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1. Introduction 

The theory of stopping rules has its roots in the study of the optimality properties of the 
sequential probability ratio test of Wald and Wolfowitz (1948) and Arrow, Blackwell and 
Girshick (1949). The essential idea in both of these papers was to create a formal Bayes 
problem.  
The formal Bayes problem is what we would now call an optimal stopping problem. A 
decision maker observes an adapted sequence {Rn, Fn, n  I}, with E{|Rn|} <  for all n, 
where  Fn  denotes the algebra generated by a sequence of rewards R1, …, Rn. At each time 
n a choice is to be made, to stop sampling and collect the currently available reward, Rn, or 
continue sampling in the expectation of collecting a larger reward in the future. An optimal 
stopping rule N is one that maximizes the expected reward, E{Rn}. The key to finding an 
optimal or close to optimal stopping rule is the family of equations 
 

1 n n nZ max  (R ,E{Z | }),    n 1,  2,  ...  .n F  (1) 
 
The informal interpretation of Zn, is that it is the most one can expect to win if one has 
already reached stage n; and equations (1) say that this quantity is the maximum of what 
one can win by stopping at the nth stage and what one can expect to win by taking at least 
one more observation and proceeding optimally thereafter. The plausible candidate for an 
optimal rule is to stop with 
 

 n n 1 nN min{ n : R E{Z }},|F  (2) 
 
that is, stop as soon as the current reward is at least as large as the most that one can expect 
to win by continuing. Equations (1) show that {Zn,Fn} is a supermartingale, while 
{Zmin(N,n),Fn}, is a martingale. The equations do not have a unique solution, but in the case 
where the index n is bounded, say 1 n  m for some given value of m, the solution of 
interest satisfies Zm, = Rm. Hence (1) can be solved and the optimal stopping rule can be 
found by "backward induction". The general strategy of optimal stopping theory is to 
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approximate the case where no bound m exists by first imposing such a bound, solving the 
bounded problem and then letting m  . For reviews of the many variations on this 
problem and the extensive related literature, see Freeman (1983), Petrucelli (1988) and 
Samuels (1991). 
For illustration of the stopping problem, consider the Bayesian sequential estimation 
problem of a binomial parameter under quadratic loss and constant observation cost. 
Suppose that the unknown binomial parameter p is assigned a beta prior distribution with 
integer parameters (a,b) so that 
 

   
   

  
a 1 b a 1(b 1)!

(p|a, b) p (1 p) ,    0 p 1.
(a 1)!(b a 1)!

 (3) 

 
The posterior distribution of p having observed s successes in n trials is simply (p;s+a,n+b) 
(Raiffa and Schlaifer, 1968); hence the result of sampling may be represented as a plot of s+a 
against n+b which stops when the stopping boundary is reached. If a=1, b=2, the uniform 
prior, is taken as the origin, sample paths for any other proper prior will start at the point 
(a1,b2). Consequently stopping boundaries will be obtained using the uniform prior. 
Suppose that the loss in estimating p by d is (pd)2 where  is a constant giving loss in 
terms of cost. Then the Bayes estimator is the current prior mean (s+l)/(n+2) and the Bayes 
risk is 

.
)3n()2n(

)1sn)(1s()n,s(B 2 


   (4) 

 
At a point (s,n) let D(s,n) be the risk of taking one further observation at a cost c and M(s,n) 
be the minimum risk, then the dynamic programming equations giving the partition of the 
(s,n) plane into stopping and continuation points are 
 

)},n,s(D),n,s(Bmin{)n,s(M    (5) 
where 
 

).1n,s(M
2n

1sn)1n,1s(M
2n
1sc)n,s(D 








  (6) 

 
The equations are similar to those of Lindley and Barnett (1965) and Freeman (1970, 1972, 
1973). The optimal decision at each point is obtained by working back from a maximum 
sample size, which is approximately .2]c/)2/1[(  A suboptimal stopping point (s,n) is 
defined as a first stopping point for fixed s if (s,n1) is a continuation point, in this case 
 

)n,s(B
1n
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1n
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sn)n,1s(B

1n
1sc 








    (7) 

 

A lower bound for the sample size n above may now be found from (7) by setting B(s,n1)  
D(s,n1). This leads to 
 

).sn)(1s)(c/()]1n)(2n[( 2   (8) 
 
The optimal stopping boundary starts at s = 0 and n, and from (8) it may be shown that this 
sample size is at least [(/c)1/3]3. 
The approximate design obtained by (8) will be termed a one step ahead design. Both 
designs will obviously stop at the same maximum number of observations N, and will give 
the same decision after (N1) observations. The one step ahead design gives stopping 
boundaries, which will lie inside those of the optimal. The one step ahead design is similar 
to the modified Bayes rule of Amster (1963) and has been used by El-Sayyad and Freeman 
(1973) to estimate a Poisson process rate. 
The present research investigates the frequentist (non-Bayesian) stopping rules. In this 
paper, stopping rules in fixed-sample testing as well as in sequential-sample testing are 
discussed.  

 
2. Assumptions and Cost Functions in Fixed-Sample Testing 

Let c1 be the cost per hour of conducting the test, c2 be the total cost of redesign (including 
the time required to implement it). The cost of redesign c2 is undoubtedly the most difficult 
to estimate. This cost is to include whatever redesigns are necessary to make the probability 
of failure on rerun negligible. To simplify the mathematics, it is assumed that unnecessary 
design changes, caused by incorrectly abandoning the test, will also have a beneficial effect 
on performance. This assumption appears warranted for many electronic and mechanical 
systems, where the introduction of redundancies, higher-quality components, etc., can 
always be expected to improve reliability.  
It will be assumed in this section that the times of interest to the decision maker are 
restricted to those where a failure has just occurred.  
Let X1  X2  ...  Xr be the first r ordered past observations with lifetime distribution f(x|) 
from a sample of size n. Let 


 be the maximum-likelihood estimate of  based upon the first 

r order statistics (X1, …, Xr)  rX . Let g(x1, x2, … , xr|) be the joint density of the r 
observations, g(x1, x2, … , xr, xs|) be the joint density of the first r and sth order statistics  
(s > r) and f(xs|xr,) be the conditional density of the sth order statistic. If 0 is the life 
specified as acceptable and the product will be accepted if a random sample of n items 
shows (s-1) or fewer failures in performance testing, then the probability of passing the test 
after xr has been observed may be estimated as 
 

,dx),x|x(fp
0

s
r

spas 





  (9) 

where 
 

 .
)|x ..., ,x(g

)|x ,x ..., ,x(g),x|x(f
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sr1r
s 


 




   (10) 
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approximate the case where no bound m exists by first imposing such a bound, solving the 
bounded problem and then letting m  . For reviews of the many variations on this 
problem and the extensive related literature, see Freeman (1983), Petrucelli (1988) and 
Samuels (1991). 
For illustration of the stopping problem, consider the Bayesian sequential estimation 
problem of a binomial parameter under quadratic loss and constant observation cost. 
Suppose that the unknown binomial parameter p is assigned a beta prior distribution with 
integer parameters (a,b) so that 
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The posterior distribution of p having observed s successes in n trials is simply (p;s+a,n+b) 
(Raiffa and Schlaifer, 1968); hence the result of sampling may be represented as a plot of s+a 
against n+b which stops when the stopping boundary is reached. If a=1, b=2, the uniform 
prior, is taken as the origin, sample paths for any other proper prior will start at the point 
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Let X1  X2  ...  Xr be the first r ordered past observations with lifetime distribution f(x|) 
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r order statistics (X1, …, Xr)  rX . Let g(x1, x2, … , xr|) be the joint density of the r 
observations, g(x1, x2, … , xr, xs|) be the joint density of the first r and sth order statistics  
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The cost of abandoning the test is 
 

201abandoning ccc   (11) 
 
The estimated cost of continuation of the test is given by  
 





0

rx
s

r
s201rs1continuing dx),x|x(f]cc)xx(c[c








0

s
r

sr01 dx),x|x(f)x(c


 

 





0

rx
s

r
ss1 dx),x|x(fxc


+ )]x(c[p]c)x(c)[p1( r01pas2r01pas 

  

 

 .cpxcccdx),x|x(fxc 2pasr1201
x

s
r

ss1

0

r


 



 (12) 

 
3. Stopping Rule in Fixed-Sample Testing 

The decision rule will be based on the relative magnitude of abandoningc  and continuingc . The 

simplest rule would be:  
If continuingc < abandoningc , i.e., if 
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If continuingc  abandoningc , i.e., if  
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abandon the present test and initiate a redesign. 

 
4. Estimation of the Probability of Passing the Fixed-sample Test 

Evaluation of the cost functions for the lifetime-testing model requires, even for relatively 
simple probability distributions, the evaluation of some complicated integrals that cannot 
always be obtained in closed form. For example, using the one-parameter exponential model 
for lifetime distribution, we have 
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The maximum likelihood estimate for   is 
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Replacing   by   in the density functions and simplifying, we obtain 
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The change of variable 
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Thus, pasp is equivalent to the cumulative beta distribution with parameters (ns+1, sr).  
The situation for the Weibull distribution, 
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The maximum likelihood estimates   and 


 of the parameters  and , respectively, 

required in (26), can only be obtained by iterative methods. The appropriate likelihood 
equations for X1, …, Xr are 
 

,x)rn(x1r0L r

1i
ri2 



















 



   (27) 

 

.xlnx)rn(xlnx1xr0L r

1i
rrii

r

1i
i





















 







 (28) 

 
Now 

 and 


 can be found from solution of 
 

r

x)rn(x
r

1i
ri



 




  (29) 

 

 

and 

.xln
r
1x)rn(xxlnx)rn(xlnx

1
r

1i
i

1r

1i
rirr

r

1i
ii


















































 


 (30) 

 
The method described above is quite general and works well for a1l closed-form or 
tabulated cumulative distribution functions, so that numerical integration techniques are not 
needed for calculating pasp . It is easy to see that the general case would involve a change of 
variable 
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where, of course, xr is a constant.  

 
4.1 Statistical Inferences for Future Order Statistics in the Same Sample 
If we deal with small size n of the fixed sample for testing and wish to find the conditional 
distribution of the sth order statistic to obtain the probability of passing the test after xr has 
been observed, then it may be suitable the following results. 
Theorem 1 (Predictive distribution of the sth order statistic Xs on the basis of the past rth order 
statistic Xr from the exponential distribution of the same sample). Let X1  X2  ...  Xr be the first r 
ordered past observations from a sample of size n from the exponential distribution with the 
probability density function (PDF) (15), which is characterized by the scale parameter  . It 
is assumed that the parameter  is unknown. Then the predictive probability density 
function of the sth order statistic Xs may be obtained on the basis of the rth order statistic Xr 
(r < s  n) from the same sample as 
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where 
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Proof. It follows readily from standard theory of order statistics (see, for example, Kendall 
and Stuart (1969)) that the joint distribution of Xr, Xs (s > r) is given by 
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Making the transformation z = xsxr, xr = xr, and integrating out xr, we find the density of z 
as the beta density 
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and since Z, Xr are independent, we have the joint density of Z and Xr as 
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Making the transformation ws = z/xr, xr=xr, we find the joint density of Ws and Xr as 
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It is then straightforward to integrate out xr, leaving the density of Ws as 
 








 







 



 








 i
1r

j
1rs

)1(
)1rn,r()1sr,ns(

1)w(f
1r

0i

ji
1rs

0j
s  

 

.0w   ,
)]i1rn()j1sn(w[

1
s2

s



  (39) 

 
It will be noted that the technique of invariant embedding (Nechval, 1982, 1984, 1986, 1988a, 
1988b; Nechval et al., 1999, 2000, 2001, 2003a, 2003b, 2004, 2008, 2009) allows one to obtain 
(39) directly from (34). This ends the proof.   
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For a specified probability level , ws can be obtained such that 
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Hence, with confidence , one could predict Xs to be less than or equal to (ws+1)xr. 
Consider, for instance, the case where n=6 simultaneously tested items have life times 
following the exponential distribution (15). Two items (r = 2) fail at times 75 and 90 hours. 
Suppose, say, we are predicting the 4th failure time (s = 4). Using (40), (41), and  = 0.95, we 
get ws=10, which yields a predicted value for Xs of 990 hours. 
Theorem 2 (Predictive distribution of the sth order statistic Xs on the basis of the past observations 
X1  X2  ...  Xr from the exponential distribution of the same sample). Under conditions of 
Theorem 1, the predictive probability density function of the sth order statistic Xs (r < s  n) 
may be obtained on the basis of the past observations (X1  X2  ...  Xr) from the same 
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Proof. The joint probability density function of X1, X2, …, Xr, Xs is given by 
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Using the invariant embedding technique (Nechval, 1982, 1984, 1986, 1988a, 1988b; Nechval 
et al., 1999, 2000, 2001, 2003a, 2003b, 2004, 2008, 2009), we then find in a straightforward 
manner that the joint  density of V, Ws conditional on fixed xr = )x ..., ,x ,x( r21 , is  
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is the normalizing constant, which does not depend on xr. Now v can be integrated out of 
(48) in a straightforward way to give 
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Then (42) follows from (50). This completes the proof.    
Corollary 2.1. 
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For a specified probability level , ws can be obtained such that 
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Hence, with confidence , one could predict Xs to be less than or equal to xr+qrws. 
Consider a life-testing situation similar to that in the above example of Theorem 1, where n 
= 6 simultaneously tested items have life times following the exponential distribution (15). 
Two items (r = 2) fail at times 75 and 90 hours. Suppose, say, we are predicting the 4th 
failure time (s = 4). Using (44), (45), (46), and  = 0.95, we get qr = 525 and ws = 1.855, which 
yield a predicted value for Xs of 1064 hours. 
 We make two additional remarks concerning evaluation of the above probability (51):  
 (i) In the important case where s = n, expression (51) simplifies to 
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 (ii) In the special case where r = s1, we note that (s1)(ns+1)(XsXs1)/Qs1 is an F 
variate with (2, 2s2) degrees of freedom, so that appropriate probability statements can be 
read from standard tables of the F distribution. 
Theorem 3 (Predictive distribution of the sth order statistic Xs on the basis of the past order 
statistics Xr and X1 from the two-parameter exponential distribution of the same sample). Let X1  X2 

 ...  Xr be the first r ordered past observations from a sample of size n from the exponential 
distribution with the PDF 
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which is characterized by the scale parameter   and the shift parameter . It is assumed that 
these parameters are unknown. Then the predictive PDF of the sth order statistic Xs (s>r) 
from the same sample may be obtained as 
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Proof. It is carried out in the similar way as the proof of Theorem 1.       
Corollary 3.1. 
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For a specified probability level , ws can be obtained such that 
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Hence, with confidence , one could predict Xs to be less than or equal to xr+ws(xr-x1). 
Theorem 4 (Predictive distribution of the sth order statistic Xs on the basis of the past order 
statistics X1  X2  ...  Xr from the two-parameter exponential distribution of the same sample). 
Under conditions of Theorem 3, the predictive probability density function of the sth order 
statistic Xs (s>r) from the same sample may be obtained as 
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Proof. The proof is carried out in the similar way as the proof of Theorem 2.       
Corollary 4.1. 
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For a specified probability level , ws can be obtained such that 
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Hence, with confidence , one could predict Xs to be less than or equal to xr+qws. 
Suppose, for instance, that n = 8 items are put on test simultaneously and that the first r = 4 
items have the lifetimes 62, 84, 106 and 144 hours. Let the lifetimes of all n items be 
distributed according to the two-parameter exponential distribution (47) with the same 
parameters  and . We wish to find a 95% prediction interval of the type (56) for s=8. We 
obtain from (55) and (56) that Pr{Xs  1408.8} = 0.95. Thus, we can be 95% confident that the 
total elapsed time will not exceed 1409 hours. 
Theorem 5 (Predictive distribution of the sth order statistic Xs on the basis of the past order 
statistics X1  X2  ...  Xr from the two-parameter Weibull distribution of the same sample). Let X1 
 X2  ...  Xr be the first r ordered past observations from a sample of size n from the two-
parameter Weibull distribution given by 
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where >0 and >0 are the shape and scale parameters, respectively, which are unknown. 
Then the predictive PDF of the sth order statistic Xs (s>r) from the same sample may be 
obtained as 
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Proof. The joint density of Y1=ln(X1), …, Yr=ln(Xr), Ys=ln(Xs) is given by 
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Parameters  and  in (64) are location and scale parameters, respectively, and it is well 
known that if   and   are estimates of  and , possessing certain invariance properties, 
then the quantities V1 and V are parameter-free. Most, if not all, proposed estimates of  and 
 possess the necessary properties; these include the maximum likelihood estimates and 
various linear estimates. Zi, i=1(1)r, are ancillary statistics, any r2 of which form a 
functionally independent set. For notational convenience we include all of z1, …, zr in (68); 
zr-1 and zr can be expressed as function of z1, …, zr only.  
Using the invariant embedding technique (Nechval, 1982, 1984, 1986, 1988a, 1988b; Nechval 
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Proof. The joint density of Y1=ln(X1), …, Yr=ln(Xr), Ys=ln(Xs) is given by 
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is the normalizing constant.  
Now v1 can be integrated out of (79) in a straightforward way to give 
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Then (65) follows from (81). This completes the proof.    
Corollary 5.1. A lower one-sided conditional (1) prediction limit h on the sth order 
statistic Xs (s>r) from the same sample may be obtained from (73) as 
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Let X1  X2  …  Xn denote the order statistics in a sample of size n from a continuous 
parent distribution whose cumulative distribution function F(x|) is a strictly increasing 
function of x, where   is an unknown parameter. A number of authors have considered the 
prediction problem for the future observation Xs based on the observed values X1  …  Xr, 1 
 r < s  n. Prediction intervals have been treated by Hewitt (1968), Lawless (1971), 
Lingappaiah (1973), Likes (1974), and Kaminsky (1977).  
Consider, in this section, the case when the parameter  is known. It can be shown that the 
predictive distribution of Xn, given Xi = xi for all i  r, is the same as the predictive 
distribution of Xn, given only Xr = xr, which is given by 
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for h  xr. 

 
4.2 Statistical Inferences for Order Statistics in the Future Sample 
Theorem 6 (Predictive distribution of the lth order statistic Yl from a set of m future ordered 
observations Y1  … Yl …  Ym  on the basis of the past sample from the left-truncated Weibull 
distribution). Let X1  X2  ...  Xr be the first r ordered past observations from a sample of 
size n from the left-truncated Weibull distribution with pdf 
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which is characterized by being three-parameter (,,) where  is termed the shape 
parameter,  is the scale parameter, and  is the truncation parameter. It is assumed that the 
parameter  is known. Then the non-unbiased predictive density function of the lth order 
statistic Yl from a set of m future ordered observations Y1  … Yl …  Ym is given by 
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Proof. It can be justified by using the factorization theorem that )S,X( 1

  is a sufficient 

statistic for (,). We wish, on the basis of the sufficient statistic )S,X( 1
  for (,), to 

construct the non-unbiased predictive density function of the lth order statistic Yl from a set 
of m future ordered observations Y1  … Yl …  Ym.  
By using the technique of invariant embedding (Nechval, 1982, 1984, 1986, 1988a, 1988b; 
Nechval et al., 1999, 2000, 2001, 2003a, 2003b, 2004, 2008, 2009) of )S,X( 1

 , if X1Yl,  or 
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 , if X1Yl, into a pivotal quantity  /)Y( l  or  /)X( 1 , respectively, we obtain 

an ancillary statistic   ,SXYW δ
ll 1 =   whose distribution does not depend on any unknown 

parameter, and the pdf of Wl given by 
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This ends the proof.   
Corollary 6.1. A lower one-sided (1) prediction limit h on the lth order statistic Yl from a 
set of m future ordered observations Y1  … Yl …  Ym (Pr{Yl  h|xn} = 1) may be 
obtained from (89) as 
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(Observe that an upper one-sided conditional  prediction limit h on the lth order statistic Yl 
may be obtained from a lower one-sided (1-) prediction limit by replacing 1- by .) 
Corollary 6.2. If l = 1, then a lower one-sided (1) prediction limit h on the minimum Y1 of 
a set of m future ordered observations Y1  …  Ym is given by 
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Consider, for instance, an industrial firm which has the policy to replace a certain device, 
used at several locations in its plant, at the end of 24-month intervals. It doesn’t want too 
many of these items to fail before being replaced. Shipments of a lot of devices are made to 
each of three firms. Each firm selects a random sample of 5 items and accepts his shipment if 
no failures occur before a specified lifetime has accumulated. The manufacturer wishes to 
take a random sample and to calculate the lower prediction limit so that all shipments will 
be accepted with a probability of 0.95. The resulting lifetimes (rounded off to the nearest 
month) of an initial sample of size 15 from a population of such devices are given in Table 1.  
 

Observations 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 

8 9 10 12 14 17 20 25 29 30 35 40 47 54 62 

Lifetime (in number of month intervals) 
 

Table 1. The data of resulting lifetimes 
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Goodness-of-fittesting. It is assumed that 
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where the parameters  and  are unknown; (=0.87). Thus, for this example, r = n = 15, k = 
3, m = 5, 1 = 0.95, 1.6X1 

 , and  S = 170.8. It can be shown that the 
 

 ,2n)1(1j   ,
)XX)(1in(

)XX)(1in(
1U

j

2j

2i
1ii

1j

2i
1ii

j 















































 (94) 

 
are i.i.d. U(0,1) rv’s (Nechval et al., 1998). We assess the statistical significance of departures 
from the left-truncated Weibull model by performing the Kolmogorov-Smirnov goodness-
of-fit test. We use the K statistic (Muller et al., 1979). The rejection region for the  level of 
significance is {K >Kn;}. The percentage points for Kn; were given by Muller et al. (1979). 
For this example,  
 

  K = 0.220 <  Kn=13;=0.05 = 0.361. (95) 
 
Thus, there is not evidence to rule out the left-truncated Weibull model. It follows from (92), 
for  
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Thus, the manufacturer has 95% assurance that no failures will occur in each shipment 
before h = 5 month intervals. 

 
5. Examples 

5.1 Example 1  
An electronic component is required to pass a performance test of 500 hours. The 
specification is that 20 randomly selected items shall be placed on test simultaneously, and 5 
failures or less shall occur during 500 hours. The cost of performing the test is $105 per hour. 
The cost of redesign is $5000. Assume that the failure distribution follows the one-parameter 

 

exponential model (15). Three failures are observed at 80, 220, and 310 hours. Should the test 
be continued? 
We have from (19) and (20) 
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abandon the present test and initiate a redesign. 

 
5.2 Example 2  
Consider the following problem. A specification for an automotive hood latch is that, of 30 
items placed on test simultaneously, ten or fewer shall fall during 3000 cycles of operation. 
The cost of performing the test is $2.50 per cycle. The cost of redesign is $8500. Seven 
failures, which follow the Weibull distribution with the probability density function (25), are 
observed at 48, 300, 315, 492, 913, 1108, and 1480 cycles. Shall the test be continued beyond 
the 1480th cycle? 
It follows from (29) and (30) that 6.2766

  and .9043.0


 In turn, these estimates yield 
pasp =0.25098. Since 
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(101) 
continue the present test.  

 
6. Stopping Rule in Sequential-Sample Testing 

At the planning stage of a statistical investigation the question of sample size (n) is critical. 
For such an important issue, there is a surprisingly small amount of published literature. 
Engineers who conduct reliability tests need to choose the sample size when designing a test 
plan. The model parameters and quantiles are the typical quantities of interest. The large-
sample procedure relies on the property that the distribution of the t-like quantities is close 
to the standard normal in large samples. To estimate these quantities the maximum 
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of-fit test. We use the K statistic (Muller et al., 1979). The rejection region for the  level of 
significance is {K >Kn;}. The percentage points for Kn; were given by Muller et al. (1979). 
For this example,  
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Thus, there is not evidence to rule out the left-truncated Weibull model. It follows from (92), 
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Thus, the manufacturer has 95% assurance that no failures will occur in each shipment 
before h = 5 month intervals. 

 
5. Examples 

5.1 Example 1  
An electronic component is required to pass a performance test of 500 hours. The 
specification is that 20 randomly selected items shall be placed on test simultaneously, and 5 
failures or less shall occur during 500 hours. The cost of performing the test is $105 per hour. 
The cost of redesign is $5000. Assume that the failure distribution follows the one-parameter 

 

exponential model (15). Three failures are observed at 80, 220, and 310 hours. Should the test 
be continued? 
We have from (19) and (20) 
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Since 
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abandon the present test and initiate a redesign. 

 
5.2 Example 2  
Consider the following problem. A specification for an automotive hood latch is that, of 30 
items placed on test simultaneously, ten or fewer shall fall during 3000 cycles of operation. 
The cost of performing the test is $2.50 per cycle. The cost of redesign is $8500. Seven 
failures, which follow the Weibull distribution with the probability density function (25), are 
observed at 48, 300, 315, 492, 913, 1108, and 1480 cycles. Shall the test be continued beyond 
the 1480th cycle? 
It follows from (29) and (30) that 6.2766
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 In turn, these estimates yield 
pasp =0.25098. Since 
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continue the present test.  

 
6. Stopping Rule in Sequential-Sample Testing 

At the planning stage of a statistical investigation the question of sample size (n) is critical. 
For such an important issue, there is a surprisingly small amount of published literature. 
Engineers who conduct reliability tests need to choose the sample size when designing a test 
plan. The model parameters and quantiles are the typical quantities of interest. The large-
sample procedure relies on the property that the distribution of the t-like quantities is close 
to the standard normal in large samples. To estimate these quantities the maximum 
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likelihood method is often used. The large-sample procedure to obtain the sample size relies 
on the property that the distribution of the above quantities is close to standard normal in 
large samples. The normal approximation is only first order accurate in general. When 
sample size is not large enough or when there is censoring, the normal approximation is not 
an accurate way to obtain the confidence intervals. Thus sample size determined by such 
procedure is dubious. 
Sampling is both expensive and time consuming. Hence, there are situations where it is 
more efficient to take samples sequentially, as opposed to all at one time, and to define a 
stopping rule to terminate the sampling process. The case where the entire sample is drawn 
at one instance is known as “fixed sampling”. The case where samples are taken in 
successive stages, according to the results obtained from the previous samplings, is known 
as “sequential sampling”. 
Taking samples sequentially and assessing their results at each stage allows the possibility 
of stopping the process and reaching an early decision. If the situation is clearly favorable or 
unfavorable (for example, if the sample shows that a widget’s quality is definitely good or 
poor), then terminating the process early saves time and resources. Only in the case where 
the data is ambiguous do we continue sampling. Only then do we require additional 
information to take a better decision. 
In this section, the following optimal stopping rule for determining the efficient sample size 
sequentially under assigning warranty period is proposed.  

 
6.1 Stopping Rule on the Basis of the Expected Beneficial Effect 
Suppose the random variables X1, X2, …, all from the same population, are observed 
sequentially and follow the two-parameter Weibull fatigue-crack initiation lifetime 
distribution (64). After the nth observation (nn0, where n0 is the initial sample size needful 
to estimate the unknown parameters of the underlying probability model for the data) the 
experimenter can stop and receive the beneficial effect on performance, 
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the maximum likelihood estimates 


 and 


 of  and , respectively, are determined from 

the equations (66) and (67), dv)x|v,x(f
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  is the predictive probability density function 

of Xn+1.   
Now the optimal stopping rule is to determine the expected beneficial effect on performance 
for continuing 
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and compare this with (102).  
If  
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it is profitable to continue; 
If  
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the experimenter should stop. 

 
7. Conclusions 

Determining when to stop a statistical test is an important management decision. Several 
stopping criteria have been proposed, including criteria based on statistical similarity, the 
probability that the system has a desired reliability, and the expected cost of remaining 
faults. This paper presents a new stopping rule in fixed-sample testing based on the 
statistical estimation of total costs involved in the decision to continue beyond an early 
failure as well as a stopping rule in sequential-sample testing to determine when testing 
should be stopped. 
The paper considers the problem that can be stated as follows. A new product is submitted 
for lifetime testing. The product will be accepted if a random sample of n items shows less 
than s failures in performance testing. We want to know whether to stop the test before it is 
completed if the results of the early observations are unfavorable. A suitable stopping 
decision saves the cost of the waiting time for completion. On the other hand, an incorrect 
stopping decision causes an unnecessary design change and a complete rerun of the test. It 
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likelihood method is often used. The large-sample procedure to obtain the sample size relies 
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large samples. The normal approximation is only first order accurate in general. When 
sample size is not large enough or when there is censoring, the normal approximation is not 
an accurate way to obtain the confidence intervals. Thus sample size determined by such 
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Sampling is both expensive and time consuming. Hence, there are situations where it is 
more efficient to take samples sequentially, as opposed to all at one time, and to define a 
stopping rule to terminate the sampling process. The case where the entire sample is drawn 
at one instance is known as “fixed sampling”. The case where samples are taken in 
successive stages, according to the results obtained from the previous samplings, is known 
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Taking samples sequentially and assessing their results at each stage allows the possibility 
of stopping the process and reaching an early decision. If the situation is clearly favorable or 
unfavorable (for example, if the sample shows that a widget’s quality is definitely good or 
poor), then terminating the process early saves time and resources. Only in the case where 
the data is ambiguous do we continue sampling. Only then do we require additional 
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In this section, the following optimal stopping rule for determining the efficient sample size 
sequentially under assigning warranty period is proposed.  
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distribution (64). After the nth observation (nn0, where n0 is the initial sample size needful 
to estimate the unknown parameters of the underlying probability model for the data) the 
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the maximum likelihood estimates 


 and 


 of  and , respectively, are determined from 

the equations (66) and (67), dv)x|v,x(f
0

n
1n



  is the predictive probability density function 

of Xn+1.   
Now the optimal stopping rule is to determine the expected beneficial effect on performance 
for continuing 
 

      )1n(cx,X(h Ec n
1n

PL
);m:(11 

nx|)   (105) 
 
and compare this with (102).  
If  
 

        ,cx(hxx,X(h Ec nPL
);m:(1

nn
1n

PL
);m:(11   )|)  (106) 

 
it is profitable to continue; 
If  

      ,cx(hxx,X(h Ec nPL
);m:(1

nn
1n

PL
);m:(11   )|)  (107) 

 
the experimenter should stop. 

 
7. Conclusions 

Determining when to stop a statistical test is an important management decision. Several 
stopping criteria have been proposed, including criteria based on statistical similarity, the 
probability that the system has a desired reliability, and the expected cost of remaining 
faults. This paper presents a new stopping rule in fixed-sample testing based on the 
statistical estimation of total costs involved in the decision to continue beyond an early 
failure as well as a stopping rule in sequential-sample testing to determine when testing 
should be stopped. 
The paper considers the problem that can be stated as follows. A new product is submitted 
for lifetime testing. The product will be accepted if a random sample of n items shows less 
than s failures in performance testing. We want to know whether to stop the test before it is 
completed if the results of the early observations are unfavorable. A suitable stopping 
decision saves the cost of the waiting time for completion. On the other hand, an incorrect 
stopping decision causes an unnecessary design change and a complete rerun of the test. It 
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is assumed that the redesign would improve the product to such an extent that it would 
definitely be accepted in a new lifetime testing. The paper presents a stopping rule based on 
the statistical estimation of total costs involved in the decision to continue beyond an early 
failure. Sampling is both expensive and time consuming. The cost of sampling plays a 
fundamental role and since there are many practical situations where there is a time cost 
and an event cost, a sampling cost per observed event and a cost per unit time are both 
included. Hence, there are situations where it is more efficient to take samples sequentially, 
as opposed to all at one time, and to define a stopping rule to terminate the sampling 
process. One of these situations is considered in the paper. The practical applications of the 
stopping rules are illustrated with examples.  
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