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1. Introduction 

It is well understood nowadays that design is not an one-step process, but that it evolves 
along many phases which, starting from an initial idea, include drafting, preliminary 
evaluations, trial and error procedures, verifications and so on. All those steps can include 
considerations that come from different areas, when functional requirements have to be met 
which pertain to fields not directly related to the structural one, as it happens for noise, 
environmental prescriptions and so on; but even when that it’s not the case, it is very 
frequent the need to match against opposing demands, for example when the required 
strength or stiffness is to be coupled with lightness, not to mention the frequently 
encountered problems related to the available production means. 
All the previous cases, and the many others which can be taken into account, justify the 
introduction of particular design methods, obviously made easier by the ever-increasing use of 
numerical methods, and first of all of those techniques which are related to the field of mono- 
or multi-objective or even multidisciplinary optimization, but they are usually confined in the 
area of deterministic design, where all variables and parameters are considered as fixed in 
value. As we discuss below, the random, or stochastic, character of one or more parameters 
and variables can be taken into account, thus adding a deeper insight into the real nature of the 
problem in hand and consequently providing a more sound and improved design. 
Many reasons can induce designers to study a structural project by probabilistic methods, for 
example because of uncertainties about loads, constraints and environmental conditions, 
damage propagation and so on; the basic methods used to perform such analyses are well 
assessed, at least for what refers to the most common cases, where structures can be assumed 
to be characterized by a linear behaviour and when their complexity is not very great. 
Another field where probabilistic analysis is increasingly being used is that related to the 
requirement to obtain a product which is ‘robust’ against the possible variations of 
manufacturing parameters, with this meaning both production tolerances and the settings of 
machines and equipments; in that case one is looking for the ‘best’ setting, i.e. that which 
minimizes the variance of the product against those of design or control variables. 
A very usual case – but also a very difficult to be dealt – is that where it is required to take 
into account also the time variable, which happens when dealing with a structure which 
degrades because of corrosion, thermal stresses, fatigue, or others; for example, when 
studying very light structures, such as those of aircrafts, the designer aims to ensure an 
assigned life to them, which are subjected to random fatigue loads; in advanced age the 
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aircraft is interested by a WFD (Widespread Fatigue Damage) state, with the presence of 
many cracks which can grow, ultimately causing failure. This case, which is usually studied 
by analyzing the behaviour of significant details, is a very complex one, as one has to take 
into account a large number of cracks or defects, whose sizes and locations can’t be 
predicted, aiming to delay their growth and to limit the probability of failure in the 
operational life of the aircraft within very small limits (about 10-7±10-9). 
The most widespread technique is a ‘decoupled’ one, in the sense that a forecast is 
introduced by one of the available methods about the amount of damage which will 
probably take place at a prescribed instant and then an analysis in carried out about the 
residual strength of the structure; that is because the more general study which makes use of 
the stochastic analysis of the structure is a very complex one and still far away for the actual 
solution methods; the most used techniques, as the first passage theory, which claim to be 
the solution, are just a way to move around the real problems. 
In any case, the probabilistic analysis of the structure is usually a final step of the design 
process and it always starts on the basis of a deterministic study which is considered as 
completed when the other starts. That is also the state that will be considered in the present 
chapter, where we shall recall the techniques usually adopted and we shall illustrate them 
by recalling some case studies, based on our experience. 
For example, the first case which will be illustrated is that of a riveted sheet structure of the 
kind most common in the aeronautical field and we shall show how its study can be carried 
out on the basis of the considerations we introduced above. 
The other cases which will be presented in this paper refer to the probabilistic analysis and 
optimization of structural details of aeronautical as well as of automotive interest; thus, we 
shall discuss the study of an aeronautical panel, whose residual strength in presence of 
propagating cracks has to be increased, and with the study of an absorber, of the type used 
in cars to reduce the accelerations which act on the passengers during an impact or road 
accident, and whose design has to be improved. In both cases the final behaviour is 
influenced by design, manufacturing process and operational conditions. 

 
2. General methods for the probabilistic analysis of structures 

If we consider the n-dimensional space defined by the random variables which govern a generic 
problem (“design variables”) and which consist of geometrical, material, load, environmental 
and human factors, we can observe that those sets of coordinates (x) that correspond to failure 
define a domain (the ‘failure domain’ Ωf) in opposition to the remainder of the same space, that is 
known as the ‘safety domain’ (Ωs) as it corresponds to survival conditions. 
In general terms, the probability of failure can be expressed by the following integral: 
 

     
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f
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where fi represents the joint density function of all variables, which, in turn, may happen to 
be also functions of time. Unfortunately that integral cannot be solved in a closed form in 
most cases and therefore one has to use approximate methods, which can be included in one 
of the following typologies: 
1) methods that use the limit state surface (LSS, the surface that constitutes the boundary of 
the failure region) concept: they belong to a group of techniques that model variously the 

LSS in both shape and order and use it to obtain an approximate probability of failure; 
among these, for instance, particularly used are FORM (First Order Reliability Method) and 
SORM (Second Order Reliability Method), that represent the LSS respectively through the 
hyper-plane tangent to the same LSS at the point of the largest probability of occurrence or 
through an hyper-paraboloid of rotation with the vertex at the same point. 
2) Simulation methodologies, which are of particular importance when dealing with complex 
problems: basically, they use Monte-Carlo (MC) technique for the numerical evaluation of the 
integral above and therefore they define the probability of failure on a frequency basis. 
As pointed above, it is necessary to use a simulation technique to study complex structures, 
but in the same cases each trial has to be carried out through a numerical analysis (for 
example by FEM); if we couple that circumstance with the need to perform a very large 
number of trials, which is the case when dealing with very small probabilities of failure, 
very large runtimes are obtained, which are really impossible to bear. Therefore different 
means have been introduced in recent years to reduce the number of trials and to make 
acceptable the simulation procedures. 
In this section, therefore, we resume briefly the different methods which are available to 
carry out analytic or simulation procedures, pointing out the difficulties and/or advantages 
which characterize them and the particular problems which can arise in their use.  

 
2.1 LSS-based analytical methods 
Those methods come from an idea by Cornell (1969), as modified by Hasofer and Lind 
(1974) who, taking into account only those cases where the design variables could be 
considered to be normally distributed and uncorrelated, each defined by their mean value I 
and standard deviation I, modeled the LSS in the standard space, where each variable is 
represented through the corresponding standard variable, i.e. 
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If the LSS can be represented by a hyperplane (fig. 1), it can be shown that the probability of 
failure is related to the distance  of LSS from the origin in the standard space and therefore 
is given by 
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Fig. 1. Probability of failure for a hyperplane LSS 
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aircraft is interested by a WFD (Widespread Fatigue Damage) state, with the presence of 
many cracks which can grow, ultimately causing failure. This case, which is usually studied 
by analyzing the behaviour of significant details, is a very complex one, as one has to take 
into account a large number of cracks or defects, whose sizes and locations can’t be 
predicted, aiming to delay their growth and to limit the probability of failure in the 
operational life of the aircraft within very small limits (about 10-7±10-9). 
The most widespread technique is a ‘decoupled’ one, in the sense that a forecast is 
introduced by one of the available methods about the amount of damage which will 
probably take place at a prescribed instant and then an analysis in carried out about the 
residual strength of the structure; that is because the more general study which makes use of 
the stochastic analysis of the structure is a very complex one and still far away for the actual 
solution methods; the most used techniques, as the first passage theory, which claim to be 
the solution, are just a way to move around the real problems. 
In any case, the probabilistic analysis of the structure is usually a final step of the design 
process and it always starts on the basis of a deterministic study which is considered as 
completed when the other starts. That is also the state that will be considered in the present 
chapter, where we shall recall the techniques usually adopted and we shall illustrate them 
by recalling some case studies, based on our experience. 
For example, the first case which will be illustrated is that of a riveted sheet structure of the 
kind most common in the aeronautical field and we shall show how its study can be carried 
out on the basis of the considerations we introduced above. 
The other cases which will be presented in this paper refer to the probabilistic analysis and 
optimization of structural details of aeronautical as well as of automotive interest; thus, we 
shall discuss the study of an aeronautical panel, whose residual strength in presence of 
propagating cracks has to be increased, and with the study of an absorber, of the type used 
in cars to reduce the accelerations which act on the passengers during an impact or road 
accident, and whose design has to be improved. In both cases the final behaviour is 
influenced by design, manufacturing process and operational conditions. 

 
2. General methods for the probabilistic analysis of structures 

If we consider the n-dimensional space defined by the random variables which govern a generic 
problem (“design variables”) and which consist of geometrical, material, load, environmental 
and human factors, we can observe that those sets of coordinates (x) that correspond to failure 
define a domain (the ‘failure domain’ Ωf) in opposition to the remainder of the same space, that is 
known as the ‘safety domain’ (Ωs) as it corresponds to survival conditions. 
In general terms, the probability of failure can be expressed by the following integral: 
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where fi represents the joint density function of all variables, which, in turn, may happen to 
be also functions of time. Unfortunately that integral cannot be solved in a closed form in 
most cases and therefore one has to use approximate methods, which can be included in one 
of the following typologies: 
1) methods that use the limit state surface (LSS, the surface that constitutes the boundary of 
the failure region) concept: they belong to a group of techniques that model variously the 

LSS in both shape and order and use it to obtain an approximate probability of failure; 
among these, for instance, particularly used are FORM (First Order Reliability Method) and 
SORM (Second Order Reliability Method), that represent the LSS respectively through the 
hyper-plane tangent to the same LSS at the point of the largest probability of occurrence or 
through an hyper-paraboloid of rotation with the vertex at the same point. 
2) Simulation methodologies, which are of particular importance when dealing with complex 
problems: basically, they use Monte-Carlo (MC) technique for the numerical evaluation of the 
integral above and therefore they define the probability of failure on a frequency basis. 
As pointed above, it is necessary to use a simulation technique to study complex structures, 
but in the same cases each trial has to be carried out through a numerical analysis (for 
example by FEM); if we couple that circumstance with the need to perform a very large 
number of trials, which is the case when dealing with very small probabilities of failure, 
very large runtimes are obtained, which are really impossible to bear. Therefore different 
means have been introduced in recent years to reduce the number of trials and to make 
acceptable the simulation procedures. 
In this section, therefore, we resume briefly the different methods which are available to 
carry out analytic or simulation procedures, pointing out the difficulties and/or advantages 
which characterize them and the particular problems which can arise in their use.  

 
2.1 LSS-based analytical methods 
Those methods come from an idea by Cornell (1969), as modified by Hasofer and Lind 
(1974) who, taking into account only those cases where the design variables could be 
considered to be normally distributed and uncorrelated, each defined by their mean value I 
and standard deviation I, modeled the LSS in the standard space, where each variable is 
represented through the corresponding standard variable, i.e. 
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If the LSS can be represented by a hyperplane (fig. 1), it can be shown that the probability of 
failure is related to the distance  of LSS from the origin in the standard space and therefore 
is given by 
 

   1PfFORM                (3) 
 

 
Fig. 1. Probability of failure for a hyperplane LSS 

www.intechopen.com



Stochastic Control440

 
Fig. 2. The search for the design point according to RF’s method 
 
It can be also shown that the point of LSS which is located at the least distance β from the 
origin is the one for which the elementary probability of failure is the largest and for that 
reason it is called the maximum probability point (MPP) or the design point (DP). 
Those concepts have been applied also to the study of problems where the LSS cannot be 
modeled as an hyperplane; in those cases the basic methods try to approximate the LSS by 
means of some polynomial, mostly of the first or the second degree; broadly speaking, in 
both cases the technique adopted uses a Taylor expansion of the real function around some 
suitably chosen point to obtain the polynomial representation of the LSS and it is quite 
obvious to use the design point to build the expansion, as thereafter the previous Hasofer 
and Lind’s method can be used. 
It is then clear that the solution of such problems requires two distinct steps, i.e. the research 
of the design point and the evaluation of the probability integral; for example, in the case of 
FORM (First Order Reliability Method) the most widely applied method, those two steps are 
coupled in a recursive form of the gradient method (fig. 2), according to a technique 
introduced by Rackwitz and Fiessler (RF’s method). If we represent the LSS through the 
function g(x) = 0 and indicate with I the direction cosines of the inward-pointing normal to 
the LSS at a point x0, given by 
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starting from a first trial value of u, the kth n-uple is given by 
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thus obtaining the required design point within an assigned approximation; its distance 
from the origin is just  and then the probability of failure can be obtained through eq. 3 
above. 
One of the most evident errors which follow from that technique is that the probability of 
failure is usually over-estimated and that error grows as curvatures of the real LSS increase; 
to overcome that inconvenience in presence of highly non-linear surfaces, the SORM 

(Second Order Reliability Method) was introduced, but, even with Tved’s and Der 
Kiureghian’s developments, its use implies great difficulties. The most relevant result, due 
to Breitung, appears to be the formulation of the probability of failure in presence of a 
quadratic LSS via FORM result, expressed by the following expression: 
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where I is the i-th curvature of the LSS; if the connection with FORM is a very convenient 
one, the evaluation of curvatures usually requires difficult and long computations; it is true 
that different simplifying assumptions are often introduced to make solution easier, but a 
complete analysis usually requires a great effort. Moreover, it is often disregarded that the 
above formulation comes from an asymptotic development and that consequently its result 
is so more approximate as  values are larger. 
As we recalled above, the main hypotheses of those procedures are that the random 
variables are uncorrelated and normally distributed, but that is not the case in many 
problems; therefore, some methods have been introduced to overcome those difficulties. 
For example, the usually adopted technique deals with correlated variables via an 
orthogonal transformation such as to build a new set of variables which are uncorrelated, 
using the well known properties of matrices. For what refers to the second problem, the 
current procedure is to approximate the behaviour of the real variables by considering 
dummy gaussian variables which have the same values of the distribution and density 
functions; that assumption leads to an iterative procedure, which can be stopped when 
the required approximation has been obtained: that is the original version of the 
technique, which was devised by Ditlevsen and which is called Normal Tail 
Approximation; other versions exist, for example the one introduced by Chen and Lind, 
which is more complex and which, nevertheless, doesn’t bring any deeper knowledge on 
the subject. 
At last, it is not possible to disregard the advantages connected with the use of the Response 
Surface Method, which is quite useful when dealing with rather large problems, for which it 
is not possible to forecast a priori the shape of the LSS and, therefore, the degree of the 
approximation required. That method, which comes from previous applications in other 
fields, approximate the LSS by a polynomial, usually of second degree, whose coefficients 
are obtained by Least Square Approximation or by DOE techniques; the procedure, for 
example according to Bucher and Burgund, evolves along a series of convergent trials, 
where one has to establish a center point for the i-th approximation, to find the required 
coefficients, to determine the design point and then to evaluate the new approximating 
center point for a new trial. 
Beside those here recalled, other methods are available today, such as the Advanced Mean 
Value or the Correction Factor Method, and so on, and it is often difficult to distinguish 
their own advantages, but in any case the techniques which we outlined here are the most 
general and known ones; broadly speaking, all those methods correspond to different 
degree of approximation, so that their use is not advisable when the number of variables 
is large or when the expected probabilities of failure is very small, as it is often the case, 
because of the overlapping of the errors, which can bring results which are very far from 
the real one. 
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reason it is called the maximum probability point (MPP) or the design point (DP). 
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both cases the technique adopted uses a Taylor expansion of the real function around some 
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thus obtaining the required design point within an assigned approximation; its distance 
from the origin is just  and then the probability of failure can be obtained through eq. 3 
above. 
One of the most evident errors which follow from that technique is that the probability of 
failure is usually over-estimated and that error grows as curvatures of the real LSS increase; 
to overcome that inconvenience in presence of highly non-linear surfaces, the SORM 

(Second Order Reliability Method) was introduced, but, even with Tved’s and Der 
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to Breitung, appears to be the formulation of the probability of failure in presence of a 
quadratic LSS via FORM result, expressed by the following expression: 
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where I is the i-th curvature of the LSS; if the connection with FORM is a very convenient 
one, the evaluation of curvatures usually requires difficult and long computations; it is true 
that different simplifying assumptions are often introduced to make solution easier, but a 
complete analysis usually requires a great effort. Moreover, it is often disregarded that the 
above formulation comes from an asymptotic development and that consequently its result 
is so more approximate as  values are larger. 
As we recalled above, the main hypotheses of those procedures are that the random 
variables are uncorrelated and normally distributed, but that is not the case in many 
problems; therefore, some methods have been introduced to overcome those difficulties. 
For example, the usually adopted technique deals with correlated variables via an 
orthogonal transformation such as to build a new set of variables which are uncorrelated, 
using the well known properties of matrices. For what refers to the second problem, the 
current procedure is to approximate the behaviour of the real variables by considering 
dummy gaussian variables which have the same values of the distribution and density 
functions; that assumption leads to an iterative procedure, which can be stopped when 
the required approximation has been obtained: that is the original version of the 
technique, which was devised by Ditlevsen and which is called Normal Tail 
Approximation; other versions exist, for example the one introduced by Chen and Lind, 
which is more complex and which, nevertheless, doesn’t bring any deeper knowledge on 
the subject. 
At last, it is not possible to disregard the advantages connected with the use of the Response 
Surface Method, which is quite useful when dealing with rather large problems, for which it 
is not possible to forecast a priori the shape of the LSS and, therefore, the degree of the 
approximation required. That method, which comes from previous applications in other 
fields, approximate the LSS by a polynomial, usually of second degree, whose coefficients 
are obtained by Least Square Approximation or by DOE techniques; the procedure, for 
example according to Bucher and Burgund, evolves along a series of convergent trials, 
where one has to establish a center point for the i-th approximation, to find the required 
coefficients, to determine the design point and then to evaluate the new approximating 
center point for a new trial. 
Beside those here recalled, other methods are available today, such as the Advanced Mean 
Value or the Correction Factor Method, and so on, and it is often difficult to distinguish 
their own advantages, but in any case the techniques which we outlined here are the most 
general and known ones; broadly speaking, all those methods correspond to different 
degree of approximation, so that their use is not advisable when the number of variables 
is large or when the expected probabilities of failure is very small, as it is often the case, 
because of the overlapping of the errors, which can bring results which are very far from 
the real one. 
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2.2 Simulation-based reliability assessment 
In all those cases where the analytical methods are not to be relied on, for example in 
presence of many, maybe even not gaussian, variables, one has to use simulation methods to 
assess the reliability of a structure: about all those methods come from variations or 
developments of an ‘original’ method, whose name is Monte-Carlo method and which 
corresponds to the frequential (or a posteriori) definition of probability. 
 

 
Fig. 3. Domain Restricted Sampling 
 
For a problem with k random variables, of whatever distribution, the method requires the 
extraction of k random numbers, each of them being associated with the value of one of the 
variables via the corresponding distribution function; then, the problem is run  with the 
found values and its result (failure of safety) recorded; if that procedure is carried out N 
times, the required probability, for example that corresponding to failure, is given by Pf = 
n/N, if the desired result has been obtained n times. 
Unfortunately, broadly speaking, the procedure, which can be shown to lead to the ‘exact’ 
evaluation of the required probability if N = ∞, is very slow to reach convergence and 
therefore a large number of trials have to be performed; that is a real problem if one has to deal 
with complex cases where each solution is to be obtained by numerical methods, for example 
by FEM or others. That problem is so more evident as the largest part of the results are 
grouped around the mode of the result distribution, while one usually looks for probability 
which lie in the tails of the same distribution, i.e. one deals with very small probabilities, for 
example those corresponding to the failure of an aircraft or of an ocean platform and so on. 
It can be shown, by using Bernouilli distribution, that if p is the ‘exact’ value of the required 
probability and if one wants to evaluate it with an assigned emax error at a given confidence 
level defined by the bilateral protection factor k, the minimum number of trials to be carried 
out is given by 
 

p
p1

e
k2N

2

max
min









 
      (7) 

for example, if p = 10-5 and we want to evaluate it with a 10% error at the 95% confidence 
level, we have to carry out  at least Nmin = 1.537·108 trials, which is such a large number that 
usually larger errors are accepted, being often satisfied to get at least the order of magnitude 
of the probability. 
It is quite obvious that various methods have been introduced to decrease the number of trials; 
for example, as we know that no failure point is to be found at a distance smaller than β from 
the origin of the axis in the standard space, Harbitz introduced the Domain Restricted 
Sampling (fig. 3), which requires the design point to be found first and then the trials are 
carried out only at distances from the origin larger than β; the Importance Sampling Method is 
also very useful, as each of the results obtained from the trials is weighted according to a 
function, which is given by the analyst and which is usually centered at the design point, with 
the aim to limit the number of trials corresponding to results which don’t lie in the failure 
region. 
 

 
Fig. 4. The method of Directional Simulation 
 
One of the most relevant technique which have been introduced in the recent past is the one 
known as Directional  Simulation; in the version published by Nie and Ellingwood, the 
sample space is subdivided in an assigned number of sectors through radial hyperplanes 
(fig. 4); for each sector the mean distance of the LSF is found and the corresponding 
probability of failure is evaluated, the total probability being given by the simple sum of all 
results; in this case, not only the number of trials is severely decreased, but a better 
approximation of the frontier of the failure domain is achieved, with the consequence that 
the final probability is found with a good approximation. 
Other recently appeared variations are related to the extraction of random numbers; those 
are, in fact, uniformly distributed in the 0-1 range and therefore give results which are rather 
clustered around the mode of the final distribution. That problem can be avoided if one 
resorts to use not really random distributions, as those coming from k-discrepancy theory, 
obtaining points which are better distributed in the sample space. 
A new family of techniques have been introduced in the last years, all pertaining to the 
general family of genetic algorithms; that evocative name is usually coupled with an 
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2.2 Simulation-based reliability assessment 
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corresponds to the frequential (or a posteriori) definition of probability. 
 

 
Fig. 3. Domain Restricted Sampling 
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for example, if p = 10-5 and we want to evaluate it with a 10% error at the 95% confidence 
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Other recently appeared variations are related to the extraction of random numbers; those 
are, in fact, uniformly distributed in the 0-1 range and therefore give results which are rather 
clustered around the mode of the final distribution. That problem can be avoided if one 
resorts to use not really random distributions, as those coming from k-discrepancy theory, 
obtaining points which are better distributed in the sample space. 
A new family of techniques have been introduced in the last years, all pertaining to the 
general family of genetic algorithms; that evocative name is usually coupled with an 
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imaginative interpretation which recalls the evolution of animal settlements, with all its 
content of selection, marriage, breeding and mutations, but it really covers in a systematic 
and reasoned way all the steps required to find the design point of an LSS in a given region 
of space. In fact, one has to define at first the size of the population, i.e. the number of 
sample points to be used when evaluating the required function; if that function is the 
distance of the design point from the origin, which is to be minimized, a selection is made 
such as to exclude from the following steps all points where the value assumed by the 
function is too large. After that, it is highly probable that the location of the minimum is 
between two points where the same function shows a small value: that coupling is what 
corresponds to marriage in the population and the resulting intermediate point represents 
the breed of the couple. Summing up the previous population, without the excluded points, 
with the breed, gives a new population which represents a new generation; in order to look 
around to observe if the minimum point is somehow displaced from the easy connection 
between parents, some mutation can be introduced, which corresponds to looking around 
the new-found positions. 
It is quite clear that, besides all poetry related to the algorithm, it can be very useful but it 
is quite difficult to be used, as it is sensitive to all different choices one has to introduce in 
order to get a final solution: the size of the population, the mating criteria, the measure 
and the way of the introduction in breed of the parents’ characters, the percentage and the 
amplitude of mutations, are all aspects which are to be the objects of single choices by the 
analyst and which can have severe consequences on the results, for example in terms of 
the number of generations required to attain convergence and of the accuracy of the 
method. 
That’s why it can be said that a general genetic code which can deal with all reliability 
problems is not to be expected, at least in the near future, as each problem requires specific 
cares that only the dedicated attentions of the programmer can guarantee. 

 
3. Examples of analysis of structural details 

An example is here introduced to show a particular case of stochastic analysis as applied to 
the study of structural details, taken from the authors’ experience in research in the 
aeronautical field. 
Because of their widespread use, the analysis of the behaviour of riveted sheets is quite 
common in aerospace applications; at the same time the interest which induced the authors 
to investigate the problems below is focused on the last stages of the operational life of 
aircraft, when a large number of fatigue-induced cracks appear at the same time in the 
sheets, before at least one of them propagates up to induce the failure of the riveted joint: the 
requirement to increase that life, even in presence of such a population of defects (when we 
say that a stage of Widespread Fatigue Damage, WFD, is taking place) compelled the 
authors to investigate such a scenario of a damaged structure. 

 
3.1 Probabilistic behaviour of riveted joints 
One of the main scopes of the present activity was devoted to the evaluation of the 
behaviour of a riveted joint in presence of damage, defined for example as a crack which, 
stemming from the edge of one of the holes of the joint, propagates toward the nearest one, 
therefore introducing a higher stress level, at least in the zone adjacent to crack tip. 

It would be very appealing to use such easy procedures as compounding to evaluate SIF’s for 
that case, which, as it is now well known, gives an estimate of the stress level which is built by 
reducing the problem at hand to the combination of simpler cases, for which the solution is 
known; that procedure is entirely reliable, but for those cases where singularities are so near to 
each other to develop an interaction effect which the method is not able to take into account. 
Unfortunately, even if a huge literature is now available about edge cracks of many 
geometry, the effect of a loaded hole is not usually treated with the extent it deserves, may 
be for the particular complexity of the problem; for example, the two well known papers by 
Tweed and Rooke (1979; 1980) deal with the evaluation of SIF for a crack stemming from a 
loaded hole, but nothing is said about the effect of the presence of other loaded holes toward 
which the crack propagates. 
Therefore, the problem of the increase of the stress level induced from a propagating crack 
between loaded holes could be approached only by means of numerical methods and the 
best idea was, of course, to use the results of FEM to investigate the case. Nevertheless, 
because of the presence of the external loads, which can alter or even mask the effects of 
loaded holes, we decided to carry out first an investigation about the behaviour of SIF in 
presence of two loaded holes.  
The first step of the analysis was to choose which among the different parameters of the 
problem were to be treated as random variables.  
Therefore a sort of sensitivity analysis was to be carried out; in our case, we considered a 
very specific detail, i.e. the space around the hole of a single rivet, to analyze the influence of 
the various parameters. 
By using a Monte-Carlo procedure, some probability parameters were introduced according to 
experimental evidence for each of the variables in order to assess the required influence on the 
mean value and the coefficient of variation of the number of cycles before failure of the detail. 
In any case, as pitch and diameter of the riveted holes are rather standardized in size, their 
influence was disregarded, while the sheet thickness was assumed as a deterministic 
parameter, varying between 1.2 and 4.8 mm; therefore, the investigated parameters were the 
stress level distribution, the size of the initial defect and the parameters of the propagation 
law, which was assumed to be of Paris’ type.  
For what refers to the load, it was supposed to be in presence of traction load cycles with R = 0 
and with a mean value which followed a Gaussian probability density function around 60, 90 
and 120 MPa, with a coefficient of variation varying according assigned steps; initial crack sizes 
were considered as normally distributed from 0.2 mm up to limits depending on the examined 
case, while for what concerns the two parameters of Paris’ law, they were considered as 
characterized by a normal joint pdf between the exponent n and the logarithm of the other one. 
Initially, an extensive exploration was carried out, considering each variable in turn as 
random, while keeping the others as constant and using the code NASGRO® to evaluate the 
number of cycles to failure; an external routine was written in order to insert the crack code in 
a M-C procedure. CC04 and TC03 models of NASGRO® library were adopted in order to take 
into account corner- as well as through-cracks. For all analyses 1,000 trials/point were carried 
out, as it was assumed as a convenient figure to be accepted to obtain rather stabilized results, 
while preventing the total runtimes from growing unacceptably long; the said M-C procedure 
was performed for an assigned statistics of one input variable at the time. 
The results obtained can be illustrated by means of the following pictures and first of all of 
the fig. 5 where the dependence of the mean value of life from the mean amplitude of 
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imaginative interpretation which recalls the evolution of animal settlements, with all its 
content of selection, marriage, breeding and mutations, but it really covers in a systematic 
and reasoned way all the steps required to find the design point of an LSS in a given region 
of space. In fact, one has to define at first the size of the population, i.e. the number of 
sample points to be used when evaluating the required function; if that function is the 
distance of the design point from the origin, which is to be minimized, a selection is made 
such as to exclude from the following steps all points where the value assumed by the 
function is too large. After that, it is highly probable that the location of the minimum is 
between two points where the same function shows a small value: that coupling is what 
corresponds to marriage in the population and the resulting intermediate point represents 
the breed of the couple. Summing up the previous population, without the excluded points, 
with the breed, gives a new population which represents a new generation; in order to look 
around to observe if the minimum point is somehow displaced from the easy connection 
between parents, some mutation can be introduced, which corresponds to looking around 
the new-found positions. 
It is quite clear that, besides all poetry related to the algorithm, it can be very useful but it 
is quite difficult to be used, as it is sensitive to all different choices one has to introduce in 
order to get a final solution: the size of the population, the mating criteria, the measure 
and the way of the introduction in breed of the parents’ characters, the percentage and the 
amplitude of mutations, are all aspects which are to be the objects of single choices by the 
analyst and which can have severe consequences on the results, for example in terms of 
the number of generations required to attain convergence and of the accuracy of the 
method. 
That’s why it can be said that a general genetic code which can deal with all reliability 
problems is not to be expected, at least in the near future, as each problem requires specific 
cares that only the dedicated attentions of the programmer can guarantee. 

 
3. Examples of analysis of structural details 

An example is here introduced to show a particular case of stochastic analysis as applied to 
the study of structural details, taken from the authors’ experience in research in the 
aeronautical field. 
Because of their widespread use, the analysis of the behaviour of riveted sheets is quite 
common in aerospace applications; at the same time the interest which induced the authors 
to investigate the problems below is focused on the last stages of the operational life of 
aircraft, when a large number of fatigue-induced cracks appear at the same time in the 
sheets, before at least one of them propagates up to induce the failure of the riveted joint: the 
requirement to increase that life, even in presence of such a population of defects (when we 
say that a stage of Widespread Fatigue Damage, WFD, is taking place) compelled the 
authors to investigate such a scenario of a damaged structure. 

 
3.1 Probabilistic behaviour of riveted joints 
One of the main scopes of the present activity was devoted to the evaluation of the 
behaviour of a riveted joint in presence of damage, defined for example as a crack which, 
stemming from the edge of one of the holes of the joint, propagates toward the nearest one, 
therefore introducing a higher stress level, at least in the zone adjacent to crack tip. 

It would be very appealing to use such easy procedures as compounding to evaluate SIF’s for 
that case, which, as it is now well known, gives an estimate of the stress level which is built by 
reducing the problem at hand to the combination of simpler cases, for which the solution is 
known; that procedure is entirely reliable, but for those cases where singularities are so near to 
each other to develop an interaction effect which the method is not able to take into account. 
Unfortunately, even if a huge literature is now available about edge cracks of many 
geometry, the effect of a loaded hole is not usually treated with the extent it deserves, may 
be for the particular complexity of the problem; for example, the two well known papers by 
Tweed and Rooke (1979; 1980) deal with the evaluation of SIF for a crack stemming from a 
loaded hole, but nothing is said about the effect of the presence of other loaded holes toward 
which the crack propagates. 
Therefore, the problem of the increase of the stress level induced from a propagating crack 
between loaded holes could be approached only by means of numerical methods and the 
best idea was, of course, to use the results of FEM to investigate the case. Nevertheless, 
because of the presence of the external loads, which can alter or even mask the effects of 
loaded holes, we decided to carry out first an investigation about the behaviour of SIF in 
presence of two loaded holes.  
The first step of the analysis was to choose which among the different parameters of the 
problem were to be treated as random variables.  
Therefore a sort of sensitivity analysis was to be carried out; in our case, we considered a 
very specific detail, i.e. the space around the hole of a single rivet, to analyze the influence of 
the various parameters. 
By using a Monte-Carlo procedure, some probability parameters were introduced according to 
experimental evidence for each of the variables in order to assess the required influence on the 
mean value and the coefficient of variation of the number of cycles before failure of the detail. 
In any case, as pitch and diameter of the riveted holes are rather standardized in size, their 
influence was disregarded, while the sheet thickness was assumed as a deterministic 
parameter, varying between 1.2 and 4.8 mm; therefore, the investigated parameters were the 
stress level distribution, the size of the initial defect and the parameters of the propagation 
law, which was assumed to be of Paris’ type.  
For what refers to the load, it was supposed to be in presence of traction load cycles with R = 0 
and with a mean value which followed a Gaussian probability density function around 60, 90 
and 120 MPa, with a coefficient of variation varying according assigned steps; initial crack sizes 
were considered as normally distributed from 0.2 mm up to limits depending on the examined 
case, while for what concerns the two parameters of Paris’ law, they were considered as 
characterized by a normal joint pdf between the exponent n and the logarithm of the other one. 
Initially, an extensive exploration was carried out, considering each variable in turn as 
random, while keeping the others as constant and using the code NASGRO® to evaluate the 
number of cycles to failure; an external routine was written in order to insert the crack code in 
a M-C procedure. CC04 and TC03 models of NASGRO® library were adopted in order to take 
into account corner- as well as through-cracks. For all analyses 1,000 trials/point were carried 
out, as it was assumed as a convenient figure to be accepted to obtain rather stabilized results, 
while preventing the total runtimes from growing unacceptably long; the said M-C procedure 
was performed for an assigned statistics of one input variable at the time. 
The results obtained can be illustrated by means of the following pictures and first of all of 
the fig. 5 where the dependence of the mean value of life from the mean amplitude of 
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remote stress is recorded for different cases where the CV (coefficient of variation) of stress 
pdf was considered as being constant. The figure assesses the increase of the said mean life 
to failure in presence of higher CV of stress, as in this case rather low stresses are possible 
with a relatively high probability and they influence the rate of propagation in a higher 
measure than large ones.  
 

 
Fig. 5. Influence of the remote stress on the cycles to failure 
 
In fig. 6  the influence of the initial geometry is examined for the case of a corner crack, 
considered to be elliptical in shape, with length c and depth a; a very interesting aspect of 
the consequences of a given shape is that for some cases the life for a through crack is longer 
than the one recorded for some deep corner ones; that case can be explained with the help of 
the plot of Fig. 7 where the growth of a through crack is compared with those of quarter 
corner cracks, recording times when a corner crack becomes a through one: as it is clarified 
in the boxes in the same picture, each point of the dashed curve references to a particular 
value of the initial depth. 
 

 
Fig. 6. Influence of the initial length of the crack on cycles to failure 

 
Fig. 7. Propagation behaviour of a corner and a through crack 
 
It can be observed that beyond a certain value of the initial crack depth, depending on the 
sheet thickness, the length reached when the corner crack becomes a through one is larger 
than that obtained after the same number of cycles when starting with a through crack, and 
this effect is presumably connected to the bending effect of corner cracks. 
For what concerns the influence exerted by the growth parameters, C and n according to the 
well known  Paris’ law, a first analysis was carried out in order to evaluate the influence of 
spatial randomness of propagation parameters; therefore the analysis was carried out 
considering that for each stage of propagation the current values of C and n were randomly 
extracted on the basis of a joint normal pdf between lnC and n. The results, illustrated in 
Fig. 8, show a strong resemblance with the well known experimental results by Wirkler. 
Then an investigation was carried out about the influence of the same ruling parameters on 
the variance of cycles to failure. It could be shown that the mean value of the initial length 
has a little influence on the CV of cycles to failure, while on the contrary is largely affected 
by the CV of the said geometry. On the other hand, both statistical parameters of the 
distribution of remote stress have a deep influence on the CV of fatigue life. 
 

 
Fig. 8. Crack propagation histories with random parameters 
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Once the design variables were identified, the attention had to be focused on the type of 
structure that one wants to use as a reference; in the present case, a simple riveted lap joint 
for aeronautical application was chosen (fig. 9), composed by two 2024-T3 aluminium 
sheets, each 1 mm thick, with 3 rows of 10 columns of 5 mm rivets and a pitch of 25 mm. 
Several reasons suggest to analyze such a structure before beginning a really probabilistic 
study; for example, the state of stress induced into the component by external loads has to 
be evaluated and then it is important to know the interactions between existing singularities 
when a MSD (Multi-Site Damage) or even a WFD (Widespread Fatigue Damage) takes 
place. Several studies were carried out, in fact (for example, Horst, 2005), considering a 
probabilistic initiation of cracks followed by a deterministic propagation, on the basis that 
such a procedure can use very simple techniques, such as compounding (Rooke, 1986). Even 
if such a possibility is a very appealing one, as it is very fast, at least once the appropriate 
fundamental solutions have been found and recorded, some doubts arise when one comes 
to its feasibility. 
The fundamental equation of compounding method is indeed as follows: 
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Fig. 9. The model used to study the aeronautical panel in WFD conditions 
 
where the SIF at the crack tip of the crack we want to investigate is expressed by means of 
the SIF at the same location for the fundamental solution, K*, plus the increase, with respect 
to the same ‘fundamental’ SIF, (Ki –K*), induced by each other singularity, taken one at a 
time, plus the effect of interactions between existing singularities, still expressed as a SIF, Ke. 
As the largest part of literature is related to the case of a few cracks, the Ke term is usually 
neglected, but that assumption appears to be too weak when dealing with WFD studies, 
where the singularities approach each other; therefore one of the main reasons to carry out 
such deterministic analysis is to verify the extent of this approximation. It must be stressed 
that no widely known result is available for the case of rivet-loaded holes, at least for cases 
matching with the object of the present analysis; even the most known papers, which we 
quoted above deal with the evaluation of SIF for cracks which initiate on the edge of a 

loaded hole, but it is important to know the consequence of rivet load on cracks which arise 
elsewhere. 
Another aspect, related to the previous one, is the analysis of the load carried by each pitch 
as damage propagates; as the compliance of partially cracked pitches increases with 
damage, one is inclined to guess that the mean load carried by those zones decreases, but 
the nonlinearity of stresses induced by geometrical singularities makes the quantitative 
measure of such a variation difficult to evaluate; what’s more, the usual expression adopted 
for SIF comes from fundamental cases where just one singularity is present and it is given as 
a linear function of remote stress. One has to guess if such a reference variable as the stress 
at infinity is still meaningful in WFD cases. 
Furthermore, starting to study the reference structure, an appealing idea to get a fast 
solution can be to decompose the structure in simple and similar details, each including one 
pitch, to be analyzed separately and then added together, considering each of them as a 
finite element or better as a finite strip; that idea induces to consider the problem of the 
interactions between adjacent details. 
In fact, even if the structure is considered to be a two-dimensional one, the propagation of 
damage in different places brings the consequence of varying interactions, for both normal 
and shearing stresses. For all reasons above, an extensive analysis of the reference structure 
is to be carried out in presence of different MSD scenarios; in order to get fast solutions, use 
can be made of the well known BEASY® commercial code, but different cases are to be 
verified by means of more complex models. 
On the basis of the said controls, a wide set of scenarios could be explored, with two, three 
and also four cracks existing at a time, using a two-dimensional DBEM model; in the present 
case, a 100 MPa remote stress was considered, which was transferred to the sheet through 
the rivets according to a 37%, 26% and 37% distribution of load, as it is usually accepted in 
literature; that load was applied through an opportune pressure distribution on the edge of 
each hole. This model, however, cannot take into account two effects, i.e. the limited 
compliance of holes, due to the presence of rivets and the variations of the load carried by 
rivets mounted in cracked holes; both those aspects, however, were considered as not very 
relevant, following the control runs carried out by FEM. 
 

 
Fig. 10. The code used to represent WFD scenarios 
 
For a better understanding of the following illustrations, one has to refer to fig. 10, where we 
show the code adopted to identify the cracks; each hole is numbered and each hole side is 
indicated by a capital letter, followed, if it is the case, by the crack length in mm; therefore, 
for example, E5J7P3 identifies the case when three cracks are present, the first, 5 mm long, 
being at the left side of the third hole (third pitch, considering sheet edges), another, 7 mm 
long, at the right side of the fifth hole (sixth pitch), and the last, 3 mm long, at the left side of 
the eight hole (eighth pitch). 
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and also four cracks existing at a time, using a two-dimensional DBEM model; in the present 
case, a 100 MPa remote stress was considered, which was transferred to the sheet through 
the rivets according to a 37%, 26% and 37% distribution of load, as it is usually accepted in 
literature; that load was applied through an opportune pressure distribution on the edge of 
each hole. This model, however, cannot take into account two effects, i.e. the limited 
compliance of holes, due to the presence of rivets and the variations of the load carried by 
rivets mounted in cracked holes; both those aspects, however, were considered as not very 
relevant, following the control runs carried out by FEM. 
 

 
Fig. 10. The code used to represent WFD scenarios 
 
For a better understanding of the following illustrations, one has to refer to fig. 10, where we 
show the code adopted to identify the cracks; each hole is numbered and each hole side is 
indicated by a capital letter, followed, if it is the case, by the crack length in mm; therefore, 
for example, E5J7P3 identifies the case when three cracks are present, the first, 5 mm long, 
being at the left side of the third hole (third pitch, considering sheet edges), another, 7 mm 
long, at the right side of the fifth hole (sixth pitch), and the last, 3 mm long, at the left side of 
the eight hole (eighth pitch). 

www.intechopen.com



Stochastic Control450

 
Fig. 11. Behaviour of J2K2Mx scenario 
 

 
Fig. 12. Mean longitudinal stress loading different  pitches for a 2 mm crack in pitch 7 
 

 
Fig. 13. Mean longitudinal stress loading different pitches for a 4 mm crack in pitch 7 

In fig. 11 a three cracks scenario is represented, where in pitch 6 there are two cracks, each 2 
mm long and another crack is growing at the right edge of the seventh hole, i.e. in the 
adjacent seventh pitch; if we consider only LEFM, we can observe that the leftmost crack (at 
location J) is not much influenced by the presence of the propagating crack at location M, 
while the central one exhibits an increase in SIF which can reach about 20%.  
 

 
Fig. 14. Mean longitudinal stress loading different pitches for a 12 mm crack in pitch 7 

 
The whole process can be observed by considering the mean longitudinal stress for different 
scenarios, as illustrated in Fig. 12, 13 and 14; in the first one, we can observe a progressive 
increase in the mean longitudinal stress around pitch no. 6, which is the most severely 
reduced and the influence of the small crack at location M is not very high. 
As the length of crack in pitch 7 increases, however, the mean longitudinal stresses in both 
pitches 6 and 7 becomes quite similar and much higher of what is recorded in safe zones, 
where the same longitudinal stresses are not much increased in respect to what is recorded 
for a safe structure, because the transfer of load is distributed among many pitches. 
The main results obtained through the previously discussed analysis can be summarized by 
observing that in complex scenarios high interactions exist between singularities and 
damaged zones, which can prevent the use of simple techniques such as compounding, but 
that the specific zone to be examined gets up to a single pitch beyond the cracked ones, of 
course on both sides. At the same time, as expected, we can observe that for WFD 
conditions, in presence of large cracks, the stress levels become so high that the use of LEFM 
can be made only from a qualitative standpoint. 
If some knowledge about what to expect and how the coupled sheets will behave during the 
accumulation of damage has been obtained at this point of the analysis, we also realize, as 
pointed above, that no simple method can be used to evaluate the statistics of failure times, 
as different aspects will oppose and first of all the amount of the interactions between 
cracked holes; for that reason the only way which appears to be of some value is the direct 
M-C interaction as applied to the whole component, i.e. the evaluation of the ‘true’ history 
foe the sheets, to be performed the opportune number of times to extract reliable statistics; 
as the first problem the analyst has to overcome in such cases is the one related to the time 
consumption, it is of uttermost importance to use the most direct and quick techniques to 
obtain the desired results; for example, the use of DBEM coupled with an in-house 
developed code can give, if opportunely built, such guarantees. 
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In the version we are referring to, the structure was considered to be entirely safe at the 
beginning of each trial; then a damage process followed, which was considered as to be of 
Markow type. For the sake of brevity we shall not recall here the characters of such a 
process, which we consider to be widely known today; we simply mention that we have to 
define the initial scenario, the damage initiation criterion and the transitional probabilities 
for damage steps. In any case, we have to point out that other hypothesis could be assumed 
and first that of an initial damage state as related to EIFS (Equivalent Initial Flaw Size) or to 
the case of a rogue flaw, for example, don’t imply any particular difficulty. 
Two possible crack locations were considered at each hole, corresponding to the direction 
normal to the remote stress;  the probability distribution of crack appearance in time was 
considered as lognormal, given by the following function: 
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with an immediate meaning of the different parameters; it has to be noted that in our case 
the experimental results available in literature were adapted to obtain P-S-N curves, in order 
to make the statistics dependent on the stress level. At each time of the analysis the 
extraction of a random number for each of the still safe locations was carried out to 
represent the probability of damage cumulated locally and compared with the probability 
coming from eq. (10) above; in the positive case, a new crack was considered as initiated in 
the opportune location. 
In order to save time, the code started to perform the search only at a time where the 
probability to find at least one cracked location was not less than a quantity p chosen by the 
user; it is well known that, if pf is the probability of a given outcome, the probability that the 
same outcome is found at least for one among n cases happening simultaneously is given 
by: 

 nfp11p  ;            (11) 
 

in our case n is the number of possible locations, thus obtaining the initial analysis time, by 
inverting the probability function corresponding to eq. (11) above; in our trials it was 
generally adopted p = 0.005, which revealed to be a conservative choice, but of course other 
values could also be accepted. A particular choice had also to be made about the kind and 
the geometry of the initial crack; it is evident that to follow the damage process accurately a 
defect as small as possible has to be considered, for example a fraction of mm, but in that 
case some difficulties arise. 
For example, such a small crack would fall in the range of short cracks and would, therefore, 
require a different treatment in propagation; in order to limit our analysis to a two-
dimensional case we had to consider a crack which was born as a through one and therefore 
we choose it to be characterized by a length equal to the thickness of the sheet, i.e., 1.0 mm 
in our case. 
Our choice was also justified by the fact that generally the experimental tests used to define 
the statistics represented in eq. (10) above record the appearance of a crack when the defect 
reaches a given length or, if carried out on drilled specimens, even match the initiation and 
the failure times, considering that in such cases the propagation times are very short. Given 

an opportune integration step, the same random extraction was performed in 
correspondence of still safe locations, up to the time (cycle) when all holes were cracked; 
those already initiated were considered as propagating defects, integrating Paris-Erdogan’s 
law on the basis of SIF values recorded at the previous instant. Therefore, at each step the 
code looked for still safe locations, where it performed the random extraction to verify the 
possible initiation of defect, and at the same time, when it met a cracked location, it looked 
for the SIF value recorded in the previous step and, considering it as constant in the step, 
carried out the integration of the growth law in order to obtain the new defect length. 
The core of the analysis was the coupling of the code with a DBEM module, which in our 
case was the commercial code BEASY®; a reference input file, representing the safe 
structure, was prepared by the user and submitted to the code, which analyzed the file, 
interpreted it and defined the possible crack locations; then, after completing the evaluations 
needed at the particular step, it would build a new file which contained the same structure, 
but as damaged as it came from the current analysis and it submitted it to BEASY®; once the 
DBEM run was carried out, the code read the output files, extracted the SIF values 
pertaining to each location and performed a new evaluation. For each ligament the analysis 
ended when the distance between two singularities was smaller than the plastic radius, as 
given by Irwin 
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where σy is the yield stress and KI the mode-I SIF; that measure is adopted for cracks 
approaching a hole or an edge, while for the case of two concurrent cracks the limit distance 
is considered to be given by the sum of the plastic radiuses pertaining to the two defects. 
Once such limit distance was reached, the ligament was considered as broken, in the sense 
that no larger cracks could be formed; however, to take into account the capability of the 
ligament to still carry some load, even in the plastic field, the same net section was still 
considered in the following steps, thus renouncing to take into account the plastic behaviour 
of the material. Therefore, the generic M-C trial was considered as ended when one of three 
conditions are verified, the first being the easiest, i.e. when a limit number of cycles given by 
the user was reached. The second possibility was that the mean longitudinal stress 
evaluated in the residual net section reached the yield stress of the material and the third, 
obviously, was met when all ligaments were broken. Several topics are to be further 
specified and first of all the probabilistic capabilities of the code, which are not limited to the 
initiation step. The extent of the probabilistic analysis can be defined by the user, but in the 
general case, it refers to both loading and propagation parameters. 
For the latter, user inputs the statistics of the parameters, considering a joint normal density 
which couples lnC and n, with a normal marginal distribution for the second parameter; at 
each propagation step the code extracted at each location new values to be used in the 
integration of the growth law. 
The variation of remote stress was performed in the same way, but it was of greater 
consequences; first of all we have to mention that a new value of remote stress was extracted 
at the beginning of each step from the statistical distribution that, for the time being, we 
considered as a normal one, and then kept constant during the whole step: therefore, 
variations which occurred for shorter times went unaccounted. The problem which was met 
when dealing with a variable load concerned the probability of crack initiation, more than 
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the propagation phase; that’s because the variation of stress implies the use of some damage 
accumulation algorithm, which we used in the linear form of Miner’s law, being the most 
used one. 
 

 
Fig. 15. Cdfs’ for a given number of cracked holes in time 

 
However, we have to observe that if the number of cycles to crack initiation is a random 
variable, as we considered above, the simple sum of deterministic ratios which appears in 
Miner’s law cannot be accepted, as pointed out by Hashin (1980;  1983), the same sum 
having a probabilistic meaning; therefore, the sum of two random variables, i.e. the  damage 
cumulated and the one corresponding to the next step, has to be carried out by performing 
the convolution of the two pdfs’ involved. This task is carried out by the code, in the present 
version, by a rather crude technique, recording in a file both the damage cumulated at each 
location and the new one and then performing the integration by the trapezoidal rule. 
At the end of all M-C trials, a final part of our code carried out the statistical analysis of 
results in such a way as to be dedicated to the kind of problem in hand and to give useful 
results; for example, we could obtain, as usually, the statistics of initiation and failure times, 
but also the cumulative density function (cdf) of particular scenarios, as that of cracks longer 
than a given size, or including an assigned number of holes, as it is illustrated in fig. 15. 

 
4. Multivariate optimization of structures and design 

The aim of the previous discussion was the evaluation of the probability of failure of a given 
structure, with assigned statistics of all the design variables involved, but that is just one of 
the many aspects which can be dealt within a random analysis of a structural design. In 
many cases, in fact, one is interested to the combined effects of input variables on some kind 
of answer or quality of the resulting product, which can be defined as weight, inertia, 
stiffness, cost, or others; sometimes one wishes to optimize one or several properties of the 
result, either maximizing or minimizing them, and different parameters can give to the 

design opposing tendencies, as it happens for example when one wishes to increase some 
stiffness of the designed component, while keeping its weight as low as possible.  
 

 
Fig. 16. How the statistics of the result depend on the mean value of the control variables 

 
In any case, one must consider that, at least in the structural field for the case of large 
deformations, the relationship between the statistic of the response and that of a generic 
design variable for a complex structure is in general a non-linear one; it is in fact evident 
from fig. 16 that two different mean values for the random variable x, say xA and xB, even in 
presence of the same standard variation, correspond to responses centered in yA and yB, 
whose coefficients of variation are certainly very different from each other. In those cases, 
one has to expect that small variations of input can imply large differences for output 
characteristics, in dependence of the value around which input is centered; that aspect is of 
relevant importance in all those cases where one has to take into account the influences 
exerted by manufacturing processes and by the settings of the many input parameters 
(control variables), as they can give results which mismatch with the prescribed 
requirements, if not themselves wrong. 
Two are the noteworthy cases, among others, i.e. that were one wish to obtain a given result 
with the largest probability, for example to limit scraps, and the other, where one wishes to 
obtain a design, which is called ‘robust’, whose sensitivity to the statistics of control 
variables is as little as possible. 
Usually, that problem can be solved for simple cases by assigning the coefficients of 
variation of the design variables and looking for the corresponding mean values such as to 
attain the required result; the above mentioned hypothesis referring to the constancy of the 
coefficients of variation is usually justified with the connection between variance and 
quality levels of the production equipments,  not to mention the effect of the nowadays 
probabilistic techniques, which let introduce just one unknown in correspondence of each 
variable. 
Consequently, while in the usual probabilistic problem we are looking for the consequences 
on the realization of a product arising from the assumption of certain distributions of the 
design variables, in the theory of optimization and robust design the procedure is reversed, 
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as we now look for those statistical parameters of the design variables such as to produce an 
assigned result (target), characterized by a given probability of failure. 
It must be considered, however, that no hypothesis can be introduced about the uniqueness 
of the result, in the sense that more than one design can exist such as to satisfy the assigned 
probability, and that the result depends on the starting point of the analysis, which is a well 
known problem also in other cases of probabilistic analysis. Therefore, the most useful way 
to proceed is to define the target as a function of a given design solution, for example of the 
result of a deterministic procedure, in order to obtain a feasible or convenient solution. 
The main point of multi-objective optimization is the search for the so-called Pareto-set 
solutions; one starts looking for all feasible solutions, those which don’t violate any 
constraint, and then compare them; in this way, solutions can be classified in two groups, 
i.e. the dominating ones, which are better than the others for all targets (the ‘dominated’ 
solutions) and which are non-dominating among each other. In other words, the Pareto-set 
is composed by all feasible solutions which are non-dominating each other, i.e. which are 
not better for at least one condition, while they are all better than the dominated solutions. 
As it is clear from above, the search for Pareto-set is just a generalization of the optimization 
problem and therefore a procedure whatever of the many available ones can be used; for 
example, genetic algorithm search can be conveniently adopted, even if in a very general 
way (for example, MOGA, ‘Multi-Objective Genetic Algorithm’ and all derived kinds), 
coupled with some comparison technique; it is evident that this procedure can be used at 
first in a deterministic field, but, if we apply at each search a probabilistic sense, i.e. if we say 
that the obtained solution has to be a dominating one with a given probability of success (or, 
in reverse, of failure) we can translate the same problem in a random sense; of course, one 
has to take into account the large increase of solutions to be obtained in such a way as to 
build a statistic for each case to evaluate the required probability. 
In any case, at the end of the aforesaid procedure one has a number of non-dominating 
solutions, among which the ‘best’ one is hopefully included and therefore one has to match 
against the problem of choosing among them. That is the subject of a ‘decision making’ 
procedure, for which several techniques exist, none of them being of general use; the basic 
procedure is to rank the solutions according to some principle which is formulated by the 
user, for example setting a ‘goal’ and evaluating the distance from each solution, to end 
choosing that whose distance is a minimum. The different commercial codes (for example, 
Mode-Frontier is well known among such codes) usually have some internal routines for 
managing decisions, where one can choose among different criteria. 
More or less, the same procedure which we have just introduced can be used to obtain a 
design which exhibits an assigned probability of failure (i.e. of mismatching the required 
properties)  by means of a correct choice of the mean values of the control variables. This 
problem can be effectively dealt with by an SDI (Stochastic Design Improvement)  process, 
which is carried out through an convenient number of  MC (here called runs) as well as of 
the analysis of the intermediate results. In fact, input - i.e. design variables x - and output - 
i.e. target y - of an engineering system can be connected by means of a functional relation of 
the type 
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which in the largest part of the applications cannot be defined analytically, but only rather 
ideally deduced because of the its complex nature; in practice, it can be obtained by 

considering a sample xi and examining the response yi, which can be carried out by a 
simulation procedure and first of all by one of M-C techniques, as recalled above. 
Considering a whole set of M-C samples, the output can be expressed by a linearized Taylor 
expansion centered about the mean values of the control variables, as 
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where i represents the vector of mean values of input/output variables and where the 
gradient matrix G can be obtained numerically, carrying out a multivariate regression of y 
on the x sets obtained by M-C sampling. If y0 is the required target, we can find the new x0 
values inverting the relation above, i.e. by 
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as we are dealing with probabilities, the real target is the mean value of the output, which 
we compare with the mean value of the input, and, considering that, as we shall illustrate 
below, the procedure will evolve by an iterative technique, it can be stated that the relation 
above has to be modified as follows, considering the update between the k-th and the (k+1)-
th step: 
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The SDI technique is based on the assumption that the cloud of points corresponding to the 
results obtained from a set of MC trials can be moved toward a desired position in the N-
dimensional space such as to give the desired result (target) and that the amplitude of the 
required displacement can be forecast through a close analysis of the points which are in the 
same cloud (fig 17): in effects, it is assumed that the shape and size of the cloud don't change 
greatly if the displacement is small enough; it is therefore immediate to realize that an SDI 
process is composed by several sets of MC trials (runs) with intermediate estimates of the 
required displacement. 
 

 
Fig. 17. The principles of SDI processes 
 
It is also clear that the assumption about the invariance of the cloud can be kept just in order 
to carry out the multivariate regression which is needed to perform a new step - i.e. the 
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evaluation of the G matrix - but that subsequently a new and correct evaluation of the cloud 
is needed; in order to save time, the same evaluation can be carried out every k steps, but of 
course, as k increases, the step amplitude has to be correspondently decreased. It is also 
immediate that the displacement is obtained by changing the statistics of the design 
variables and in particular by changing their mean (nominal) values, as in the now available 
version of the method all distributions are assumed to be uniform, in order to avoid the 
gathering of results around the mode value. It is also to be pointed out that sometimes the 
process fails to accomplish its task because of the existing physical limits, but in any case 
SDI allows to quickly appreciate the feasibility of a specific design, therefore making easier 
its improvement. 
Of course, it may happen that other stochastic variables are present in the problem (the so 
called background variables): they can be characterized by any type of statistical 
distribution included in the code library, but they are not modified during the process. 
Therefore, the SDI process is quite different for example from the classical design 
optimization, where the designer tries to minimize a given objective function with no 
previous knowledge of the minimum value, at least in the step of the problem formulation. 
On the contrary, in the case of the SDI process, it is first stated what is the value that the 
objective function has to reach, i.e. its target value, according to a particular criterion which 
can be expressed in terms of maximum displacement, maximum stress, or other. The SDI 
process gives information about the possibility to reach the objective within the physical 
limits of the problem and determines which values the project variables must have in order 
to get it. In other words, the designer specifies the value that an assigned output variable 
has to reach and the SDI process determines those values of the project variables which 
ensure that the objective variable becomes equal to the target in the mean sense. Therefore, 
according to the requirements of the problem, the user defines a set of variables as control 
variables, which are then characterized from a uniform statistical distribution (natural 
variability) within which the procedure can let them vary, while observing the 
corresponding physical (engineering) limits. In the case of a single output variable, the 
procedure evaluates the Euclidean or Mahalanobis distance of the objective variable from 
the target after each trial: 
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where yi is the value of the objective variable obtained from the i-th iteration, y* is the target 
value and N is the number of trials per run. Then, it is possible to find among the worked 
trials that one for which the said distance gets the smallest value and subsequently the 
procedure redefines each project variable according to a new uniform distribution with a 
mean value equal to that used in such “best" trial. The limits of natural variability are 
accordingly moved of the same quantity of the mean in such way as to save the amplitude 
of the physical variability.  
If the target is defined by a set of output variables, the displacement toward the condition 
where each one has a desired (target) value is carried out considering the distance as 
expressed by: 
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where k represents the generic output variable. If the variables are dimensionally different it 
is advisable to use a normalized expression of the Euclidean distance: 
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but in this case it is of course essential to assign weight factors ωk to define the relative 
importance of each variable. Several variations of the basic procedures are available; for 
example, it is possible to define the target by means of a function which implies an equality 
or even an inequality; in the latter case the distance is to be considered null if the inequality 
is satisfied. Once the project variables have been redefined a new run is performed and the 
process restarts up to the completion of the assigned number of shots. It is possible to plan a 
criterion of arrest in such way as to make the analysis stop when the distance from the target 
reaches a given value. In the most cases, it is desirable to control the state of the analysis 
with a real-time monitoring with the purpose to realize if a satisfactory condition has been 
obtained. 

 
5. Examples of multivariate optimization  

5.1 Study of a riveting operation 
The first example we are to illustrate is about the study of a riveting operation; in that case 
we tried to maximize the residual compression load between the sheets (or, what is the 
same, the traction load in the stem of the rivet) while keeping the radial stress acting on the 
wall of the hole as low as possible; the relevant parameters adopted to work out this 
example are recorded in Tab. 1. 
 

RGR Hole Radius Variable mm 2.030 2.055
RSTEM Shank Radius Variable mm 1.970 2.020
LGR Shank Length Variable mm 7.600 8.400
AVZ Hammer Stroke Variable mm 3.500 4.500
EYG Young Modulus Variable MPa 65,000 75,000
THK Sheets Thickness Constant mm 1.000
SIZ Yield Stress Constant MPa 215.000
VLZ Hammer Speed Constant mm/sec 250.000

 
Table 1. Relevant parameters for riveting optimization 
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same, the traction load in the stem of the rivet) while keeping the radial stress acting on the 
wall of the hole as low as possible; the relevant parameters adopted to work out this 
example are recorded in Tab. 1. 
 

RGR Hole Radius Variable mm 2.030 2.055
RSTEM Shank Radius Variable mm 1.970 2.020
LGR Shank Length Variable mm 7.600 8.400
AVZ Hammer Stroke Variable mm 3.500 4.500
EYG Young Modulus Variable MPa 65,000 75,000
THK Sheets Thickness Constant mm 1.000
SIZ Yield Stress Constant MPa 215.000
VLZ Hammer Speed Constant mm/sec 250.000

 
Table 1. Relevant parameters for riveting optimization 
 

www.intechopen.com



Stochastic Control460

It is to be said that in this example no relevant result was obtained, because of the ranges of 
variation of the different parameters were very narrow, but in any case it can be useful to 
quote it, as it defines a procedure path which is quite general and which shows very clearly 
the different steps we had to follow. The commercial code used was Mode-Frontier®, which 
is now very often adopted in the field of multi-objective optimization; that code let the user 
build his own problem with a logic procedure which makes use of icons, each of them 
corresponding to a variable or to a step of the procedure, through which the user can readily 
build his problem as well as the chosen technique of solution; for example, with reference to 
the table above, in our case the logic tree was that illustrated in fig. 18. 
 

 
Fig. 18. The building of the problem in Mode-Frontier environment 

 
Summarizing the procedure, after defining all variables and parameters, the work can be set 
to be run by means of an user-defined script (AnsysLsDyna.bat in fig. 18), in such a way that 
the code knows that the current values of variables and parameters are to be found 
somewhere (in Ansys02.inp), to be worked somehow, for example according to a DOE 
procedure or to a genetic algorithm or other, and that the relevant results will be saved in 
another file (in Output.txt in our case); those results are to be compared with all the 
previously obtained ones in order to get the stationary values of interest (in our case, the 
largest residual load and the smallest residual stress). 
The kernel of the procedure, of course, is stored in the script, where the code finds how to 
pass from input data to output results; in our case, the input values were embedded in an 
input file for Ansys® preprocessor, which would built a file to be worked by Ls-Dyna® to 
simulate the riveting operation; as there was no correct correspondence between those two 
codes, a home-made routine was called to match requirements; another home-made routine 
would then extract the results of interest from the output files of Ls-Dyna®. 
A first pass from Mode-Frontier® was thus carried out, in such a way as to perform a simple 
3-levels DOE analysis of the problem; a second task which was asked from the code was to 
build the response surface of the problem; there was no theoretical reason to behave in such 
a way, but it was adopted just to spare time, as each Ls-Dyna trial was very time-expensive, 
if compared with the use of RS: therefore the final results were ‘virtual’, in the sense that 
they didn’t came from the workout of the real problem, but from its approximate analytic 
representation. 
 

 
Fig. 19. Pareto-set for the riveting problem 
 
Thus, the Pareto-set for the riveting problem was obtained, as it is shown in fig. 19; it must 
be realized that the number of useful non dominated results was much larger than it can be 
shown in the same picture, but, because of the narrow ranges of variance, they overlap and 
don’t appear as distinct points. 
The last step was the choice of the most interesting result, which was carried out by means 
of the Decision Manager routine, which is also a part of Mode-Frontier code. 

 
5.2 The design improvement of a stiffened panel 
As a second example we show how a home-made procedure, based on the SDI technique, 
was used to perform a preliminary robust design of a complex structural component; this 
procedure is illustrated with reference to the case of a stiffened aeronautical panel, whose 
residual strength in presence of cracks had to be improved. Numerical results on the 
reference component had been validated by using experimental results from literature. 
To demonstrate the procedure described in the previous section, a stiffened panel 
constituted by a skin made of Al alloy 2024 T3, divided in three bays by four stiffeners made 
of Al alloy 7075 T5 (E = 67000 MPa, σy = 525 MPa, σu = 579 MPa, δult = 16%) was 
considered. The longitudinal size of the panel was 1830 mm, its transversal width 1190 mm, 
the stringer pitch 340 mm and the nominal thickness 1.27 mm; the stiffeners were 2.06 mm 
high and 45 mm wide. Each stiffener was connected to the skin by two rows of rivets 4.0 
mm diameter.  
A finite element model constituted by 8-noded solid elements had been previously 
developed and analyzed by using the WARP 3D® finite element code. The propagation of 
two cracks, with the initial lengths of 120 mm and 150 mm respectively, had been simulated 
by considering the Gurson-Tveergard model, as implemented in the same code, whose 
parameters were calibrated.  
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two cracks, with the initial lengths of 120 mm and 150 mm respectively, had been simulated 
by considering the Gurson-Tveergard model, as implemented in the same code, whose 
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Fig. 20. The model of the stiffened panel 
 
In the proposed application of the SDI procedure, a substructure of the panel was 
considered (fig. 20), corresponding to its single central bay (the part of the panel within the 
two central stringers) with a fixed width equal to 680 mm, where a central through-crack 
was assumed to exist, with an initial length of 20 mm. The pitch between the two stringers 
and their heights were considered as design variables. As natural variables the stringers 
pitch (±10.0 range) and the stringers height (±0.4 mm range) were assumed, while the 
engineering intervals of the variables was considered to be respectively [306 ÷374 mm] and 
[1.03 ÷ 3.09 mm]. An increment of the maximum value of the residual strength curve (Rmax) 
of the 10 %, with a success probability greater than 0.80, was assumed as the target.  
 

 
Fig. 21. Path of clouds for Rmax as a function of the stringer pitch 

 
Fig. 22. Stringer pitch vs. Target 
 

 
Fig 23. Target vs. shot per run 

 

 
Fig. 24. Mean value of target vs. shot 
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Fig. 25. R-curves obtained for the best shot of each run 
 

 
Fig. 26. The global FEM model of the absorber 
 
A total of 6 runs, each one of 15 shots, were considered adequate to satisfy the target, even if 
at the end of the procedure an extended MC had to be performed in order to assess the 
obtained results from the 15 shots of the last satisfying run. In the following fig. 21 and 22 
the design variables vs. the maximum value of the residual strength are illustrated. In 
correspondence to these two plots we recorded in fig. 23 the values assumed by the 
maximum value of the R-curve for each shot. In the same figure the reference value 
(obtained by considering the initial nominal value of the design variables) of the maximum 
value of the R-curve is reported together with the target value (dashed line). As it is possible 
to observe, 9 of the 15 shots of the 5th run overcame the target value; it means that by using 
the corresponding mean value of the design variable the probability to satisfy the target is of 
about 0.60.   
Therefore, another run (the 6th) was carried out and just one shot didn’t overcome the target 
value, so that the approximate probability to satisfy the target is about 0.93. The mean 
values of the design variables in the 6th run were respectively 318.8 mm for the stringer 
pitch and 2.89 mm for the stinger height; the mean value of the output variable was 116000 

N. An extended MC (55 trials) was performed on the basis of the statistics of the 6th run and 
the results showed in the fig. 24 were obtained, where the mean value of the residual 
strength vs. the number of the trial has been recorded. The new mean of the output variable 
was 117000 N with a standard deviation of 1800 N and the probability to satisfy the target 
was exactly 0.80. At the end, in  fig. 25, the six R-curves corresponding to the six best shots 
for each run are reported, together with the reference R-curve. 

 
5.3 Optimization of an impact absorber 
As a last example, the SDI procedure was applied to reduce the maximum value of the 
displacement in time of a rigid barrier that impacted the rear substructure of a vehicle (fig. 
26) in a crash test. The reasons which lie behind such a choice are to be found in the 
increasing interest in numerical analysis of crashworthiness of vehicles because of the more 
strict regulations concerning the protection of the occupants and related fields. In Europe 
the present standards to be used in homologation of vehicles are more or less derived by 
U.S. Code of Federal Regulations, CFR-49.571, but ever-increasing applications are done 
with reference to other standards, and first of all to EURONCAP. The use of such standards, 
who are mainly directed to limit biomechanical consequences of the impact - which are 
controlled by referring the results to standard indexes related to different parts of human 
body - implies that, besides the introduction of specific safety appliances, as safety belts and 
airbags, the main strength of car body has to be located in the cell which holds passengers, 
in order to obtain a sufficient survival volume for the occupants; the other parts of the 
vehicle are only subsidiary ones, because of the presence of absorbers which reduce the 
impact energy which is released on the cell. 
We can add to all previous considerations that the present case study was adopted as it is 
well known that vehicle components come from mass production, where geometrical 
imperfections are to be expected as well as a certain scatter of the mechanical properties of 
the used materials; therefore, it can't be avoided that the said variations induce some 
differences of response among otherwise similar components, what can be relevant in 
particular cases and first of all in impact conditions; the analysis which we carried out was 
directed to define, through the use of the previously sketched procedure, the general criteria 
and the methodology required to develop a robust design of those vehicle components 
which are directly used to limit plastic deformations in impact (impact absorber). In our 
particular case, the study was carried out with reference to the mentioned substructure, 
whose effective behaviour in impact (hammer) conditions is known and is associated to 
those deterministic nominal values of the design variable actually in use, with the 
immediate objective to obtain a reduction of the longitudinal deformation of the impact 
absorber. 
The substructure is a part of a rear frame of a vehicle, complete with cross-bar and 
girders, where impact absorbers are inserted; the group is acted upon by a hammer which 
is constrained to move in the longitudinal direction of the vehicle with an initial impact 
speed of 16 km/h; the FE model used for the structure consisted of about 23400 nodes and 
about 21900  elements of beam, shell and contact type, while the hammer was modelled as 
a “rigid wall". The thicknesses of the internal and external C-shaped plates of the impact 
absorbers were selected as project variables, with a uniform statistical distribution in the 
interval [1.7mm±1.9mm]; lower and upper engineering limits were respectively 1.5 mm 
and 2.1 mm. 
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This choice was carried out by preliminary performing, by using the probabilistic module of 
ANSYS® ver 8.0 linked to the explicit FE module of LS-Dyna® included in the same code, a 
sensitivity analysis of an opportune set of design variables on the objective variable, which 
is, as already stated before, the maximum displacement of the hammer. 
As design variables to be involved in the sensitivity analysis we chose, besides the inner and 
outer thicknesses of the C-shaped profile of the impact absorbers, the mechanical properties 
of the three materials constituting the main components of the substructure (the unique 
young modulus and the three yielding stresses); it was clear from the obtained results that 
while the relationship existing between the thicknesses of the inner and outer C-shaped 
profile of the impact absorber and the objective variable is quite linear, as well as the 
relationship between the yielding stress of the impact absorber material and the same 
objective variable, a relationship between the other considered variables and the objective 
variable is undetermined. 
 

 
Table 2. The properties of the variables used in the absorber case 
 
It was also quite evident that the only design variables which influence the objective one 
were the mechanical properties of the material of the impact absorber and the thicknesses of 
its profiles. A preliminary deterministic run, carried out with the actual design data of the 
structure gave for the objective variable a 95.94 mm “nominal" value, which was reached 
after a time of 38.6 ms from the beginning of the impact. The purpose of SDI in our case was 

assumed the reduction of that displacement by 10% with respect to this nominal value and 
therefore an 86.35 mm target value was assigned. 
The mechanical properties of the three materials constituting the absorbers and the rear 
crossbar of the examined substructure were also considered as random; it was assumed that 
their characteristic stress-strain curves could vary according to a uniform law within 0.5% of 
the nominal value. This was made possible by introducing a scale factor for the 
characteristic curves of the materials, which were considered as uniformly distributed in the 
interval [0.95,1.05]. 
Moreover, four stress-strain curves were considered for each material, corresponding to as 
many specific values of the strain-rate. The relationship among those curves and the static 
one was represented, according to the method used in Ls-Dyna®, by means of a scale factor 
which let us pass from one curve to another as a function of the strain-rate; also those factors 
were assumed to be dependent on that applied to the static curve, in order to avoid possible 
overlapping. 
Therefore, the simulation involved 14 random variables, among which only 2 were 
considered as project variables; in the following Tab. 2 the properties of all the variables are 
listed. To work out the present case, the commercial well known St-Orm® code was used 
coupled with the Ls-Dyna® explicit solver for each deterministic FEM analysis and ran on a 
2600 MHz bi-processor PC, equipped with a 2 Gb RAM; SDI processing required 9 runs 
with 25 shots each, with a total of 225 MC trials, and the time required to complete a single 
LS-Dyna® simulation being of about 2 hours. 
As we already pointed out, the stochastic procedure develops through an MC iterative 
process where the input variables are redefined in each trial in such a way as to move the 
results toward an assigned target; therefore, we need first to assess what we mean as an 
attained target. 
After every run the statistics of the output variables could be obtained, as well as the 
number of times that the target was reached, which could be considered as the probability of 
attainment of the target for the particular design, expressed through the mean values of the 
input variables. It is noteworthy to specify that these data are only indicative, because the 
MC procedure developed within a single set of trials is not able to give convergent results 
due to the low number of iterations. 
Therefore, considering the procedure as ended when a run was obtained where all trials 
gave the desired target value, it was opportune to perform a final MC convergent process to 
evaluate the extent by which the target had been indeed reached, using the statistical 
distributions of the variables of the last run. For the same reason, a real-time monitoring 
could induce the designer to stop the procedure even if not all trials - but “almost" all - of 
the same run give the target as reached, also to comply with production standard and 
procedures. As we already pointed out in the previous paragraphs, the stochastic procedure 
develops through an MC iterative process where the input variables are redefined in each 
trial in such a way as to move the results toward an assigned target; therefore, we needed 
first to assess what we meant as an attained target. 
For what concerns our case study, the detailed data for every run are recorded in Tab. 3; if 
compared with the first run, the mean of the displacement distribution in the 9th run is 
reduced of 8.6% and 23/25 shots respect the target: therefore, the results of the 9th run may 
be considered as acceptable. 
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Table 3. Values of control variables in the different runs 

 

 
Fig. 27. Thickness of internal plate vs. shot 

 
In the plots of fig. 27 and fig. 28 the values of the thickness of the internal and external plates 
of the impact absorber versus the current number of shots have been illustrated. The 
variable which was subjected to the largest modifications in the SDI procedure was the 
thickness of the external plate of the impact absorber and in fact from an analysis of 
sensitivity it resulted to influence at the largest extent the distance from the target. For what 
concerns the other random variables, it resulted from the same analysis of sensitivity that 
only the material of the absorbers influences in a relevant measure the behaviour of the 
substructure. 

 
Fig. 28. Thickness of external plate vs. shot 

 

 
Fig. 29. Scatter plot of the objective variable 
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It is possible to appreciate from the scatter plots of fig. 29 and fig. 30 how the output variable 
approached the target value: in the 9th run, only 2 points fall under the line that represents the 
target and in both cases the distance is less than 0.02 and that is why the 9th run has been 
considered a good one, in order to save more iterations. In fig. 31 the experimental data related 
to the displacement of the rigid barrier vs. the time are recorded together with the numerical 
results obtained before and after the application of the SDI procedure. 
 

 
Fig. 30. Scatter plot of the distance to target 
 

 
Fig. 31. Output variable vs. Time 

The new nominal value of the design variables after the application of SDI procedure is 1.98 
mm for both of them. A very good agreement of the numerical solution is observed in 
comparison to the experimental data in the first part of the curve, where they are practically 
overlapped and where the attention has been focused during the development of numerical 
simulations necessary to complete the SDI process. The general conclusion from this study 
was that the classical numerical simulations based on nominal values of the input variables 
are not exhaustive of the phenomenon in the case of crash analyses and can bring to 
incorrect interpretations of the dynamic behaviour of the examined structure. On the 
contrary, by using an SDI approach, it is possible to have a better understanding of the 
influence of each input variable on the structural dynamic behaviour and to assign the most 
appropriate nominal values in order to have results as near as possible to the target values, 
also in presence of their natural variability. 

 
6. Some useful commercial codes 

To fully appreciate the examples above, it may be interesting to summarize briefly the main 
characteristics of the commercial codes we mentioned in the preceding sections and which 
have interesting capabilities in the probabilistic analysis of structures; what follows doesn’t 
want to constitute either a complete listing or an assessment of value for those codes, but 
only a survey of the codes we have used insofar, here published to clarify some of the topics 
we have just described. 
First of all we have to recall that the recent versions of Ansys® couple the well-established 
deterministic capabilities in FE field with some new routines which work in a probabilistic 
environment; that innovation is so much interesting because, as we already pointed out, the 
design refers to structures whose study can’t be carried out in a closed form by recourse to 
an analytical formulation; in those cases we can only hope to obtain the answer of the 
structure for a given set of loads and boundary conditions and therefore an FE run 
corresponds just to a single value of the variable set. It is only natural, therefore, that Ansys® 
extended its capabilities to carry out a Monte-Carlo analysis of the problem, for given 
statistics of the different variables and parameters. 
Therefore, on the basis of a sample file (which Ansys® calls the “analysis file” of the 
problem) using the well renowned capabilities of its pre-processor, it is possible to 
characterize each variable with a distribution – to be chosen among a rather limited family 
of types – and then entrust the code with the task to perform a given amount of trials, from 
whose results the statistics of the response, as well as its sensitivities, can be recovered. A 
very useful characteristic of Ansys® is that the code can build a Response Surface on the 
basis of the obtained results and can carry on new trials using it; therefore it is quite 
common to carry out a limited number of M-C trials – whose amount depends on the 
complexity of the structure – maybe using some DOE choice, by which the Response Surface 
can be derived. 
NESSUS®, distributed by SWRI, is a widely known and fully probabilistic code; it includes 
several probabilistic distributions to represent parameters and variables and is provided 
with both analytical and simulative methods; even if FORM, SORM, AMV+ and others are 
present, its main feature is the capability to be interfaced with Ansys®, Abaqus®, Ls-Dyna®, 
other FE codes and, at last, even with Matlab®, which widens the range of problems it can 
deal with; under those circumstances, it can work not just with the basic M-C method, but 
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also with a complete set of numerical simulative methods such as Importance Sampling, 
Adaptive Importance Sampling, and others. The outputs it can give are such as the 
cumulative distribution function of the results, the probability of failure or the performance 
level for a given probability of failure, the probabilistic sensitivity factors and the confidence 
bounds of the requested result. One important feature of NESSUS® is its capability to deal 
not only with components but also with systems, via such methods as the Efficient Global 
Reliability Analysis and the Probabilistic Fault-Tree Analysis. 
STRUREL®, distributed by RCP, is a complete package which is similar to NESSUS®, but has 
many more capabilities, as it can deal, for example, with both time-invariant and time-
variant problems. It is really much more difficult to be used, but its advantages are quite 
evident for the expert user; beside the capabilities we already quoted for the previous code, 
it can carry out risk and cost analysis, failure mode assessment, reliability assessment for 
damaged structure, development and optimisation of strategies for inspection and 
maintenance, reliability oriented structural optimisation. It can also be interfaced with 
Permas® FE code and with user-made Fortran® routines, in such a way as to make the user 
able to match with very general and complex problems; a last, but very important feature is 
the capability to carry out random vibration analysis, with reference, for example, to wave, 
wind and earthquake loading. 
The next two codes are of quite different nature, as they are to be used when one is 
interested in optimisation and in the building of a robust design. The first one, ST-Orm®, 
distributed by EASi Engineering, uses the SDI technique to find the setting of the control 
variables of a design which ensures that the assigned target is reached with a given 
probability; it uses M-C to obtain a cloud of results and then, applying multilinear 
regressions and new M-C trials, it generates families of new clouds to reach the desired 
target value. It claims to be a meta-code, in the sense that its tasks can be subdivided among 
a number of computers, each one performing a simple task in parallel, in order to save time. 
An useful characteristic of this code is the possibility to distinguish among the control 
variables, which are probabilistic variables which can vary in each cloud, and environment 
parameters which, even if random in character, always exhibit the same distribution, i.e. 
they are not displaced with clouds. All variables and parameters span in their ranges, which 
can vary with clouds but cannot go beyond the physical limits which are given by the user, 
in such a way as to exclude impossible runs. 
The last code is the well assessed Mode-Frontier®, whose aim is to carry out a multi-
objective optimisation for a given problem; it works with both deterministic and random 
variables and one of its capabilities is to build the logic of the problem by means of an iconic 
and very appealing method; as we already discussed, the kernel of the code is formed by a 
script which can be used to organize all operations and to interface with a large number of 
external routines. Once the Pareto-set of the problem is obtained, it can be submitted to the 
Decision Manager of the code, which, following different methods can help the user to 
choose among the previous results the one which is more convenient. 

 
7. Conclusions and acknowledgments 

From all the preceding sections it is apparent how a probabilistic study can contribute to the 
improvement of a structural design, as it can take into account the uncertainties that are 
present in all human projects, getting to such an accurate result as to examine also the 

manufacturing tolerances and coming to optimize scraps. It is to be understood, however, 
that such results are not easy to obtain and that it seldom happens that a first-trial analysis is 
a sound one: a good result is only achieved after many steps have been carried out, and first 
of all an accurate calibration with experimental data. It happens indeed that one of the more 
thorny problems the user has to struggle with is the accurate description of the material 
used in a particular application, as new problems usually require the description of the 
behaviour of the material in very particular conditions, which is not often available; 
therefore it happens that new tests have to be created in order to deal with new 
specifications and that the available tests only apparently match the requirements. 
It is quite clear, therefore, that in many cases the use of such new techniques can be justified 
only in particular conditions, for example when one is dealing with mass production, or 
when failure involves the loss of many lives or in other similar conditions. 
We want to acknowledge the help given by the technicians of many firms, as well by the 
researchers of our University, first of all by ing. G. Lamanna, to cooperate – and sometimes 
also to support – the researches which have been quoted in the present chapter. 
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