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1. Introduction

In several domains of signal processing, such as detection or de-noising, it may be interesting
to provide a second-moment characterization of a noise-corrupted signal in terms of uncorre-
lated random variables. Doing so, the noisy data could be described by its expansion into a
weighted sum of known vectors by uncorrelated random variables. Depending on the choice
of the basis vectors, some random variables are carrying more signal of interest informations
than noise ones. This is the case, for example, when a signal disturbed by a white noise
is expanded using the Karhunen-Loève expansion (Karhunen, 1946; Loève, 1955). In these
conditions, it is possible either to approximate the signal of interest considering, for the recon-
struction, only its associated random variables, or to detect a signal in a noisy environment
with an analysis of the random variable power. The purpose of this chapter is to present
such an expansion, available for both the additive and multiplicative noise cases, and its ap-
plication to detection and de-noising. This noisy random signal expansion is known as the
stochastic matched filter (Cavassilas, 1991), where the basis vectors are chosen so as to maxi-
mize the signal to noise ratio after processing.
At first, we recall some general considerations on a random 1-D discrete-time signal expansion
in section 2. In particular, we study the approximation error and the second order statistics of
the signal approximation. Then, in section 3, we describe the stochastic matched filter theory
for 1-D discrete-time signals and its extension to 2-D discrete-space signals. We finish this
section with a study on two different noise cases: the white noise case and the speckle noise
case. In the next section, we present the stochastic matched filter in a de-noising context and
we briefly discuss the estimator bias. Then, the de-noising being performed by a limitation
to order Q of the noisy data expansion, we propose to determine this truncature order using
a mean square error criterion. Experimental results on synthetic and real data are given and
discussed to evaluate the performances of such an approach. In section 5, we describe the
stochastic matched filter in a detection context and we confront the proposed method with
signals resulting from underwater acoustics. Finally, some concluding remarks are given in
section 6.
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2. Random signal expansion

2.1 1-D discrete-time signals

Let S be a zero mean, stationary, discrete-time random signal, made of M successive samples
and let {s1, s2, . . . , sM} be a zero mean, uncorrelated random variable sequence, i.e.:

E {snsm} = E

{

s
2
m

}

δn,m, (1)

where δn,m denotes the Kronecker symbol.
It is possible to expand signal S into series of the form:

S =
M

∑
m=1

smΨm, (2)

where {Ψm}
m=1...M corresponds to a M-dimensional deterministic basis. Vectors Ψm are

linked to the choice of random variables sequence {sm}, so there are many decompositions
(2).
These vectors are determined by considering the mathematical expectation of the product of
sm with the random signal S. It comes:

Ψm =
1

E
{

s2
m

}E {smS} . (3)

Classically and using a M-dimensional deterministic basis {Φm}
m=1...M, the random vari-

ables sm can be expressed by the following relation:

sm = S
T

Φm. (4)

The determination of these random variables depends on the choice of the basis {Φm}
m=1...M.

We will use a basis, which provides the uncorrelation of the random variables. Using relations
(1) and (4), we can show that the uncorrelation is ensured, when vectors Φm are solution of
the following quadratic form:

Φm
T

ΓSSΦn = E

{

s
2
m

}

δn,m, (5)

where ΓSS represents the signal covariance.
There is an infinity of sets of vectors obtained by solving the previous equation. Assuming
that a basis {Φm}

m=1...M is chosen, we can find random variables using relation (4). Taking
into account relations (3) and (4), we obtain as new expression for Ψm:

Ψm =
1

E
{

s2
m

}ΓSSΦm. (6)

Furthermore, using relations (5) and (6), we can show that vectors Ψm and Φm are linked by
the following bi-orthogonality relation:

Φm
T

Ψn = δn,m. (7)
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2.2 Approximation error

When the discrete sum, describing the signal expansion (relation (2)), is reduced to Q random

variables sm, only an approximation S̃Q of the signal is obtained:

S̃Q =
Q

∑
m=1

smΨm. (8)

To evaluate the error induced by the restitution, let us consider the mean square error ǫ be-

tween signal S and its approximation S̃Q:

ǫ = E

{∥∥∥S − S̃Q

∥∥∥
2
}

, (9)

where ‖.‖ denotes the classical Euclidean norm.
Considering the signal variance σ

2
S , it can be easily shown that:

ǫ = σ
2
S −

Q

∑
m=1

E
{

s2
m

}
‖Ψm‖2 , (10)

which corresponds to:

ǫ = σ
2
S −

Q

∑
m=1

Φm
T

ΓSS
2
Φm

Φm
T

ΓSSΦm

. (11)

When we consider the whole sm sequence (i.e. Q equal to M), the approximation error ǫ is
weak, and coefficients given by the quadratic form ratio:

Φm
T

ΓSS
2
Φm

Φm
T

ΓSSΦm

are carrying the signal power.

2.3 Second order statistics

The purpose of this section is the determination of the S̃Q autocorrelation and spectral power

density. Let Γ
S̃Q S̃Q

be the S̃Q autocorrelation, we have:

Γ
S̃Q S̃Q

[p] = E
{

S̃Q[q]S̃
∗
Q[p − q]

}
. (12)

Taking into account relation (8) and the uncorrelation of random variables sm, it comes:

Γ
S̃Q S̃Q

[p] =
Q

∑
m=1

E
{

s2
m

}
Ψm[q]Ψ

∗
m[p − q], (13)

which leads to, summing all elements of the previous relation:

M

∑
q=1

Γ
S̃Q S̃Q

[p] =
M

∑
q=1

Q

∑
m=1

E
{

s2
m

}
Ψm[q]Ψ

∗
m[p − q]. (14)
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So, we have:

Γ
S̃Q S̃Q

[p] =
1

M

Q

∑
m=1

E
{

s2
m

} M

∑
q=1

Ψm[q]Ψ
∗
m[p − q], (15)

which corresponds to:

Γ
S̃Q S̃Q

[p] =
1

M

Q

∑
m=1

E
{

s2
m

}
ΓΨmΨm

[p]. (16)

In these conditions, the S̃Q spectral power density is equal to:

γ
S̃Q S̃Q

(ν) =
1

M

Q

∑
m=1

E
{

s2
m

}
γΨmΨm

(ν). (17)

3. The Stochastic Matched Filter expansion

Detecting or de-noising a signal of interest S, corrupted by an additive or multiplicative noise
N is a usual signal processing problem. We can find in the literature several processing meth-
ods for solving this problem. One of them is based on a stochastic extension of the matched
filter notion (Cavassilas, 1991; Chaillan et al., 2007; 2005). The signal of interest pattern is never
perfectly known, so it is replaced by a random signal allowing a new formulation of the signal
to noise ratio. The optimization of this ratio leads to design a bench of filters and regrouping
them strongly increases the signal to noise ratio.

3.1 1-D discrete-time signals: signal-independent additive noise case

Let us consider a noise-corrupted signal Z, made of M successive samples and corresponding
to the superposition of a signal of interest S with a colored noise N. If we consider the signal
and noise variances, σ2

S and σ2
N , we have:

Z = σSS0 + σNN0, (18)

with E
{

S0
2
}
= 1 and E

{
N0

2
}
= 1. In the previous relation, reduced signals S0 and N0 are

assumed to be independent, stationary and with zero-mean.
It is possible to expand noise-corrupted signal Z into a weighted sum of known vectors Ψm

by uncorrelated random variables zm, as described in relation (2). These uncorrelated ran-
dom variables are determined using the scalar product between noise-corrupted signal Z and
deterministic vectors Φm (see relation (4)). In order to determine basis {Φm}m=1...M, let us
describe the matched filter theory. If we consider a discrete-time, stationary, known input sig-
nal s, made of M successive samples, corrupted by an ergodic reduced noise N0, the matched
filter theory consists of finding an impulse response Φ, which optimizes the signal to noise ra-
tio ρ. Defined as the ratio of the square of signal amplitude to the square of noise amplitude,
ρ is given by:

ρ =
|sT

Φ|2

E
{
|N0

T
Φ|2

} . (19)

When the signal is not deterministic, i.e. a random signal S0, this ratio becomes (Cavassilas,
1991):

ρ =
E
{
|S0

T
Φ|2

}

E
{
|N0

T
Φ|2

} , (20)
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which leads to:

ρ =
Φ

T
ΓS0S0

Φ

ΦTΓN0N0
Φ

, (21)

where ΓS0S0
and ΓN0N0

represent signal and noise reduced covariances respectively.
Relation (21) corresponds to the ratio of two quadratic forms. It is a Rayleigh quotient. For
this reason, the signal to noise ratio ρ is maximized when the impulse response Φ corresponds
to the eigenvector Φ1 associated to the greatest eigenvalue λ1 of the following generalized
eigenvalue problem:

ΓS0S0
Φm = λmΓN0N0

Φm. (22)

Let us consider the signal and noise expansions, we have:


















S0 =
M

∑
m=1

smΨm

N0 =
M

∑
m=1

ηmΨm

, (23)

where the random variables defined by:
{

sm = Φm
T

S0

ηm = Φm
T

N0

(24)

are not correlated:
{

Φm
T

ΓS0S0
Φn = E

{

s
2
m

}

δn,m

Φm
T

ΓN0N0
Φn = E

{

η2
m

}

δn,m

. (25)

After a normalization step; it is possible to rewrite relations (25) as follows:










Φm
T

ΓS0S0
Φn =

E
{

s
2
m

}

E
{

η2
m

} δn,m

Φm
T

ΓN0N0
Φn = δn,m

. (26)

Let P be a matrix made up of column vectors Φm, i.e.:

P = (Φ1, Φ2, . . . , ΦM) . (27)

In these conditions, it comes:
P

T
ΓN0N0

P = I, (28)

where I corresponds to the identity matrix.
This leads to:

(

P
T

ΓN0N0
P
)−1

= I

⇔ P
−1

ΓN0N0

−1
P
−T = I

⇔ P
T = P

−1
ΓN0N0

−1. (29)

Let D be the following diagonal matrix:

D =















E
{

s
2
1

}

/E
{

η2
1

}

0 . . . . . . 0
0 E

{

s
2
2

}

/E
{

η2
2

}

0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 E
{

s
2
M−1

}

/E
{

η2
M−1

}

0

0 . . . . . . 0 E
{

s
2
M

}

/E
{

η2
M

}















. (30)

www.intechopen.com



Stochastic Control276

It comes:
PT

ΓS0S0
P = D, (31)

which corresponds to, taking into account relation (29):

P−1
ΓN0N0

−1
ΓS0S0

P = D

⇔ ΓN0N0

−1
ΓS0S0

P = PD

⇔ ΓS0S0
P = ΓN0N0

PD, (32)

which leads to:

ΓS0S0
Φm =

E
{

s2
m

}

E
{

η2
m

}ΓN0N0
Φm. (33)

This last equation shows, on the one hand, that λm equals E
{

s2
m

}
/E

{
η2

m

}
and, on the other

hand, that the only basis {Φm}
m=1...M allowing the simultaneous uncorrelation of the random

variables coming from the signal and the noise is made up of vectors Φm solution of the
generalized eigenvalue problem (22).
We have E

{
η2

m

}
= 1 and E

{
s2

m

}
= λm when the eigenvectors Φm are normalized as follows:

Φm
T

ΓN0N0
Φm = 1, (34)

In these conditions and considering relation (6), the deterministic vectors Ψm of the noise-
corrupted signal expansion are given by:

Ψm = ΓN0N0
Φm. (35)

In this context, the noise-corrupted signal expansion is expressed as follows:

Z =
M

∑
m=1

(σSsm + σNηm)Ψm, (36)

so that, the quadratic moment of the mth coefficient zm of the noise-corrupted signal expansion
is given by:

E

{
z

2
m

}
= E

{
(σSsm + σNηm)

2
}

, (37)

which corresponds to:

σ2
S

λm + σ2
N + σSσNΦm

T (ΓS0N0
+ ΓN0S0

)Φm (38)

Signal and noise being independent and one of them at least being zero mean, we can assume
that the cross-correlation matrices, ΓS0N0

and ΓN0S0
, are weak. In this condition, the signal to

noise ratio ρm of component zm corresponds to the native signal to noise ratio times eigenvalue
λm:

ρm =
σ2

S

σ2
N

λm. (39)

So, an approximation S̃Q of the signal of interest (the filtered noise-corrupted signal) can
be built by keeping only those components associated to eigenvalues greater than a certain
threshold. In any case this threshold is greater than one.
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3.2 Extension to 2-D discrete-space signals

We consider now a M × M pixels two-dimensional noise-corrupted signal, Z, which corre-
sponds to a signal of interest S disturbed by a noise N. The two-dimensional extension of the
theory developed in the previous section gives:

Z =
M

2

∑
m=1

zmΨm, (40)

where {Ψm}m=1...M2 is a M2-dimensional basis of M × M matrices.
Random variables zm are determined, using a M2-dimensional basis {Φm}m=1...M2 of M × M
matrices, as follows:

zm =
M

∑
p,q=1

Z[p, q]Φm[p, q]. (41)

These random variables will be not correlated, if matrices Φm are solution of the two-
dimensional extension of the generalized eigenvalue problem (22):

M

∑
p1,q1=1

ΓS0S0
[p1 − p2, q1 − q2]Φm[p1, q1] = λn

M

∑
p1,q1=1

ΓN0 N0
[p1 − p2, q1 − q2]Φm[p1, q1], (42)

for all p2, q2 = 1, . . . , M.
Assuming that Φm are normalized as follows:

M

∑
p1,p2,q1,q2=1

ΓN0 N0
[p1 − p2, q1 − q2]Φm[p1, q1]Φm[p2, q2] = 1, (43)

the basis {Ψm}m=1...M2 derives from:

Ψm[p1, q1] =
M

∑
p2,q2=1

ΓN0 N0
[p1 − p2, q1 − q2]Φm[p2, q2]. (44)

As for the 1-D discrete-time signals case, using such an expansion leads to a signal to noise
ratio of component zm equal to the native signal to noise ratio times eigenvalue λm (see relation
(39)). So, all Φm associated to eigenvalues λm greater than a certain level - in any case greater
than one - can contribute to an improvement of the signal to noise ratio.

3.3 The white noise case

When N corresponds to a white noise, its reduced covariance is:

ΓN0 N0
[p − q] = δ[p − q]. (45)

Thus, the generalized eigenvalue problem (22) leading to the determination of vectors Φm

and associated eigenvalues is reduced to:

ΓS0S0
Φm = λmΦm. (46)
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In this context, we can show that basis vectors Ψm and Φm are equal. Thus, in the particular
case of a white noise, the stochastic matched filter theory is identical to the Karhunen-Loève
expansion (Karhunen, 1946; Loève, 1955):

Z =
M

∑
m=1

zmΦm. (47)

One can show that when the signal covariance is described by a decreasing exponential func-

tion (ΓS0S0
(t1, t2) = e−α|t1−t2|, with α ∈ R

+∗), basis {Φm}
m=1...M corresponds to the Fourier

basis (Vann Trees, 1968), so that the Fourier expansion is a particular case of the Karhunen-
Loève expansion, which is a particular case of the stochastic matched filter expansion.

3.4 The speckle noise case

Some airborne SAR (Synthetic Aperture Radar) imaging devices randomly generate their own
corrupting signal, called the speckle noise, generally described as a multiplicative noise (Tur et
al., 1982). This is due to the complexity of the techniques developed to get the best resolution
of the ground. Given experimental data accuracy and quality, these systems have been used
in sonars (SAS imaging device), with similar characteristics.
Under these conditions, we cannot anymore consider the noise-corrupted signal as described
in (18), so its expression becomes:

Z = S. ∗ N, (48)

where .∗ denotes the term by term product.
In order to fall down in a known context, let consider the Kuan approach (Kuan et al., 1985).
Assuming that the multiplicative noise presents a stationary mean (N̄ = E{N}), we can define
the following normalized observation:

Znorm = Z/N̄. (49)

In this condition, we can represent (49) in terms of signal plus signal-dependent additive
noise:

Znorm = S +

(

N − N̄

N̄

)

. ∗ S. (50)

Let Na be this signal-dependent additive colored noise:

Na = (N/N̄ − 1) . ∗ S. (51)

Under these conditions, the mean quadratic value of the mth component zm of the normalized
observation expansion is:

E

{

z
2
m

}

= σ2
S

λn + σ2
Na

+ σSσNa
Φm

T
(

ΓS0Na0
+ ΓNa0

S0

)

Φm, (52)

where Na0
corresponds to the reduced noise Na.

Consequently, the signal to noise ratio ρm becomes:

ρm =
σ2

S
λm

σ2
Na

+ σSσNa
Φm

T
(

ΓS0Na0
+ ΓNa0

S0

)

Φm

. (53)
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As S0 and (N/N̄ − 1) are independent, it comes:

ΓS0 Na0
[p1, p2, q1, q2] = E {S0[p1, q1]Na0 [p2, q2]} , (54)

which is equal to:

1

σNa

E {S0[p1, q1]S[p2, q2]}

(

E{N[p2, q2]}

N̄
− 1

)

︸ ︷︷ ︸
=0

= 0. (55)

So that, the cross-correlation matrices between signal S0 and signal-dependent noise Na0
van-

ishes. For this reason, signal to noise ratio in a context of multiplicative noise like the speckle
noise, expanded into the stochastic matched filter basis has the same expression than in the
case of an additive noise.

4. The Stochastic Matched Filter in a de-noising context

In this section, we present the stochastic matched filtering in a de-noising context for 1-D
discrete time signals. The given results can easily be extended to higher dimensions.

4.1 Bias estimator

Let Z be a M-dimensional noise corrupted observed signal. The use of the stochastic matched
filter as a restoring process is based on the decomposition of this observation, into a random

variable finite sequence zm on the {Ψm}m=1...M basis. An approximation S̃Q is obtained with
the zm coefficients and the Q basis vectors Ψm, with Q lower than M:

S̃Q =
Q

∑
m=1

zmΨm. (56)

If we examine the M-dimensional vector E

{
S̃Q

}
, we have:

E

{
S̃Q

}
= E

{
Q

∑
m=1

Ψmzm

}

=
Q

∑
m=1

ΨmΦ
T
mE {Z} (57)

Using the definition of noise-corrupted signal Z, it comes:

E

{
S̃Q

}
=

Q

∑
m=1

ΨmΦ
T
m (E {S}+ E {N}) . (58)

Under these conditions, the estimator bias B
S̃Q

can be expressed as follows:

B
S̃Q

= E
{

S̃Q − S

}

=

(
Q

∑
m=1

ΨmΦ
T
m − I

)
E {S}+

Q

∑
m=1

ΨmΦ
T
mE {N}, (59)
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where I denotes the M × M identity matrix.
Furthermore, if we consider the signal of interest expansion, we have:

S =

(
M

∑
m=1

ΨmΦ
T
m

)
S, (60)

so that, by identification, it comes:

M

∑
m=1

ΨmΦ
T
m = I. (61)

In this condition, relation (59) can be rewritten as follows:

B
S̃Q

= −
M

∑
m=Q+1

ΨmΦ
T
mE {S}+

Q

∑
m=1

ΨmΦ
T
mE {N}. (62)

This last equation corresponds to the estimator bias when no assumption is made on the signal
and noise mean values. In our case, signal and noise are both supposed zero-mean, so that the
stochastic matched filter allows obtaining an unbiased estimation of the signal of interest.

4.2 De-noising using a mean square error minimization

4.2.1 Problem description

In many signal processing applications, it is necessary to estimate a signal of interest disturbed
by an additive or multiplicative noise. We propose here to use the stochastic matched filtering
technique as a de-noising process, such as the mean square error between the signal of interest
and its approximation will be minimized.

4.2.2 Principle

In the general theory of stochastic matched filtering, Q is chosen so as the Q first eigenvalues,
coming from the generalized eigenvalue problem, are greater than one, in order to enhance
the mth component of the observation. To improve this choice, let us consider the mean square

error ǫ between the signal of interest S and its approximation S̃Q:

ǫ = E

{(
S − S̃Q

)T (
S − S̃Q

)}
. (63)

It is possible to show that this error, function of Q, can be written as:

ǫ(Q) = σ
2
S

(
1 −

Q

∑
m=1

λn ‖Ψm‖2

)
+ σ

2
N

Q

∑
m=1

‖Ψm‖2 . (64)

The integer Q is chosen so as to minimize the relation (64). It particularly verifies:

(ǫ(Q)− ǫ(Q − 1)) < 0 & (ǫ(Q + 1)− ǫ(Q)) > 0,

let us explicit these two inequalities; on the one hand:

ǫ(Q + 1)− ǫ(Q) =
(

σ
2
N − σ

2
SλQ+1

) ∥∥ΨQ+1

∥∥2
> 0
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and on the other hand:

ǫ(Q)− ǫ(Q − 1) =
(

σ
2
N − σ

2
SλQ

) ∥∥ΨQ

∥∥2
< 0.

Hence, integer Q verifies:

σ
2
SλQ > σ

2
N > σ

2
SλQ+1.

The dimension of the basis {Ψm}m=1...Q, which minimizes the mean square error between the
signal of interest and its approximation, is the number of eigenvalues λm verifying:

σ
2
S

σ2
N

λm > 1, (65)

where
σ

2
S

σ2
N

is the signal to noise ratio before processing.

Consequently, if the observation has a high enough signal to noise ratio, many Ψm will be

considered for the filtering (so that S̃Q tends to be equal to Z), and in the opposite case, only
a few number will be chosen. In these conditions, this filtering technique applied to an obser-

vation Z with an initial signal to noise ratio S
N

∣∣∣
Z

substantially enhances the signal of interest

perception. Indeed, after processing, the signal to noise ratio S
N

∣∣∣
S̃Q

becomes:

S

N

∣∣∣∣
S̃Q

=
S

N

∣∣∣∣
Z

Q

∑
m=1

λm ‖Ψm‖2

Q

∑
m=1

‖Ψm‖2

. (66)

4.2.3 The Stochastic Matched Filter

As described in a forthcoming section, the stochastic matched filtering method is applied us-
ing a sliding sub-window processing. Therefore, let consider a K-dimensional vector Zk cor-
responding to the data extracted from a window centered on index k of the noisy data, i.e.:

Zk
T =

{
Z

[
k −

K − 1

2

]
, . . . , Z[k], . . . , Z

[
k +

K − 1

2

]}
. (67)

This way, M sub-windows Zk are extracted to process the whole observation, with k =
1, . . . , M. Furthermore, to reduce the edge effects,the noisy data can be previously completed
with zeros or using a mirror effect on its edges.
According to the sliding sub-window processing, only the sample located in the middle of the
window is estimated, so that relation (56) becomes:

S̃Q[k][k] =
Q[k]

∑
m=1

zm,kΨm

[
K + 1

2

]
, (68)

with:
zm,k = Zk

T
Φm (69)
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and where Q[k] corresponds to the number of eigenvalues λm times the signal to noise ratio
of window Zk greater than one, i.e.:

λm
S

N

∣∣∣∣
Zk

> 1. (70)

To estimate the signal to noise ratio of window Zk, the signal power is directly computed
from the window’s data and the noise power is estimated on a part of the noisy data Z, where
no useful signal a priori occurs. This estimation is generally realized using the maximum
likelihood principle.
Using relations (68) and (69), the estimation of the de-noised sample value is realized by a
scalar product:

S̃Q[k][k] = Zk
T

Q[k]

∑
m=1

Ψm

[
K + 1

2

]
Φm. (71)

In this case and taking into account the sub-window size, reduced covariances ΓS0S0
and

ΓN0N0
are both K × K matrices, so that {Φn} and {Ψn} are K-dimensional basis.

Such an approach can be completed using the following relation:

S̃Q[k][k] = Zk
ThQ[k], (72)

for k taking values between 1 and M, and where:

hQ[k] =
Q[k]

∑
m=1

Ψm

[
K + 1

2

]
Φm. (73)

Q[k] taking values between 1 and K, relation (73) permits to compute K vectors hq, from h1

ensuring a maximization of the signal to noise ratio, to hK whose bandwidth corresponds to
the whole useful signal bandwidth. These filters are called the stochastic matched filters for
the following.

4.2.4 Algorithm

The algorithm leading to an approximation S̃Q of the signal of interest S, by the way of the
stochastic extension of the matched filter, using a sliding sub-window processing, is presented
below.

1. Modelisation or estimation of reduced covariances ΓS0S0
and ΓN0N0

of signal of interest
and noise respectively.

2. Estimation of the noise power σ
2
N in an homogeneous area of Z.

3. Determination of eigenvectors Φm by solving the generalized eigenvalue problem de-
scribed in (22) or (42).

4. Normalization of Φm according to (34) or (43).

5. Determination of vectors Ψn (relation (35) or (44)).

6. Computation of the K stochastic matched filters hq according to (73).

7. Set to zero M samples approximation S̃Q.

8. For k = 1 to M do:

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

www.intechopen.com



The stochastic matched ilter and its applications to detection and de-noising 283

(a) Sub-window Zk extraction.

(b) Zk signal to noise ratio estimation.

(c) Q[k] determination according to (70).

(d) Scalar product (72) computation.

Let us note the adaptive nature of this algorithm, each sample being processed with the most
adequate filter hq depending on the native signal to noise ratio of the processed sub-window.

4.3 Experiments

In this section, we propose two examples of de-noising on synthetic and real data in the case
of 2-D discrete-space signals.

4.3.1 2-D discrete-space simulated data

As a first example, consider the Lena image presented in figure 1. This is a 512 × 512 pixels
coded with 8 bits (i.e. 256 gray levels). This image has been artificially noise-corrupted by a
zero-mean, Gaussian noise, where the local variance of the noise is a function of the image
intensity values (see figure 3.a).
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Fig. 1. Lena image, 512 × 512 pixels, 8 bits encoded (256 gray levels)

The stochastic matched filtering method is based on the assumption of signal and noise sta-
tionarity. Generally it is the case for the noise. However, the signal of interest is not necessarily
stationary. Obviously, some images can be empirically supposed stationary, it is the case for
sea-bed images, for some ocean waves images, in other words for all images able to be assim-
ilated to a texture. But in most cases, an image cannot be considered as the realization of a
stationary stochastic process. However after a segmentation operation, it is possible to define
textured zones. This way, a particular zone of an image (also called window) can be consid-
ered as the realization of a stationary bi-dimensional stochastic process. The dimensions of
these windows must be of the same order of magnitude as the texture coherence length. Thus,
the stochastic matched filter will be applied on the native image using a windowed process-
ing. The choice of the window dimensions is conditioned by the texture coherence length
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mean value.
The implementation of the stochastic matched filter needs to have an a priori knowledge of
signal of interest and noise covariances. The noise covariance is numerically determined in
an homogeneous area of the observation, it means in a zone without any a priori information
on signal of interest. This covariance is computed by averaging several realizations. The esti-
mated power spectral density associated to the noise covariance is presented on figure 2.a. The
signal of interest covariance is modeled analytically in order to match the different textures
of the image. In dimension one, the signal of interest autocorrelation function is generally
described by a triangular function because its associated power spectral density corresponds
to signals with energy contained inside low frequency domain. This is often the case in reality.
The model used here is a bi-dimensional extension of the mono-dimensional case. Further-
more, in order to not favor any particular direction of the texture, the model has isotropic
property. Given these different remarks, the signal of interest autocorrelation function has
been modeled using a Gaussian model, as follows:

ΓS0S0
[n, m] = exp

[

−
(

n2 + m2
)

/(2F2
e σ

2)
]

, ∀(n, m) ∈ Z
2, (74)

with n and m taking values between −(K − 1) and (K − 1), where Fe represents the sampling
frequency and where σ has to be chosen so as to obtain the most representative power spectral
density. ΓS0S0

being Gaussian, its power spectral density is Gaussian too, with a variance σ
2
ν

equal to 1/(4π
2
σ

2). As for a Gaussian signal, 99 % of the signal magnitudes arise in the range
[−3σν; 3σν], we have chosen σν such as 6σν = Fe, so that:

σ = 3/(πFe). (75)

The result power spectral density is presented on figure 2.b.
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Fig. 2. Signal and noise power spectral densities using normalized frequencies

The dimension of the filtering window for this process is equal to 7 × 7 pixels, in order to
respect the average coherence length of the different textures. For each window, number Q of
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eigenvalues has been determined according to relation (70), with:

S

N

∣∣∣∣
Zk

=
σ

2
Zk

− σ
2
N

σ
2
N

, (76)

the noise variance σ
2
N being previously estimated in an homogeneous area of the noise-

corrupted data using a maximum likelihood estimator. The resulting image is presented on
figure 3.b.
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(a) Noisy Lena
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(b) De-noised Lena

5

10

15

20

25

30

35

40

(c) Q values

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(d) Removed signal

Fig. 3. 1st experiment: Lena image corrupted by a zero-mean Gaussian noise with a local
variance dependent of the image intensity values
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An analysis of the figure 3.b shows that the stochastic matched filter used as a de-noising pro-
cess gives some good results in terms of noise rejection and detail preservation. In order to
quantify the effectiveness of the process, we propose on figure 3.d an image of the removed

signal Ñ (i.e. Ñ = Z − S̃Q), where the areas corresponding to useful signal details present an
amplitude tending toward zero, the process being similar to an all-pass filter in order to pre-
serve the spatial resolution. Nevertheless, the resulting image is still slightly noise-corrupted
locally. It is possible to enhance the de-noising power increasing either the σ value (that corre-
sponds to a diminution of the σν value and so to a smaller signal bandwidth) or the sub-image
size, but this would involve a useful signal deterioration by a smoothing effect. In addition,
the choice of the number Q of basis vectors by minimizing the mean square error between the

signal of interest S and its approximation S̃Q implies an image contour well preserved. As an
example, we present in figures 3.c and 4 an image of the values of Q used for each window
and a curve representative of the theoretical and real improvement of the signal to noise ratio
according to these values (relation (66)).
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Fig. 4. Theoretical and real SNR improvement in dB of the de-noised data

As previously specified, when the signal to noise ratio is favorable a lot of basis vectors are
retained for the filtering. In this case, the stochastic matched filter tends to be an all-pass
filter, so that the signal to noise ratio improvement is not significant. On the other hand, when
the signal to noise ratio is unfavorable this filtering method allows a great improvement (up
to 5 dB when only from 1 up to 2 basis vectors were retained), the stochastic matched filter
being similar to a mean filter. Furthermore, the fact that the curves of the theoretical and real
improvements are similar reveals the relevance of the signal covariance model.

4.3.2 2-D discrete-space real data

The second example concerns real 2-D discrete-space data acquired by a SAS (Synthetic
Aperture Sonar) system. Over the past few years, SAS has been used in sea bed imagery.
Active synthetic aperture sonar is a high-resolution acoustic imaging technique that co-
herently combines the returns from multiple pings to synthesize a large acoustic aperture.
Thus, the azimuth resolution of a SAS system does not depend anymore on the length of
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the real antenna but on the length of the synthetic antenna. Consequently, in artificially
removing the link between azimuth resolution and physical length of the array, it is now
possible to use lower frequencies to image the sea bed and keep a good resolution. Therefore,
lower frequencies are less attenuated and long ranges can be reached. All these advantages
make SAS images of great interest, especially for the detection, localization and eventually
classification of objects lying on the sea bottom. But, as any image obtained with a coherent
system, SAS images are corrupted by the speckle noise. Such a noise gives a granular aspect
to the images, by giving a variance to the intensity of each pixel. This reduces spatial and
radiometric resolutions. This noise can be very disturbing for the interpretation and the
automatic analysis of SAS images. For this reason a large amount of research works have
been dedicated recently to reduce this noise, with as common objectives the strong reduction
of the speckle level, coupled to the spatial resolution preservation.
Consider the SAS image1 presented in figure 5.a. This is a 642× 856 pixels image of a wooden
barge near Prudence Island. This barge measures roughly 30 meters long and lies in 18 meters
of water.
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Fig. 5. 2nd experiment: Speckle noise corrupted SAS data: Wooden Barge (Image courtesy of
AUVfest 2008)

1 Courtesy of AUVfest 2008: http://oceanexplorer.noaa.gov
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The same process than for the previous example has been applied to this image to reduce the
speckle level. The main differences between the two experiments rest on the computation of
the signal and noise statistics. As the speckle noise is a multiplicative noise (see relation (48)),
the noise covariance, the noise power and the noise mean value have been estimated on the
high-frequency components ZhHF

of an homogeneous area Zh of the SAS data:

ZhHF
= Zh./ZhBF

, (77)

where ./ denotes the term by term division and with ZhBF
corresponding to the low-frequency

components of the studied area obtained applying a classical low-pass filter. This way, all the
low-frequency fluctuations linked to the useful signal are canceled out.
Furthermore, taking into account the multiplicative nature of the noise, to estimate the signal

to noise ratio S
N

∣∣∣
Zk

of the studied window, the signal variance has been computed as follows:

σ
2
Sk

=
σ

2
Zk

+ E {Zk}
2

σ
2
N + N̄2

− E {Sk} , (78)

where:

E {Sk} =
E {Zk}

2

N̄2
. (79)

The de-noised SAS data is presented on figure 5.b. An image of the Q values retained for the

process and the ratio image Z./S̃Q are proposed on figures 5.c and 5.d respectively. These re-
sults show that the stochastic matched filter yields good speckle noise reduction, while keep-
ing all the details with no smoothing effect on them (an higher number of basis vectors being
retained to process them), so that the spatial resolution seems not to be affected.

4.4 Concluding remarks

In this section, we have presented the stochastic matched filter in a de-noising context. This
one is based on a truncation to order Q of the random noisy data expansion (56). To determine
this number Q, it has been proposed to minimize the mean square error between the signal
of interest and its approximation. Experimental results have shown the usefulness of such an
approach. This criterion is not the only one, one can apply to obtain Q. The best method to
determine this truncature order may actually depend on the nature of the considered problem.
For examples, the determination of Q has been achieved in (Fraschini et al., 2005) considering
the Cramér-Rao lower bound and in (Courmontagne, 2007) by the way of a minimization
between the speckle noise local statistics and the removal signal local statistics. Furthermore,
several stochastic matched filter based de-noising methods exist in the scientific literature, as
an example, let cite (Courmontagne & Chaillan, 2006), where the de-noising is achieved using
several signal covariance models and several sub-image sizes depending on the windowed
noisy data statistics.

5. The Stochastic Matched Filter in a detection context

In this section, the stochastic matched filter is described for its application in the field of short
signal detection in a noisy environment.
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5.1 Problem formulation

Let consider two hypotheses H0 and H1 corresponding to "there is only noise in the available
data" and "there is signal of interest in the available data" respectively and let consider a K-
dimensional vector Z containing the available data. The dimension K is assumed large (i.e.
K >> 100). Under hypothesis H0, Z corresponds to noise only and under hypothesis H1 to a
signal of interest S corrupted by an additive noise N:

{

H0 : Z = σNN0

H1 : Z = σSS0 + σNN0

, (80)

where σS and σN are signal and noise standard deviation respectively and E
{

|S0|2
}

=

E
{

|N0|2
}

= 1. By assumptions, S0 and N0 are extracted from two independent, station-
ary and zero-mean random signals of known autocorrelation functions. This allows us to
construct the covariances of S0 and N0 denoted ΓS0S0

and ΓN0N0
respectively.

Using the stochastic matched filter theory, it is possible to access to the set (Φm, λm)m=1...M,
with M bounded by K, allowing to compute the uncorrelated random variables zm associated
to observation Z. It comes:

{

E
{

z2
m/H0

}

= σ
2
N

E
{

z2
m/H1

}

= σ
2
Sλm + σ

2
N

. (81)

Random variables zm being a linear transformation of a random vector, the central limit theo-
rem can be invoked and we will assume in the sequel that zm are approximately Gaussian:

zm →֒ N

(

0, E
{

z2
m/Hi

}∣

∣

∣

i=0, 1

)

. (82)

Let Γ0 and Γ1 be the covariances of the signals in the basis {Φm}m=1...M, under hypotheses
H0 and H1, it comes:

Γ0 = σ
2
NI, (83)

where I denotes the M × M identity matrix and

Γ1 =











σ
2
Sλ1 + σ

2
N 0 0 . . . 0

0 σ
2
Sλ2 + σ

2
N 0 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 0 σ

2
SλM + σ

2
N











. (84)

In these conditions, the probability density functions under hypotheses H0 and H1 take for
expression:



















p(z/H0) =
1

(2π)
M
2
√

|Γ0|
exp

[

−1

2

(

z
T

Γ0
−1

z

)

]

p(z/H1) =
1

(2π)
M
2
√

|Γ1|
exp

[

−1

2

(

z
T

Γ1
−1

z

)

] , (85)

where z is a M−dimensional vector, whose mth component is zm:

z = (z1, z2, . . . , zm, . . . , zM)T . (86)

It is well known that the Neyman-Pearson lemma yields the uniformly most powerful test
and allows to obtain the following rule of decision based on the likelihood ratio Λ(z):

Λ(z) =
p(z/H1)

p(z/H0)

>
D1

<D0
λ, (87)
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where λ is the convenient threshold.
Taking into account relations (83), (84) and (85), it comes:

M

∑
m=1

λm

σ
2
S

λm + σ
2
N

︸ ︷︷ ︸

UM

>
D1

<D0

σ
2
N

σ
2
S

[

2 (ln λ − M ln σN) +
M

∑
m=1

ln
(

σ
2
Sλm + σ

2
N

)
]

︸ ︷︷ ︸

TM

. (88)

In these conditions, the detection and the false alarm probabilities are equal to:

Pd =

∞∫

TM

pUM
(u/H1)du and Pf a =

∞∫

TM

pUM
(u/H0)du. (89)

So, the detection problem consists in comparing u to threshold TM and in finding the most
convenient order M for an optimal detection (i.e. a slight false alarm probability and a detec-
tion probability quite near one).

5.2 Subspace of dimension one

First, let consider the particular case of a basis {Φm}m=1...M restricted to only one vector Φ.
In this context, relation (88) leads to:

|z| >
D1

<D0

√

T1

λ1
(σ2

S
λ1 + σ

2
N)

︸ ︷︷ ︸

zs

(90)

and the detection and false alarm probabilities become:

Pd =
∫

D1

p(z/H1)dz and Pf a =
∫

D1

p(z/H0)dz, (91)

where D1 =]− ∞;−zs] ∪ [zs;+∞[ and with:

{
under H0 : z →֒ N

(
0, σ

2
N

)

under H1 : z →֒ N
(
0, σ

2
Sλ1 + σ

2
N

) . (92)

From (91), it comes:

Pf a = 1 − erf

(
zs√
2σN

)

, (93)

where erf(.) denotes the error function:

erf(x) =
2√
π

x∫

0

exp
[

−y2
]

dy. (94)

In these conditions, the threshold value zs can be expressed as a function of the false alarm
probability:

zs =
√

2σNerf−1(1 − Pf a). (95)

www.intechopen.com



The stochastic matched ilter and its applications to detection and de-noising 291

Furthermore, the detection probability takes the following expression:

Pd = 1 − erf





zs
√

2
(

σ
2
Sλ1 + σ

2
N

)



 . (96)

We deduce from equations (95) and (96), the ROC curve expression:

Pd

(

Pf a

)

= 1 − erf

(√

1

1 + ρ0λ1
erf−1(1 − Pf a)

)

, (97)

where ρ0 = σ
2
S/σ

2
N .

One can show that an optimal detection is realized, when λ1 corresponds to the greatest eigen-
value of the generalized eigenvalue problem (22).

5.3 Subspace of dimension M

Random variable UM being a weighted sum of square Gaussian random variables, its proba-
bility density function, under hypotheses H0 and H1, can be approximated by a Gamma law
(Kendall & Stuart, 1979; Zhang & Liu, 2002). It comes:

pUM
(u/Hi) ≃ uki−1

exp

[

−u

θi

]

Γ(ki)θ
ki

i

, (98)

for i equal 0 or 1 and where k0θ0 = E {UM/H0}, k0θ
2
0 = VAR {UM/H0}, k1θ1 = E {UM/H1}

and k1θ
2
1 = VAR {UM/H1}. In these conditions, it comes under H0:

k0 =

(

M

∑
m=1

λm

1 + ρ0λm

)2

2
M

∑
m=1

(

λm

1 + ρ0λm

)2
and θ0 = 2

M

∑
m=1

(

λm

1 + ρ0λm

)2

M

∑
m=1

λm

1 + ρ0λm

(99)

and, under H1:

k1 =

(

M

∑
m=1

λm

)2

2
M

∑
m=1

λ2
m

and θ1 = 2

M

∑
m=1

λ2
m

M

∑
m=1

λm

. (100)

It has been shown in (Courmontagne et al., 2007) that the use of the stochastic matched filter
basis {Φm}m=1...M ensures a maximization of the distance between the maxima of pUM

(u/H0)
and pUM

(u/H1) and so leads to an optimal detection.
The basis dimension M is determined by a numerical way. As the detection algorithm is
applied using a sliding sub-window processing, each sub-window containing K samples, we
can access to K eigenvectors solution of the generalized eigenvalue problem (22). For each
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value of M, bounded by 2 and K, we numerically determine the threshold value TM allowing
a wanted false alarm probability and according to the following relation:

Pf a = 1 − ∆uk0

QM

∑
q=0

qk0−1
exp

[

−q∆u

θ0

]

Γ(k0)θ
k0
0

, (101)

where TM = QM∆u.
Then for each value of TM, we compute the detection probability according to:

Pd = 1 − ∆uk1

QM

∑
q=0

qk1−1
exp

[

−q∆u

θ1

]

Γ(k1)θ
k1

1

. (102)

Finally, the basis dimension will correspond to the M value leading to a threshold value TM

allowing the highest detection probability.

5.4 Experiments

5.4.1 Whale echoes detection

Detecting useful information in the underwater domain has taken an important place in many
research works. Whether it is for biological or economical reasons it is important to be able
to correctly distinguish the many kinds of entities which belong to animal domain or artificial
object domain.
For this reason, we have chosen to confront the proposed process with signals resulting from
underwater acoustics. The signal of interest S corresponds to an acoustic record of several
whale echoes. The sampling rate used for this signal is 44100 Hz. Each echo lasts approxima-
tively two seconds. The disturbing signal N corresponds to a superposition of various marine
acoustic signatures. The simulated received noisy signal Z has been constructed as follows:

Z = S + gN, (103)

where g is a SNR control parameter allowing to evaluate the robustness of the detection pro-
cessing. Several realizations were built with a SNR taking values from −12 dB to 12 dB (the
SNR corresponds to the ratio of the signal and noise powers in the common spectral band-
width). As an example, we present on figure 7.a in black lines the noisy data in the case of a
SNR equal to −6 dB. On the same graph, in red lines, we have reported the useful signal S.
The signal and noise covariances were estimated on signals belonging to the same series of
measurement as the signal S and the noise N. The signal covariance was obtained by fitting a
general model based on the average of several realizations of whale clicks while the noise one
was estimated from a supposed homogeneous subset of the record.
The ROC curves numerically obtained by the way of relations (101) and (102) with the prob-
ability density functions described by relations (98) are presented on figure 6 (for a signal to
noise ratio greater than −8 dB the ROC curves are practically on the graph axes). There are 512
samples in the sub-window, so we can access to 512 eigenvectors (i.e. 512 is the maximal size
of the basis). Basis dimension M takes values between 17 and 109 depending on the studied

signal to noise ratio (M = 17 for S
N

∣

∣

∣

Z
= 12 dB and M = 109 for S

N

∣

∣

∣

Z
= −12 dB).
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Fig. 6. ROC curves for a SNR taking values in [−12 dB; 12 dB]
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−6 dB

0 200 400 600 800 1000 1200

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

M
ag

ni
tu

de

(b) Result of the detection algorithm

0 200 400 600 800 1000 1200

200

400

600

800

1000

1200

1400

Time (sec)

M
ag

ni
tu

de

(c) UM and TM according to (88)

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7
x 10−3

u values

p U 95

(u
/H

1) i
n 

bl
ac

k 
lin

es
, p

U 95

(u
/H

0) i
n 

re
d 

lin
es

(d) Probability density functions
pUM

(u/H0) and pUM
(u/H1)

Fig. 7. 1st experiment: Whale echoes detection
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The false alarm probability has been settled to 10 %. The result to the detection process is
proposed on figure 7.b in black lines. On the same graph, the useful signal has been reported
in red lines, in order to verify that a detected event coincides with a whale echo. Figure 7.c
presents the vector UM and the automatic threshold TM: the use of the stochastic matched
filter allows to amplify the parts of the noisy data corresponding to whale echoes, while the
noise is clearly rejected. As explained in a previous section, the efficiency of the stochastic
matched filter is due to its property to dissociate the probability density functions, as shown
in figure 7.d (on this graph appears in dashed lines the position of the threshold TM for a
Pf a = 10%)).

5.4.2 Mine detection on SAS images

Detection and classification of underwater mines (completely or partially buried) with SAS
images is a major challenge to the mine countermeasures community. In this context, experts
are looking for more and more efficient detection processes in order to help them in their de-
cisions concerning the use of divers, mines destruction ... As a mine highlight region usually
has a corresponding shadow region (see figure 8), most of the methods used to detect and
classify objects lying on the seafloor are based on the interpretation of the shadows of the ob-
jects. Other methods are focusing on the echo itself. For these approaches, two main problems
could occur:

• given the position of the sonar fish and the type of mine encountered, the shape of the
echo and its associated shadow zone could vary; but as most of these techniques of
detection generally required training, their success can be dependent on the similarity
between the training and test data sets,

• given that SAS images are speckle noise corrupted, it is generally necessary to denoise
these images before of all; but such a despeckling step could involve miss and/or false
detection by an alteration of the echo and/or shadow, given that most of the despeck-
ling methods induce a smoothing effect.

In answer to these problems, we propose to use a one-dimensional detector based on the
stochastic matched filter. This detector is applied on each line of the SAS data (considering
as a line the data vector in a direction perpendicular to the fish direction). In this context,
we construct a very simple model of the signal to be detected (see figure 8), where d, the size
of the echo in sight, is a uniform random variable taking values in a range dependent of the
mine dimensions. So the problem of mine detection in SAS images is reduced to the one of
detecting a one-dimensional signal, such as the model presented in figure 8, in a noisy data
vector Z.
As the length of the shadow region depends on the fish height, we do not consider the whole
shadow for our model, but only its beginning (this corresponds to the length D in figure 8).
The signal covariance is estimated using several realizations of the signal model by making
varied the random variable d value. For the noise, its covariance is computed in an area of the
data, where no echo is assumed to be present and takes into account the hilly seabed.

Sight (m)

A
zi

m
ut

h 
(m

)

Noisy data (dB magnitude)

45 50 55 60

0

1

2

3

4

5

6

7

8

9

10
0

10

20

30

40

50

60

70

80

90

100

Sight (m)

A
zi

m
ut

h 
(m

)

Result of the detection algorithm (U152>T152 in white)

45 50 55 60

0

1

2

3

4

5

6

7

8

9

10

Sight (m)

A
zi

m
ut

h 
(m

)

Noisy data (dB magnitude)

68 70 72 74 76 78 80 82 84 86 88

0

1

2

3

4

5

6

7

8

9

10
−20

0

20

40

60

80

Sight (m)

A
zi

m
ut

h 
(m

)

Result of the detection algorithm (U39>T39 in white)

68 70 72 74 76 78 80 82 84 86 88

0

1

2

3

4

5

6

7

8

9

10

www.intechopen.com



The stochastic matched ilter and its applications to detection and de-noising 295

Fig. 8. Signal model: the wave is blocked by objects lying on seafloor and a shadow is gener-
ated
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(a) SAS image representing a sphere and a more
complex mine like object lying on the seafloor
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(b) Result of the detection algorithm

Sight (m)

A
zi

m
ut

h 
(m

)

Noisy data (dB magnitude)

68 70 72 74 76 78 80 82 84 86 88

0

1

2

3

4

5

6

7

8

9

10
−20

0

20

40

60

80

(c) SAS image representing two mine like objects: a
sphere and a cylinder lying on its side
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Fig. 9. 2nd experiment: Mine detection on SAS images
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The data set used for this study has been recorded in 1999 during a joint experiment between
GESMA (Groupe d’Etudes Sous-Marines de l’Atlantique, France) and DERA (Defence Evalu-
ation and Research Agency, United Kingdom). The sonar was moving along a fixed rail and
used a central frequency of 150 kHz with a bandwidth of 64 kHz. Figure 9.a and 9.c present
two images obtained during this experiment2. We recognize the echoes (the bright pixels)
in front of the objects and the shadows behind as well as the speckle that gives the granular
aspect to the image. Because of the dynamics of the echo compared to the remainder of the
image, these figures are represented in dB magnitude.
As the dimensions of the two mine like objects in azimuth and sight are not greater than one
meter, the proposed process has been calibrated to detect objects which dimensions in sight
are included in the range [0.5 m; 1 m] (i.e. the uniform random variable from the signal model
takes values in [0.5; 1]). For these two experiments, the false alarm probability has been settled
to 0.1%, entailing a basis dimension M equal to 152 for the first one and to 39 for the second
one. The results obtained applying the detection algorithm are presented on figures 9.b and
9.d. For the two cases, the mine like objects are well detected, without false alarm. These
results demonstrate the advantages of such a detection scheme, even in difficult situations,
such as the one presented on figure 9.c.

6. Conclusions

This chapter concerned the problem of a noise-corrupted signal expansion and its applica-
tions to detection and signal enhancement. The random signal expansion, used here, is the
stochastic matched filtering technique. Such a filtering approach is based on the noisy data
projection onto a basis of known vectors, with uncorrelated random variables as decomposi-
tion coefficients. The basis vectors are chosen such as to maximize the signal to noise ratio
after denoising. Several experiments in the fields of short signal detection in a noisy environ-
ment and of signals de-noising have shown the efficiency of the proposed expansion, even for
unfavorable signal to noise ratio.
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