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1. Introduction

Randomness in gene expression has been ubiquitously observed from primitive prokaryotes
to higher eukaryotes (Elowitz et al., 2002; Johnston & Desplan, 2010; Losick & Desplan, 2008;
Maheshri & O’Shea, 2007; Raj & van Oudenaarden, 2008; Raser & O’Shea, 2004; Wernet et al.,
2006). Yet, it is widely recognized that living organisms have evolved to control and exploit
such underlying stochastic noise to optimize their dynamic characteristics to better cope with
and compete in their living environments in a variety of ways (Arkin & Fletcher, 2006). For
example, on the one hand, a stochastic switch has been shown to probabilistically regulate
expression of an adhesive virulence factor in the main causative pathogen of uncomplicated
lower urinary tract infections based on ambient temperature (Gally et al., 1993). On the other
hand, marine embryo development seems to work much more deterministically and reliably
at different rates over a range of environmental conditions (Istrail et al., 2007). Gaining in-
sights into how living organisms control stochastic effects to achieve specific functions, thus,
can have a significant implication in enhancing many aspects of our lives. That is, for exam-
ple, by understanding the control mechanisms associated with the etiology and stability of
complex non-Mendelian diseases, novel and effective therapies for prevention and treatment
of such diseases can be developed. However, owing to sheer-size complexity of even a rela-
tively simple biological system, elucidation of stochastic control mechanisms at the molecular
level may not be something which can be efficiently and effectively accomplished with the
current limitation of controllability and observability in wet-lab experiments alone. This, in
turn, makes computational analysis essential to any efforts aimed at understanding of control
and information processing mechanisms of intricate biological systems.
Detailed-level stochastic effects in biological systems are—by and large—captured and
analyzed by devising the stochastic chemical kinetics (SCK) framework (Samoilov & Arkin,
2006). Assuming that the system is spatially homogeneous, the SCK model specifies the
time-homogeneous probabilistic reaction rate function of each reaction and discrete changes
in the molecular species populations through individual discrete reaction events. While sam-
ple trajectories of a SCK model can be accurately realized via Gillespie’s stochastic simula-
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tion algorithm (SSA) (Gillespie, 1976; 1977), the computational requirements of the SSA can
be substantial due largely to the fact that it not only requires a potentially large number of
simulation runs in order to estimate the system behavior at a reasonable degree of statistical
confidence, but it also requires every single elementary-reaction event to be simulated one at
a time. As recent advances in experimental techniques have enabled us to unveil more key
components and more detailed organization structures of many biological systems, and as
we are beginning to address more complex and sophisticated biological questions than ever
before, it has become increasingly clear that no single modeling and simulation method can
satisfy the needs of a wide spectrum of such complex questions.
One approach to alleviate the computational requirements involved in analysis of SCK models
is to speed up the simulation of individual SSA by letting go of exactness. An example of this is
τ-leaping method (Gillespie, 2001), which approximates the number of firings of each reaction
in a predefined interval rather than executing each reaction individually. Another example is
model reduction, which abstracts away dynamically insignificant reactions or species in order
to make the overall systems biology analysis more efficient (Kuwahara et al., 2010; 2006).
Another approach to accelerate the analysis of SCK model is to tailor stochastic simulations
based on specific dynamical properties of interest and apply a more suitable simulation method
than the standard SSA. This chapter describes two such approaches to efficiently analyze vari-
ous dynamical properties of interest. The rest of this chapter is organized as follows. Section 2
briefly describes SCK and SSA. Section 3 presents a modified SSA to better quantify the normal
or typical behavior. Section 4 presents another modified SSA for the analysis of rare deviant
events. Section 5 presents a case study analysis of enzymatic futile cycles. Finally, Section 6
presents our conclusions.

2. Stochastic Chemical Kinetics

Stochastic chemical kinetics (SCK) is a theoretical framework that accounts for the statistics of
randomly-occurring chemical reactions (Gillespie, 1976; 1977; 2005; 2007). In the SCK frame-
work, a reaction system consists of a liquid volume, Ω, containing a population of randomly-
moving molecules. The molecules represent one or more species types. The medium is typ-
ically assumed to be “well-stirred,” meaning a given reactant molecule may be found at any
position in the medium, and may be moving in any direction, with uniform probability. A
reaction may occur whenever there is a collision among the respective reactant molecules.
When a reaction occurs, the reactants are removed from Ω, and the products are added to Ω.
Under the SCK framework, a reaction system’s time-evolution is governed by a set of proba-
bility laws which can be deduced through combinatorial methods. Suppose a reaction system
consists of N chemical species si, and the volume Ω contains xi molecules of species si at a
specific time t, for i = 1, ..., N. Also, suppose the system has M reactions R1, R2, ..., RM, and
each reaction Rj has a set of reactants Rj. Finally, let rij be the number of reactants of species
i that participate in reaction Rj, and let pij be the number of products of species i that are
produced by reaction Rj. Let νj be the change in x that results from the occurrence of Rj. The
elements of νj are given by νij = pij − rij.
Given these definitions, the SSA algorithm computes the following probabilities:

• aj (x, t) dt = the probability, given state x at time t, that Rj occurs in a small time-interval
of width dt. This is called the propensity function of reaction j.

•

•
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•

• P0 (τ |x ) = the probability, given state x at time t, that no reaction occurs in the time-

interval (t, t + τ). It can be shown that P0 = exp
(

−τ ∑
M
j=1 aj

)

, hence P0 is fully deter-

mined by the reactions’ propensities.

• The product of these is called the reaction pdf, given by fR (τ, j) dt = aj (x, t) P0 (τ |x ) dt.
The reaction pdf expresses the probability that the next reaction is Rj, and it occurs at
time t + τ.

Stochastic simulation algorithms use the reaction pdf to generate a sequence of reaction events.
Because fR (τ, j) is fully determined by the propensities, we may fully characterize the sys-
tem’s time-evolution by computing all the aj terms. In order to compute the aj terms, Gillespie
proposed the fundamental hypothesis of SCK:

aj = cj × hj (1)

where

cj = the stochastic reaction constant, (2)

hj = the total number of combinations of reactants in Rj. (3)

The stochastic reaction constant cj is closely related to the traditional reaction-rate constant
kj. It is generally possible to compute cj from kj. In many cases, especially with regard to
genetic reaction networks, the actual reaction rates are not well known. In these cases, the cj

are estimated by making an educated guess. In some cases, careful experiments have been
carried out to determine the reaction constants, but these are in the minority. As a rule of
thumb, the cj constants generally lie between 10−4 and 0.1 for “slow” and “fast” reactions,
respectively. When the cj are not precisely known, their estimated values may be tuned within
this range to reflect the relative speed expected from each reaction.
The number of reactant combinations, hj is found by a combinatorial analysis. If reaction Rj

involves multiple distinct reactants, as in s1 + s2 → s3, then the number of reactant combina-
tions is the product over the reactant populations: hj = x1 × x2. If Rj has multiple reactants of
the same species, as in 2s1 → s2, then the number of combinations is found by the n-choose-
k function, in this case hj = 0.5x1 (x1 − 1). In general, the total combinations is given by a
product over n-choose-k calculations:

hj = ∏
i∈Rj

(

xi

rij

)

. (4)

For example, the two-reaction system model shown in Figure 1 contains the reaction s2 +
2s3 → s1. The number of combinations for this reaction equals the number of s2 molecules,
times the number of pairs of s3 molecules, i.e. h2 = x2 × 0.5x3 (x3 − 1).

2.1 Gillespie’s Stochastic Simulation Algorithm (SSA).

To simulate the time-evolution of a reaction network, one may use the reaction pdf to gen-
erate a sequence of random reaction events, starting from a specified initial state x (t0) at
start-time t0. The simulation yields a sequence of system states x (t1) , x (t2) , ... that occur at
non-uniform times t1, t2, ..., and so on. This sequence is referred to as a sample path, which
represents a physically plausible sequence of reactions.
To generate a sample path, we proceed one reaction at a time. For each reaction, we generate
two random numbers:
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1. τ = the time to the next reaction, and

2. Rµ = the reaction that fires at time t + τ.

We assume the system begins in a specified initial state x0 at start-time t0. The SSA is executed
by repeating three essential tasks: (1) Generate a time for the next reaction to occur, (2) Gener-
ate the reaction that occurs at that time, and (3) Change the state x to reflect that the reaction
has occurred. Algorithm 1 implements these tasks with the proper statistics and produces a
physically realistic sample path.

(

s1 + s2 → s3

s2 + 2s3 → s1

)

h1 = x1 × x2

h2 = x2 × 0.5x3 (x3 − 1)

(a) Reactions (b) Combinations

r1 = 〈1, 1, 0〉
r2 = 〈0, 1, 2〉

ν1 = 〈−1, 1, 1〉
ν2 = 〈1, −1, −2〉

(c) Reactants (d) State changes

Fig. 1. An example of a simple two-reaction system model.

Algorithm 1 Gillespie’s stochastic simulation algorithm.

1: t ← 0
2: x ← x0.
3: while t < tmax do
4: for j = 1 to M do
5: evaluate hj (x) and aj (x).
6: end for
7: Calculate a0

8: r1 ← a randomly generated number from U (0, 1) .
9: r2 ← a randomly generated number, uniformly distributed in the open interval (0, 1) .

10: τ ←
(

1
a0

)

ln
(

1
r1

)

.

11: µ ← the least integer for which r2 ≤ 1
a0

∑
µ

j=1 aj. Then Rµ is the next reaction that occurs

at time t + τ.
12: x ← x + νµ.
13: t ← t + τ.
14: end while

2.2 Approximations of the SSA

A number of researchers have devised methods to reduce the computational complexity of
stochastic simulations. In most cases, these methods rely on approximations that are valid
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under a restricted set of reaction conditions. Two of the best-known SSA approximations
were devised by Gillespie, the τ-leaping method and the chemical Langevin equation (CLE)
method (Gillespie, 2001). These methods greatly improve the speed of stochastic simulations
in many types of reactions. These methods also help to establish the incremental SSA methods
described in section 3.

2.2.1 The τ-leap Method

The τ-leap method improves simulation speed by firing many reactions at the same time. By
contrast, the original SSA must compute each separate reaction individually. By computing
a bundle of reactions simultaneously, the τ-leap method can run many times faster than the
ordinary SSA. The τ-leap method requires a leap condition which is that all of the propensity
functions aj remain approximately constant during a sufficiently small time-interval τ. Under
this approximation, the propensity for a given reaction Rj during the τ-window is assumed
independent of other reactions that may occur during the same time-window. Let kj be the
number of times reaction Rj occurs during the time-window. Then k j can be shown to be
a Poisson distributed random variable. A sample-path can therefore be generated using the
modified SSA steps shown in Algorithm 2.

Algorithm 2 The τ-leaping method.

1: t ← 0
2: x ← x0.
3: while t < tmax do
4: for j = 1 to M do
5: evaluate hj (x) and aj (x).

6: kj ← a random number generated from the Poisson distribution P

(

ajτ

)

.

7: end for
8: x ← x + ∑

M
j=1 kjνj.

9: t ← t + τ.
10: end while

The leap condition is most likely satisfied in systems with large molecule counts. For these
systems, a single reaction produces only a small relative change in the system’s state. The
change in propensities is correspondingly small. There are convenient run-time methods that
test the τ-leap conditions, and adaptively determine the optimal time-step (Gillespie, 2001;
Gillespie & Petzold, 2003). In the context of genetic circuits, application of the τ-leap method
is complicated by the low count of DNA molecules. Reactions including DNA transcription
and translation may induce rapid changes in propensities across the reaction system.

2.2.2 The Chemical Langevin Equation Method

The Chemical Langevin Equation (CLE) method is a further approximation to the τ-leap
method that applies in systems with very large molecule counts (Gillespie, 2000; 2001). In

addition to the Leap Condition, the CLE method requires that τ ≫ maxj

{

1/aj

}

. If these con-

ditions are satisfied, then the discrete Poisson distribution P

(

ajτ

)

approaches the continuous

Gaussian (Normal) distribution N (µ, σ) with µ = σ2 = ajτ. The τ-leap method is therefore
modified slightly to produce Algorithm 3.
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Algorithm 3 The CLE method.

1: t ← 0
2: x ← x0.
3: while t < tmax do
4: for j = 1 to M do
5: evaluate hj (x) and aj (x).
6: kj ← a random number generated from the Gaussian distribution with mean ajτ and

variance ajτ.
7: end for
8: x ← x + ∑

M
j=1 kjνj.

9: t ← t + τ.
10: end while

The CLE method is applicable in systems where molecule counts are so large that they may
be approximated as continuous values. The CLE method provides a segue between stochas-
tic chemical kinetics and traditional deterministic reaction-rate equation (RRE) models. RRE
models use continuous-valued ordinary differential equations (ODEs) to model a reaction
system’s time-evolution. In the limit as all ajτ → ∞, the CLE system converges to a deter-
ministic ODE system. Hence the τ-leap and CLE conditions provide insight into the implicit
assumptions that underlie the widely used RRE methods. In systems where the τ-leap and
CLE conditions are not satisfied (or are only weakly satisfied), continuous ODE models are
invalid and a suitable SCK approach should be used.

3. Determining Typical Behavior

In the analysis of stochastic biochemical systems, one starts with two basic questions. First,
what is the system’s normal or typical behavior? Second, how robust is that behavior? These
questions are especially important for custom-designed biochemical networks, such as syn-
thetic genetic circuits. In this case, the designer is interested in verification that the system’s
actual behavior matches the designer’s intent. This section presents the incremental SSA (iSSA)
which sets out to answer these questions in small time-increments. This approach has some
characteristics in common with the popular SPICE program for simulating electronic circuits
(Nagel & Pederson, 1973). The main objective of iSSA is to provide a first-step verification
solution for synthetic biochemical systems.
Stochastic simulation algorithms generally provide a single snapshot of a system’s possible
behavior. If the system exhibits a high level of stochastic activity, the underlying behavior
may be obscured by transient “noise”. In order to understand the range of typical behaviors,
many simulation runs are needed. It is common practice to compute a simulation envelope
with the form x ±σ, where x and σ are the average and standard deviation vectors computed
over K SSA sample paths. The average, x, is considered to be the system’s typical behavior.
The standard deviation, σ, indicates the degree to which the system is expected to deviate
from the typical behavior.
The direct average method is suitable for systems that are only weakly stochastic. Direct
averaging is not suitable in systems that have multiple operating modes, leading to many di-
vergent behaviors that are all “typical.” Unfortunately, the majority of interesting biochemical
systems, especially genetic circuits, fall into this category. For example, consider a bi-stable
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system that randomly converges toward one of two states. Suppose half of all SSA sample-
paths arrive at state 1, and the other half arrive at state 2. By averaging over all SSA runs, one
obtains a fictitious middle state that obscures the system’s true typical behaviors.
The averaging problem is further compounded in dynamic systems that switch between states,
particularly if the state-transitions occur at random times. The simplest example of a dynamic
multi-state system is a stochastic oscillator in which the production of some signal is alter-
nately activated and inhibited. One such oscillator is the circadian rhythm model developed
by Vilar et al. (2002). Stochastic simulation runs of the circadian rhythm are shown in Fig. 2(a),
and the average over all runs is shown in Fig. 2(b). When production is activated, it stimu-
lates a brief but intense production of an output molecule A. As the amount of A increases,
it represses its own production and eventually degrades back to zero. This pattern creates
“pulses” of A that occur at random times. Because the pulse times are random, they generally
do not occur at the same times in different simulation runs. If a direct average is computed, the
mis-aligned impulses tend to be masked by the averaging (Samad et al., 2005). The circuit’s
most relevant and interesting behaviors are consequently concealed by the averaging.
In order to obtain meaningful aggregate information from many SSA runs, the iSSA was pro-
posed by Winstead et al. (2010). In the iSSA, a conventional SSA is executed K times over
a short time increment. The time increment is chosen such that the circuit’s state changes
slightly during the increment, similar to the τ-leaping method described in Section 2. Statis-
tics are gathered at the end of the time increment. A new circuit state is selected from those
statistics, and the algorithm is repeated for another increment.
By computing average changes over small time increments, iSSA reveals the typical behavior
occurring in each increment. The results of iSSA are stochastic, and repeated iSSA simulations
may yield different results. For example, iSSA may be used to simulate a bi-stable stochastic
system. The iSSA method follows a cluster of sample paths that are close to each other, and
hence tends to arrive at one of the two stable states.

3.1 iSSA Overview

The general steps of the iSSA are shown in Algorithm 4. The iSSA is wrapped around a core
SSA algorithm, and may be specialized to perform a variety of incremental analyses. The
generic iSSA works by choosing some initial condition for an SSA run, then executing the
SSA over a brief interval. Lastly, the iSSA performs some analysis on the incremental SSA
results before proceeding to the next increment. The physical interpretation of iSSA results
depends on the particular implementation of the select function, which define how the SSA
simulation conditions are chosen, and the process function, which defines how the SSA
results are analyzed. This chapter assigns these functions to achieve a marginal probability
density evolution, and it is known as iSSA-MPDE. The iSSA also allows the use of different SSA
methods, such as the τ-leaping or CLE methods, when permitted by the reaction conditions.
The following sections examine the derivations and conditions that apply to the iSSA.

3.2 Derivation of iSSA-MPDE

The goal of an iSSA that uses marginal probability density evolution is to provide an alterna-
tive approach that reveals the time-evolution of the statistical envelope for each species, under
appropriate system conditions. The function definitions for iSSA-MPDE are given in Table 1.
In essence, iSSA-MPDE approximates each species as an independent Gaussian-distributed
random variable. At the start of each SSA run, the initial molecule counts are randomly gen-
erated using each species’ marginal Gaussian probability distribution. After all K SSA runs
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Fig. 2. (a) SSA simulations of a stochastic oscillator. (b) The average response over all SSA
sample-paths, revealing incoherent results due to misaligned SSA events.

Algorithm 4 The general iSSA framework.

1: t ← 0
2: initialize the state-information structure S using initial state x0.
3: while t < tmax do
4: for k = 1 to K do
5: select a state x based on the state-information S.
6: perform one SSA run with start time t, max-time t + τ and initial state x.
7: record the ending SSA state x′ by appending it to a state-table X′.
8: end for
9: process the state-table X′ to obtain a new state-information structure S.

10: t ← t + τ.
11: end while
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are complete, the marginal distributions are estimated by computing the mean and variance
for each species. The iSSA-MPDE follows the system’s envelope as it evolves from increment
to increment, providing an indication of the system’s stochastic stability. If the standard de-
viation remains small relative to the mean, then the envelope may be regarded as a robust
indicator of typical behavior.

struct S: contains a mean vector S.µ and a standard-deviation vector S.σ.
initialize: S.µ ← x0 for a given initial state x0, and S.σ ← 0.

select: for each species sj, generate a noise value nj from the distribution

N

(

0, S.σ2
j

)

, and set xj ← S.µj + nj.

record: store the kth SSA ending state as x′k, for k = 1, ..., K.
process: compute the sample means and sample variances over all x′k, and store

the results in S.µ and S.σ, respectively.

Table 1. Function definitions for iSSA-MPDE.

iSSA-MPDE is derived from the CLE method discussed in Sec. 2, and inherits the τ-leap and
CLE conditions1. To derive iSSA-MPDE, consider applying the CLE method over a short time-
increment τ, beginning at time t with a fixed initial state x0. At time t + τ, the CLE method
returns a state x′ = x0 + ∑

M
j=1 νj, where each νj is a vector of Gaussian-distributed random

values. Because the sum of Gaussians is also Gaussian, the ending state x′ must have a joint
Gaussian distribution. Then the distribution of x′ is fully characterized by its mean µ and its
covariance matrix Γ.
Jointly Gaussian distributions are well understood, and the reaction system’s time-evolution
can be simulated as the evolution of µ and Γ using the iSSA function definitions shown in
Table 2. We refer to this algorithm as Gaussian probability density evolution or iSSA-GPDE.
A further simplification is possible if the system is represented as a linear Gaussian network
(LGN), with the form

x′ ≈ Ax + n, (5)

where A is a linear state-transformation matrix and n is a vector of zero-mean correlated
noise with distribution N (0, Γ). This representation is very close to the linear increment ap-
proximation used in general-purpose ODE simulators, including SPICE. The linear Gaussian
model provides an intuitively convenient “signal plus noise” representation that is familiar to
designers in many disciplines, and may be useful for the design and analysis of biochemical
systems.
The computational complexity of this method can be significantly reduced by computing only
the marginal statistics, rather than the complete covariance matrix. To compute the marginal
statistics, only the diagonal entries of the covariance matrix are computed. Ignoring the re-
maining terms in Γ neglects the statistical dependencies among species in the system. To see
when this is allowed, let us examine the system’s dependency structure using a Bayesian net-
work model, as shown in Fig. 3. The Bayesian network model contains a column of nodes
for each time-index. Within each column, there is a node for each species. Two nodes are

1 It is possible to apply iSSA-MPDE under a less restrictive set of conditions, but doing so requires a
collection of refinements to the method that are beyond the scope of this chapter.
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struct S: contains a mean vector S.µ and a covariance matrix S.Γ.
initialize: S.µ ← x0 for a given initial state x0, and S.Γ ← 0.

select: generate a correlated noise vector n from the distribution N (0, Γ), and
set x ← S.µ+ n.

record: store the kth SSA ending state as x′k, for k = 1, ..., K.
process: compute the sample mean and sample covariance matrix over all x′k,

and store the results in S.µ and S.Γ, respectively.

Table 2. Function definitions for iSSA-GPDE.

connected by an edge if there is a statistical dependency between them. The structure of the
Bayesian network is determined by the system’s information matrix, J = Γ

−1. An edge (and
hence a dependency) exists between nodes x′a and x′b if and only if the corresponding entry
jab in J is non-zero (Koller & Friedman, 2009). If J is approximately diagonal (i.e. if all non-
diagonal entries are small relative to the diagonal ones), then the network model contains no
edges between any pair x′a, x′b. This means that the marginal statistics of x′ are fully determined
by the statistics of x. This allows for the joint Gaussian probability distribution at time t + τ to
be approximated as a product of marginal Gaussian distributions. Instead of computing the
complete covariance matrix Γ, it is sufficient to compute the diagonal vector σ. By comput-
ing only marginal statistics in iSSA-GPDE, iSSA-MPDE is obtained, with function definitions
shown in Table 1.

x1

x2

x3

x4

x1′

x2′

x3′

x4′

Fig. 3. A linear Gaussian Bayesian network model for a reaction system with four species.
Edges in the graph indicate statistical dependencies.

3.3 Conditions and Limitations of iSSA-MPDE

iSSA-MPDE can be interpreted as an instance of belief propagation, with the SSA serving
as a Monte Carlo estimate of the species’ conditional distributions. When the iSSA-MPDE
network is continued over several increments, the corresponding network model is extended,
as shown in Fig. 4. When the network is extended in time, loops appear. Some example

t0 t0+τ t0+2τ t0+3τ t0+4τ t0+5τ
...

...

...

...

t0 t0+τ t0+2τ t0+3τ t0+4τ t0+5τ
...

...

...

...
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x1

x2

x3

x4

x1′

x2′

x3′

x4′

loops are indicated by bold edges in Fig. 4. Strictly speaking, belief propagation (and hence
iSSA-MPDE) is exact when applied to loop-free Bayesian networks.

t0 t0+τ t0+2τ t0+3τ t0+4τ t0+5τ
...

...

...

...

(a)

t0 t0+τ t0+2τ t0+3τ t0+4τ t0+5τ
...

...

...

...

(b)

Fig. 4. Loops form when the model is unwrapped across time. (a) A dense reaction model has
many short loops. (b) A sparse reaction model has fewer loops, and a larger minimum loop
girth.

Loops are unavoidable in reaction network models. As a consequence, iSSA-MPDE corre-
sponds to loopy belief propagation, which yields inexact statistical results. Although loopy
belief propagation is inexact, it has been shown to provide a close approximation in many
application areas (Murphy et al., 1999). The method’s accuracy depends on the number of
short loops that appear in the graph. An example of a loopy graph is shown in Fig. 4(a). In
this graph, there are many loops that allow statistical information to propagate back on top of
itself, which distorts the information. A better case is shown in Fig. 4(b), in which there are
fewer loops. The highlighted loop in Fig. 4(b) contains six edges. This number is referred to
as the loop’s girth.
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As a general rule, the exactness of loopy belief propagation improves when the minimum
loop girth is large. iSSA-MPDE is consequently expected to yield more accurate results for
systems with sparse dependencies, as in Fig. 4(b). In networks with dense dependencies, as in
Fig. 4(a), iSSA-MPDE may yield distorted results. Large networks of simple reactions (where
each reaction contains a small number of reactants and products) tend to be sparse in their
dependencies. There are a growing number of abstraction methods that reduce the number of
effective reactions in a large system and improve the efficiency of simulation. When a system
is abstracted in this way, the density of dependencies is unavoidably increased. iSSA-MPDE,
therefore, tends to be less attractive for use with abstracted simulation models (Kuwahara
et al., 2010; 2006).

3.4 Resolving Variable Dependencies in iSSA-MPDE

In its most basic form, as presented in Table 1, iSSA-MPDE cannot be applied to many impor-
tant types of reaction systems. This is because many systems have tightly-correlated species
which prevent the information matrix from being diagonal. Strong correlations typically arise
from conservation constraints, in which the state of one species is completely determined by
other states in the system. This section presents a method to identify conservation constraints
and correct for their effects in iSSA-MPDE. By resolving conservation constraints, the limi-
tations on iSSA-MPDE can be relaxed considerably, allowing the method to be applied in a
broader array of reaction systems.
The circadian rhythm model provides an immediate example of a system with conservation
constraints. In this model, the signal molecule A is produced from gene a via transcrip-
tion/translation reactions. The activity of gene a may be altered by the presence of a repressor
molecule R. Hence gene a may be associated with two chemical species, a and aR, which rep-
resent the gene’s active and repressed states, respectively. The two states may be represented
as distinct species governed by two reactions:

a + R → aR, (6)

aR → a + R (7)

In the first of these reactions, the activated gene a is consumed to produce the repressed gene
aR. In the second reaction, the repressed gene is consumed to produce the activated state.
At any given time, the gene is in exactly one state. This induces a conservation constraint
expressed by the equation a + aR = 1. Since iSSA-MPDE treats a and aR as independent
species, it likely produces states that violate this constraint.
The conservation problem can be resolved if the method is made aware of conservation con-
straints. Once the constraints are determined, the system may be partitioned into indepen-
dent and dependent species. iSSA-MPDE is then executed only on the independent species.
The dependent species are determined from the independent ones. This partitioning can be
computed automatically at run-time by evaluating the system’s stoichiometric matrix, as ex-
plained below.
The stoichiometric matrix embodies the network topology of any biochemical system. Several
researchers have developed methods for extracting conservation constraints from the stoichio-
metric matrix (Reder, 1988; Sauro & Ingalls, 2004; Schuster et al., 2002). This section briefly
summarizes these techniques and applies them to iSSA-MPDE.
The stoichiometric matrix N is defined as follows. If a given reaction network is composed of
N species and M reactions, then its stoichiometric matrix is an M× N matrix in which element
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aij equals the net change in species j due to reaction i. In other words, the columns of N are
the state-change vectors νj, as defined in Sec. 2.

N =











a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

...
. . .

...
aM,1 aM,2 · · · aM,N











Conserved cycles in a chemical reaction network appear as linear dependencies in the row
dimensions of the stoichiometric matrix. In systems where conservation constraints appear,
the sum of the conserved species must be constant. For example, consider a conservation law
of the form s1 + s2 = k for some constant k. This law dictates that the rate of appearance of s1

must equal the rate of disappearance of s2. Mathematically, this condition is expressed as

dS1

dt
+

dS2

dt
= 0 (8)

When conservation relationships are present in a biochemical network, there are linearly de-
pendent rows in the stoichiometric matrix. Following the notation in Sauro & Ingalls (2004),
one can partition the rows of N into two sections, NR and N0, which represent independent
and dependent species, respectively. Thus, one can partition N as follows:

N =

[

NR

N0

]

(9)

Since N0 is a function of NR, the concentrations of the independent species, NR, can be used
to calculate those of the dependent species N0. This relationship is determined by the link-zero
matrix, defined as the matrix L0 which satisfies

N0 = L0 × NR (10)

Equations (9) and (10) can be combined to yield

N =

[

NR

L0NR

]

(11)

Equation (11) can be further reduced by combining L0 with an identity matrix I and taking
NR as a common factor outside of the brackets, as shown in Equation (12).

N =

[

I
L0

]

NR (12)

N = LNR, (13)

where L = [I L0]
T is called the link matrix. For systems in which conservation relationships

do not exist, N = NR, thus L = I.
Based on this analysis, the species are partitioned into independent and dependent state vec-
tors, si (t) and sd (t), respectively. Due to the conservation laws, any change in si must be
compensated by a corresponding change in sd, hence

sd (t)− L0si (t) = sd (0)− L0si (0)), (14)
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If the initial condition is given and the link-zero matrix is known, then the dependent species
can always be computed from the independent species. To compute the link-zero matrix, we
observe that

[−L0 I]

[

NR

N0

]

= 0. (15)

This equation reveals that [−L0I] is the left null-space of N. There are a variety of ways to
compute the null-space of a matrix, and most numerical tools have built-in functions for this
purpose.
iSSA-MPDE can be applied to systems with conservation constraints if the system is suitably
partitioned into independent and dependent species. The partitioning is done automatically
by identifying the linearly independent rows of the stoichiometric matrix N, which corre-
spond to the independent species in the system. The link-zero matrix is then computed as
part of the simulation’s initialization. During execution of the iSSA algorithm, the MPDE
method is applied only to the independent species. The dependent species are generated
using (14). Using this approach, the independent species must satisfy the conditions and
limitations discussed above. The dependent species only need to satisfy the conservation con-
straints expressed by (14).
To demonstrate the MPDE method with constraint resolution, the method was applied to the
circadian rhythm model. The results are shown in Fig. 5. The results obtained using this
method agree well with the pattern observed in SSA simulations. The MPDE results also
reveal the typical characteristics of the circadian rhythm system, which are difficult to discern
from the SSA simulation results shown in Fig. 2.
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Fig. 5. The circadian rhythm model simulated using iSSA-MPDE with constraint resolution.

4. Rare Deviant Event Analysis

While the previous section discusses how to determine typical behavior, this section describes
a method for more efficiently determine the likelihood of rare events. In robust biological
systems, wide deviations from highly controlled normal behavior may occur with extremely
small probability; nevertheless, they can have significant influences and profound conse-
quences in many systems (Csete & Doyle, 2004). This is particularly true in biochemical and
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struct S: contains a mean vector S.µ and a standard-deviation vector S.σ.
initialize: S.µ ← x0 for a given initial state x0, and S.σ ← 0. Independent species

are identified from the stoichiometric matrix N. The link-zero matrix
L0 is computed using (15).

select: for each independent species sj, generate a noise value nj from the dis-

tribution N

(

0, S.σ2
j

)

, and set xj ← S.µj + nj. Compute the remaining

dependent species using the conservation law (14).
record: store the kth SSA ending state as x′k, for k = 1, ..., K.
process: compute the sample means and sample variances for each of the inde-

pendent species in x′, and store the results in S.µ and S.σ, respectively.

Table 3. Function definitions for the MPDE-iSSA method with resolved conservation con-
straints.

physiological systems in that, while the occurrence of biochemical events that leads to some
abnormal states may be rare, it can have devastating effects. In order to study the underlying
mechanisms of such rare yet catastrophic events in silico, computational simulation meth-
ods may become a useful tool. However, computational analysis of rare events can demand
significant computational costs and, even for a relatively small SCK model, computational re-
quirements for a rare event analysis with the SSA may exceed the power of the most current
computers. This section presents a simulation method for rare event analysis called weighted
SSA (wSSA) (Kuwahara & Mura, 2008). Section 4.1 first defines the properties of interest and
their computational challenges. Section 4.2 then briefly discusses the theoretical basis of the
wSSA. Finally, Section 4.3 presents the algorithm in detail.

4.1 Background

Traditionally, analysis of rare events has been associated with analysis of the first passage
time distribution (Gillespie et al., 2009), and considerable attention has been directed towards
making the analysis of the first passage time to reach a rare event of interest more efficient (e.g.,
Allen et al. (2006); Misra & Schwartz (2008)). This section formulates rare event analysis rather
differently from the analysis of the first passage time in that the property of interest here is the
time-bounded probability of X(t) reaching a certain subset of states given that the process X(t)
starts from a different state. In other words, our objective is to analyze Pt≤tmax

(X → E | x0), the
probability that X moves to a state in a subset states E within time limit tmax, given X(0) = x0

where x0 �∈ E , specifically when Pt≤tmax
(X → E | x0) is very small. This type of time-bounded

rare event analyses may be very useful when it comes to study of specific biological events
of interest per cell generation (i.e., before protein and RNA molecules in a mother cell are
partitioned via cell division).
A standard way to analyze Pt≤tmax

(X → E | x0) is to define a Boolean random variable Y such
that Y = 1 if X(t) moves to some states in E within the time limit and Y = 0 otherwise. Then,
the average of Y gives Pt≤tmax

(X → E | x0). Thus, with the SSA, Pt≤tmax
(X → E | x0) can

be estimated by generating n samples of Y: Y1, . . . , Yn through n simulation runs of X(t), and
taking the sample average: 1/n ∑

n
i=1 Yi. Chief among the problems in this statistical approach

to project the probability of a rare event is that it may require a large number of simulation
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runs just to observe the first few instances of the rare event of interest. For example, the
spontaneous, epigenetic switching rate from the lysogenic state to the lytic state in phage λ-
infected Escherichia coli (Ptashne, 1992) is experimentally estimated to be in the order of 10−7

per cell per generation (Little et al., 1999). Thus, simulation of one cell generation via the SSA
would expect to generate sample trajectories of this rare event only once every 107 runs, and
it would require more than 1011 simulation runs to generate an estimated probability with a
95 percent confidence interval with 1 percent relative half-width. This indicates that the com-
putational requirements for obtaining results at a reasonable degree of statistical confidence
can be substantial as the number of samples needed for such results may be astronomically
high. Furthermore, this highlights the fact that computational requirements involved in rare
event analysis of even a relatively simple biological system can far exceed the ability of most
computers.

4.2 Theoretical Basis of the wSSA

The wSSA (Kuwahara & Mura, 2008) increases the chance of observing the rare events of in-
terest by utilizing the importance sampling technique. Importance sampling manipulates the
probability distribution of the sampling so as to observe the events of interest more frequently
than it would otherwise with the conventional Monte Carlo sampling. The outcome of each
biased sampling is weighted by a likelihood factor to yield the statistically correct and unbi-
ased results. Thus, the importance sampling approach can increase the fraction of samples
that result in the events of interest per a given set of simulation runs, and consequently, it
can efficiently increase the precision of the estimated probability. An illustrative example of
importance sampling is depicted in Figure 6.
By applying importance sampling to simulation of SCK models, hence, the wSSA can substan-
tially increase the frequency of observation of the rare events of interest, allowing reasonable
results to be obtained with orders of magnitude smaller simulation runs than the SSA. This
can result in a substantial increase in computational efficiency of rare event analysis of bio-
chemical systems.
In order to observe reaction events that can lead to a rare event of interest more often, for
each reaction Rj, the wSSA utilizes predilection function bj(x) to select the next reaction instead
of utilizing the propensity function aj(x). The predilection functions are defined such that
bj(x)dt is the probability with which, given X = x, one Rj reaction event should occur within
the next infinitesimal time dt, based on the bias one might have to lead X(t) towards the
events of interest. With the definition of predilection functions, the index of the next reaction
selection is sampled with the following probability:

Prob{the next reaction index is j given X = x} =
bj(x)

b0(x)
,

where b0(x) ≡ ∑
M
µ=1 bµ(x). To correct the sampling bias in the reaction selection and yield the

statistically unbiased results, each weighted reaction selection is then weighted by the weight
function:

w(j, x) =
aj(x)b0(x)

a0(x)bj(x)
.

Now, consider a k-jump trajectory of X(t), and let Pk(jk, k; · · · ; j2, 2; j1, 1 | x0) denote the prob-
ability that, given X = x0, the first reaction is Rj1 , the second reaction is Rj2 ,. . . , and the k-th
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(a) (b)

Fig. 6. An illustrative example for importance sampling. Here, the probability of hitting the
area of the dart board is uniformly distributed, and the objective is to estimate the fraction
of the dark grey area, which is 0.005, by throwing ten darts. (a) With the standard approach,
each dart scores 1 if it hits the dark grey area and 0 otherwise. In this example, since no hit
is observed in ten darts, the estimate becomes 0. (b) With the importance sampling approach,
here, the dark grey area is enlarged 100 times to observe more hits and the score of the dark
grey area is reduced by 100 times to correct the unbiased results. In this example, since four
among the 10 darts hit the dark grey area, the estimate becomes 0.004, which is substantially
closer to the true value than the original estimate.

reaction is Rjk . Then, since X(t) is Markovian, this joint conditional probability can be ex-
pressed as follows:

Pk(jk, k; · · · ; j2, 2; j1, 1 | x0) =
k

∏
h=1

ajh (xh−1)

a0(xh−1)
(16)

where xh = x0 +∑
h−1
h′=1 vjh′

. Equation 16 can also be expressed in terms of the weight functions
and the predilection functions as follows:

Pk(jk, k; · · · ; j2, 2; j1, 1 | x0) =
k

∏
h=1

[

ajh (xh−1)b0(xh−1)

bjh (xh−1)a0(xh−1)

]

bjh (xh−1)

b0(xh−1)

=
k

∏
h=1

w(jh, xh−1)
k

∏
h=1

bjh (xh−1)

b0(xh−1)
.

(17)

Hence, in the wSSA, the estimate of Pt≤tmax
(X → E | x0) is calculated by first defining the

statistical weight of the i-th sample trajectory wi such that

wi =

{

∏
ki

h=1 w(jh, xh−1) if X(t) moves to some state in E within the time limit,

0 otherwise,
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where ki is the number of jumps in the i-th sample trajectory. Then, Pt≤tmax
(X → E | x0) is

estimated by taking a sample average of wi:

1

n

n

∑
i=1

wi.

With an adequate choice of the predilection functions, the wSSA can increase the fraction of
sample trajectories that result in the rare events of interest. At the same time, it can lower the
variance of the estimate by having each wi smaller than 1.
In Kuwahara & Mura (2008), each predilection function has a restricted form in that each
predilection function is proportional to the corresponding propensity function. In other words,
for each reaction Rj, bj(x) is defined as:

bj(x) = αj × aj(x), (18)

where each αj > 0 is a constant. This restriction can conveniently constrain the predilection
functions such that, for each bj(x), bj(x) = 0 if and only if aj(x) = 0, avoiding the case where
a possible trajectory of a system is weighted by a factor 0. Clearly, if αj = α for all j, then
aj(x)/a0(x) = bj(x)/b0(x). Thus, such a selection of predilection functions may not be useful.
Nevertheless, the wSSA can substantially accelerate the analysis of rare events when appro-
priate predilection functions are used. While optimized selection schemes of the predilection
functions require further investigation, it is somewhat intuitive to select predilection func-
tions to alleviate the computational demands in a number of cases. For example, suppose
we are interested in analyzing the probability that a species S transitions from θ1 to θ2 where
θ1 < θ2. Then, most likely, increasing the predilection functions of the production reactions of
S and/or decreasing the predilection functions of the degradation reactions of S—even with a
small factor—would increase the fraction of the sample trajectories that result in the event of
interest. Furthermore, a procedure to choose optimized αj by running several test runs to com-
pute the variance of the statistical weights has been proposed (Gillespie et al., 2009). However,
much work remains to be done in order to more practically select predilection functions.

4.3 Algorithm of the wSSA

Algorithm 5 describes the procedure to estimate Pt≤tmax
(X → E | x0) with n simulation runs

of the wSSA. Note that, while Algorithm 5 is presented in a similar fashion as the counterpart
direct method of the SSA, various optimization techniques of the direct method, such as Cao
et al. (2004); McCollum et al. (2006), can also be applied to an implementation of the wSSA
to further reduce the simulation cost. Furthermore, model abstraction techniques such as
Kuwahara & Myers (2007) can be incorporated to further accelerate the simulation process.
First, the algorithm initializes to 0 the variable q, which accumulates statistical weights of each
successful sample trajectory (line 1). Then, it generates n sample trajectories of X(t) via the
wSSA. For each simulation run, the initialization is first performed to set the weight of each
sample trajectory, w, the time, t, and the system state, x to 1, 0, and x0, respectively (line 3). It
then evaluates all the propensity functions aj(x) and all the predilection functions bj(x), and
also calculates a0(x) and b0(x) (line 4). Each Monte Carlo simulation is run up to time tmax.
If, however, a rare event (i.e., x ∈ E ) occurs within tmax, then the current sample trajectory
weight w is added to q, and the next simulation run is performed (lines 6-9). Otherwise, the
waiting time to the next reaction, τ, is sampled in the same way as in the direct method of the
SSA, while the next reaction Rµ is selected using the predilection functions (lines 10-12). Then,
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w, t, and x are updated to reflect the selections of the waiting time and the next reaction (lines
13-15). Any propensity functions and predilection functions that need to be updated based on
the firing of one Rµ reaction event are re-evaluated, and a0(x) and b0(x) are re-calculated (line
16). After n sample trajectories are generated via the wSSA, the probability that X(t) reaches
some state in E within tmax given X(0) = x0 is estimated by q/n (line 19).

Algorithm 5 Estimate of Pt≤tmax
(X → E | x0) via wSSA

1: q ← 0
2: for k = 1 to n do
3: w ← 1, t ← 0, x ← x0

4: evaluate all aj(x) and bj(x), and calculate a0(x) and b0(x)
5: while t ≤ tmax do
6: if x ∈ E then
7: q = q + w
8: break out of the while loop
9: end if

10: τ ← a sample of exponential random variable with mean 1/a0(x)
11: u ← a sample of unit uniform random variable
12: µ ← smallest integer satisfying ∑

µ

i=1 bi(x) ≥ ub0(x)

13: w ← w ×
(

aµ(x)/bµ(x)
)

× (b0(x)/a0(x))
14: t ← t + τ

15: x ← x + v¯

16: update aj(x) and bj(x), and re-calculate a0(x) and b0(x)
17: end while
18: end for
19: report q/n as the estimated probability

The computational complexity of Algorithm 5 and the counterpart of the standard SSA can be
compared by noticing that the multiplication/division operations in the wSSA only increases
linearly. Indeed, the operation count in Algorithm 5 differs from the counterpart of the SSA
only in the two steps: line 13; and line 16 inside the while loop. Line 13 adds a constant num-
ber of operations (i.e., 2 multiplications and 2 divisions), while line 16 includes the operations
for the update of the predilection functions bj(x), j = 1, 2, . . . , M as well as b0(x). The cost of
such updates depends on the specific form of the predilection functions and the network of
the model. However, if, as considered in this section, the predilection functions take the form
of simple scaling functions of the propensity functions, then these updates require at most
M multiplications, which does not change the overall complexity of the presented simulation
algorithm between the wSSA and the direct method of the SSA.

5. Case Study: Enzymatic Futile Cycles

This section presents case studies of the two simulation methods described in this chapter
to illustrate the usefulness of those methods. Our case studies are based on the analysis of
dynamical properties of enzymatic futile cycle models. Section 5.1 introduces the structure
of an enzymatic futile cycle model. Section 5.2 shows iSSA results on the futile cycle model.
Finally, Section 5.3 shows the results from wSSA-based rare event analysis on this model.
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5.1 Enzymatic Futile Cycle Model

The enzymatic futile cycle is composed of two enzymatic reactions running opposite direc-
tions, and is ubiquitously seen in biological systems (Voet et al., 1999). In signaling networks,
for example, this control motif can be used as a biological network building block that reg-
ulates the activity of a protein by representing a phosphorylation-dephosphorylation cycle
where the forward enzymatic reaction represents the phosphorylation of a protein via a ki-
nase or an activation of a protein via a small GTP-binding protein, while the backward enzy-
matic reaction represents the dephosphorylation of the protein via phosphatase (Goldbeter &
Koshland, 1981). A three-layered cascade of phosphorylation-dephosphorylation cycles can
form the basic structure of the mitogen-activated protein kinase cascade, which facilitates gen-
eration of a variety of responses to external stimuli and is ubiquitously seen in eukaryotes to
control many biological processes including cell proliferation and apoptosis (Chang & Karin,
2001; Huang & Ferrell, 1996).
The structure of an enzymatic futile cycle model is depicted in Figure 7. This model has six
species: S1 is the enzyme to catalyze the transformation of the protein into the active form;
S2 is the inactive form of the protein; S3 is the complex of S1 and S2; S4 is the enzyme to
catalyze the transformation of the protein into the inactive form; S5 is the active form of the
protein; and S6 is the complex of S4 and S5 (Figure 7(a)). The model has six reactions: R1 is
the formation of S3; R2 is the breakup of S3 into S1 and S2; R3 is the production of S5; R4 is
the formation of S6; R4 is the breakup of S6 into S4 and S5; and R6 is the production of S2. A
schematic of this model is shown in Figure 7(b).

S2 S5

S1

S4
(a) (b)

Fig. 7. The structure of an enzymatic futile cycle model. Here, S1 is the enzyme to catalyze the
transformation of S2 into S5, while S4 is the enzyme to catalyze the transformation of S5 into
S2. S3 is the complex of S1 and S2. S6 is the complex of S4 and S5 (a) A list of the six reactions
in the model. (b) A schematic of the enzymatic futile cycle model.

5.2 Bistable Oscillation in Enzymatic Futile Cycles with Noise Driver

To demonstrate the utility of the iSSA, this section considers an enzymatic futile cycle model
with a noise driver as shown in Fig. 8 (Samoilov et al., 2005). This model has the same two
enzymatic reactions as the original futile cycle model but also includes a species S7 and four
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S2 S5

S1

S4

more reactions that involve S1 and S7 in order to simulate noise in the environment. R7 con-
verts S1 into S7; R8 is the reverse reaction of R7 and converts S7 back into S1; R9 converts S1

and S7 into two S7; and R10 is the reverse reaction of R9 and converts two S7 back into S1 and
S7.

(a) (b)

Fig. 8. Model for enzymatic futile cycle with a noise driver. Here the species S7 has been added
to introduce noise on the amount of S1 available. This model also includes four additional
reactions that convert between S1 and S7 molecules.

Simulation results for this model are expected to result in random symmetric oscillations of
species S2 and S5 as depicted in the individual SSA run shown in Figure 9(a). However,
Figure 9(b) shows that when 10 SSA runs are averaged together, S2 and S5 clearly do not ex-
hibit this behavior and potentially leading to the conclusion that this model does not oscillate.
When iSSA is applied to this model, the results reveal the expected oscillatory behavior as
shown in Figures 9(c). These plots present the results for 10 runs for each time increment and
a time step of 0.01. These results show that drawing conclusions from aggregate SSA statistics
is problematic. The iSSA, on the other hand, aggregates stochastic run statistics in small time
increments in order to produce typical behavior profiles of genetic circuits.

5.3 Rare Event Analysis in Balanced Enzymatic Futile Cycles

To illustrate the utility of wSSA, this section considers a balanced enzymatic futile cycle model
and aims at evaluating Pt≤100(X5 → 25 | x0), the probability that, given X(0) = x0, X5 moves
to 25 within 100 time units. In this study, the initial state of the enzymatic futile cycle model
is given by

X1(0) = X4(0) = 1; X2(0) = X5(0) = 50; and X3(0) = X6(0) = 0,

and the rate constants are specified as follows:

k1 = k2 = k4 = k5 = 1; and k3 = k6 = 0.1.

Because of the perfect symmetry in the rate constants as well as in the initial molecule counts
of the two enzymatic reactions in this setting, X(t) tends to stay—with high probability—
around states in which X2 and X5 are balanced from time 0. That is, X2 and X5 stay around 50.
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Enzymatic Futile Cycle Individual SSA Results
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Enzymatic Futile Cycle Mean SSA Results
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Enzymatic Futile Cycle MPDE-iSSA Results
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(c)

Fig. 9. SSA simulation results for S2 and S5 from the enzymatic futile cycle with noise driver.
(a) A single SSA sample path. (b) The mean x (t) of 10 independent SSA sample paths. (c)
iSSA results using 10 runs for each time increment and a time step of 0.01.
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Enzymatic Futile Cycle MPDE-iSSA Results
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This implies that X5 → 25 | x0 is a rare deviant event. As the underlying Markov process has a
finite and relatively small number of states, we have computed the exact value of Pt≤100(X5 →
25 | x0) through a numerical solution, which in turn serves as the measure to compare the
accuracy of the wSSA and the SSA.
In order to increase the fraction of simulation runs that reach of the states of interest in the
wSSA for this analysis, the following predilection functions are used:

bj(x) =











aj(x) for j = 1, 2, 4, 5,

γaj(x) for j = 3,
1
γ

aj(x) for j = 6,

where γ = 0.5. This biasing approach discourages the forward enzymatic reaction while
encourages the backward enzymatic reaction, resulting in an increase in the likelihood of X5

to move to low count states.
Figure 10 depicts the accuracy of the estimates of Pt≤100(X5 → 25 | x0) via the SSA and
the wSSA with respect to a number of simulation runs. In the SSA, we did not observe any
simulation runs that had resulted in X5 moving to 25 within 100 time units for the first 105

simulation runs, making the estimated probability 0 (Figure 10(a)). On the other hand, wSSA
was able to produce a reasonable estimate in the first 100 simulation runs and, throughout, it
generated an estimated probability which is in very close agreement with the true probability
(Figure 10(a)). Furthermore, the relative distance of the estimate from the true value indicates
that the estimate from the wSSA can converge to the true value more rapidly than that from
the SSA (Figure 10(b)).
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Fig. 10. Comparison of accuracy between SSA and wSSA for the estimate of Pt≤100(X5 →
25 | x0). (a) The estimated probability via the SSA and the wSSA with respect to a number of
simulation runs. The solid line represents the true probability. (b) The relative distance of the
estimated probability from the true value with respect to a number of simulation runs.

The ratio of the simulation time between the wSSA and the SSA with respect to a number
of simulation runs is illustrated in Figure 11(a). This shows that, in the worst case, the run
time of wSSA is about 1.2 times slower than the direct method of the SSA. However, since the
wSSA achieved orders of magnitude higher accuracy in estimate of Pt≤100(X5 → 25 | x0) than
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Fig. 11. Comparison of computation efficiency between SSA and wSSA for the estimate of
Pt≤100(X5 → 25 | x0). The ratio of the simulation time of the wSSA and the SSA with respect
to a number of simulation runs. (b) Ratio of SSA and wSSA computation time for a given level
of accuracy.

the SSA per a given number of simulation runs, the wSSA is substantially more efficient than
the SSA in computing a high precision estimate of Pt≤100(X5 → 25 | x0).
To better characterize the computational gain obtained with the wSSA over the SSA, we eval-
uated the number of runs required by SSA to achieve a given accuracy criterion ǫ where ǫ

is defined as 1 minus the relative distance of the estimate from the true probability. We then
estimated the number of simulation runs required by the SSA through a statistical argument
based on confidence intervals (see Appendix of Kuwahara & Mura (2008) for details). By fac-
toring in the estimated number of runs and the average run time, we computed the expected
computation time of SSA for given ǫ. Figure 11(b) shows the ratio of the expected computa-
tion time between the SSA and wSSA. This illustrates a significant computational gain that is
achieved via the wSSA. For instance, while the wSSA can estimate Pt≤100(X5 → 25 | x0) with
an accuracy of 99.9999% in 1.7 × 103 seconds, the SSA would need 1012 times as much com-
putational time, which is roughly 1.05 × 108 years of computation (i.e., 2.2 × 1019 simulation
runs) to achieve that same level of accuracy on the same computer.

6. Conclusions

During stochastic analysis of biological systems, it is important to be able to both determine
accurately and efficiently the typical behavior and the probability of rare deviant events. This
chapter has introduced two new stochastic simulation algorithms, the iSSA and wSSA, to
address these problems. The iSSA has been shown to produce a more stable typical behavior
of an oscillatory system than aggregate statistics generated by the traditional SSA. The wSSA
has been shown to produce a substantially more accurate estimate of the probability of rare
deviant events as compared to same number of runs of the SSA. Taken together, these are
powerful tools for the analysis of biological systems.
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