empirical and theoretical process studies to derive constant values 

that easily describe the mass of trees has become the center of current allometric studies. The 

methodology proposed by the theoretical and semi-empirical models is the basis for further 

development and improvement of mixed, process models. Full process models that 

deterministically assess tree M could never be developed since the variance in aboveground 

biomass data is hard to be fully explained by conventionally measured tree variables. 

Therefore, the need for semi-empirical techniques that convey physiological basis such as 

those proposed by West et al. (1999) and by Návar (2010a,b) derived from fractals, reduced 

and shape-dimensional analysis. 

The empiricism of any non-destructive techniques of tree M assessment would arise early in 

the bole volume estimation. For example, the Schumacher and Hall (1933) allometric bole 

volume equation, i.e., Ln (V) = Ln(av) + dLn(D)+ hLn(H); avDdHh, may have also constant d 

and h scaling exponents for most trees and the av intercept scaling coefficient varies within 

trees and in trees between forests. If so, the av intercept scaling coefficient of the Schumacher 

and Hall (1933) volume equation would improve the description of the third dimension of 

timber by incorporating its shape that is intrinsically related to the taper. Just as the a-scalar 

intercept coefficient of the allometric biomass equations describe the fourth dimension of 

timber, its ρ, the h scaling exponent partially explains the first dimension of timber, its 

slenderness. These arguments physically suggest that M of a tree with diameter recorded at 

breast height, D, should be proportional to the product of ρ times volume (V), and that 

volume is a function of basal area x height; as follows: 

 M Vρ=  (20) 

When model [20] is further developed by coupling the Schumacher and Hall (1933) volume 
equation and the power function that relates H to D it would result in model [15]. 
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Fig. 6. Testing the restrictive, the reduced and the shape-dimensional, semi-empirical, non-
destructive model performance for 10 independent allometric studies collected from 
northwestern Mexico. The regression lines, raw data and confidence bands on the B-value of 
the conventional allometric model are also depicted. 
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Equation [15] is similar to the theoretical WBE model by assuming that C = (av x ah) and that 
B = 2.67 = d+hH*. Empirical contrasts of the B-scalar exponent values calculated from shape-
dimensional analysis and the constant value of the WBE model show that they are 
statistically different for 34 allometric studies conducted in northern Mexico. The semi-
empirical non-destructive model [15] is not different either to those equations proposed by 
Chave et al. (2005) or by Ketterings et al. (2001), which are reported as models [21] and [22], 
respectively. 

 2 *( ) HM C Dρ += ⋅  (21) 

 2 *(0.11) H
wM Dρ += ⋅  (22) 

Where: H* is the scaling exponent of the power function of the H-D relationship and C is a 
proportionality constant. Note that Ketterings et al. (2001) proposed that C = 0.11 for 
tropical trees of south East Asia. The C coefficient values calculated by Návar (2010d) are 
different than the one proposed by Ketterings et al. (2001), since it had a mean (confidence 
bound) value of 0.2457 (±0.0152) for North American tree species. 
The B-scalar exponent 2+H* reported in equations [21] and [22] differs from the empirical 
value noted in meta-analysis and shape-dimensional studies as 2.38 by Návar (2010b) and 
the exponent coefficient proposed by West et al. (1999) as 2.67. The H* coefficient has an 
approximate mean value of 0.53 (McMahon, 1973; Niklas, 1994; Návar, 2010a) and the mean 
scalar exponent, according to model [21] and [22], is consequently B = 2.53. Models [21] and 
[22] assume that the volume equation has an exponent of D2.0. Návar (2010a) using the 
shape-dimensional analysis coupled with fractal geometry noted that d = 1.93 (0.066) and h 
= 0.917 (0.079) for 12 volume equations for temperate trees of northwestern Mexico. 
Therefore, an exponent value d ~ 1.9 (0.07) would be appropriate for these forests. That is, 
boles are neither two dimensional photosynthetic surfaces (D2) nor three dimensional 
geometric solids (D2H); hence, if d ~ 1.9, then B = 2.43 in the Ketterings et al. (2001) or Chavé 
et al. (2005) semi-empirical models. This new slope value falls within the confidence bounds 
of the mean B-value found in Meta analysis studies (2.38 ±0.06). 
The major finding of this brief review is that most current semi-empirical and theoretical 
studies assume a constant B-scalar exponent value. That is: BNávar ≤ BChave = BKetterings ≤ BWest; 
2.38 ≤ 2.53 = 2.59 ≤ 2.67. Further empirical and theoretical studies are required before the 
constant B-scalar exponent value finally emerges. 

2.12 Implications of reduced non-destructive models of M assessment 
Reduced non-destructive models that assume a constant B-scalar exponent easily calculates 
M for each individual tree as well as for any set of trees since it depends upon the a-scalar 
intercept value that is a function of the wood specific gravity value. The major implicit 
hypothesis of a reduced model such as the WEB or the Návar (2010b) equations would then 
be that trees add mass, volume, area or length at a rate per unit of diameter growth that is a 
function of the a-scalar intercept, which is a function of the ρw values. Návar (2010b) found a 
positive relationship between a and ρw, consistent with the explicitly statement described in 
the theoretical and semi-empirical models. If so, then trees with large ρw figures would grow 
diametrically (as well as to any other dimension) at a small rate and vice versa, since D = 

B M
a . A preliminary analysis of diameter increment and ρw values for 15 tropical species 
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fitted well with a negative linear relationship with the following equation: 

4.23 5.38 w
D
t

ρ∂
∂ = − ; r2=0.50; further empirically supporting the evidence that a reduced non-

destructive, semi-empirical or the theoretical model that assumes a constant B-scalar 
exponent is also physiologically and metabolically correct. 
The selection of a constant B-scalar exponent value in a reduced semi-empirical model has 

several consequences. Statistically, the B and a scalar coefficients are related with negative 

power or logarithmic equations (Zianis & Mencuccini, 2004; Pilli et al., 2006; Návar, 

2009a,b). Hence, the a-scalar intercept would deviate from values reported in most 

allometric studies by assuming a different B-scalar exponent. For example, Table 1 reports 

mean (confidence bound) population values for the a-scalar intercept as: 0.14 (0.03). 

Therefore, when assuming a different scalar exponent values either the taper factors (C) or 

the basic specific gravity (ρ) for the entire tree would also change. Since ρ is assumed to be a 

fixed value for any tree, then the a-scalar intercept must have a fixed value as well that is 

only dependent upon the C coefficient. 

The C values would be later more precisely and physically evaluated as long as new 

information and data analysis comes up. In the meantime, Návar (2010b) and Návar (2010d) 

have noted that the C empirically-estimated value when plotting ρw vs. a varies between 

0.2457 to 0.2687 for biomass equations reported for temperate North American and for 

tropical tree species, respectively. When assuming that B = 2.38, good tree M 

approximations are found for temperate and some tropical but not for dry land tree species. 

If further assuming that B = 2.67, tree M is overestimated for both temperate and for tropical 

forest communities. Whence, a C coefficient value should be further calculated with this 

later assumption by CB=2.67 = (0.2457D2.38)/(D2.67). Again the C value is a function of D and it 

can go from 0.18 in trees with D = 5 cm to 0.076 in trees with D = 100 cm; following a power 

function of CB=2.67 = 0.2457D(2.38-2.67) = 0.2457D(-0.29). 

An independent technique to estimate the C coefficient figure was preliminarily proposed 

by Návar (2010b) by developing the shape-dimensional analysis as C = (av*ah). Mean 

(standard deviation) av values of 0.55 (0.0185) were found when fitting the statistical 

coefficients of the Schumacher and Hall (1933) volume equation to 12 temperate tree species 

of northern Mexico. By assuming a mean a-re-calculated scalar intercept value of 0.12 (Table 

1) and the mean (standard deviation) of the taper values by solving for the ah values since 

they are hard to find at this time, the C coefficient would attain a range of 0.2104-0.2249 for 

68% or 0.2037-0.2330 for 95% of the individual biomass equations, assuming the 

proportionality coefficient is normally distributed. The CB=2.38 (0.2457±0.0152) for temperate 

North American tree species is found within this range. For tropical tree species 

(0.2687±0.1078), it appears to be slightly overestimated. On the other side, the CB=2.67 (0.076-

0.180) values are a tone with the C coefficient (0.11) proposed by Ketterings et al. (2001) but 

both are underestimated when contrasting them with C range values proposed by the 

shape-dimensional analysis. The C coefficient value proposed by Ketterings et al. (2001) is 

dependent upon ρw since it was calculated as: C = ρw/a. From the shape-dimensional or the 

fractal analysis, C = a/ρw. New approaches on how to analyze biomass data will eventually 

elucidate the value of C and ah. One way to go is to analyze backwards biomass data to 

solve for C or by ah when applying the empirical conventional allometric model [1]. For 

example; when fitting the WBE model, the C coefficient could be evaluated by: C = 

M/(ρwD2.67) or when developing the semi-empirical model derived from the shape-
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dimensional analysis; ah = M/(av x ρwDd+HH*) and then C = (ah x av); or by evaluating C 

mathematically or iteratively until finding the right solution for each allometric biomass 

equation and then solving backwards for ah. This research would eventually find the right 

semi-empirical, non-destructive methodology for the simple estimation of the scalar 

coefficients that facilitate tree M assessments. The slenderness ah.parameter is related to the 

D/H relationship. However, further mathematical evidence is required to better calculate 

this parameter. 

Independent preliminary C coefficient estimates approximated by C = M/(ρwD2.38) or by C = 

M/(ρwDB) for several clusters of tree species are reported in Figure 7. The mean C coefficient 

values are 0.27 (0.09) and 0.25 (0.04) for the conventional and Návar (2010b) models and this 

preliminarily analysis demonstrate that these figures are also consistent with previously 

reported values for temperate (C = 0.2457±0.0152) and for tropical forests (C = 

0.2687±0.1078). Statistical differences are noted between clusters of species, with C values 

smaller in Cedar/Larch, Pine, and Fir/Hemlock than in Maple/Hickory or Douglas Fir. 
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Fig. 7. C coefficient values of the conventional and Návar (2010b) reduced models for eight 
groups of species. Mean and confidence bounds (p = 0.05) are also depicted. 
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2.13 Calculating the entire tree specific gravity value 
Several recent allometric studies include the wood specific gravity value as an exogenous 
variable (Brown, 1997; Chavé et al., 2005; Návar, 2009a). The theoretical WBE model calls for 
the specific gravity value for the entire tree (West et al., 1999). The Návar (2010b) reduced 
semi-empirical model requires the wood specific gravity value to escalate the a-scalar 
intercept value.  The ρw values are conventionally measured and reported figures can be 
found in recently-reported compilations. There remains the question to be solved whether 
ρw = ρ. Therefore, further information is required on easy ways to estimate ρ. The physical 
assessment of a weighted ρ value for the entire tree is derived with model [23]: 

 b w br br l lM M M

M

ρ ρ ρ
ρ

+ +
=  (23) 

Where: Mbρw = bole mass x bole specific gravity; Mbrρbr = branch mass x branch specific 
gravity; Mlρl = leaf mass x leaf specific gravity; M = total aboveground biomass. 
The mean ρw value is difficult to assess, since it changes from the bark to the pith and from 

the bole base to the tip (Parolin, 2002). Miles and Smith (2009) compiled a comprehensive 

dataset containing standard specific gravity values for bole wood and bark for 156 North 

American tree species that can be preliminarily explored. Standard ρw value is measured at 

DBH. Therefore, this as well as any other data source requires a correction factor since ρw = 

f(H) (Silva-Arredondo and Návar-Cháidez, 2009). One approximation to solve for the 

change of ρw with H is mathematically described in model [24]: 
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 (24) 

Where: M = mass, V = volume, c = bark, h = hardwood, s = softwood, h = relative tree 
height, H = total tree height, d = relative diameter, D = diameter. 
Taper functions that relate bole diameter to relative bole tree height (d = f (h)) are available 

for most worldwide timber commercial tree species. Preliminary exploration of the bole 

wood and bark specific gravity data values reported by Miles and Smith (2009) show that 

they have similar specific gravity mean values (0.483 and 0.487) for all 156 North American 

tree species, although there are significant differences between these biomass components 

within each reported tree species. The scientific literature hardly reports leaf specific gravity 

values. However, leaf biomass accounts for by approximately 20% of the total aboveground 

biomass for 110 young trees of five species of northwestern USA (Delaney, 2007) and for 55 

young trees of five pine species of Durango, Mexico (Návar et al., 2004). This ratio would 

probably steadily diminish with tree age and this relationship is also needed for most tree 

species. 

Preliminary empirical evaluations of the entire tree basic specific gravity can be derived 
from the relationship between re-calculated a vs. (av x ah) or a vs. C with a slope describing 
ρ. Mathematically, ρ = M/(C x D2.38). These relationships are species specific and require 
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sufficient allometric data to obtain coefficients with minimum variance. Site features may 
also influence this statistical function. Therefore, additional studies are needed to further 
advancing the knowledge on simple ways to estimate ρ and C with the goal of developing 
improved non-destructive methods of M assessment. In the meantime bole wood specific 
gravity is an estimator of the entire tree specific gravity. 

3. Plot aboveground biomass assessments 

3.1 Introduction 
The application of allometric equations to forest inventory tree data is the standard 
methodology for the plot, stand M assessment since allometric equations that 
straightforward calculate plot aboveground biomass are hard to find. One equation for 
tropical dry forests of Jalisco, Mexico reported by Martínez-Yrizar et al. (1992) and a second 
one for semi-arid sub-tropical Tamaulipan thornscrub matorral of northeastern Mexico 
published by Návar et al. (2002b) were found in a brief scientific literature review. One 
major drawback of these equations is that they harvested all standing trees, including un-
inventoried trees (d < 7.5 cm) in small plots (5 m x 5 m). Both equations use basal area as 
independent variable and the second one draw on also mean stand H and tree diversity, S, 
as an index of the stand wood specific gravity variation. 
The conventional physics equation (model [19]) is an independent method for calculating 
tree and plot biomass. Commercial and research forest inventories conventionally report 
timber volume, V, at the plot scale. The entire tree specific gravity is at the present difficult 
to calculate with reported information, but an estimator can be used instead, the bole wood 
specific gravity, ρw, that is conventionally measured and reported in most wood technology 
studies. One shortcoming of this procedure is that branch volume is rarely integrated into 
bole volume estimates. On the other hand, Silva-Arredondo and Návar-Cháidez (2009) 
reported that the mean ρw value for trees should be taken at 0.22H for temperate trees of 
northern México when guidelines for ρw measurements recommend taking core samples at 
diameter at breast height, and therefore M estimates must use a correction factor to assess 
less biased M values. 
A second independent approach to evaluate plot M multiplies plot volume times a biomass 
expansion factor, BEF. The BEF values previously calculated by the ratio of M/V are 
available for several tree species and for several forests (Gracia et al., 2004; Lehtonen et al., 
2004; FAO, 2007; Návar-Cháidez, 2009; Silva-Arredondo and Návar, 2009). Whenever FEB, 
V and ρw data are available, M estimation procedures described above can be used as 
contrasting methods since they are partially independent methods of plot M assessment. 
Brown (1997) coupled these variables to come up with plot M density with the following 
equation: 

 wM ER BEFρ= ⋅ ⋅  (25) 

Where ER = stand timber volume (m3 ha-1); ρw = mean standard bole wood specific gravity 
for the tree species dominating the stand (Mg m-3); and BEF = biomass expansion factor 
(dimensionless). 
The BEF value of equation [25] is dimensionless and it only expands bole plot M to the 
entire aboveground tree biomass (boles, branches and leaves). Brown (1997) interpolated 
this equation for complex forests by weighting it for tree species or genera that constitute the 
forest. 

www.intechopen.com



Measurement and Assessment Methods of Forest Aboveground Biomass:  
A Literature Review and the Challenges Ahead   

 

51 

The conventional BEF dimensional values reported in the recent scientific literature take the 
following form: 

 
1

3 3 1 3

( ) ( )

( ) ( )

M Mg or Mg ha Mg
BEF BEF

V m or m ha m

−

−
⎡ ⎤= = ⎢ ⎥
⎣ ⎦

 (26) 

Preliminary analysis of BEF values point to the local calibration by mean stand H, D, age, 
density, etc. to be recommended as methods of plot M assessment (Brown, 2002; Gracia, 
2004; Lehtonen et al., 2005; Návar-Cháidez, 2009; Silva-Arredondo & Návar-Cháidez, 2009; 
Návar, 2010d). Therefore they are currently empirical factors of local use. The FAO (2007) 
compiled dimensional BEF figures for worldwide forests and they are shown in Table 2. 
 

 1 m3 of timber volume is equivalent to: 

Region/Sub-region Aboveground Biomass (Mg) Total tree biomass (Mg) 

Eastern Africa 2.3 2.9 

North Africa 2.1 2.7 

Western and Central Africa  1.3 1.7 

Africa 1.5 1.9 

Eastern Asia 0.7 0.9 

Southern Asia 1.4 1.8 

Western and Central Asia 0.9 1.1 

Asia 1.1 1.4 

Europe 0.7 0.8 

Caribbean Countries 2.0 2.6 

Central-America 1.4 1.8 

North America 1.0 1.1 

North and Central America 1.0 1.2 

Australia New Zealand 1.4 2.0 

South America 1.1 1.5 

World 1.0 1.3 

Total tree biomass = boles, branches, foliage and roots. 

Table 2. Biomass expansion factors to assess below and total standing stand aboveground 
biomass as a function of bole volume (Source: FAO, 2007) 

Reported BEF values are practical for regional aboveground and total tree biomass 
calculations. For specific, local biomass projects, regional BEF factors must be applied 
whenever they are available since they can vary notoriously from place to place by changes 
in the forest structure (Brown, 2002). 
Most studies that evaluate standard plot aboveground biomass use a single mathematical 
function, which is frequently the most popular, the one developed for worldwide studies, or 
the one locally developed, although there is a wide range of allometric equations available 
for regional and world-distributed forest communities (Brown et al., 1989; Brown, 1997; 
Chavé et al., 2001; 2003; 2005; Ketterings et al., 2001; Návar et al., 2004; Návar, 2009a,b). 
Therefore, when contrasting plot M estimates with different allometric equations or 
methods, they will always show variations. 
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3.2 Contrasting plot M assessments  
Research studies that contrast plot M estimates by different allometric models or different 
methods of estimation are scarce in the scientific literature. Figure 2 exemplifies the large 
variation expected when evaluating tree M for tropical rainforest, tropical dry forests, as 
well as for the hybrid IAN 710 Hevea brasiliensis trees. Figure 4 also shows large differences 
in M evaluations for similar tree species. Therefore, the selection of an allometric model is 
the most important source of uncertainty when assessing plot M (Chavé et al., 2004; Návar 
et al., 2010). 
Several other uncertainty sources can be expected when computing tree and consequently plot 
M. The allometric equation has an intrinsic error given by the standard deviation of the tree M 
estimate that is related to the number, diversity and diameter structure of sampled trees for 
biomass allometry. The second, and probably the most important, arises when an off-site 
equation is applied to forests with different tree diversity and diameter structure. This error 
source has not been evaluated since allometric equations are hardly validated and therefore it 
is preliminary assessed when several allometric equations estimate plot biomass using the 
same forest inventory dataset (Chavé et al., 2004). Three other types of uncertainties related to 
the forest inventory scheme are: the size and shape of sampling plots, the spatial distribution 
of sampling units in the forest, and tree measurements within sampling plots. 
Large variations in tree and consequently in plot M evaluations make the biomass stock of 
most forest stands to remain poorly understood. For example, for mid and high latitude 
forests, Fang et al. (2006) reviewed the literature and noted that inventory-based forest M 
stocks documented for major countries fall within a narrow range of 72–112 Mg ha−1 with an 
overall area-weighted mean of 87.2 Mg ha−1. These estimates are 0.40 to 0.71 times smaller 
than those (122–216 Mg ha−1) computed in previous analysis. 
For structurally-complex tropical forests, the evaluation of plot M appears to have larger 
variability (Fearnside and Laurance, 2003; Houghton, 2005; Saatchi et al., 2007). Chavé et al. 
(2003) tested four different allometric equations (Chavé et al., 2001; Chambers et al., 2001; 
Brown et al., 1989 (1); Brown et al., 1989 (2)) for Panamanian tropical forests and mentioned 
that all four equations yielded comparable but statistically different plot M estimates. The 
variation among equations was 26% of the mean estimate. Houghton et al. (2001) tested 
seven different plot M estimates for the Brazilian Amazon forests and calculated a mean 
deviation of 20% but individual observations deviated 45% from the mean estimate. Araujo 
et al. (1999) harvested and weighed all standing tree biomass in a 0.2 ha area plot of the 
Brazilian Amazon forest. Of 14 different biomass equations applied to this dataset, 12 biased 
notoriously and only two provided suitable plot M assessments, within ± 0.6% of the 
weighted field biomass. 

3.3 An example of the application of tree allometry for the plot M assessment of 
Mexican tropical forests  
Návar et al. (2010) evaluated plot M by fitting nine different allometric equations for eight 
different Mexican tropical forests. Fitted functions are reported in Table 3. 
The conventional physics equation of volume times the wood specific gravity was also fitted. 
Results showed that several allometric equations predicted significantly different mean stand 
M estimates for all eight data sources (Figure 7). The mean deviation between allometric 
equations was 10.7 Mg ha-1 (62%) and uncertainties are a function of the forest aboveground 
biomass density (Sxe = 3.92M0.71; r2= 0.92;). Therefore the allometric equations consistently 
yielded larger mean standard errors for moist and wet than for dry tropical forests. 
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Researcher 
 

Tropical
Forest 

Equation 

Brown et al. (1989) Wet M=e(-2.409+0.952(ρwD2H) 
Brown (1997) Dry M=34.47-8.0671D+0.6589D2) 
Brown (1997) Moist M=e(-2.134+2.53*ln(D)) 
Martínez-Yrizar et al. (1992) Dry M=10**(-0.5352+Log10(BA)) 
Návar et al. (2010) Dry M=0.08479(ρw0.55255D2.2435H0.4773) 
Návar et al. (2010) Dry M=e(-2.409+0.952*Ln(D2H)) 
Návar (2010a) All M=(38.36*B-6.9045)D(B=d+hB*) 
Návar (2010b) All M=(-0.0094+0.2687ρw)D2.38 
Chavé et al., (2005) Dry M=0.112*(ρwD2H)0.916 
 Dry M=ρw*e(-0.667+1.784Ln(D)+0.207ln(D)2-0.028Ln(D)3 
Chavé et al., (2005) Moist M=0.0509*(ρwD2H) 
 Moist M=ρw*e(-1.49+2.148Ln(D)+0.207ln(D)2-0.028Ln(D)3 
Chavé et al., (2005) Wet M=0.0776(ρwD2H)0.94 
 Wet M=ρw*e(-1.24+1.98Ln(D)+0.207ln(D)2-0.028Ln(D)3 

Where: The non-destructive method proposed by Návar (2010a) uses the H-D and V=H,D (i.e., H = 
ahDB* and V = avDdHh) equations and an empirical equation to estimate a = 38.36B-0.6.9045; D = diameter at 
breast height, BA = basal area; ρw =wood specific gravity. 

Table 3. Allometric equations employed in aboveground biomass estimation for eight 
tropical forest communities of Mexico. 

Total aboveground biomass deviations for all tropical forests inventoried between either a) 
allometric equations or b) allometric and the physics equation were smallest when using the 
non-destructive model proposed by Návar (2010a). The equations of Brown (1997) for 
tropical dry forests and the equation of Návar (2010a) yielded consistent plot M estimates 
across allometric equations and methods. Deviations as large as 2.4 orders of magnitude 
were found; i.e. see for example stand M assessments by the Brown (1997) and the physics 
equation for moist forests or the non-destructive method II and the local equation developed 
by Návar (2009) for tropical dry forests. 

3.4 Future directions in stand M assessments  
The large deviations due to the application of allometric models or methods developed off 
site reveal that probabilistic plot M estimates are highly likely to be skewed by more than 
one and sometimes up to two orders of magnitude. In the absence of harvested trees in 
sampling stands for the development of local plot M allometry, the choice of tree biomass 
models must focus on those that consistently result in similar plot M estimates and with the 
least deviation to the physics equation. Whenever it is possible, a mean estimate across 
allometric equations that do not notoriously deviate between them would probabilistically 
deliver a better plot M assessment. However further research is required on this issue for 
several complex forests before it is recommended to improve precision of plot M 
assessments. 

3.5 The need for the development of plot allometry  
In future plot allometry studies, research must center on harvesting all inventory trees from 
plots under, for example, by shifting cultivation, the opening of roads, or other forest 
disturbances. Weighting all biomass, collecting samples for fresh and dry weights and  
 

www.intechopen.com



 Biomass 

 

54 

Tropical Dry Forests

M
ore

lo
s

V.H
. S

in
alo

a

Tin
 S

in
alo

a
BCS

A
b

o
v
e

g
ro

u
n

d
 B

io
m

a
s

s
 (

M
g

 h
a

-1
)

0

10

20

30

40

60

80

100 Physics

Návar et al. (2010c)

Návar et al. (2010c)

Martínez (1992)

Brown1 (1997)

Brown2 (1997)

Návar ND1 (2010a)

Návar ND2 (2010b)

Chavé1 et al. (2005)

Chavé2 et al. (2005)

n=10
5x5m 

n=168
20x50m 

n=221
20x50m 

n=23

INF 1600m
2
 

Tropical Moist & Wet Forests

La P
ila

, S
LP

Chuchupe, S
LP

Cala
km

ul, 
Cam

p

Tuxtla
s, V

er

A
b

o
v
e
g

ro
u

n
d

 B
io

m
a
s
s

 (
M

g
 h

a
-1

)

0

30

60

90

120

150

180

210

240

270

300

350

400

450 Physics

Návar et al. (2010c)

Brown et al. (1989)

Martínez (1992)

Brown1 (1997)

Brown2 (1997)

Návar ND1 (2010a)

Návar ND2 (2010b)

Chavé1 et al. (2005)

Chavé2 et al. (2005)

n=106
20x50m 

n=1
50x50m 

n=1
1500x6m 

n=108
20x50m 

 

Fig. 8. Mean and confidence interval aboveground biomass estimates for two tropical forests 
calculated by different allometric equations for eight tropical forest communities of Mexico. 
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calculating all stand M. The application of local or worldwide-developed tree allometry 
must be the first step to calculate stand M. In case these techniques do not provide a good 
fit, new tree and plot M equations should be developed that can be escalated up and down 
from tree levels to plot or stand scales. 
Other alternatives that expand local allometry to plot scales could be the combination of 
restrictive in the number of harvested trees (Zianis & Mencuccini, 2004) and non-destructive 
(West et al., 1997; Návar, 2010a; 2010b) methods with local tree or plot allometry. Whenever 
local allometric equations are not available, coupling available empirical equations, restrictive 
models and semi-empirical non-destructive methods for inventoried datasets and choosing an 
average of those that consistently produce similar plot M evaluations could improve stand M 
precision, according to the Central Limit Theorem. However there are a few of such studies 
reported in the scientific literature that discus this issue. 

4 Biomass assessments at regional scales 

4.1 Introduction 
Tree or plot M assessments are extrapolated over larger spatial scales to evaluate forest, 
regional or national aboveground biomass, AGB. Houghton et al. (2001) classify techniques 
available in the interpolation procedure as: a) field measurements, b) environmental gradients 
and c) remote sensing techniques. Field measurements are common approaches and they are 
mathematically just the multiplication of the mean plot M estimate times the area of each 
forest type (Schroeder et al., 1997; Houghton et al., 1992; Brown, 2002). Commercial and 
research forest inventories or a combination of both field data collection sources provide 
information for the AGB estimation for each forest class. This approach is time-consuming, 
labor intensive, expensive, and difficult to implement, especially in remote areas and it cannot 
provide the spatial distribution of AGB biomass for large areas because the error involved 
increases with the forest area. The major assumption is that a good sampling scheme 
represents the forest class under research. The error can be evaluated by multiplying the 
standard deviation, the standard deviation as a percentage of the mean, percent error, or the 
confidence interval over the forest area. The simple field method can increase precision by 
augmenting the spatial resolution of each forest type combined with the application of 
improved sampling schemes. AGB assessments augment precision when this method is 
applied for compact forest classes such as old-growth forests and forests plantations. 
The environmental gradient method should be the recommended technique when there are 
systematic plot M changes over large forest areas. So far, annual rainfall has proved to be 
the best predictor variable for Amazonian rainforests (Saatchi et al., 2007) as well as for 
Mexican tropical forests (Návar et al., 2010c). In general, non-linear models account for by 
between 50 to 60% of the total stand M variation and they are constrained to attain a final 
steady constant M value indicating that highest M figures do not have further increments 
with additional annual rainfall. However, for seasonal or dry forests the relationship is 
almost linear stressing the importance of the moisture available in places with ample light 
and radiation (Malhi et al., 2006). In this case, the integration of the non linear equation 
relating stand M to annual rainfall multiplied by the area evaluates AGB. This relationship 
can de discretized at different spatial resolutions by calculating forest areas with similar 
annual rainfall that are, in general, areas with the same altitude above sea level. The error 
involved in this relationship is associated with the standard error of this relationship which 
is also multiplied by the same area. 
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Remote sensing techniques are currently indirect methods of AGB assessments. Remote 
sensing based methods for AGB assessments are classified as: a) fine spatial resolution 
(aerial photographs, IKONOS), b) medium spatial resolution data (Landsat, Spot, 
TM/ETM+), c) coarse spatial resolution data (AVHRR, IRS-IC, WiFS), d) methods based on 
radar data (Radar, Lidar) (Lu, 2006). Tree M can be better computed when using fine spatial 
resolution methods as well as radar data. Stand M is better evaluated when the image 
spatial resolution is from medium to coarse. Remote sensing is also the standard 
methodology used to classify forests according to vegetation types, and/or cover classes 
(Houghton et al., 2000; 2001; Saatchi et al., 2007) and takes advantage of the high correlations 
between spectral signatures, vegetation parameters, transformed images, and image 
textures to evaluate AGB using field measurements or environmental methods (Lu, 2006). 
Interpolation techniques are classified as: multiple regression analysis, nonparametric k-
nearest neighbor technique, neural networks, or through indirect relationships between 
remotely sensed forest attributes and biomass (Popescu et al., 2003; Zheng et al., 2004). 
Satellite data may eventually be developed to straightforward estimate AGB, but neither 

optical nor radar data have yielded consistent results in forests with moderate to high 

biomass (Nelson et al., 2000). Optical and radar data saturate with canopy closure or at 

relatively low levels of biomass, respectively (Rignot et al. 1997; Nelson et al. 2000). A 

promising new approach is the use of lidar, which yields a measure of tree height that is 

related to biomass (Means et al. 1999). Recent 3D models with lidar suggest that the data are 

highly correlated with aboveground biomass in coniferous forests of northwestern USA 

(Lefsky et al., 1999a; Means et al., 1999) as well as in deciduous forests of eastern USA 

(Lefsky et al. 1999b). A NASA satellite equipped with a lidar designed to measure tree 

heights, biomass, and topography, the Vegetation Canopy Lidar (VCL), is currently taking 

information and a new tree height world wide map is already on the NASA homepage. 

4.2 Uncertainties of AGB evaluations  
The variety of remote sensed data, spatial resolutions, tree and forest attributes, and 

interpolation techniques make AGB assessments variable. Therefore, the largest AGB 

uncertainty over large regions results from the extrapolation technique used. Houghton et 

al. (2001) evaluated seven different M interpolation methods (three field measurements, two 

methods based on environmental gradients and two methods using remote sensing 

techniques) with different spatial resolutions for the Brazilian Amazon forests. As a result, 

AGB estimates deviate by more than one order of magnitude, from 80 to 190 Pg and models 

also differed on the spatial AGB distribution (Houghton et al., 2001). Although most 

research has been conducted for tropical forests, Houghton et al. (2001; 2003; 2005); Jenkins 

et al. (2003); and Pacala et al. (2001) pointed out that forest biomass for the mid-and high 

latitudes in the Northern Hemisphere is also uncertain due to error in the estimation of tree 

and plot biomass and its increment. For instance, biomass estimates of Russian forests 

varied from 112.0 Pg to 140.4 Pg by different authors (Alexeyev et al., 1995; Isaev et al., 1995) 

although the same forest data sources but different methods were used. 

4.3 An example of AGB assessment for Mexican tropical forests and contrasting 
results  
For Mexican tropical forests, Návar et al. (2010c) contrasted two field measurements (red 

and blue bars), one environmental gradient (green bar), and one Forest Inventory Analysis 
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(FIA) to assess AGB. In addition, AGB estimates reported by De Jong et al. (2008); Houghton 

et al. (1999) and De Fries et al. (2002); Brown (1997) and Achard et al. (2004); and IPCC 

(2006) integrated a contrast analysis. Návar (2010c) calculated that AGB assessments vary 

between 1.54 with the FIA to 3.00 Pg with the improved spatial resolution analysis. Other 

evaluations ranged from 3.84 to 4.34 Pg (Figure 9), which are larger than AGB assessments 

conducted by the author of this report. 
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Fig. 9. Mean aboveground biomass estimates for Mexican tropical forests calculated by 
different methods of interpolation (Red = rain, green = dry deciduous, purple = moist 
deciduous, and blue = moist evergreen forests). Návar-Cháidez (2009) reported biomass 
expansion factors, BEF, for dry tropical forests of Sinaloa, Mexico as 1.46 (0.022) that are 
quite consistent with the BEF values reported by FAO (2007) for Latin American tropical 
forests. Using the total standing volume value calculated in the Mexican Forest Inventory of 
2004-2006, AGB biomass expands to 1.54 (0.023) Pg. 

The FIA estimate was 2.8 orders of magnitude smaller than the AGB estimate made by IPCC 

(2006). Assuming all these eight AGB statistics yield a mean of 3.26 Pg, deviations as large as 

1.72 Pg (52.76%) are found between methods of M interpolation at the regional scale with a 

mean absolute deviation of 0.82 Pg (25% of the mean value). 

4.4 Future directions in regional AGB evaluations  
The application of a single interpolation methodology from tree or plot M to larger spatial 
scales is also highly likely to skew regional AGB figures. Therefore, there is an urgent need 
for combining available methods of AGB computation to understand the magnitude and 
sources of variation. Future studies must focus on using at least a second independent 
interpolation approach and an average estimate and its deviation should be reported. 
However, I am tempted to recommend the coupling of all three current methodologies of 
AGB calculation. These are: field techniques, collected in most forest inventory studies; 
develop relationships between environmental variables (annual precipitation, 

www.intechopen.com



 Biomass 

 

58 

evapotranspiration, water and energy balance, Bowen ratio, etc.) and plot M stock estimates 
and fluxes that are calculated with proved allometric studies; with forests classified by field 
and remote sensing techniques in several classes and gradients within classes. Although the 
combination of these techniques requires high expenditure of resources, a diversity of 
professional skills, and improved current technologies, more precise AGB approximations 
would be expected that may eventually reduce costs of regional biomass assessments. A 
single, independent approach could be to develop tree data (diameter and canopy height) 
with LIDAR techniques; use empirical, locally-derived volume and canopy height equations 
(v=f(D,H); H=f(D)) to be fitted to the semi-empirical shape-dimensional, nondestructive 
model to evaluate tree M at the spatial scale of interest. This is a matter of future studies. 

5. Conclusions 

Many tree species and worldwide forests do not have updated local allometry. They call for 

the development and application of local allometry. However, there are a great number of 

allometric equations reported for worldwide species with a major emphasis on temperate 

North American and European tree species. Available equations can be classified by the 

way equation parameters are estimated as empirical, theoretical and semi-empirical non 

destructive methods of tree M assessment. Empirical models commonly calculate statistical 

coefficients by least square techniques in linear, log-linear, non-linear, multiple linear and 

non-linear, seemingly unrelated linear and non-linear and exponential mathematical 

formats where diameter at breast height or basal diameter, top height, canopy area and 

wood specific gravity are independent variables that individually or in combination explain 

tree M of harvested trees. Conventional mathematical allometric models have intrinsic 

variations larger than 20% of the tree M but new empirical equations that contain H and ρw 

as independent variables, in addition to the conventional normal diameter, are improving 

tree M evaluations since the intrinsic error has been reduced to 16%. Theoretical and semi-

empirical non-destructive methods are in the early stages of development and require 

further testing and refinement although they can be preliminarily recommended as non-

destructive approaches of tree and stand M computation. In spite of the wealth on biomass 

allometry for several trees and forests, conventional plot M evaluations exhibit variations as 

large as two orders of magnitude when contrasting on and off-site equations. One potential 

procedure to reduce uncertainty is combining the conventional empirical, semi-empirical 

non-destructive, and restrictive methods to improve precision when computing tree and 

plot M for forests that do not convey local biomass allometry. However, research on 

understanding variations by coupling these methods are lacking elsewhere. There is a 

variety of interpolation techniques of tree or plot M to forests, regional and national scales 

but they display variations close to three orders of magnitude when assessing AGB stocks. 

Coupling tree allometry with FIA evaluations, environmental gradient analysis and remote 

sensing techniques may reduce this variation in future AGB studies. Modern remote tree 

data collection techniques (LIDAR) combined with empirical, locally-derived functions to 

estimate timber volume as a function of diameter and canopy height and canopy height as a 

function of diameter plugged into the non-destructive semi-empirical, shape-dimensional 

analysis model could improve AGB evaluations at the spatial scale of interest. 
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