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1. Introduction    

The wireless communications channel constitutes the basic physical link between the 
transmitter and the receiver antennas. Its modeling has been and continues to be a 
tantalizing issue, while being one of the most fundamental components based on which 
transmitters and receivers are designed and optimized. The ultimate performance limits of 
any communication system are determined by the channel it operates in [1]. Realistic 
channel models are thus of utmost importance for system design and testing. 

In addition to exponential power path-loss, wireless channels suffer from stochastic short 
term fading (STF) due to multipath, and stochastic long term fading (LTF) due to shadowing 
depending on the geographical area. STF corresponds to severe signal envelope fluctuations, 
and occurs in densely built-up areas filled with lots of objects like buildings, vehicles, etc. 
On the other hand, LTF corresponds to less severe mean signal envelope fluctuations, and 
occurs in sparsely populated or suburban areas [2-4]. In general, LTF and STF are 
considered as superimposed and may be treated separately [4]. 

Ossanna [5] was the pioneer to characterize the statistical properties of the signal received 
by a mobile user, in terms of interference of incident and reflected waves. His model was 
better suited for describing fading occurring mainly in suburban areas (LTF environments). 
It is described by the average power loss due to distance and power loss due to reflection of 
signals from surfaces, which when measured in dB’s give rise to normal distributions, and 
this implies that the channel attenuation coefficient is log-normally distributed [4]. 
Furthermore, in mobile communications, the LTF channel models are also characterized by 
their special correlation characteristics which have been reported in [6-8]. 

Clarke [9] introduced the first comprehensive scattering model describing STF occurring 
mainly in urban areas. An easy way to simulate Clarke’s model using a computer simulation 
is described in [10]. This model was later expanded to three-dimensions (3D) by Aulin [11]. 
An indoor STF was first introduced in [12]. Most of these STF models provide information 
on the frequency response of the channel, described by the Doppler power spectral density 
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(DPSD). Aulin [11] presented a methodology to find the Doppler power spectrum by 
computing the Fourier transform of the autocorrelation function of the channel impulse 
response with respect to time. A different approach, leading to the same Doppler power 
spectrum relation was presented by Gans [13]. These STF models suggest various 
distributions for the received signal amplitude such as Rayleigh, Rician, or Nakagami. 

Models based on autoregressive and moving averages (AR) are proposed in [14, 15]. 
However, these models assume that the channel state is completely observable, which in 
reality is not the case due to additive noise, and requires long observation intervals.  First 
order Markov models for Raleigh fading have been proposed in [16, 17], and the usefulness 
of a finite-state Markov channel model is argued in [18]. 

Mobile-to-mobile (or ad hoc) wireless networks comprise nodes that freely and dynamically 
self-organize into arbitrary and/or temporary network topology without any fixed 
infrastructure support [19]. They require direct communication between a mobile 
transmitter and a mobile receiver over a wireless medium. Such mobile-to-mobile 
communication systems differ from the conventional cellular systems, where one terminal, 
the base station, is stationary, and only the mobile station is moving. As a consequence, the 
statistical properties of mobile-to-mobile links are different from cellular ones [20, 21]. 

Copious ad hoc networking research exists on layers in the open system interconnection 
(OSI) model above the physical layer. However, neglecting the physical layer while 
modeling wireless environment is error prone and should be considered more carefully [22]. 
The experimental results in [23] show that the factors at the physical layer not only affect the 
absolute performance of a protocol, but because their impact on different protocols is non-
uniform, it can even change the relative ranking among protocols for the same scenario. The 
importance of the physical layer is demonstrated in [24] by evaluating the Medium Access 
Control (MAC) performance. 

Most of the research conducted on wireless channel modeling, such as [1-4, 25, 26], deals 
mainly with deterministic wireless channel models. In these models, the speeds of the nodes 
are assumed to be constant and the statistical characteristics of the received signal are assumed 
to be fixed with time. But in reality, the propagation environment varies continuously due to 
mobility of the nodes at variable speeds and movement of objects or scatter across transmitters 
and receivers resulting in appearance or disappearance of existing paths from one instant to 
the next. As a result, the current models that assume fixed statistics are unable to capture and 
track complex time variations in the propagation environment. These time variations compel 
us to introduce more advanced dynamical models based on stochastic differential equations 
(SDEs), in order to capture higher order dynamics of the wireless channels. The random 
variables characterizing the instantaneous power in static (deterministic) channel models are 
generalized to dynamical (stochastic) models including random processes with time-varying 
statistics [27-31]. The advantage of using SDE methods is due to computational simplicity 
simply because estimation and identification can be performed recursively and in real time. 
Parts of the results appearing in this chapter were presented in [27-31].  

This chapter is organized as follows. In Section 2, the general time-varying (TV) wireless channel 
impulse response is introduced. The TV stochastic LTF, STF, and ad hoc wireless channel models 
are discussed in Sections 3, 4, and 5, respectively. Link performance for cellular and ad hoc 
channels is presented in Section 6. Finally, Section 7 provides the conclusion. 

 

2. The General Time-Varying Wireless Channel Impulse Response 

The impulse response (IR) of a wireless channel is typically characterized by time variations 
and time spreading [2]. Time variations are due to the relative motion between the 
transmitter and the receiver and temporal variations of the propagation environment. Time 
spreading is due to the fact that the emitted electromagnetic wave arrives at the receiver 
having undergone reflections, diffraction and scattering from various objects along the way, 
at different delay times. At the receiver, a random number of signal components, copies of a 
single emitted signal, arrive via different paths thus having undergone different attenuation, 
phase shifts and time delays, all of which are random and time-varying. This random 
number of signal components add vectorially giving rise to signal fluctuations, called 
multipath fading, which are responsible for the degradation of communication system 
performance. 

The general time-varying (TV) model of a wireless fading channel is typically represented 
by the following multipath low-pass equivalent IR [2] 
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transmitted signal, then the low-pass equivalent representation of the received signal is given 
by 

              
 

,

1

; , n n

N t
j t t

l l l n n l n
n

y t C t s t d r t t e s t t    
 




     (2) 

 
The multipath TV band-pass IR is given by [2] 
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where c  is the carrier frequency, and the band-pass representation of the received signal is 
given by 
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TV LTF, STF, and ad hoc dynamical channel models are considered in this chapter. The 
stochastic TV LTF channel modeling is discussed first in the next section. 

 
3. Stochastic LTF Channel Modeling 

3.1 The Traditional (Static) LTF Channel Model 
In this section, we discuss the existing static models and introduce a general approach on 
how to derive dynamical models. Before introducing the dynamical LTF channel model that 
captures both space and time variations, we first summarize and interpret the traditional 
lognormal shadowing model, which serves as a basis in the development of the subsequent 
TV model. The traditional (time-invariant) power loss (PL) in dB for a given path is given by 
[4] 
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where 0( )PL d  is the average PL in dB at a reference distance d0 from the transmitter, the 
distance d corresponds to the transmitter-receiver separation distance,   is the path-loss 
exponent which depends on the propagating medium, and 2(0; )Z  N  is a zero-mean 
Gaussian distributed random variable, which represents the variability of PL due to 
numerous reflections and possibly any other uncertainty of the propagating environment 
from one observation instant to the next. The average value of the PL described in (5) is 
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The signal attenuation coefficient, denoted ( )r d , represents how much the received signal 
magnitude is attenuated at a distance d with respect to the magnitude of the transmitted 
signal. It can be represented in terms of the power path loss as [4] 
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Since ( )[dB]PL d  is normally distributed, it is clear that the attenuation coefficient, ( )r d , is 
log-normally distributed. It can be noticed from (5)-(7) that the statistics of the PL and 
attenuation coefficient do not depend on time, and therefore these models treat PL as static 
(time-invariant). They do not take into consideration the relative motion between the 
transmitter and the receiver, or variations of the propagating environment due to mobility. 

 

Such spatial and time variations of the propagating environment are captured herein by 
modeling the PL and the envelope of the received signal as random processes that are 
functions of space and time. Moreover, and perhaps more importantly, traditional models 
do not take into consideration the correlation properties of the PL in space and at different 
observation times. In reality, such correlation properties exist, and one way to model them is 
through stochastic processes, which obey specific type of SDEs. 

 
3.2 Stochastic LTF Channel Models 
In transforming the static model to a dynamical model, the random PL in (5) is relaxed to 
become a random process, denoted by  

00,( , ) tX t     , which is a function of both time t 

and space represented by the time-delay , where  = d/c, d is the path length, c is the speed 
of light, 0 = d0/c and d0 is the reference distance. The signal attenuation is defined by 

( , )( , ) kX tS t e   , where ln(10) / 20k    [4]. For simplicity, we first introduce the TV 
lognormal model for a fixed transmitter-receiver separation distance d (or ) that captures 
the temporal variations of the propagating environment. Next, we generalize it by allowing 
both t and   to vary as the transmitter and receiver, as well as scatters, are allowed to move 
at variable speeds. This induces spatio-temporal variations in the propagating environment. 

When  is fixed, the proposed model captures the dependence of  
00,( , ) tX t      on time t. 

This corresponds to examining the time variations of the propagating environment for fixed 
transmitter-receiver separation distance. The process  

00,( , ) tX t      represents how much 

power the signal looses at a particular location as a function of time. However, since for a 
fixed distance d, the PL should be a function of distance, we choose to generate 
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where    0t

W t


 is the standard Brownian motion (zero drift, unit variance) which is 

assumed to be independent of  0 ,X t  , ( ; )N    denotes a Gaussian random variable with 

mean   and variance  , and ( )[ ]PL d dB  is the average path-loss in dB. The parameter 

 ,t   models the average time-varying PL at distance d from the transmitter, which 

corresponds to ( )[ ]PL d dB  at d indexed by t. This model tracks and converges to  ,t   as 

time progresses. The instantaneous drift  ( , ) ( , ) ( , )t t X t      represents the effect of 

pulling the process towards  ,t  , while  ,t   represents the speed of adjustment 

towards the mean. Finally,  ,t   controls the instantaneous variance or volatility of the 
process for the instantaneous drift. 
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both t and   to vary as the transmitter and receiver, as well as scatters, are allowed to move 
at variable speeds. This induces spatio-temporal variations in the propagating environment. 

When  is fixed, the proposed model captures the dependence of  
00,( , ) tX t      on time t. 

This corresponds to examining the time variations of the propagating environment for fixed 
transmitter-receiver separation distance. The process  

00,( , ) tX t      represents how much 

power the signal looses at a particular location as a function of time. However, since for a 
fixed distance d, the PL should be a function of distance, we choose to generate 
 

00,( , ) tX t      by a mean-reverting version of a general linear SDE given by [29, 30] 
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where    0t

W t


 is the standard Brownian motion (zero drift, unit variance) which is 

assumed to be independent of  0 ,X t  , ( ; )N    denotes a Gaussian random variable with 

mean   and variance  , and ( )[ ]PL d dB  is the average path-loss in dB. The parameter 

 ,t   models the average time-varying PL at distance d from the transmitter, which 

corresponds to ( )[ ]PL d dB  at d indexed by t. This model tracks and converges to  ,t   as 

time progresses. The instantaneous drift  ( , ) ( , ) ( , )t t X t      represents the effect of 

pulling the process towards  ,t  , while  ,t   represents the speed of adjustment 

towards the mean. Finally,  ,t   controls the instantaneous variance or volatility of the 
process for the instantaneous drift. 
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 . If the random processes in   0( , ) tt 
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 are 

measurable and bounded [32], then (8) has a unique solution for every 0( , )X t   given by [30] 
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where 
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t t u du    . Moreover, using Ito’s stochastic differential rule [32] on 

( , )( , ) k X tS t e    the attenuation coefficient obeys the following SDE 
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This model captures the temporal variations of the propagating environment as the random 
parameters    0

,
t

t 


 can be used to model the TV characteristics of the channel for the 

particular location . A different location is characterized by a different set of parameters 
  ,t  . 

Now, let us consider the special case when the parameters   ,t   are time invariant, i.e., 

        , ,        . In this case we need to show that the expected value of the 

dynamic PL  ,X t  , denoted by  [ , ]E X t  , converges to the traditional average PL in (6). 
The solution of the SDE model in (8) for the time-invariant case satisfies 
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where for a given set of time-invariant parameters     and if the initial 0( , )X t   is 

Gaussian or fixed, then the distribution of  ,X t   is Gaussian with mean and variance 
given by [32] 
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Expression (12) of the mean and variance shows that the statistics of the communication 
channel model vary as a function of both time t and space  . As the observation instant, t, 
becomes large, the random process  ( , )X t   converges to a Gaussian random variable with 

mean ( ) ( )[dB]PL d    and variance 2( ) / 2 ( )    . Therefore, the traditional lognormal 
model in (5) is a special case of the general TV LTF model in (8). Moreover, the distribution 
of ( , )( , ) k X tS t e    is lognormal with mean and variance 
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Now, lets go back to the more general case in which    0

,
t

t 

         0

, , , , ,
t

t t t     


. 

At a particular location , the mean of the PL process  [ , ]E X t   is required to track the time 
variations of the average PL. This is illustrated in the following example. 
 
Example 1 [30]: Let  
 

  2 / 10( , ) 1 0.15 sint T
m

tt e
T
         

  
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where  m   is the average PL at a specific location  , T is the observation interval,  ,t  = 

1400 and  ,t  = 225000 (these parameters are determined from experimental 

measurements), where for simplicity  ,t   and  ,t   are chosen to be constant, but in 

general they are functions of both t and . The variations of  ,X t   as a function of distance 
and time are represented in Figure 1. The temporal variations of the environment are 
captured by a TV  ,t   which fluctuates around different average PLs m ’s, so that each 
curve corresponds to a different location. It is noticed in Figure 1 that as time progresses, the 
process  ,X t   is pulled towards  ,t  . The speed of adjustment towards  ,t   can be 

controlled by choosing different values of  ,t  . 

Next, the general spatio-temporal lognormal model is introduced by generalizing the 
previous model to capture both space and time variations, using the fact that  ,t   is a 
function of both t and . In this case, besides initial distances, the motion of mobiles, i.e., 
their velocities and directions of motion with respect to their base stations are important 
factors to evaluate TV PLs for the links involved. This is illustrated in a simple way for the 
case of a single transmitter and a single receiver as follows: Consider a base station 
(receiver) at an initial distance d from a mobile (transmitter) that moves with a certain 
constant velocity   in a direction defined by an arbitrary constant angle  , where   is the 
angle between the direction of motion of the mobile and the distance vector that starts from 
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parameters    0
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 can be used to model the TV characteristics of the channel for the 

particular location . A different location is characterized by a different set of parameters 
  ,t  . 
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dynamic PL  ,X t  , denoted by  [ , ]E X t  , converges to the traditional average PL in (6). 
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where for a given set of time-invariant parameters     and if the initial 0( , )X t   is 

Gaussian or fixed, then the distribution of  ,X t   is Gaussian with mean and variance 
given by [32] 
 

      

 
     

0 0

0
0

( ) ( )
0

2 ( )
2 ( )2

0

( , ) ( ) 1 ( , )

1( , ) ( , )
2 ( )

t t t t

t t
t t

E X t e e E X t

eVar X t e Var X t

   

 
 

   

   
 

   

 
 

    

       
 

 (12) 

 

 

Expression (12) of the mean and variance shows that the statistics of the communication 
channel model vary as a function of both time t and space  . As the observation instant, t, 
becomes large, the random process  ( , )X t   converges to a Gaussian random variable with 
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At a particular location , the mean of the PL process  [ , ]E X t   is required to track the time 
variations of the average PL. This is illustrated in the following example. 
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where  m   is the average PL at a specific location  , T is the observation interval,  ,t  = 

1400 and  ,t  = 225000 (these parameters are determined from experimental 

measurements), where for simplicity  ,t   and  ,t   are chosen to be constant, but in 

general they are functions of both t and . The variations of  ,X t   as a function of distance 
and time are represented in Figure 1. The temporal variations of the environment are 
captured by a TV  ,t   which fluctuates around different average PLs m ’s, so that each 
curve corresponds to a different location. It is noticed in Figure 1 that as time progresses, the 
process  ,X t   is pulled towards  ,t  . The speed of adjustment towards  ,t   can be 

controlled by choosing different values of  ,t  . 

Next, the general spatio-temporal lognormal model is introduced by generalizing the 
previous model to capture both space and time variations, using the fact that  ,t   is a 
function of both t and . In this case, besides initial distances, the motion of mobiles, i.e., 
their velocities and directions of motion with respect to their base stations are important 
factors to evaluate TV PLs for the links involved. This is illustrated in a simple way for the 
case of a single transmitter and a single receiver as follows: Consider a base station 
(receiver) at an initial distance d from a mobile (transmitter) that moves with a certain 
constant velocity   in a direction defined by an arbitrary constant angle  , where   is the 
angle between the direction of motion of the mobile and the distance vector that starts from 
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the receiver towards the transmitter as shown in Figure 2. At time t, the distance from the 
transmitter to the receiver, ( )d t , is given by 

0

1

2

3

x 10
-4

0

5

10

15

20
40

50

60

70

80

90

Time (sec.)Distance (m)

X
(t)

 [d
B

]

 (t,)
 X(t,)

 
Fig. 1. Mean-reverting power path-loss as a function of t and τ, for the time-varying  ,t   
in Example 1. 
 
 
 
 
 
 

 

Fig. 2. A transmitter at a distance d from a receiver moves with a velocity   and in the 
direction given by   with respect to the transmitter-receiver axis. 
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Therefore, the average PL at that location is given by 
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where 0( )PL d  is the average PL in dB at a reference distance d0,  d t  is defined in (15),   is 
the path-loss exponent and ( )t  is an arbitrary function of time representing additional 
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d(t) 

 

temporal variations in the propagating environment like the appearance and disappearance 
of additional scatters. 

Now, suppose the mobile moves with an arbitrary velocity,  ( ), ( )x yv t v t , in the x-y plane, 

where ( ), ( )x yv t v t  denote the instantaneous velocity components in the x and y directions, 

respectively. The instantaneous distance from the receiver is thus described by 
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2 2
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t t

x yd t d v t dt v t dt
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The parameter  ,t   is used in the TV lognormal model (8) to obtain a general spatio-
temporal lognormal channel model. This is illustrated in the following example. 
 
Example 2 [30]: Consider a mobile moving at sinusoidal velocity with average speed 80 
Km/hr, initial distance 50d  meters, 135   degrees, and ( ) 0t  . Figure 3 shows the 
mean reverting PL  ,X t  ,  ,t  ,  [ , ]E X t  , and the velocity of the mobile  t  and 

distance  d t  as a function of time. It can be seen that the mean of  ,X t   coincides with 

the average PL  ,t   and tracks the movement of the mobile. Moreover, the variation of 

 ,X t   is due to uncertainties in the wireless channel such as movements of objects or 
obstacles between transmitter and receiver that are captured by the spatio-temporal 
lognormal model (8) and (16). Additional time variations of the propagating environment, 
while the mobile is moving, can be captured by using the TV PL coefficient  t  in (16) in 

addition to the TV parameters  ,t   and  ,t  , or simply by ( )t . The stochastic STF 
channel model is discussed in the next section. 
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Fig. 1. Mean-reverting power path-loss as a function of t and τ, for the time-varying  ,t   
in Example 1. 
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Now, suppose the mobile moves with an arbitrary velocity,  ( ), ( )x yv t v t , in the x-y plane, 
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The parameter  ,t   is used in the TV lognormal model (8) to obtain a general spatio-
temporal lognormal channel model. This is illustrated in the following example. 
 
Example 2 [30]: Consider a mobile moving at sinusoidal velocity with average speed 80 
Km/hr, initial distance 50d  meters, 135   degrees, and ( ) 0t  . Figure 3 shows the 
mean reverting PL  ,X t  ,  ,t  ,  [ , ]E X t  , and the velocity of the mobile  t  and 

distance  d t  as a function of time. It can be seen that the mean of  ,X t   coincides with 

the average PL  ,t   and tracks the movement of the mobile. Moreover, the variation of 

 ,X t   is due to uncertainties in the wireless channel such as movements of objects or 
obstacles between transmitter and receiver that are captured by the spatio-temporal 
lognormal model (8) and (16). Additional time variations of the propagating environment, 
while the mobile is moving, can be captured by using the TV PL coefficient  t  in (16) in 

addition to the TV parameters  ,t   and  ,t  , or simply by ( )t . The stochastic STF 
channel model is discussed in the next section. 
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Fig. 3. Mean-reverting power path-loss  ,X t   for the TV LTF wireless channel model in 
Example 2. 

 
4. Stochastic STF Channel Modeling  

4.1 The Deterministic DPSD of Wireless Channels 
The traditional STF model is based on Ossanna [5] and later Clarke [9] and Aulin’s [11] 
developments. Aulin’s model is shown in Figure 4. This model assumes that at each point 
between a transmitter and a receiver, the total received wave consists of the superposition of 
N plane waves each having traveled via a different path.  The nth wave is characterized by 
its field vector En(t) given by [11] 
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respectively, 2 2( ) ( ) ( )n n nr t I t Q t   is the signal envelope, 1( ) tan ( ( ) / ( ))n n nt Q t I t   is the 
phase, and c  is the carrier frequency. The total field ( )E t  can be written as 
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Fig. 4. Aulin’s 3D multipath channel model. 
 
states that for large N, the inphase and quadrature components have Gaussian distributions 

2( ; )x N  [9]. The mean is    E ( ) E ( )x I t Q t   and the variance is 

   2 Var ( ) Var ( )I t Q t   . In the case where there is non-line-of-sight (NLOS), then the 
mean 0x   and the received signal amplitude has Rayleigh distribution. In the presence of 
line-of-sight (LOS) component, 0x   and the received signal is Rician distributed. Also, it is 
assumed that ( )I t  and ( )Q t  are uncorrelated and thus independent since they are Gaussian 
distributed [11]. 
Dependent on the mobile speed, wavelength, and angle of incidence, the Doppler frequency 
shifts on the multipath rays give rise to a DPSD. The DPSD is defined as the Fourier 
transform of the autocorrelation function of the channel, and represents the amount of 
power at various frequencies. Define  ,n n   as the direction of the incident wave onto the 
receiver as illustrated in Figure 4. For the case when n  is uniformly distributed and n  is 
fixed, the deterministic DPSD,  S f , is given by [25] 
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where mf  is the maximum Doppler frequency, and    0 / 2 Var ( ) Var ( )E I t Q t  . A more 
complex, but realistic, expression for the DPSD, which assumes n  has probability density 

function cos( ) where ,
2sin 2m

m
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    and for small angles m , is given by [11] 
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transform of the autocorrelation function of the channel, and represents the amount of 
power at various frequencies. Define  ,n n   as the direction of the incident wave onto the 
receiver as illustrated in Figure 4. For the case when n  is uniformly distributed and n  is 
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Expression (21) is illustrated in Figure 5 for different values of mobile speed. Notice that the 
direction of motion does not play a role because of the uniform scattering assumption, and 
that the DPSDs described in (20) and (21) are band limited. 

The DPSD is the fundamental channel characteristic on which STF dynamical models are 
based on. The approach presented here is based on traditional system theory using the state 
space approach [33] while capturing the spectral characteristics of the channel. The main 
idea in constructing dynamical models for STF channels is to factorize the deterministic 
DPSD into an approximate nth order even transfer function, and then use a stochastic 
realization [32] to obtain a state space representation for the inphase and quadrature 
components. 

The wireless channel is considered as a dynamical system for which the input-output map is 
described in (1) and (3). In practice, one obtains from measurements the power spectral 
density of the output, and with the knowledge of the power spectral density of the input the 
power spectral density of the transfer function (wireless channel) can be deduced as 
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Fig. 5. DPSD for different values of mobile speed ( m =10 degrees). 

 

where ( )x t  is a random process with power spectral density ( )xxS f  representing the input 
signal to the channel, ( )y t  is a random process with power spectral density ( )yyS f  

representing the output signal of the channel, and ( )H f  is the frequency response of the 
channel, which is the Fourier transform of the channel IR. 

In general, in order to identify the random process associated with the DPSD,  S f , in (20) 

or (21) in the form of an SDE, we need to find a transfer function,  H f  whose magnitude 

square equals  S f , i.e.     2
S f H f . This is equivalent to      S s H s H s  , where 

2s i f  and 1i   . That is, we need to factorize the DPSD. This is an old problem which 
had been studied by Paley and Wiener [34] and is reformulated here as follows: 

Given a non-negative integrable function, ( )S f , such that the Paley-Wiener condition 
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  is satisfied, then there exists a causal, stable, minimum-phase 

function  H f , such that    2
H f S f , implying that ( )S f  is factorizable, namely, 

     S s H s H s  . It can be seen that the Paley-Wiener condition is not satisfied when ( )S f  
is band limited (and therefore it is not factorizable), which is the case for wireless links. In 
order to factorize it, the deterministic DPSD has to be first approximated by a rational 
transfer function, denoted  S f , and is discussed next. 

 
4.2 Approximating the Deterministic DPSD 
A number of rational approximation methods can be used to approximate the deterministic 
DPSD [35], the choice of which depends on the complexity and the required accuracy. The 
order of approximation dictates how close the approximate curve would be to the actual 
one. Higher order approximations capture higher order dynamics, and provide better 
approximations for the DPSD, however computations become more involved. In this 
section, we consider a simple approximating method which uses a 4th order stable, 
minimum phase, real, rational approximate transfer function. In Section 5.2, we consider the 
complex cepstrum approximation algorithm [36], which is based on the Gauss-Newton 
method for iterative search, and is more accurate than the simple approximating method but 
requires more computations. 

In the simple approximating method, a 4th order even transfer function  S s , is used to 
approximate the deterministic cellular DPSD, ( )S s . The approximate function 

( ) ( ) ( )S s H s H s   is given by [28] 
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Equation (23) has three arbitrary parameters  , ,n K  , which can be adjusted such that the 
approximate curve coincides with the actual curve at different points. The reason for 
presenting 4th order approximation of the DPSD is that we can compute explicit expressions 
for the constants  , ,n K   as functions of specific points on the data-graphs of the DPSD. 

In fact, if the approximate density ( )S f  coincides with the exact density ( )S f  at 0f   and 

maxf f , then the arbitrary parameters  , ,n K   are computed explicitly as 
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Figure 6 shows  S f  and its approximation  S f  via a 4th order even function. In the next 
section, the approximated DPSD is used to develop stochastic STF channel models. 

 
4.3 Stochastic STF Channel Models 
A stochastic realization is used here to obtain a state space representation for the inphase 
and quadrature components [32]. The SDE, which corresponds to ( )H s  in (23) is 
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where   0( )I tdW t


 and   0

( )Q t
dW t


 are two independent and identically distributed (i.i.d.) 

white Gaussian noises. 
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Several stochastic realizations [32] can be used to obtain a state space representation for the 
inphase and quadrature components of STF channel models. For example, the stochastic 
observable canonical form (OCF) realization [33] can be used to realize (26) for the inphase 
and quadrature components for the jth path as 
 

 
 

 
 

 
 
 

 
 
 

 

 
 

 
 

1 1 1
, , ,

22 2 2
, , ,

1
,

2
,

1 1
, ,

22 2
, ,

00 1 0
, ,

2 0

1 0 ,

0 1
2

I j I j I jI
j

n n nI j I j I j

I j I
j j

I j

Q j Q j

n n nQ j Q j

dX t X t X
dt dW t

KdX t X t X

X t
I t f t

X t

dX t X t

dX t X t

  

  

        
                        

 
       

    
     

         
 

 
 

 
 
 

 

1
,

2
,

1
,

2
,

00
, ,

0

1 0

Q jQ
j

Q j

Q j Q
j j

Q j

X
dt dW t

K X

X t
Q t f t

X t

  
   
    

 
       

 (27) 

 
where      1 2

, , ,[ ]T
I j I j I jX t X t X t  and      1 2

, , ,[ ]T
Q j Q j Q jX t X t X t  are state vectors of the 

inphase and quadrature components.  jI t  and  jQ t  correspond to the inphase and 

quadrature components, respectively,   
0

I
j t

W t


 and   
0

Q
j t

W t


 are independent standard 

Brownian motions, which correspond to the inphase and quadrature components of the jth 
path respectively, the parameters  , ,n K   are obtained from the approximation of the 
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Equation (23) has three arbitrary parameters  , ,n K  , which can be adjusted such that the 
approximate curve coincides with the actual curve at different points. The reason for 
presenting 4th order approximation of the DPSD is that we can compute explicit expressions 
for the constants  , ,n K   as functions of specific points on the data-graphs of the DPSD. 

In fact, if the approximate density ( )S f  coincides with the exact density ( )S f  at 0f   and 

maxf f , then the arbitrary parameters  , ,n K   are computed explicitly as 
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n n
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 (24) 

 

Figure 6 shows  S f  and its approximation  S f  via a 4th order even function. In the next 
section, the approximated DPSD is used to develop stochastic STF channel models. 

 
4.3 Stochastic STF Channel Models 
A stochastic realization is used here to obtain a state space representation for the inphase 
and quadrature components [32]. The SDE, which corresponds to ( )H s  in (23) is 
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 is a white-noise process. Equation (25) can be rewritten in terms of 
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where   0( )I tdW t


 and   0

( )Q t
dW t


 are two independent and identically distributed (i.i.d.) 

white Gaussian noises. 

 

-6 -4 -2 0 2 4 6
-25

-20

-15

-10

-5

0
S

D
(f)

, 
H

(j 
) 

2  in
 d

B

[a] v = 5 km/h, f
c
 = 910 MHz, m

 = 100;   Frequency Hz.

S
D
(f)

H(j)2

-150 -100 -50 0 50 100 150
-50

-45

-40

-35

-30

[b] v = 120 km/h, fc = 910 MHz, m = 100;   Frequency Hz.

S
D
(f)

, 
H

(j 
) 

2  in
 d

B

S
D
(f)

H(j)2

 
Fig. 6. DPSD, ( )DS f , and its approximation 2( ) ( )S H j   via a 4th order transfer function 
for mobile speed of (a) 5 km/hr and (b) 120 km/hr. 
 
Several stochastic realizations [32] can be used to obtain a state space representation for the 
inphase and quadrature components of STF channel models. For example, the stochastic 
observable canonical form (OCF) realization [33] can be used to realize (26) for the inphase 
and quadrature components for the jth path as 
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Brownian motions, which correspond to the inphase and quadrature components of the jth 
path respectively, the parameters  , ,n K   are obtained from the approximation of the 
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deterministic DPSD, and  I
jf t  and  Q

jf t  are arbitrary functions representing the LOS of 
the inphase and quadrature components respectively, characterizing further dynamic 
variations in the environment. 

Expression (27) for the jth path can be written in compact form as 
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    
0

,I Q t
W t W t


 are independent standard Brownian motions which are independent of 

the initial random variables  0IX  and  0QX , and     , ; 0I Qf s f s s t   are random 

processes representing the inphase and quadrature LOS components, respectively. The 
band-pass representation of the received signal corresponding to the jth path is given as 
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where ( )v t  is the measurement noise. As the DPSD varies from one instant to the next, the 
channel parameters  , ,n K   also vary in time, and have to be estimated on-line from time 
domain measurements. Without loss of generality, we consider the case of flat fading, in 
which the mobile-to-mobile channel has purely multiplicative effect on the signal and the 
multipath components are not resolvable, and can be considered as a single path [2]. The 
frequency selective fading case can be handled by including multiple time-delayed echoes. 
In this case, the delay spread has to be estimated. A sounding device is usually dedicated to 
estimate the time delay of each discrete path such as Rake receiver [26]. Following the state 
space representation in (28) and the band pass representation of the received signal in (30), 
the fading channel can be represented using a general stochastic state space representation 
of the form [28] 
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 (32) 

 
In this case, ( )y t  represents the received signal measurements,  X t  is the state variable of 

the inphase and quadrature components, and  v t  is the measurement noise. 

Time domain simulation of STF channels can be performed by passing two independent 
white noise processes through two identical filters,  H s , obtained from the factorization of 
the deterministic DPSD, one for the inphase and the other for the quadrature component [4], 
and realized in their state-space form as described in (28) and (29).  

Example 3: Consider a flat fading wireless channel with the following parameters: 
900MHzcf  , 80 km/hv  , o10m  , and     0I Q

j jf t f t  . Time domain simulation of 
the inphase and quadrature components, attenuation coefficient, phase angle, input signal, 
and received signal are shown in Figures 7-9. The inphase and quadrature components have 
been produced using (28) and (29), while the received signal is reproduced using (30). The 
simulation of the dynamical STF channel is performed using Simulink in Matlab [37]. 

 
4.4 Solution to the Stochastic State Space Model 
The stochastic TV state space model described in (31) and (32) has a solution [32, 38] 
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where L = I or Q, and  0,L t t  is the fundamental matrix, which satisfies 

     0 0, ,L L Lt t A t t t    and  0 0,L t t  is the identity matrix. 
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deterministic DPSD, and  I
jf t  and  Q

jf t  are arbitrary functions representing the LOS of 
the inphase and quadrature components respectively, characterizing further dynamic 
variations in the environment. 

Expression (27) for the jth path can be written in compact form as 
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processes representing the inphase and quadrature LOS components, respectively. The 
band-pass representation of the received signal corresponding to the jth path is given as 
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where ( )v t  is the measurement noise. As the DPSD varies from one instant to the next, the 
channel parameters  , ,n K   also vary in time, and have to be estimated on-line from time 
domain measurements. Without loss of generality, we consider the case of flat fading, in 
which the mobile-to-mobile channel has purely multiplicative effect on the signal and the 
multipath components are not resolvable, and can be considered as a single path [2]. The 
frequency selective fading case can be handled by including multiple time-delayed echoes. 
In this case, the delay spread has to be estimated. A sounding device is usually dedicated to 
estimate the time delay of each discrete path such as Rake receiver [26]. Following the state 
space representation in (28) and the band pass representation of the received signal in (30), 
the fading channel can be represented using a general stochastic state space representation 
of the form [28] 
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In this case, ( )y t  represents the received signal measurements,  X t  is the state variable of 

the inphase and quadrature components, and  v t  is the measurement noise. 

Time domain simulation of STF channels can be performed by passing two independent 
white noise processes through two identical filters,  H s , obtained from the factorization of 
the deterministic DPSD, one for the inphase and the other for the quadrature component [4], 
and realized in their state-space form as described in (28) and (29).  

Example 3: Consider a flat fading wireless channel with the following parameters: 
900MHzcf  , 80 km/hv  , o10m  , and     0I Q

j jf t f t  . Time domain simulation of 
the inphase and quadrature components, attenuation coefficient, phase angle, input signal, 
and received signal are shown in Figures 7-9. The inphase and quadrature components have 
been produced using (28) and (29), while the received signal is reproduced using (30). The 
simulation of the dynamical STF channel is performed using Simulink in Matlab [37]. 

 
4.4 Solution to the Stochastic State Space Model 
The stochastic TV state space model described in (31) and (32) has a solution [32, 38] 
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where L = I or Q, and  0,L t t  is the fundamental matrix, which satisfies 
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Fig. 7. Inphase and quadrature components, attenuation coefficient, and phase angle of the 
STF wireless channel in Example 3. 
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Further computations show that the mean of  LX t  is given by [32] 
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Differentiating (35) shows that  L t  satisfies the Riccati equation 
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STF wireless channel in Example 3. 
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It can be seen in (34) and (35) that the mean and variance of the inphase and quadrature 
components are functions of time. Note that the statistics of the inphase and quadrature 
components, and therefore the statistics of the STF channel, are time varying. Therefore, 
these stochastic state space models reflect the TV characteristics of the STF channel. 
Following the same procedure in developing the STF channel models, the stochastic TV ad 
hoc channel models are developed in the next section. 

 
5. Stochastic Ad Hoc Channel Modeling 

5.1 The Deterministic DPSD of Ad Hoc Channels 
Dependent on mobile speed, wavelength, and angle of incidence, the Doppler frequency 
shifts on the multipath rays give rise to a DPSD. The cellular DPSD for a received fading 
carrier of frequency fc is given in (20) and can be described by [25] 
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where 1f  is the maximum Doppler frequency of the mobile , p is the average power 
received by an isotropic antenna, and G is the gain of the receiving antenna. For a mobile-to-
mobile (or ad hoc) link, with 1f  and 2f  as the sender and receiver’s maximum Doppler 
frequencies, respectively, the degree of double mobility, denoted by   is defined by 

   1 2 1 2min , /max ,f f f f     , so 0 1  , where 1   corresponds to a full double 

mobility and 0   to a single mobility like cellular link, implying that cellular channels are 
a special case of mobile-to-mobile channels. The corresponding deterministic mobile-to-
mobile DPSD is given by [39-41] 
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where  K   is the complete elliptic integral of the first kind, and  1 2max ,mf f f . Figure 10 
shows the deterministic mobile-to-mobile DPSDs for different values of α’s. Thus, a 
generalized DPSD has been found where the U-shaped spectrum of cellular channels is a 
special case. 

Here, we follow the same procedure in deriving the stochastic STF channel models in 
Section 4. The deterministic ad hoc DPSD is first factorized into an approximate nth order 
even transfer function, and then use a stochastic realization [32] to obtain a state space 
representation for inphase and quadrature components. The complex cepstrum algorithm 
[36] is used to approximate the ad hoc DPSD and is discussed next. 
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Fig. 10. Ad hoc deterministic DPSDs for different values of 's , with parameters 
10, 1,cf f   and pG  .  

 
5.2 Approximating the Deterministic Ad Hoc DPSD 
Since the ad hoc DPSD is more complicated than the cellular one, we propose to use a more 
complex and accurate approximation method: The complex cepstrum algorithm [36]. It uses 
several measured points of the DPSD instead of just three points as in the simple method 
(described in Section 4.2). It can be explained briefly as follows: On a log-log scale, the 
magnitude data is interpolated linearly, with a very fine discretization. Then, using the 
complex cepstrum algorithm [36], the phase, associated with a stable, minimum phase, real, 
rational transfer function with the same magnitude as the magnitude data is generated. 

With the new phase data and the input magnitude data, a real rational transfer function can 
be found by using the Gauss-Newton method for iterative search [35], which is used to 
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where  K   is the complete elliptic integral of the first kind, and  1 2max ,mf f f . Figure 10 
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generalized DPSD has been found where the U-shaped spectrum of cellular channels is a 
special case. 
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generate a stable, minimum phase, real rational transfer function, denoted by  H s , to 

identify the best model from the data of  H f  as 
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 1 0,...,mb b b ,  1 0,...,ma a a ,  wt f  is the weight function, and l is the number of 

frequency points. Several variants have been suggested in the literature, where the 
weighting function gives less attention to high frequencies [35]. This algorithm is based on 
Levi [42]. Figure 11 shows the DPSD, ( )S f , and its approximation ( )S f  via different orders 

using complex cepstrum algorithm. The higher the order of ( )S f  the better the 
approximation obtained. It can be seen that approximation with a 4th order transfer function 
gives a very good approximation. 
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Fig. 11. DPSD, ( )S f , and its approximations, ( )S f , using complex cepstrum algorithm for 

different orders of ( )S f . 
 
Figure 12(a) and 12(b) show the DPSD, ( )S f , and its approximation ( )S f  using the 
complex cepstrum and simple approximation methods, respectively, for different values of 

's  via 4th order even function. It can be noticed that the former gives better approximation 

 

than the latter; since it employs all measured points of the DPSD instead of just three points 
in the simple method.  
 

-60 -40 -20 0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

M
ag

ni
tu

de
 (W

)

Frequency (Hz) 

S(w)
Appr. S(w)

alpha = 0.5

alpha = 0.33

alpha = 0.25

alpha = 0.2

 
(a) 

-60 -40 -20 0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

Frequency (Hz) 

M
ag

ni
tu

de
 (W

)

S(w)
Appr. S(w)

alpha = 0.5

alpha = 0.33

alpha = 0.25

alpha = 0.2

 
(b) 

Fig. 12. DPSD,  S f , and its approximation,  S f , via 4th order function for different α’s 
using (a) the complex cepstrum, and (b) the simple approximation methods. 
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5.3 Stochastic Ad Hoc Channel Models 
The same procedure as in the STF cellular case is used to develop ad hoc channel models. 
The stochastic OCF is used to realize (41) for the inphase and quadrature components as [28] 
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, ( )I jX t  and , ( )Q jX t  are state vectors of the inphase and quadrature components.  jI t  and 
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and quadrature components of the jth path respectively, the parameters 
 1 0 1 0,..., , ,...,m ma a b b   are obtained from the approximation of the ad hoc DPSD, and  I

jf t  

and  Q
jf t  are arbitrary functions representing the LOS of the inphase and quadrature 

components respectively. Equation (42) for the inphase and quadrature components of the 
jth path can be described as in (28), and the solution of the ad hoc state space model in (42) 
is similar to the one for STF model described in Section 4.4. The mean and variance of the ad 
hoc inphase and quadrature components have the same form as the ones for the STF case in 
(34) and (35), which show that the statistics are functions of time. The general TV state space 
representation for the ad hoc channel model is similar to the STF state space representation 
in (31) and (32). 
 
Example 4: Consider a mobile-to-mobile (ad hoc) channel with parameters 

1 36km/hr (10m/s)v   and 2 24km/hr(6.6m/s)v  , in which 0.66  . Figure 13 shows time 
domain simulation of the inphase and quadrature components, and the attenuation 
coefficient. The inphase and quadrature components have been produced using (42) and 
(43), while the received signal is reproduced using (30). In Figure 13 Gauss-Newton method 
is used to approximate the deterministic DPSD with 4th order transfer function. 
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Fig. 13. Inphase and quadrature components  ( ), ( )I t Q t , and the attenuation coefficient 

2 2( ) ( ) ( )n n nr t I t Q t  , for a mobile-to-mobile channel with 0.66   in Example 4. 

 
6. Link Performance for Cellular and Ad Hoc Channels 

Now, we want to compare the performance of the stochastic mobile-to-mobile link in (42) 
with the cellular link. We consider BPSK is the modulation technique and the carrier 
frequency is 900MHzcf  . We test 10000 frames of P = 100 bits each. We assume mobile 
nodes are vehicles, with the constraint that the average speed over the mobile nodes is 30 
km/hr.  This implies  1 2 60km/hrv v  ,  thus for a mobile-to-mobile link with α = 0  we get 

1 60km/hrv   and 2 0v  . The cellular case is defined as the scenario where a link connects a 
mobile node with speed 30 km/hr to a permanently stationary node, which is the base 
station. Thus, there is only one mobile node, and the constraint is satisfied. We consider the 
NLOS case ( 0)I Qf f  , which represents an environment with large obstructions. 
The state space models developed in (27) and (42) are used for simulating the inphase and 
quadrature components for the cellular and ad hoc channels, respectively. The complex 
cepstrum approximation method is used to approximate the ad hoc DPSD with a 4th order 
stable, minimum phase, real, and rational transfer function. The received signal is 
reproduced using (30). Figure 14 shows the attenuation coefficient,      2 2r t I t Q t  ,  

for both the cellular case and the worst-case mobile-to-mobile case ( 1)  . It can be 
observed that a mobile-to-mobile link suffers from faster fading by noting the higher 
frequency components in the worst-case mobile-to-mobile link. Also it can be noticed that 
deep fading (envelope less than –12 dB) on the mobile-to-mobile link occurs more frequently 
and less bursty (48 % of the time for the mobile-to-mobile link and 32 % for the cellular link). 
Therefore, the increased Doppler spread due to double mobility tends to smear the errors 
out, causing higher frame error rates. 
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5.3 Stochastic Ad Hoc Channel Models 
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The state space models developed in (27) and (42) are used for simulating the inphase and 
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cepstrum approximation method is used to approximate the ad hoc DPSD with a 4th order 
stable, minimum phase, real, and rational transfer function. The received signal is 
reproduced using (30). Figure 14 shows the attenuation coefficient,      2 2r t I t Q t  ,  

for both the cellular case and the worst-case mobile-to-mobile case ( 1)  . It can be 
observed that a mobile-to-mobile link suffers from faster fading by noting the higher 
frequency components in the worst-case mobile-to-mobile link. Also it can be noticed that 
deep fading (envelope less than –12 dB) on the mobile-to-mobile link occurs more frequently 
and less bursty (48 % of the time for the mobile-to-mobile link and 32 % for the cellular link). 
Therefore, the increased Doppler spread due to double mobility tends to smear the errors 
out, causing higher frame error rates. 
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Consider the data rate given by / 5 Kbpsb cR P T   which is chosen such that the coherence 
time Tc equals the time it takes to send exactly one frame of length P bits, a condition where 
variation  in  Doppler  spread greatly impacts the frame error rate (FER). Figure 15 shows the 
link performance for 10000 frames of 100 bits each. It is clear that the mobile-to-mobile link is 
worse than the cellular link, but the performance gap decreases as 1  . This agrees with the 
main conclusion of [40], that an increase in degree of double mobility mitigates fading by 
lowering the Doppler spread. The gain in performance is nonlinear with  , as the majority of 
gain is from   = 0 to   = 0.5. Intuitively, it makes sense that link performance improves as 
the degree of double mobility increases, since mobility in the network becomes distributed 
uniformly over the nodes in a kind of equilibrium. 
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Fig. 14. Rayleigh attenuation coefficient for cellular link and worst-case ad hoc link. 
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Fig. 15. FER results for Rayleigh mobile-to-mobile link for different α’s and compared with 
cellular link. 

 

7. Conclusion 

In this chapter, stochastic models based on SDEs for LTF, STF, and ad hoc wireless channels 
are derived. These models are useful in capturing nodes mobility and environmental 
changes in mobile wireless networks. The SDE models described allow viewing the wireless 
channel as a dynamical system, which shows how the channel evolves in time and space. 
These models take into consideration the statistical and time variations in wireless 
communication environments. The dynamics are captured by a stochastic state space model, 
whose parameters are determined by approximating the deterministic DPSD. Inphase and 
quadrature components of the channel and their statistics are derived from the proposed 
models. The state space models have been used to verify the effect of fading on a 
transmitted signal in wireless fading networks. In addition, since these models are 
represented in state space form, they allow well-developed tools of estimation and 
identification to be applied to this class of problems. The advantage of using SDE methods is 
due to computational simplicity because estimation and identification algorithms can be 
performed recursively and in real time. 
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