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Abstract

We consider the mean-variance hedging problem under partial information. The underlying
asset price process follows a continuous semimartingale, and strategies have to be constructed
when only part of the information in the market is available. We show that the initial mean-
variance hedging problem is equivalent to a new mean-variance hedging problem with an
additional correction term, which is formulated in terms of observable processes. We prove
that the value process of the reduced problem is a square trinomial with coefficients satisfying
a triangle system of backward stochastic differential equations and the filtered wealth process
of the optimal hedging strategy is characterized as a solution of a linear forward equation.
2000 Mathematics Subject Classification: 90A09, 60H30, 90C39.
Key words and phrases: Backward stochastic differential equation, semimartingale market
model, incomplete markets, mean-variance hedging, partial information.

1. Introduction

In the problem of derivative pricing and hedging it is usually assumed that the hedging strate-
gies have to be constructed by using all market information. However, in reality, investors
acting in a market have limited access to the information flow. For example, an investor may
observe just stock prices, but stock appreciation rates depend on some unobservable factors;
one may think that stock prices can be observed only at some time intervals or up to some
random moment before an expiration date, or an investor would like to price and hedge a
contingent claim whose payoff depends on an unobservable asset, and he observes the prices
of an asset correlated with the underlying asset. Besides, investors may not be able to use
all available information even if they have access to the full market flow. In all such cases,
investors are forced to make decisions based on only a part of the market information.
We study a mean-variance hedging problem under partial information when the asset price
process is a continuous semimartingale and the flow of observable events do not necessarily
contain all information on prices of the underlying asset.
We assume that the dynamics of the price process of the asset traded on the market is de-
scribed by a continuous semimartingale S = (St, t ∈ [0, T]) defined on a filtered probability
space (Ω,A, (At, t ∈ [0, T]), P), satisfying the usual conditions, where A = AT and T < ∞

is the fixed time horizon. Suppose that the interest rate is equal to zero and the asset price
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process satisfies the structure condition; i.e., the process S admits the decomposition

St = S0 + Nt +
∫

t

0
λud〈N〉u, 〈λ · N〉T < ∞ a.s., (1.1)

where N is a continuous A-local martingale and λ is an A-predictable process.
Let G be a filtration smaller than A: Gt ⊆ At for every t ∈ [0, T].
The filtration G represents the information that the hedger has at his disposal; i.e., hedging
strategies have to be constructed using only information available in G.
Let H be a P-square integrable AT-measurable random variable, representing the payoff of a
contingent claim at time T.
We consider the mean-variance hedging problem

to minimize E[(X
x,π
T

− H)2] over all π ∈ Π(G), (1.2)

where Π(G) is a class of G-predictable S-integrable processes. Here X
x,π
t

= x +
∫

t

0 πudSu

is the wealth process starting from initial capital x, determined by the self-financing trading
strategy π ∈ Π(G).
In the case G = A of complete information, the mean-variance hedging problem was intro-
duced by Föllmer and Sondermann (Föllmer & Sondermann, 1986) in the case when S is a
martingale and then developed by several authors for a price process admitting a trend (see,
e.g., (Duffie & Richardson, 1991), (Hipp, 1993), (Schweizer, 1992), (Schweizer, 1994), (Schäl,
1994), (Gourieroux et al., 1998), (Heath et al., 2001)).
Asset pricing with partial information under various setups has been considered. The mean-
variance hedging problem under partial information was first studied by Di Masi, Platen, and
Runggaldier (Di Masi et al., 1995) when the stock price process is a martingale and the prices
are observed only at discrete time moments. For general filtrations and when the asset price
process is a martingale, this problem was solved by Schweizer (Schweizer, 1994) in terms of
G-predictable projections. Pham (Pham, 2001) considered the mean-variance hedging prob-
lem for a general semimartingale model, assuming that the observable filtration contains the
augmented filtration FS generated by the asset price process S

F
S
t ⊆ Gt for every t ∈ [0, T]. (1.3)

In this paper, using the variance-optimal martingale measure with respect to the filtration
G and suitable Kunita–Watanabe decomposition, the theory developed by Gourieroux, Lau-
rent, and Pham (Gourieroux et al., 1998) and Rheinländer and Schweizer (Rheinlander &
Schweizer, 1997) to the case of partial information was extended.
If G is not containing FS, then S is not a G-semimartingale and the problem is more involved.
Let us introduce an additional filtration F = (Ft, t ∈ [0, T]), which is an augmented filtration
generated by FS and G.
Then the price process S is a continuous F-semimartingale, and the canonical decomposition
of S with respect to the filtration F is of the form

St = S0 +
∫

t

0
λ̂F

ud〈M〉u + Mt, (1.4)

where λ̂F is the F-predictable projection of λ and

Mt = Nt +
∫

t

0
[λu − λ̂F

u ]d〈N〉u
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is a continuous F-local martingale. Besides 〈M〉 = 〈N〉, and these brackets are FS-predictable.
Throughout the paper we shall make the following assumptions:

(A) 〈M〉 is G-predictable and d〈M〉tdP a.e. λ̂F = λ̂G; hence P-a.s. for each t

E(λt|F
S

t−
∨ Gt) = E(λt|Gt);

(B) any G-martingale is an F-local martingale;
(C) the filtration G is continuous; i.e., all G-local martingales are continuous;
(D) there exists a martingale measure for S (on FT) that satisfies the reverse Hölder condition.
Remark. It is evident that if FS ⊆ G, then 〈M〉 is G-predictable. Besides, in this case G = F,
and conditions (A) and (B) are satisfied.
We shall use the notation Ŷt for the process of the G-projection of Y (note that under the present
conditions, for all processes we consider, the optional projection coincides with the predictable
projection, and therefore we use for them the same notation). Condition (A) implies that

Ŝt = E(St|Gt) = S0 +
∫

t

0
λ̂ud〈M〉u + M̂t.

Let

Ht = E(H|Ft) = EH +
∫

t

0
hudMu + Lt and Ht = EH +

∫
t

0
h

G
u dM̂u + L

G
t

be the Galtchouk–Kunita–Watanabe (GKW) decompositions of Ht = E(H|Ft) with respect to

local martingales M and M̂, where h and hG are F-predictable processes and L and LG are

local martingales strongly orthogonal to M and M̂, respectively.
We show (Theorem 3.1) that the initial mean-variance hedging problem (1.2) is equivalent to
the problem to minimize the expression

E

[(
x +

∫
T

0
πudŜu − ĤT

)2

+
∫

T

0

(
π2

u

(
1 − ρ2

u

)
+ 2πu h̃u

)
d〈M〉u

]
(1.5)

over all π ∈ Π(G), where

h̃t = ĥG
t

ρ2
t − ĥt and ρ2

t =
d〈M̂〉t

d〈M〉t

.

Thus, the problem (1.5), equivalent to (1.2), is formulated in terms of G-adapted processes.
One can say that (1.5) is the mean-variance hedging problem under complete information
with an additional correction term.
Let us introduce the value process of the problem (1.5):

V
H(t, x)= ess inf

π∈Π(G)
E

[(
x +

∫
T

t

πudŜu−ĤT

)2

+
∫

T

t

[
π2

u

(
1 − ρ2

u

)
+2πu h̃u

]
d〈M〉u|Gt

]
. (1.6)

We show in Theorem 4.1 that the value function of the problem (1.5) admits a representation

V
H(t, x) = Vt(0)− 2Vt(1)x + Vt(2)x

2,
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where the coefficients Vt(0), Vt(1), and Vt(2) satisfy a triangle system of backward stochastic
differential equations (BSDEs). Besides, the filtered wealth process of the optimal hedging
strategy is characterized as a solution of the linear forward equation

X̂∗
t = x −

∫ t

0

ρ2
u ϕu(2) + λ̂uVu(2)

1 − ρ2
u + ρ2

uVu(2)
X̂∗

udŜu +
∫ t

0

ρ2
u ϕu(1) + λ̂uVu(1) + h̃u

1 − ρ2
u + ρ2

uVu(2)
dŜu. (1.7)

Note that if FS ⊆ G, then

ρ = 1, h̃ = 0, M̂ = M, and Ŝ = S. (1.8)

In the case of complete information (G = A), in addition to (1.8) we have λ̂ = λ and M̂ = N,
and (1.7) gives equations for the optimal wealth process from (Mania & Tevzadze, 2003).
In section 5 we consider a diffusion market model, which consists of two assets S and η, where
St is a state of a process being controlled and ηt is the observation process. Suppose that St

and ηt are governed by

dSt = µtdt + σtdw0
t , dηt = atdt + btdwt,

where w0 and w are Brownian motions with correlation ρ and the coefficients µ, σ, a, and b

are F η-adapted. In this case At = Ft = F
S,η
t , and the flow of observable events is Gt = F

η
t .

As an application of Theorem 4.1 we also consider a diffusion market model with constant
coefficients and assume that an investor observes the price process S only up to a random
moment τ before the expiration date T. In this case we give an explicit solution of (1.2).

2. Main Definitions and Auxiliary Facts

Denote by Me(F) the set of equivalent martingale measures for S, i.e., the set of probability
measures Q equivalent to P such that S is a F-local martingale under Q.
Let

Me
2(F) = {Q ∈ Me(F) : EZ2

T(Q) < ∞},

where Zt(Q) is the density process (with respect to the filtration F) of Q relative to P. We
assume that Me

2(F) �= ∅.

Remark 2.1. Note that Me
2(A) �= ∅ implies that Me

2(F) �= ∅ (see Remark 2.1 from Pham
(Pham, 2001).
It follows from (1.4) and condition (A), that the density process Zt(Q) of any element Q of
Me(F) is expressed as an exponential martingale of the form

Et(−λ̂ · M + L),

where L is a F-local martingale strongly orthogonal to M and Et(X) is the Doleans–Dade
exponential of X.

If the local martingale Zmin
t = Et(−λ̂ · M) is a true martingale, dQmin/dP = Zmin

T defines the
minimal martingale measure for S.
Recall that a measure Q satisfies the reverse Hölder inequality R2(P) if there exists a constant
C such that

E

(
Z2

T(Q)

Z2
τ(Q)

|Fτ

)
≤ C, P-a.s.

for every F-stopping time τ.
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Remark 2.2. If there exists a measure Q ∈ Me(F) that satisfies the reverse Hölder inequality
R2(P), then according to Theorem 3.4 of Kazamaki (Kazamaki, 1994) the martingale MQ =

−λ̂ · M + L belongs to the class BMO and hence −λ̂ · M also belongs to BMO, i.e.,

E

(∫ T

τ
λ̂2

ud〈M〉u|Fτ

)
≤ const (2.1)

for every stopping time τ. Therefore, it follows from Theorem 2.3 of (Kazamaki, 1994) that

Et(−λ̂ · M) is a true martingale. So, condition (D) implies that the minimal martingale mea-
sure exists (but Zmin is not necessarily square integrable).

Let us make some remarks on conditions (B) and (C).

Remark 2.3. Condition (B) is satisfied if and only if the σ-algebras FS
t ∨ Gt and GT are condi-

tionally independent given Gt for all t ∈ [0, T] (see Theorem 9.29 from Jacod (Jacod, 1979)).

Remark 2.4. Condition (C) is weaker than the assumption that the filtration F is continuous.
The continuity of the filtration F and condition (B) imply the continuity of the filtration G, but
the converse is not true in general. Note that filtrations F and FS can be discontinuous. Recall
that the continuity of a filtration means that all local martingales with respect to this filtration
are continuous.

By µK we denote the Dolean measure of an increasing process K. For all unexplained notations
concerning the martingale theory used below, we refer the reader to (Dellacherie & Meyer,
1980), (Liptser & Shiryaev, 1986), (Jacod, 1979).
Let Π(F) be the space of all F-predictable S-integrable processes π such that the stochastic
integral

(π · S)t =
∫ t

0
πudSu, t ∈ [0, T],

is in the S2 space of semimartingales, i.e.,

E

(∫ T

0
π2

s d〈M〉s

)
+ E

(∫ T

0
|πsλ̂s|d〈M〉s

)2

< ∞.

Denote by Π(G) the subspace of Π(F) of G-predictable strategies.

Remark 2.5. Since λ̂ · M ∈ BMO (see Remark 2.2), it follows from the proof of Theorem 2.5 of
Kazamaki (Kazamaki, 1994) that

E

(∫ T

0
|πuλ̂u|d〈M〉u

)2

= E〈|π| · M, |λ̂| · M〉2
T ≤ 2‖λ̂ · M‖BMOE

∫ T

0
π2d〈M〉u < ∞.

Therefore, under condition (D) the G-predictable (resp., F-predictable) strategy π belongs to

the class Π(G) (resp., Π(F)) if and only if E
∫ T

0 π2
s d〈M〉s < ∞.

Define J2
T(F) and J2

T(G) as spaces of terminal values of stochastic integrals, i.e.,

J2
T(F) = {(π · S)T : π ∈ Π(F)}, J2

T(G) = {(π · S)T : π ∈ Π(G)}.

For convenience we give some assertions from (Delbaen et al., 1997), which establishes neces-
sary and sufficient conditions for the closedness of the space J2

T(F) in L2.
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Proposition 2.1. Let S be a continuous semimartingale. Then the following assertions are equivalent:

(1) There is a martingale measure Q ∈ Me(F), and J2
T(F) is closed in L2.

(2) There is a martingale measure Q ∈ Me(F) that satisfies the reverse Hölder condition R2(P).

(3) There is a constant C such that for all π ∈ Π(F) we have

‖ sup
t≤T

(π · S)t‖L2(P) ≤ C‖(π · S)T‖L2(P).

(4) There is a constant c such that for every stopping time τ, every A ∈ Fτ , and every π ∈ Π(F),
with π = π I]τ,T], we have

‖IA − (π · S)T‖L2(P) ≥ cP(A)1/2.

Note that assertion (4) implies that for every stopping time τ and for every π ∈ Π(G) we have

E

((
1 +

∫ T

τ

πudSu

)2
/

Fτ

)
≥ c. (2.2)

Now we recall some known assertions from the filtering theory. The following proposition
can be proved similarly to (Liptser & Shiryaev, 1986)( the detailed proof one can see in (Mania
et al., 2009)).

Proposition 2.2. If conditions (A), (B), and (C) are satisfied, then for any continuous F-local martin-
gale M, with M0 = 0, and any G-local martingale mG

M̂t = E(Mt|Gt) =
∫ t

0

̂d〈M, mG〉u

d〈mG〉u
dmG

u + LG
t , (2.3)

where LG is a local martingale orthogonal to mG.

It follows from this proposition that for any G-predictable, M-integrable process π and any
G-martingale mG

〈 ̂(π · M), mG〉t =
∫ t

0
πu

̂d〈M, mG〉u

d〈mG〉u
d〈mG〉u =

∫ t

0
πud〈M̂, mG〉u = 〈π · M̂, mG〉t.

Hence, for any G-predictable, M-integrable process π

̂(π · M)t = E

(∫ t

0
πsdMs|Gt

)
=

∫ t

0
πsdM̂s. (2.4)

Since π, λ, and 〈M〉 are G-predictable, from (2.4) we have

̂(π · S)t = E

(∫ t

0
πudSu|Gt

)
=

∫ t

0
πudŜu, (2.5)

where

Ŝt = S0 +
∫ t

0
λ̂ud〈M〉u + M̂t.
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3. Separation Principle: The Optimality Principle

Let us introduce the value function of the problem (1.2) defined as

UH(t, x) = ess inf
π∈Π(G)

E

((
x +

∫ T

t
πudSu − H

)2

|Gt

)
. (3.1)

By the GKW decomposition

Ht = E(H|Ft) = EH +
∫ t

0
hudMu + Lt (3.2)

for a F-predictable, M-integrable process h and a local martingale L strongly orthogonal to
M. We shall use also the GKW decompositions of Ht = E(H|Ft) with respect to the local

martingale M̂

Ht = EH +
∫ t

0
hG

u dM̂u + LG
t , (3.3)

where hG is a F-predictable process and LG is a F-local martingale strongly orthogonal to M̂.

It follows from Proposition 2.2 (applied for mG = M̂) and Lemma A.1 that

〈E(H|G.), M̂〉t =
∫ t

0
ĥG

u ρ2
ud〈M〉u. (3.4)

We shall use the notation
h̃t = ĥG

t ρ2
t − ĥt. (3.5)

Note that h̃ belongs to the class Π(G) by Lemma A.2.
Let us introduce now a new optimization problem, equivalent to the initial mean-variance
hedging problem (1.2), to minimize the expression

E

[(
x +

∫ T

0
πudŜu − ĤT

)2

+
∫ T

0

(
π2

u

(
1 − ρ2

u

)
+ 2πu h̃u

)
d〈M〉u

]
(3.6)

over all π ∈ Π(G). Recall that Ŝt = E(St|Gt) = S0 +
∫ t

0 λ̂ud〈M〉u + M̂t.

Theorem 3.1. Let conditions (A), (B), and (C) be satisfied. Then the initial mean-variance hedging
problem (1.2) is equivalent to the problem (3.6). In particular, for any π ∈ Π(G) and t ∈ [0, T]

E

[(
x +

∫ T

t
πudSu − H

)2

|Gt

]
= E

[(
H − ĤT

)2
|Gt

]

+ E

[(
x +

∫ T

t
πudŜu − ĤT

)2

+
∫ T

t

(
π2

u

(
1 − ρ2

u

)
+ 2πu h̃u

)
d〈M〉u|Gt

]
. (3.7)

Proof. We have

E

[(
x +

∫ T

t
πudSu − H

)2

|Gt

]
= E

[(
x +

∫ T

t
πudŜu − H +

∫ T

t
πud

(
Mu − M̂u

))2

|Gt

]
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= E

[(
x +

∫
T

t

πudŜu − H

)2

|Gt

]
+ 2E

[(
x +

∫
T

t

πudŜu − H

)(∫
T

t

πud

(
Mu − M̂u

))
|Gt

]

+ E

[(∫
T

t

πud

(
Mu − M̂u

))2

|Gt

]
= I1 + 2I2 + I3. (3.8)

It is evident that

I1 = E

[(
x +

∫
T

t

πudŜu − ĤT

)2

|Gt

]
+ E

[(
H − ĤT

)2
|Gt

]
. (3.9)

Since π, λ̂, and 〈M̂〉 are GT-measurable and the σ-algebras FS
t
∨ Gt and GT are conditionally

independent given Gt (see Remark 2.3), it follows from (2.4) that

E

[∫
T

t

πuλ̂ud〈M〉u

∫
T

t

πud

(
Mu − M̂u

)
|Gt

]

= E

[∫
T

t

πuλ̂ud〈M〉u

∫
T

0
πud

(
Mu − M̂u

)
|Gt

]

− E

[∫
T

t

πuλ̂ud〈M〉u

∫
t

0
πud

(
Mu − M̂u

)
|Gt

]

= E

[∫
T

t

πuλ̂ud〈M〉uE

(∫
T

0
πud

(
Mu − M̂u

)
|GT

)
|Gt

]

− E

[∫
T

t

πuλ̂ud〈M〉u|Gt

]
E

[∫
t

0
πud

(
Mu − M̂u

)
|Gt

]
= 0. (3.10)

On the other hand, by using decomposition (3.2), equality (3.4), properties of square charac-
teristics of martingales, and the projection theorem, we obtain

E

[
H

∫
T

t

πud

(
Mu − M̂u

)
|Gt

]
= E

[
H

∫
T

t

πudMu|Gt

]
− E

[
ĤT

∫
T

t

πudM̂u|Gt

]

= E

[∫
T

t

πud〈M, E(H|F·)〉u|Gt

]
− E

[∫
T

t

πud〈Ĥ, M̂〉u|Gt

]

= E

[∫
T

t

πuhud〈M〉u|Gt

]
− E

[∫
T

t

πu ĥG
u ρ2

ud〈M〉u|Gt

]

= E

[∫
T

t

πu

(
ĥu − ĥG

u ρ2
u

)
d〈M〉u|Gt

]
= −E

[∫
T

t

πu h̃ud〈M〉u|Gt

]
. (3.11)

Finally, it is easy to verify that

2E

[∫
T

t

πu M̂u

∫
T

t

πud

(
Mu − M̂u

)
|Gt

]
+ E

[(∫
T

t

πud

(
Mu − M̂u

))2

|Gt

]

= E

[(∫
T

t

π2
ud〈M〉u −

∫
T

t

π2
ud〈M̂〉u

)
|Gt

]
= E

[∫
T

t

π2
u

(
1 − ρ2

u

)
d〈M〉u|Gt

]
. (3.12)

Therefore (3.8), (3.9), (3.10), (3.11), and (3.12) imply the validity of equality (3.7). �
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Thus, it follows from Theorem 3.1 that the optimization problems (1.2) and (3.6) are equiv-
alent. Therefore it is sufficient to solve the problem (3.6), which is formulated in terms of
G-adapted processes. One can say that (3.6) is a mean-variance hedging problem under com-
plete information with a correction term and can be solved by using methods for complete
information.
Let us introduce the value process of the problem (3.6)

VH(t, x)= ess inf
π∈Π(G)

E

[(
x+

∫ T

t
πudŜu−ĤT

)2

+
∫ T

t

[
π2

u

(
1 − ρ2

u

)
+2πu h̃u

]
d〈M〉u|Gt

]
. (3.13)

It follows from Theorem 3.1 that

UH(t, x) = VH(t, x) + E
[
(H − ĤT)

2|Gt
]
. (3.14)

The optimality principle takes in this case the following form.

Proposition 3.1 (optimality principle). Let conditions (A), (B) and (C) be satisfied. Then

(a) for all x ∈ R, π ∈ Π(G), and s ∈ [0, T] the process

VH

(
t, x +

∫ t

s
πudŜu

)
+

∫ t

s

[
π2

u

(
1 − ρ2

u

)
+ 2πu h̃u)

]
d〈M〉u

is a submartingale on [s, T], admitting an right continuous with left limits (RCLL) modification.

(b) π∗ is optimal if and only if the process

VH

(
t, x +

∫ t

s
π∗

udŜu

)
+

∫ t

s

[
(π∗

u)
2
(

1 − ρ2
u

)
+ 2π∗

u h̃u

]
d〈M〉u

is a martingale.

This assertion can be proved in a standard manner (see, e.g., (El Karoui & Quenez, 1995),
(Kramkov, 1996)). The proof more adapted to this case one can see in (Mania & Tevzadze,
2003).
Let

V(t, x) = ess inf
π∈Π(G)

E

[(
x +

∫ T

t
πudŜu

)2

+
∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]

and

Vt(2) = ess inf
π∈Π(G)

E

[(
1 +

∫ T

t
πudŜu

)2

+
∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]
.

It is evident that V(t, x) (resp., Vt(2)) is the value process of the optimization problem (3.6) in
the case H = 0 (resp., H = 0 and x = 1), i.e.,

V(t, x) = V0(t, x) and Vt(2) = V0(t, 1).

Since Π(G) is a cone, we have

V(t, x) = x2 ess inf
π∈Π(G)

E

[(
1 +

∫ T

t

πu

x
dŜu

)2

+
∫ T

t

(πu

x

)2 (
1 − ρ2

u

)
d〈M〉u|Gt

]
= x2Vt(2).

(3.15)
Therefore from Proposition 3.1 and equality (3.15) we have the following.
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Corollary 3.1. (a) The process

Vt(2)

(
1 +

∫ t

s
πudŜu

)2

+
∫ t

s
(πu)

2(1 − ρ2
u)d〈M〉u,

t ≥ s, is a submartingale for all π ∈ Π(G) and s ∈ [0, T].
(b) π∗ is optimal if and only if

Vt(2)

(
1 +

∫ t

s
π∗

udŜu

)2

+
∫ t

s
(π∗

u)
2(1 − ρ2

u)d〈M〉u,

t ≥ s, is a martingale.

Note that in the case H = 0 from Theorem 3.1 we have

E

[(
1 +

∫ T

t
πudSu

)2

|Gt

]
= E

[(
1 +

∫ T

t
πudŜu

)2

+
∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]
(3.16)

and, hence,
Vt(2) = U0(t, 1). (3.17)

Lemma 3.1. Let conditions (A)–(D) be satisfied. Then there is a constant 1 ≥ c > 0 such that
Vt(2) ≥ c for all t ∈ [0, T] a.s. and

1 − ρ2
t + ρ2

t Vt(2) ≥ c µ
〈M〉a.e. (3.18)

Proof. Let

VF
t (2) = ess inf

π∈Π(F)
E

[(
1 +

∫ T

t
πudSu

)2

|Ft

]
.

It follows from assertion (4) of Proposition 2.1 that there is a constant c > 0 such that VF
t (2) ≥ c

for all t ∈ [0, T] a.s. Note that c ≤ 1 since VF ≤ 1. Then by (3.17)

Vt(2) = U0(t, 1) = ess inf
π∈Π(G)

E

[(
1 +

∫ T

t
πudSu

)2

|Gt

]

= ess inf
π∈Π(G)

E

[
E

((
1 +

∫ T

t
πudSu

)2

|Ft

)
|Gt

]
≥ E(VF

t (2)|Gt) ≥ c.

Therefore, since ρ2
t ≤ 1 by Lemma A.1,

1 − ρ
2
t + ρ

2
t Vt(2) ≥ 1 − ρ

2
t + ρ

2
t c ≥ inf

r∈[0,1]
(1 − r + rc) = c.
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4. BSDEs for the Value Process

Let us consider the semimartingale backward equation

Yt = Y0 +
∫ t

0
f (u, Yu, ψu)d〈m〉u +

∫ t

0
ψudmu + Lt (4.1)

with the boundary condition
YT = η, (4.2)

where η is an integrable GT-measurable random variable, f : Ω × [0, T] × R2 → R is P ×
B(R2) measurable, and m is a local martingale. A solution of (4.1)–(4.2) is a triple (Y, ψ, L),
where Y is a special semimartingale, ψ is a predictable m-integrable process, and L a local
martingale strongly orthogonal to m. Sometimes we call Y alone the solution of (4.1)–(4.2),
keeping in mind that ψ · m + L is the martingale part of Y.
Backward stochastic differential equations have been introduced in (Bismut, 1973) for the lin-
ear case as the equations for the adjoint process in the stochastic maximum principle. The
semimartingale backward equation, as a stochastic version of the Bellman equation in an op-
timal control problem, was first derived in (Chitashvili, 1983). The BSDE with more general
nonlinear generators was introduced in (Pardoux & Peng, 1990) for the case of Brownian fil-
tration, where the existence and uniqueness of a solution of BSDEs with generators satisfying
the global Lifschitz condition was established. These results were generalized for generators
with quadratic growth in (Kobylanski, 2000), (Lepeltier & San Martin, 1998) for BSDEs driven
by a Brownian motion and in (Morlais, 2009), (Tevzadze, 2008) for BSDEs driven by martin-
gales. But conditions imposed in these papers are too restrictive for our needs. We prove here
the existence and uniqueness of a solution by directly showing that the unique solution of the
BSDE that we consider is the value of the problem.
In this section we characterize optimal strategies in terms of solutions of suitable semimartin-
gale backward equations.

Theorem 4.1. Let H be a square integrable FT-measurable random variable, and let conditions (A),
(B), (C), and (D) be satisfied. Then the value function of the problem (3.6) admits a representation

VH(t, x) = Vt(0)− 2Vt(1)x + Vt(2)x2, (4.3)

where the processes Vt(0), Vt(1), and Vt(2) satisfy the following system of backward equations:

Yt(2) = Y0(2) +
∫ t

0

(
ψs(2)ρ2

s + λ̂sYs(2)
)2

1 − ρ2
s + ρ2

s Ys(2)
d〈M〉s +

∫ t

0
ψs(2)dM̂s + Lt(2), YT(2) = 1, (4.4)

Yt(1) = Y0(1) +
∫ t

0

(
ψs(2)ρ2

s + λ̂sYs(2)
)(

ψs(1)ρ2
s + λ̂sYs(1)− h̃s

)

1 − ρ2
s + ρ2

s Ys(2)
d〈M〉s

+
∫ t

0
ψs(1)dM̂s + Lt(1), YT(1) = E(H|GT), (4.5)

Yt(0) = Y0(0) +
∫ t

0

(
ψs(1)ρ2

s + λ̂sYs(1)− h̃s
)2

1 − ρ2
s + ρ2

s Ys(2)
d〈M〉s

+
∫ t

0
ψs(0)dM̂s + Lt(0), YT(0) = E2(H|GT), (4.6)

where L(2), L(1), and L(0) are G-local martingales orthogonal to M̂.
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Besides, the optimal filtered wealth process X̂x,π∗

t = x +
∫ t

0 π∗
udŜu is a solution of the linear equation

X̂∗
t = x −

∫ t

0

ρ2
uψu(2) + λ̂uYu(2)

1 − ρ2
u + ρ2

uYu(2)
X̂∗

udŜu +
∫ t

0

ψu(1)ρ2
u + λ̂uYu(1)− h̃u

1 − ρ2
u + ρ2

uYu(2)
dŜu. (4.7)

Proof. Similarly to the case of complete information one can show that the optimal strategy
exists and that VH(t, x) is a square trinomial of the form (4.3) (see, e.g., (Mania & Tevzadze,
2003)). More precisely the space of stochastic integrals

J2
t,T(G) =

{∫ T

t
πudSu : π ∈ Π(G)

}

is closed by Proposition 2.1, since 〈M〉 is G-predictable. Hence there exists optimal strategy
π∗(t, x) ∈ Π(G) and UH(t, x) = E[|H − x −

∫ T
t π∗

u(t, x)dSu|2|Gt]. Since
∫ T

t π∗
u(t, x)dSu co-

incides with the orthogonal projection of H − x ∈ L2 on the closed subspace of stochastic
integrals, then the optimal strategy is linear with respect to x, i.e., π∗

u(t, x) = π0
u(t) + xπ1

u(t).
This implies that the value function UH(t, x) is a square trinomial. It follows from the equality
(3.14) that VH(t, x) is also a square trinomial, and it admits the representation (4.3).
Let us show that Vt(0), Vt(1), and Vt(2) satisfy the system (4.4)–(4.6). It is evident that

Vt(0)=VH(t, 0)= ess inf
π∈Π(G)

E

[(∫ T

t
πudŜu−ĤT

)2

+
∫ T

t
[π2

u

(
1−ρ2

u

)
+2πu h̃u]d〈M〉u|Gt

]
(4.8)

and

Vt(2) = V0(t, 1) = ess inf
π∈Π(G)

E

[(
1 +

∫ T

t
πudŜu

)2

+
∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]
. (4.9)

Therefore, it follows from the optimality principle (taking π = 0) that Vt(0) and Vt(2) are
RCLL G-submartingales and

Vt(2) ≤ E(VT(2)|Gt) ≤ 1, Vt(0) ≤ E(E2(H|GT)|Gt) ≤ E(H2|Gt).

Since

Vt(1) =
1

2
(Vt(0) + Vt(2)− VH(t, 1)), (4.10)

the process Vt(1) is also a special semimartingale, and since Vt(0) − 2Vt(1)x + Vt(2)x2 =
VH(t, x) ≥ 0 for all x ∈ R, we have V2

t (1) ≤ Vt(0)Vt(2); hence

V2
t (1) ≤ E

(
H2|Gt

)
.

Expressions (4.8), (4.9), and (3.13) imply that VT(0) = E2(H|GT), VT(2) = 1, and VH(T, x) =
(x − E(H|GT))

2. Therefore from (4.10) we have VT(1) = E(H|GT), and V(0), V(1), and V(2)
satisfy the boundary conditions.
Thus, the coefficients Vt(i), i = 0, 1, 2, are special semimartingales, and they admit the decom-
position

Vt(i) = V0(i) + At(i) +
∫ t

0
ϕs(i)dM̂s + mt(i), i = 0, 1, 2, (4.11)

www.intechopen.com



Mean-variance hedging under partial information 593

where m(0), m(1), and m(2) are G-local martingales strongly orthogonal to M̂ and A(0), A(1),
and A(2) are G-predictable processes of finite variation.
There exists an increasing continuous G-predictable process K such that

〈M〉t =
∫

t

0
νudKu, At(i) =

∫
t

0
au(i)dKu, i = 0, 1, 2,

where ν and a(i), i = 0, 1, 2, are G-predictable processes.

Let X̂
x,π
s,t ≡ x +

∫
t

s
πudŜu and

Y
x,π
s,t ≡ V

H
(

t, X̂
x,π
s,t

)
+

∫
t

s

[
π2

u

(
1 − ρ2

u

)
+ 2πu h̃u

]
d〈M〉u.

Then by using (4.3), (4.11), and the Itô formula for any t ≥ s we have

(
X̂

x,π
s,t

)2
= x +

∫
t

s

[
2πuλ̂uX̂

x,π
s,u + π2

uρ2
u

]
d〈M〉u + 2

∫
t

s

πuX̂
x,π
s,u dM̂u (4.12)

and

Y
x,π
s,t − V

H(s, x) =
∫

t

s

[(
X̂

x,π
s,u

)2
au(2)− 2X̂

x,π
s,u au(1) + au(0)

]
dKu

+
∫

t

s

[
π2

u

(
1 − ρ2

u + ρ2
uVu−(2)

)
+ 2πuX̂

x,π
s,u

(
λ̂uVu−(2) + ϕu(2)ρ

2
u

)

− 2πu

(
Vu−(1)λ̂u + ϕu(1)ρ

2
u − h̃u

) ]
νudKu + mt − ms, (4.13)

where m is a local martingale.
Let

G(π, x) = G(ω, u, π, x) = π2
(

1 − ρ2
u + ρ2

uVu−(2)
)
+ 2πx

(
λ̂uVu−(2) + ϕu(2)ρ

2
u

)

− 2π(Vu−(1)λ̂u + ϕu(1)ρ
2
u − h̃u).

It follows from the optimality principle that for each π ∈ Π(G) the process

∫
t

s

[(
X̂

x,π
s,u

)2
au(2)− 2X̂

x,π
s,u au(1) + au(0)

]
dKu +

∫
t

s

G

(
πu, X̂

x,π
s,u

)
νudKu (4.14)

is increasing for any s on s ≤ t ≤ T, and for the optimal strategy π∗ we have the equality

∫
t

s

[(
X̂

x,π∗

s,u

)2
au(2)− 2X̂

x,π∗

s,u au(1) + au(0)

]
dKu = −

∫
t

s

G

(
π∗

u, X̂
x,π∗

s,u

)
νudKu. (4.15)

Since νudKu = d〈M〉u is continuous, without loss of generality one can assume that the pro-
cess K is continuous (see (Mania & Tevzadze, 2003) for details). Therefore, by taking in (4.14)
τs(ε) = inf{t ≥ s : Kt − Ks ≥ ε} instead of t, we have that for any ε > 0 and s ≥ 0

1

ε

∫ τs(ε)

s

[(
X̂

x,π
s,u

)2
au(2)− 2X̂

x,π
s,u au(1) + au(0)

]
dKu ≥ −

1

ε

∫ τs(ε)

s

G

(
πu, X̂

x,π
s,u

)
νudKu. (4.16)

By passing to the limit in (4.16) as ε → 0, from Proposition B of (Mania & Tevzadze, 2003) we
obtain

x
2
au(2)− 2xau(1) + au(0) ≥ −G(πu, x)νu, µK-a.e.,
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for all π ∈ Π(G). Similarly from (4.15) we have that µK-a.e.

x
2
au(2)− 2xau(1)+ au(0) = −G(π∗

u, x)νu

and hence
x

2
au(2)− 2xau(1) + au(0) = −νu ess inf

π∈Π(G)
G(πu, x). (4.17)

The infimum in (4.17) is attained for the strategy

π̂t =
Vt(1)λ̂t + ϕt(1)ρ

2
t
− h̃t − x(Vt(2)λ̂t + ϕt(2)ρ

2
t
)

1 − ρ2
t
+ ρ2

t
Vt(2)

. (4.18)

From here we can conclude that

ess inf
π∈Π(G)

G(πt, x) ≥ G(π̂t, x) = −

(
Vt(1)λ̂t + ϕt(1)ρ

2
t
− h̃t − x

(
Vt(2)λ̂t + ϕt(2)ρ

2
t

))2

1 − ρ2
t
+ ρ2

t
Vt(2)

. (4.19)

Let πn
t
= I[0,τn [(t)π̂t, where τn = inf{t : |Vt(1)| ≥ n}.

It follows from Lemmas A.2, 3.1, and A.3 that πn ∈ Π(G) for every n ≥ 1 and hence

ess inf
π∈Π(G)

G(πt, x) ≤ G(πn
t , x)

for all n ≥ 1. Therefore

ess inf
π∈Π(G)

G(πt, x) ≤ lim
n→∞

G(πn
t , x) = G(π̂t, x). (4.20)

Thus (4.17), (4.19), and (4.20) imply that

x
2
at(2)− 2xat(1) + at(0)

= νt

(Vt(1)λ̂t + ϕt(1)ρ
2
t
− h̃t − x(Vt(2)λ̂t + ϕt(2)ρ

2
t
))2

1 − ρ2
t
+ ρ2

t
Vt(2)

, µK-a.e., (4.21)

and by equalizing the coefficients of square trinomials in (4.21) (and integrating with respect
to dK) we obtain

At(2) =
∫

t

0

(
ϕs(2)ρ2

s + λ̂sVs(2)
)2

1 − ρ2
s + ρ2

s Vs(2)
d〈M〉s , (4.22)

At(1) =
∫

t

0

(
ϕs(2)ρ2

s + λ̂sVs(2)
) (

ϕs(1)ρ2
s + λ̂sVs(1)− h̃s

)

1 − ρ2
s + ρ2

s Vs(2)
d〈M〉s , (4.23)

At(0) =
∫

t

0

(
ϕs(1)ρ2

s + λ̂sVs(1)− h̃s

)2

1 − ρ2
s + ρ2

s Vs(2)
d〈M〉s , (4.24)

which, together with (4.11), implies that the triples (V(i), ϕ(i), m(i)), i = 0, 1, 2, satisfy the
system (4.4)–(4.6).
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Note that A(0) and A(2) are integrable increasing processes and relations (4.22) and (4.24)
imply that the strategy π̂ defined by (4.18) belongs to the class Π(G).
Let us show now that if the strategy π∗ ∈ Π(G) is optimal, then the corresponding filtered

wealth process X̂π∗

t = x +
∫ t

0 π∗
udŜu is a solution of (4.7).

By the optimality principle the process

Yπ∗

t = VH
(

t, X̂π∗

t

)
+

∫ t

0

[
(π∗

u)
2
(

1 − ρ2
u

)
+ 2π∗

u h̃u

]
d〈M〉u

is a martingale. By using the Itô formula we have

Yπ∗

t =
∫ t

0

(
X̂π∗

u

)2
dAu(2)− 2

∫ t

0
X̂π∗

u dAu(1) + At(0) +
∫ t

0
G
(

π∗
u, X̂π∗

u

)
d〈M〉u + Nt,

where N is a martingale. Therefore by applying equalities (4.22), (4.23), and (4.24) we obtain

Yπ∗

t =
∫ t

0

(
π∗

u −
Vu(1)λ̂u + ϕu(1)ρ2

u − h̃u

1 − ρ2
u + ρ2

uVu(2)

+ X̂π∗

u

Vu(2)λ̂u + ϕu(2)ρ2
u

1 − ρ2
u + ρ2

uVu(2)

)2 (
1 − ρ2

u + ρ2
uVu(2)

)
d〈M〉u + Nt,

which implies that µ〈M〉-a.e.

π∗
u =

Vu(1)λ̂u + ϕu(1)ρ2
u − h̃u

1 − ρ2
u + ρ2

uVu(2)
− X̂π∗

u

(
Vu(2)λ̂u + ϕu(2)ρ2

u

)

1 − ρ2
u + ρ2

uVu(2)
.

By integrating both parts of this equality with respect to dŜ (and adding then x to the both

parts), we obtain that X̂π∗
satisfies (4.7). �

The uniqueness of the system (4.4)–(4.6) we shall prove under following condition (D∗),
stronger than condition (D).
Assume that

(D∗)
∫ T

0

λ̂2
u

ρ2
u

d〈M〉u ≤ C.

Since ρ2 ≤ 1 (Lemma A.1), it follows from (D∗) that the mean-variance tradeoff of S is
bounded, i.e., ∫ T

0
λ̂2

ud〈M〉u ≤ C,

which implies (see, e.g., Kazamaki (Kazamaki, 1994)) that the minimal martingale measure for
S exists and satisfies the reverse Hölder condition R2(P). So, condition (D∗) implies condition

(D). Besides, it follows from condition (D∗) that the minimal martingale measure Q̂min for Ŝ

dQ̂min = ET

(
−

λ̂

ρ2
· M̂

)
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also exists and satisfies the reverse Hölder condition. Indeed, condition (D∗) implies that

Et(−2 λ̂
ρ2 · M̂) is a G-martingale and hence

E

(
E2

tT

(
−

λ̂

ρ2
· M̂

)
|Gt

)
= E

(
EtT

(
−2

λ̂

ρ2
· M̂

)
e

∫ T

t
λ̂2

u
ρ2

u
d〈M〉u

Gt

)
≤ eC.

Recall that the process Z belongs to the class D if the family of random variables Zτ I(τ≤T) for
all stopping times τ is uniformly integrable.

Theorem 4.2. Let conditions (A), (B), (C), and (D∗) be satisfied. If a triple (Y(0), Y(1), Y(2)), where
Y(0) ∈ D, Y2(1) ∈ D, and c ≤ Y(2) ≤ C for some constants 0 < c < C, is a solution of the system
(4.4)–(4.6), then such a solution is unique and coincides with the triple (V(0), V(1), V(2)).

Proof. Let Y(2) be a bounded strictly positive solution of (4.4), and let

∫ t

0
ψu(2)dM̂u + Lt(2)

be the martingale part of Y(2).
Since Y(2) solves (4.4), it follows from the Itô formula that for any π ∈ Π(G) the process

Yπ
t = Yt(2)

(
1 +

∫ t

s
πudŜu

)2

+
∫ t

s
π2

u

(
1 − ρ2

u

)
d〈M〉u, (4.25)

t ≥ s, is a local submartingale.
Since π ∈ Π(G), from Lemma A.1 and the Doob inequality we have

E sup
t≤T

(
1 +

∫ t

0
πudŜ

)2

≤ const

(
1 + E

∫ T

0
π2

uρ2
ud〈M〉u

)
+ E

(∫ T

0
|πuλ̂u|d〈M〉u

)2

< ∞. (4.26)

Therefore, by taking in mind that Y(2) is bounded and π ∈ Π(G) we obtain

E
(

sup
s≤u≤T

Yπ
u

)2
< ∞,

which implies that Yπ ∈ D. Thus Yπ is a submartingale (as a local submartingale from the
class D), and by the boundary condition YT(2) = 1 we obtain

Ys(2) ≤ E

((
1 +

∫ T

s
πudŜu

)2

+
∫ T

s
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gs

)

for all π ∈ Π(G) and hence
Yt(2) ≤ Vt(2). (4.27)

Let

π̃t = −
λ̂tYt(2) + ψt(2)ρ

2
t

1 − ρ2
t + ρ2

t Yt(2)
Et

(
−

λ̂Y(2) + ψ(2)ρ2

1 − ρ2 + ρ2Y(2)
· Ŝ

)
.
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Since 1 +
∫ t

0 π̃udŜu = Et(−
λ̂Y(2)+ψ(2)ρ2

1−ρ2+ρ2Y(2)
· Ŝ), it follows from (4.4) and the Itô formula that

the process Yπ̃ defined by (4.25) is a positive local martingale and hence a supermartingale.
Therefore

Ys(2) ≥ E

((
1 +

∫ T

s
π̃udŜu

)2

+
∫ T

s
π̃

2
u

(
1 − ρ

2
u

)
d〈M〉u|Gs

)
. (4.28)

Let us show that π̃ belongs to the class Π(G).
From (4.28) and (4.27) we have for every s ∈ [0, T]

E

((
1 +

∫ T

s
π̃udŜu

)2

+
∫ T

s
π̃

2
u

(
1 − ρ

2
u

)
d〈M〉u|Gs

)
≤ Ys(2) ≤ Vs(2) ≤ 1 (4.29)

and hence

E

(
1 +

∫ T

0
π̃udŜu

)2

≤ 1, (4.30)

E

∫ T

0
π̃

2
u

(
1 − ρ

2
u

)
d〈M〉u ≤ 1. (4.31)

By (D∗) the minimal martingale measure Q̂min for Ŝ satisfies the reverse Hölder condition, and
hence all conditions of Proposition 2.1 are satisfied. Therefore the norm

E

(∫ T

0
π̃

2
s ρ

2
s d〈M〉s

)
+ E

(∫ T

0
|π̃sλ̂s|d〈M〉s

)2

is estimated by E
(
1 +

∫ T
0 π̃udŜu)2 and hence

E

∫ T

0
π̃2

uρ2
ud〈M〉u < ∞, E

(∫ T

0
|π̃sλ̂s|d〈M〉s

)2

< ∞.

It follows from (4.31) and the latter inequality that π̃ ∈ Π(G), and from (4.28) we obtain

Yt(2) ≥ Vt(2),

which together with (4.27) gives the equality Yt(2) = Vt(2).
Thus V(2) is a unique bounded strictly positive solution of (4.4). Besides,

∫ t

0
ψu(2)dM̂u =

∫ t

0
ϕu(2)dM̂u, Lt(2) = mt(2) (4.32)

for all t, P-a.s.
Let Y(1) be a solution of (4.5) such that Y2(1) ∈ D. By the Itô formula the process

Rt = Yt(1)Et

(
−

ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)

+
∫ t

0
Eu

(
−

ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
(ϕu(2)ρ2

u + λ̂uVu(2))h̃u

1 − ρ2
u + ρ2

uVu(2)
d〈M〉u (4.33)

is a local martingale. Let us show that Rt is a martingale.
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As was already shown, the strategy

π̃u =
ψu(2)ρ2

u + λ̂uYu(2)

1 − ρ2 + ρ2Yu(2)
Eu

(
−

ψ(2)ρ2 + λ̂Y(2)

1 − ρ2 + ρ2Y(2)
· Ŝ

)

belongs to the class Π(G).
Therefore (see (4.26)),

E sup
t≤T

E2
t

(
−

ψ(2)ρ2 + λ̂Y(2)

1 − ρ2 + ρ2Y(2)
· Ŝ

)
= E sup

t≤T

(
1 +

∫ t

0
π̃udŜ

)2

< ∞, (4.34)

and hence

Yt(1)Et

(
−

ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
∈ D.

On the other hand, the second term of (4.33) is the process of integrable variation, since π̃ ∈
Π(G) and h̃ ∈ Π(G) (see Lemma A.2) imply that

E
∫ T

0

∣∣∣∣∣Eu

(
−

ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
(ϕu(2)ρ2

u + λ̂uVu(2))h̃u

1 − ρ2
u + ρ2

uVu(2)

∣∣∣∣∣ d〈M〉u

= E
∫ T

0
|π̃u h̃u|d〈M〉u ≤ E1/2

∫ T

0
π̃2

ud〈M〉uE1/2
∫ T

0
h̃2

ud〈M〉u < ∞.

Therefore, the process Rt belongs to the class D, and hence it is a true martingale. By using
the martingale property and the boundary condition we obtain

Yt(1) = E

(
ĤTEtT

(
−

ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)

+
∫ T

t
Etu

(
−

ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
(ϕu(2)ρ2

u + λ̂uVu(2))h̃u

1 − ρ2
u + ρ2

uVu(2)
d〈M〉u|Gt

)
. (4.35)

Thus, any solution of (4.5) is expressed explicitly in terms of (V(2), ϕ(2)) in the form (4.35).
Hence the solution of (4.5) is unique, and it coincides with Vt(1).
It is evident that the solution of (4.6) is also unique. �

Remark 4.1. In the case FS ⊆ G we have ρt = 1, h̃t = 0, and Ŝt = St, and (4.7) takes the form

X̂∗
t = x −

∫ t

0

ψu(2) + λ̂uYu(2)

Yu(2)
X̂∗

udSu +
∫ t

0

ψu(1) + λ̂uYu(1)

Yu(2)
dSu.

Corollary 4.1. In addition to conditions (A)–(C) assume that ρ is a constant and the mean-variance

tradeoff 〈λ̂ · M〉T is deterministic. Then the solution of (4.4) is the triple (Y(2), ψ(2), L(2)), with
ψ(2) = 0, L(2) = 0, and

Yt(2) = Vt(2) = ν
(

ρ, 1 − ρ2 + 〈λ̂ · M〉T − 〈λ̂ · M〉t

)
, (4.36)
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where ν(ρ, α) is the root of the equation

1 − ρ2

x
− ρ2 ln x = α. (4.37)

Besides,

Yt(1) = E

(
HEtT

(
−

λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)

+
∫ T

t
Etu

(
−

λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
λuVu(2)h̃u

1 − ρ2 + ρ2Vu(2)
d〈M〉u|Gt

)
(4.38)

uniquely solves (4.5), and the optimal filtered wealth process satisfies the linear equation

X̂∗
t = x −

∫ t

0

λ̂uVu(2)

1 − ρ2 + ρ2Vu(2)
X̂∗

udŜu +
∫ t

0

ϕu(1)ρ2 + λ̂uVu(1)− h̃u

1 − ρ2 + ρ2Vu(2)
dŜu. (4.39)

Proof. The function f (x) =
1−ρ2

x − ρ2 ln x is differentiable and strictly decreasing on ]0, ∞[
and takes all values from ]− ∞,+∞[. So (4.37) admits a unique solution for all α. Besides, the
inverse function α(x) is differentiable. Therefore Yt(2) is a process of finite variation, and it is

adapted since 〈λ̂ · M〉T is deterministic.
By definition of Yt(2) we have that for all t ∈ [0, T]

1 − ρ2

Yt(2)
− ρ2 ln Yt(2) = 1 − ρ2 + 〈λ̂ · M〉T − 〈λ̂ · M〉t.

It is evident that for α = 1 − ρ2 the solution of (4.37) is equal to 1, and it follows from (4.36)
that Y(2) satisfies the boundary condition YT(2) = 1. Therefore

1 − ρ2

Yt(2)
− ρ2 ln Yt(2)−

(
1 − ρ2

)
= −

(
1 − ρ2

) ∫ T

t
d

1

Yu(2)
+ ρ2

∫ T

t
d ln Yu(2)

=
∫ T

t

(
1 − ρ2

Y2
u (2)

+
ρ2

Yu(2)

)
dYu(2)

and ∫ T

t

1 − ρ2 + ρ2Yu(2)

Y2
u (2)

dYu(2) = 〈λ̂ · M〉T − 〈λ̂ · M〉t

for all t ∈ [0, T]. Hence

∫ t

0

1 − ρ2 + ρ2Yu(2)

Y2
u (2)

dYu(2) = 〈λ̂ · M〉t,

and, by integrating both parts of this equality with respect to Y(2)/(1 − ρ2 + ρ2Y(2)), we
obtain that Y(2) satisfies

Yt(2) = Y0(2) +
∫ t

0

Y2
u (2)λ̂

2
u

1 − ρ2 + ρ2Yu(2)
d〈M〉u, (4.40)

which implies that the triple (Y(2), ψ(2) = 0, L(2) = 0) satisfies (4.4) and Y(2) = V(2) by
Theorem 4.2. Equations (4.38) and (4.39) follow from (4.35) and (4.7), respectively, by taking
ϕ(2) = 0. �
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Remark 4.2. In case FS ⊆ G we have M̂ = M and ρ = 1. Therefore (4.40) is linear and

Yt(2) = e〈λ̂·M〉t−〈λ̂·M〉T . In the case A = G of complete information, Yt(2) = e〈λ·N〉t−〈λ·N〉T .

5. Diffusion Market Model

Example 1. Let us consider the financial market model

dS̃t = S̃tµt(η)dt + S̃tσt(η)dw
0
t ,

dηt = at(η)dt + bt(η)dwt,

subjected to initial conditions. Here w0 and w are correlated Brownian motions with
Edw0

t
dwt = ρdt, ρ ∈ (−1, 1).

Let us write

wt = ρw
0
t +

√
1 − ρ2w

1
t ,

where w0 and w1 are independent Brownian motions. It is evident that w⊥ = −
√

1 − ρ2w0 +
ρw1 is a Brownian motion independent of w, and one can express Brownian motions w0 and
w1 in terms of w and w⊥ as

w
0
t = ρwt −

√
1 − ρ2w

⊥
t , w

1
t =

√
1 − ρ2wt + ρw

⊥
t . (5.1)

Suppose that b2
> 0, σ2

> 0, and coefficients µ, σ, a, and b are such that F
S,η
t

= F
w0,w
t

and

F
η
t
=Fw

t
.

We assume that an agent would like to hedge a contingent claim H (which can be a function
of ST and ηT) using only observations based on the process η. So the stochastic basis will be
(Ω,F , Ft, P), where Ft is the natural filtration of (w0, w) and the flow of observable events is
Gt = Fw

t
.

Also denote dSt = µtdt + σtdw0
t
, so that dS̃t = S̃tdSt and S is the return of the stock.

Let π̃t be the number of shares of the stock at time t. Then πt = π̃tS̃t represents an amount
of money invested in the stock at the time t ∈ [0, T]. We consider the mean-variance hedging
problem

to minimize E

[(
x +

∫
T

0
π̃tdS̃t − H

)2
]

over all π̃ for which π̃S̃ ∈ Π(G), (5.2)

which is equivalent to studying the mean-variance hedging problem

to minimize E

[(
x +

∫
T

0
πtdSt − H

)2
]

over all π ∈ Π(G).

Remark 5.1. Since S is not G-adapted, π̃t and π̃tS̃t cannot be simultaneously G-predictable
and the problem

to minimize E

[(
x +

∫
T

0
π̃tdS̃t − H

)2
]

over all π̃ ∈ Π(G)

is not equivalent to the problem (5.2). In this setting, condition (A) is not satisfied, and it needs
separate consideration.
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By comparing with (1.1) we get that in this case

Mt =
∫ t

0
σsdw0

s , 〈M〉t =
∫ t

0
σ2

s ds, λt =
µt

σ2
t

.

It is evident that w is a Brownian motion also with respect to the filtration Fw0,w1
and condition

(B) is satisfied. Therefore by Proposition 2.2

M̂t = ρ

∫ t

0
σsdws.

By the integral representation theorem the GKW decompositions (3.2) and (3.3) take the fol-
lowing forms:

cH = EH, Ht = cH +
∫ t

0
hsσsdw0

s +
∫ t

0
h1

s dw1
s , (5.3)

Ht = cH + ρ

∫ t

0
hG

s σsdws +
∫ t

0
h⊥s dw⊥

s . (5.4)

By putting expressions (5.1) for w0 and w1 in (5.3) and equalizing integrands of (5.3) and (5.4),
we obtain

ht = ρ
2hG

t −
√

1 − ρ2
h⊥t
σt

and hence

ĥt = ρ
2ĥG

t −
√

1 − ρ2
ĥ⊥t
σt

.

Therefore by the definition of h̃

h̃t = ρ
2ĥG

t − ĥt =
√

1 − ρ2
ĥ⊥t
σt

. (5.5)

By using notations

Zs(0) = ρσs ϕs(0), Zs(1) = ρσs ϕs(1), Zs(2) = ρσs ϕs(2), θs =
µs

σs
,

we obtain the following corollary of Theorem 4.1.

Corollary 5.1. Let H be a square integrable FT-measurable random variable. Then the processes
Vt(0), Vt(1), and Vt(2) from (4.3) satisfy the following system of backward equations:

Vt(2) = V0(2) +
∫ t

0

(ρZs(2) + θsVs(2))
2

1 − ρ2 + ρ2Vs(2)
ds +

∫ t

0
Zs(2)dws, VT(2) = 1, (5.6)

Vt(1) = V0(1) +
∫ t

0

(ρZs(2) + θsVs(2))
(

ρZs(1) + θsVs(1)−
√

1 − ρ2 ĥ⊥s

)

1 − ρ2 + ρ2Vs(2)
ds

+
∫ t

0
Zs(1)dws, VT(1) = E(H|GT), (5.7)

Vt(0) = V0(0) +
∫ t

0

(
ρZs(1) + θsVs(1)−

√
1 − ρ2 ĥ⊥s

)2

1 − ρ2 + ρ2Vs(2)
ds

+
∫ t

0
Zs(0)dws, VT(0) = E2(H|GT). (5.8)
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Besides, the optimal wealth process X̂∗ satisfies the linear equation

X̂∗
t = x −

∫ t

0

ρZs(2) + θsVs(2)

1 − ρ2 + ρ2Vs(2)
X̂∗

s (θsds + ρdws)

+
∫ t

0

ρZs(1) + θsVs(1)−
√

1 − ρ2 ĥ⊥s
1 − ρ2 + ρ2Vs(2)

(θsds + ρdws). (5.9)

Suppose now that θt and σt are deterministic. Then the solution of (5.6) is the pair
(Vt(2), Zt(2)), where Z(2) = 0 and V(2) satisfies the ordinary differential equation

dVt(2)

dt
=

θ2
t V2

t (2)

1 − ρ2 + ρ2Vt(2)
, VT(2) = 1. (5.10)

By solving this equation we obtain

Vt(2) = ν

(
ρ, 1 − ρ2 +

∫ T

t
θ2

s ds

)
≡ ν

θ,ρ
t , (5.11)

where ν(ρ, α) is the solution of (4.37). From (5.10) it follows that

(
ln ν

θ,ρ
t

)′
=

θ2
t ν

θ,ρ
t

1 − ρ2 + ρ2ν
θ,ρ
t

and ln
ν

θ,ρ
s

ν
θ,ρ
t

=
∫ s

t

θ2
r ν

θ,ρ
r dr

1 − ρ2 + ρ2ν
θ,ρ
r

. (5.12)

If we solve the linear BSDE (5.7) and use (5.12), we obtain

Vt(1) = E

[
ĤT(w)EtT

(
−

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

(θrdr + ρdwr)

)
|Gt

]
,

∫ T

t

θsν
θ,ρ
s σs

1 − ρ2 + ρ2ν
θ,ρ
s

E

[
h̃s(w)Ets

(
−

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

(θrdr + ρdwr)

)
|Gt

]
ds

= ν
θ,ρ
t E

[
ĤT(w)EtT

(
−

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

ρdwr

)
|Gt

]

+ ν
θ,ρ
t

∫ T

t

µs

1 − ρ2 + ρ2ν
θ,ρ
s

E

[
h̃s(w)Ets

(
−

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

ρdwr

)
|Gt

]
ds.

By using the Girsanov theorem we finally get

Vt(1) = ν
θ,ρ
t E

[
ĤT

(
ρ

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

dr + w

)
∣∣Gt

]

+ ν
θ,ρ
t

∫ T

t

µs

1 − ρ2 + ρ2ν
θ,ρ
s

E

[
h̃s

(
ρ

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

dr + w

)
∣∣Gt

]
ds. (5.13)

Besides, the optimal strategy is of the form

π∗
t = −

θtVt(2)

(1 − ρ2 + ρ2Vt(2))σt
X̂∗

t +
ρZt(1) + θtVt(1)−

√
1 − ρ2 ĥ⊥t

(1 − ρ2 + ρ2Vt(2))σt
.

If in addition µ and σ are constants and the contingent claim is of the form H = H(ST , ηT),

then one can give an explicit expressions also for h̃, ĥ⊥, Ĥ, and Z(1).
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Example 2. In Frey and Runggaldier (Frey & Runggaldier, 1999) the incomplete-information
situation arises, assuming that the hedger is unable to monitor the asset continuously but
is confined to observations at discrete random points in time τ1, τ2, . . . , τn. Perhaps it is
more natural to assume that the hedger has access to price information on full intervals
[σ1, τ1], [σ2, τ2], . . . , [σn, τn]. For the models with nonzero drifts, even the case n = 1 is non-
trivial. Here we consider this case in detail.

Let us consider the financial market model

dS̃t = µS̃tdt + σS̃tdWt, S0 = S,

where W is a standard Brownian motion and the coefficients µ and σ are constants. Assume
that an investor observes only the returns St − S0 =

∫ t
0

1
S̃u

dS̃u of the stock prices up to a

random moment τ before the expiration date T. Let At = FS
t , and let τ be a stopping time

with respect to FS. Then the filtration Gt of observable events is equal to the filtration FS
t∧τ .

Consider the mean-variance hedging problem

to minimize E

[(
x +

∫ T

0
πtdSt − H

)2
]

over all π ∈ Π(G),

where πt is a dollar amount invested in the stock at time t.
By comparing with (1.1) we get that in this case

Nt = Mt = σWt, 〈M〉t = σ2t, λt =
µ

σ2
.

Let θ =
µ
σ . The measure Q defined by dQ = ET(θW)dP is a unique martingale measure for

S, and it is evident that Q satisfies the reverse Hölder condition. It is also evident that any
G-martingale is FS-martingale and that conditions (A)–(C) are satisfied. Besides,

E(Wt|Gt) = Wt∧τ , Ŝt = µt + σWt∧τ and ρt = I{t≤τ}. (5.14)

By the integral representation theorem

E
(

H|FS
t

)
= EH +

∫ t

0
huσdWu (5.15)

for F-predictable W-integrable process h. On the other hand, by the GKW decomposition with
respect to the martingale Wτ = (Wt∧τ , t ∈ [0, T]),

E
(

H|FS
t

)
= EH +

∫ t

0
hG

u σdWτ
u + LG

t (5.16)

for FS-predictable process hG and FS martingale LG strongly orthogonal to Wτ . Therefore, by
equalizing the right-hand sides of (5.15) and (5.16) and taking the mutual characteristics of

both parts with Wτ , we obtain
∫ t∧τ

0 (hG
u ρ2

u − hu)du = 0 and hence

∫ t

0
h̃udu =

∫ t

0

(
ĥG

u I(u≤τ) − ĥu

)
du = −

∫ t

0
I(u>τ)E

(
hu|F

S
τ

)
du. (5.17)
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Therefore, by using notations

Zs(0) = ρσϕs(0), Zs(1) = ρσϕs(1), Zs(2) = ρσϕs(2),

it follows from Theorem 4.1 that the processes (Vt(2), Zt(2)) and (Vt(1), Zt(1)) satisfy the
following system of backward equations:

Vt(2) = V0(2)+
∫

t∧τ

0

(
Zs(2)+ θVs(2)

)2

Vs(2)
ds

+
∫

t

t∧τ
θ2

V
2
s (2)ds +

∫

t∧τ

0
Zs(2)dWs, VT(2) = 1, (5.18)

Vt(1) = V0(1)+
∫

t∧τ

0

(

Zs(2)+ θVs(2)
)(

Zs(1)+ θVs(1)
)

Vs(2)
ds

+
∫

t

t∧τ
θVs(2)

(

θVs(1)+ E

(

hs|F
S
τ

))

ds +
∫

t∧τ

0
Zs(1)dWs, VT(1) = E(H|GT). (5.19)

Equation (5.18) admits in this case an explicit solution. To obtain the solution one should solve
first the equation

Ut = U0 +
∫

t

0
θ2

U
2
s ds, UT = 1, (5.20)

in the time interval [τ, T] and then the BSDE

Vt(2) = V0(2)+
∫

t

0

(

Zs(2)+ θVs(2)
)2

Vs(2)
ds +

∫

t

0
Zs(2)dWs (5.21)

in the interval [0, τ], with the boundary condition Vτ(2) = Uτ . The solution of (5.20) is

Ut =
1

1 + θ2(T − t)
,

and the solution of (5.21) is expressed as

Vt(2) =
1

E
(

(1 + θ2(T − τ))E2
t,τ(−θW)|FS

t

)

(this can be verified by applying the Itô formula for the process V
−1
t

(2)E2
t
(−θW) and by using

the fact that this process is a martingale). Therefore

Vt(2) =















1

1 + θ2(T − t)
if t ≥ τ,

1

E
(

(1 + θ2(T − τ))E2
t,τ(−θW)|FS

t

) if t ≤ τ.
(5.22)

According to (4.37), taking in mind (5.14), (5.17), and the fact that e
−
∫

T

t
θ2Vu(2)du = 1

1+θ2(T−t)

on the set t ≥ τ, the solution of (5.19) is equal to

Vt(1) = E

(

H

1 + θ2(T − t)
+

∫

T

t

θVu(2)hudu

1 + θ2(T − u)
|FS

τ

)

I(t>τ)

+ E

(

Et,τ

(

−
ϕ(2)+ λV(2)

V(2)
· S

)(

H

1 + θ2(T − τ)
+

∫

T

τ

θVu(2)hudu

1 + θ2(T − u)

)

|FS
t

)

I(t≤τ). (5.23)
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By Theorem 4.1 the optimal filtered wealth process is a solution of a linear SDE, which takes
in this case the following form:

X̂∗
t = x −

∫ t∧τ

0

ϕu(2) + θVu(2)

Vu(2)
X̂∗

u(θdu + dWu)−
∫ t

t∧τ
θ2Vu(2)X̂∗

udu

+
∫ t∧τ

0

ϕu(1) + θVu(1)

Vu(2)
(θdu + dWu) +

∫ t

t∧τ

(
θ2Vu(1) + µE

(
hu|F

S
τ

))
du. (5.24)

The optimal strategy is equal to

π∗
t =

[
−

ϕt(2) + θVt(2)

Vt(2)
I(t≤τ) − θ2Vt(2)I(t>τ)

]
X̂∗

t

+
ϕt(1) + θVt(1)

Vt(2)
I(t≤τ) +

(
θ2Vt(1) + µE

(
ht|F

S
τ

))
I(t>τ), (5.25)

where X̂∗
t is a solution of the linear equation (5.24), V(2) and V(1) are given by (5.22) and

(5.23), and ϕ(2) and ϕ(1) are integrands of their martingale parts, respectively. In particular
the optimal strategy in time interval [τ, T] (i.e., after interrupting observations) is of the form

π∗
t = −θ2Vt(2)X̂∗

t + θ2Vt(1) + µE
(

ht|F
S
τ

)
, (5.26)

where

X̂∗
t =

X̂∗
τ

1 + θ2(t − τ)
−

∫ t

τ

(
θ2Vu(1)− µE

(
hu|F

S
τ

)) 1

1 + θ2(t − u)
du.

For instance, if τ is deterministic, then Vt(2) is also deterministic:

Vt(2) =





1

1 + θ2(T − t)
if t ≥ τ,

1

1 + θ2(T − t)
e−θ2(τ−t) if t ≤ τ,

and ϕ(2) = 0.
Note that it is not optimal to do nothing after interrupting observations, and in order to act
optimally one should change the strategy deterministically as it is given by (5.26).

Appendix

For convenience we give the proofs of the following assertions used in the paper.

Lemma A.1. Let conditions (A)–(C) be satisfied and M̂t = E(Mt|Gt). Then 〈M̂〉 is absolutely

continuous w.r.t. 〈M〉 and µ〈M〉 a.e.

ρ2
t =

d〈M̂〉t

d〈M〉t
≤ 1.

Proof. By (2.4) for any bounded G-predictable process h

E
∫ t

0
h2

s d〈M̂〉s = E

(∫ t

0
hsdM̂s

)2

= E

(
E

(∫ t

0
hsdMs

∣∣Gt

))2

≤ E

(∫ t

0
hsdMs

)2

= E
∫ t

0
h2

s d〈M〉s, (A.1)
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which implies that 〈M̂〉 is absolutely continuous w.r.t. 〈M〉, i.e.,

〈M̂〉t =
∫ t

0
ρ2

s d〈M〉s

for a G-predictable process ρ. �

Moreover (A.1) implies that the process 〈M〉–〈M̂〉 is increasing and hence ρ2 ≤ 1 µ〈M〉 a.e.

Lemma A.2. Let H ∈ L2(P, FT), and let conditions (A)–(C) be satisfied. Then

E
∫ T

0
h̃2

ud〈M〉u < ∞.

Proof. It is evident that

E
∫ T

0
(hG

u )
2d〈M̂〉u < ∞, E

∫ T

0
h2

ud〈M〉u < ∞.

Therefore, by the definition of h̃ and Lemma A.1,

E
∫ T

0
h̃2

ud〈M〉u ≤ 2E
∫ T

0
ĥ2

ud〈M〉u + 2E
∫ T

0

(
ĥG

u

)2
ρ4

ud〈M〉u

≤ 2E
∫ T

0
h2

ud〈M〉u + 2E
∫ T

0

(
hG

u

)2
ρ2

ud〈M̂〉u < ∞.

Thus h̃ ∈ Π(G) by Remark 2.5. �

Lemma A.3. (a) Let Y = (Yt, t ∈ [0, T]) be a bounded positive submartingale with the canonical
decomposition

Yt = Y0 + Bt + mt,

where B is a predictable increasing process and m is a martingale. Then m ∈ BMO.
(b) In particular the martingale part of V(2) belongs to BMO. If H is bounded, then martingale parts
of V(0) and V(1) also belong to the class BMO, i.e., for i = 0, 1, 2,

E

(∫ T

τ
ϕ2

u(i)ρ
2
ud〈M〉u|Gτ

)
+ E (〈m(i)〉T − 〈m(i)〉τ |Gτ) ≤ C (A.2)

for every stopping time τ.

Proof. By applying the Itô formula for Y2
T − Y2

τ we have

〈m〉T − 〈m〉τ + 2
∫ T

τ
YudBu + 2

∫ T

τ
Yudmu = Y2

T − Y2
τ ≤ const (A.3)

Since Y is positive and B is an increasing process, by taking conditional expectations in (A.3)
we obtain

E(〈m〉T − 〈m〉τ |Fτ) ≤ const

for any stopping time τ, and hence m ∈ BMO.
(A.2) follows from assertion (a) applied for positive submartingales V(0), V(2), and V(0) +
V(2)− 2V(1). For the case i = 1 one should take into account also the inequality

〈m(1)〉t ≤ const(〈m(0) + m(2)− 2m(1)〉t + 〈m(0)〉t + 〈m(2)〉t).
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