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Abstract

We consider a zero-sum stopping game (Dynkin’s game) with a threshold probability criterion
in discrete time stochastic processes. We first obtain fundamental characterization of value
function of the game and optimal stopping times for both players as the result of the classical
Dynkin’s game, but the value function of the game and the optimal stopping time for each
player depend upon a threshold value. We also give properties of the value function of the
game with respect to threshold value. These are applied to an independent model and we
explicitly find a value function of the game and optimal stopping times for both players in a
special example.

1. Introduction

In the classical Dynkin’s game, a standard criterion function is the expected reward (e.g.
DynkinDynkin (1969) and NeveuNeveu (1975)). It is, however, known that the criterion is
quite insufficient to characterize the decision problem from the point of view of the decision
maker and it is necessary to select other criteria to reflect the variability of risk features for
the problem (e.g. WhiteWhite (1988)). In a optimal stopping problem, Denardo and Roth-
blumDenardo & Rothblum (1979) consider an optimal stopping problem with an exponential
utility function as a criterion function in finite Markov decision chain and use a linear pro-
gramming to compute an optimal policy. In Kadota et al.Kadota et al. (1996), they investigate
an optimal stopping problem with a general utility function in a denumerable Markov chain.
They give a sufficient condition for an one-step look ahead (OLA) stopping time to be optimal
and characterize a property of an OLA stopping time for risk-averse and risk-seeking utilities.
BojdeckiBojdecki (1979) formulates an optimal stopping problem which is concerned with
maximizing the probability of a certain event and give necessary and sufficient conditions for
existence of an optimal stopping time. He also applies the results to a version of the discrete-
time disorder problem. OhtsuboOhtsubo (2003) considers optimal stopping problems with
a threshold probability criterion in a Markov process, characterizes optimal values and finds
optimal stopping times for finite and infinite horizon cases, and he in Ohtsubo (2003) also
investigates optimal stopping problem with analogous objective for discrete time stochastic
process and these are applied to a secretary problem, a parking problem and job search prob-
lems.
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On the other hand, many authors propose a variety of criteria and investigate Markov deci-
sion processes for their criteria, instead of standard criteria, that is, the expected discounted
total reward and the average expected reward per unit (see WhiteWhite (1988) for survey).
Especially, WhiteWhite (1993), Wu and LinWu & Lin (1999), Ohtsubo and ToyonagaOhtsubo
& Toyonaga (2002) and OhtsuboOhtsubo (2004) consider a problem in which we minimize a
threshold probability. Such a problem is called risk minimizing problem and is available for
applications to the percentile of the losses or Value-at-Risk (VaR) in finance (e.g. FilarFilar et
al. (1995) and UryasevUryasev (2000)).
In this paper we consider Dynkin’s game with a threshold probability in a random sequence.
In Section 3 we characterize a value function of game and optimal stopping times for both
players and show that the value function of game has properties of a distribution function
with respect to a threshold value except a right continuity. In Section 4 we investigate an
independent model, as applications of our game, and we explicitly find a value function which
is right continuous and optimal stopping times for both players.

2. Formulation of problem

Let (Ω,F , P) be a probability space and (Fn)n∈N an increasing family of sub-σ-fields of F ,
where N = {0, 1, 2, · · · } is a discrete time space. Let X = (Xn)n∈N , Y = (Yn)n∈N , W =
(Wn)n∈N be sequences of random variables defined on (Ω,F , P) and adapted to (Fn) such
that Xn ≤ Wn ≤ Yn almost surely (a.s.) for all n ∈ N and P(supn X+

n + supn Y−
n < ∞) = 1,

where x+ = max(0, x) and x− = (−x)+. The second assumption holds if random vari-
ables supn X+

n and supn Y−
n are integrable, which are standard conditions given in the classi-

cal Dynkin’s game. Also let Z be an arbitrary integrable random variable on (Ω,F , P). For
each n ∈ N, we denote by Γn the class of (Fn)–stopping times τ such that τ ≥ n a. s..
We consider the following zero-sum stopping game. There are two players and the first and
the second players choose stopping times τ and σ in Γ0, respectively. Then the reward paid to
the first player from the second is equal to

g(τ, σ) = Xτ I(τ<σ) + Yσ I(σ<τ) + Wτ I(τ=σ<∞) + ZI(τ=σ=∞),

where IA is the indicator function of a set A in F . In the classical Dynkin’s game the aim of the
first player is to maximize the expected gain E[g(τ, σ)] with respect to τ ∈ Γ0 and that of the
second is to minimize this expectation with respect to σ ∈ Γ0. In our problem the objective of
the first player is to minimize the threshold probability P[g(τ, σ) ≤ r] with respect to τ ∈ Γ0

and the second maximizes the probability with respect to σ ∈ Γ0 for a given threshold value
r.
We can define processes of minimax and maxmin values corresponding to our problem by

Vn(r) = ess inf ess sup
τ∈Γn σ∈Γn

P[g(τ, σ) ≤ r|Fn],

Vn(r) = ess sup ess inf
σ∈Γn τ∈Γn

P[g(τ, σ) ≤ r|Fn],

respectively, where P[g(τ, σ) ≤ r|Fn] is a conditional probability of an event {g(τ, σ) ≤ r}
given Fn. See NeveuNeveu (1975) for the definition of ess sup and ess inf. We also define
sequences of minimax and maxmin values by

vn(r) = inf
τ∈Γn

sup
σ∈Γn

P[g(τ, σ) ≤ r], vn(r) = sup
σ∈Γn

inf
τ∈Γn

P[g(τ, σ) ≤ r],
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respectively. For n ≥ 1 and ε ≥ 0, we say that a pair of stopping times (τε, σε) in Γn × Γn is
ε–saddle point at (n, r) if

P[g(τε, σ) ≤ r]− ε ≤ vn(r) ≤ P[g(τ, σε) ≤ r] + ε

for any τ ∈ Γn and any σ ∈ Γn, when vn(r) = vn(r), say vn(r). .

3. General results

In this section we give fundamental properties of the value function of the game and find a
saddle point.
We notice that P[g(τ, σ) ≤ r] = E[I(g(τ,σ)≤r)] and we easily see that

I(g(τ,σ)≤r) = X̃τ(r)I(τ<σ) + Ỹσ(r)I(σ<τ) + W̃τ(r)I(τ=σ<∞) + Z̃(r)I(τ=σ=∞),

where new sequences (X̃n(r)), (Ỹn(r)), (W̃n(r)) and random variable Z̃(r)) are defined by

X̃n(r) = I(Xn≤r), Ỹn(r) = I(Yn≤r), W̃n(r) = I(Wn≤r), Z̃(r) = I(Z≤r).

Since Xn ≤ Wn ≤ Yn, we see that Ỹn(r) ≤ W̃n(r) ≤ X̃n(r) for all r. Thus our problem is just a
special version of the classical Dynkin’s game for a fixed threshold value r.
We first have three propositions below for a fixed r from the result of Dynkin’s game (e.g. see
NeveuNeveu (1975) and OhtsuboOhtsubo (2000)). In the following proposition, the notation
mid(a, b, c) denotes the middle value among constants a, b and c. For example, when a < b < c
then mid(a, b, c) = b. If a < b, mid(a, b, c) = max(a, min(b, c)) = min(b, max(a, c)).
Proposition 3.1. Let r be arbitrary.
(a) For each n ∈ N, Vn(r) = Vn(r), say Vn(r), and vn(r) = vn(r) = E[Vn(r)], say vn(r).
(b) (Vn(r)) is the unique sequence of random variables satisfying the equalities

Vn = mid(X̃n(r), Ỹn(r), E[Vn+1|Fn]), n ∈ N

and the inequalities

X̂n(r) ≤ Vn ≤ Ŷn(r), n ∈ N,

where (X̂n(r)) is the largest submartingale dominated by min(X̃n(r), E[Z̃(r)|Fn]) and (Ŷn(r)) is the

smallest supermartingale dominating max(Ỹn(r), E[Z̃(r)|Fn]), that is,

X̂n(r) = ess inf
τ∈Γn

P[g(τ, ∞) ≤ r)|Fn], Ŷn(r) = ess sup
σ∈Γn

P[g(∞, σ) ≤ r|Fn].

(c) For ε > 0, let

τ
ε
n(r) = inf{k ≥ n|Vk(r) ≥ X̃k(r)− ε},

σ
ε
n(r) = inf{k ≥ n|Vk(r) ≤ Ỹk(r) + ε}

Then (τε
n(r), σ

ε
n(r)) is ε-saddle point at (n, r).

For the value process X̂n(r) for the first player, we can obtain it as the following: for k ≥ n, let

γ
k
k(r) = min (X̃k(r), E[Z̃(r)|Fk]),

γ
k
n(r) = max (X̃n(r), E[γk

n+1(r)|Fn]), n < k.
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Proposition 3.2. Let r be arbitrary. For each k, n : k ≥ n, γk
n(r) ≥ γk+1

n (r) and for each n ∈ N,
limk→∞ γk

n(r) = X̂n(r).
For k ≥ n, let

βk
k(r) = X̂k(r),

βk
n(r) = mid(X̃n(r), Ỹn(r), E[βk

n+1(r)|Fn]), n < k,

Proposition 3.3. Let r be arbitrary. For each k ≥ n, βk
n(r) ≤ βk+1

n and for each n, limk→∞ βk
n(r) =

Vn(r).
Theorem 3.1. For each n, Vn(·) has properties of a distribution function on R except for the
right continuity.

Proof. We first notice that Z̃(r) = I(Z≤r) is a nondecreasing function in r. From the definition

of a conditional expectation and the dominated convergence theorem, E[Z̃(r)|Fk] for each k

is also nondecreasing at r. Since X̃k(r) = I(Xk≤r) is nondecreasing at r for each k ∈ N, we see

that γk
k(r) = min(X̃k(r), E[Z̃(r)|Fk]) is a nondecreasing function in r. By induction, γk

n(r) is

nondecreasing in r for each k ≥ n. Since a sequence {γk
n(r)}

∞

k=n of functions is nonincreasing

and X̂n(r) = limk→∞ γk
n(r), it follows that βn

n(r) = X̂n(r) is nondecreasing for each n. Sim-

ilarly, it follows by induction that βk
n(r) is nondecreasing at r for each n ≤ k, since Ỹn(r) is

nondecreasing at r. From Proposition 2.3, the monotonicity of a sequence {βk
n(r)}

∞

k=n implies

that Vn(r) = limk→∞ βk
n(r) is a nondecreasing function in r.

Next, since we have Vn(r) ≤ X̃n(r) and we see that X̃n(r) = I(Xn≤r) = 0 for a sufficiently

small r, it follows that limr→−∞ Vn(r) = 0. Similarly, we see that limr→∞ Vn(r) = 1, since we

have Vn(r) ≥ Ỹn(r) and we see that Ỹn(r) = 1 for a sufficiently large r. Thus this theorem is
completely proved.
We give an example below in which the value function Vn(r) is not right continuous at some
r.
Example 3.1. Let Xn = Wn = −1, Yn = 1/n for each n and let Z = 1. We shall obtain the value
function Vn(r) by Propositions 3.2 and 3.3. Since X̃k(r) = I[−1,∞)(r) and Z̃(r) = I[1,∞)(r),

we have γk
k(r) = I[1,∞)(r). By induction, we easily see that γk

n(r) = I[1,∞)(r) for each k ≥ n

and hence βn
n(r) = X̂n(r) = limk→∞ γk

n = I[1,∞)(r). Next, since Ỹk−1(r) = I[1/(k−1),∞)(r),

we have βk
k−1(r) = I[1/(k−1),∞)(r). By induction, we see that βk

n(r) = I[1/(k−1),∞)(r) for each

k > n. Thus we have Vn(r) = limk→∞ βk
n(r) = I(0,∞)(r), which yields that Vn(r) is not right

continuous at r = 0.

4. Independent model

We shall consider an independent sequences as a special model. Let
(Wn)n∈N be a sequence of independent distributed random variables with
P(supn |Wn| < ∞) = 1, and let Z be a random variable which is independent of (Wn)n∈N .
For each n ∈ N let Fn be the σ-field generated by {Wk; k ≤ n}. Also, for each n ∈ N, let
Xn = Wn − c and Yn = Wn + d, where c and d are positive constants.
Since Fn is independent of {Wk; k > n}, the relation in Proposition 3.1 (b) is represented as
follows:

Vn(r) = mid(X̃n(r), Ỹn(r), E[Vn+1(r)])

= mid(I(Wn≤r+c), I(Wn≤r−d), E[Vn+1(r)]).
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From Proposition 3.1 (b) and argument analogous to classical optimal stopping problem, we
have also

X̂n(r) = min(X̃n(r), E[Z̃(r)|Fn], E[X̂n+1(r)|Fn]),

Ŷn(r) = max(Ỹn(r), E[Z̃(r)|Fn], E[Ŷn+1(r)|Fn]).

Hence we obtain

X̂n(r) = min(X̃n(r), P(Z ≤ r), E[X̂n+1(r)]),

Ŷn(r) = max(Ỹn(r), P(Z ≤ r), E[Ŷn+1(r)]),

since E[Z̃(r)|Fn] = E[Z̃(r)] = P(Z ≤ r).
Example 4.1. Let W be a uniformly distributed random variable on an interval [0, 1] and
assume that Wn has the same distribution as W for all n ∈ N and that 0 < c, d < 1/2. Then
since (Wn)n∈N is a sequence of independently and identically distributed random variables,
Vn(r) does not depend on n. Hence, letting V(r) = Vn(r), n ∈ N and v(r) = E[V(r)], we have

V(r) = mid(I(W≤r+c), I(W≤r−d), v(r)).

When W < r − d, we have I(W≤r+c) = I(W≤r−d) = 1, so V(r) = 1. When W ≥ r + c, we have

V(r) = 0, since I(W≤r+c) = I(W≤r−d) = 0. Thus we obtain

V(r) = I(W≤r−d) + v(r)I(r−d≤W<r+c).

Taking the expectation on the both sides, we see that

v(r) = P(W ≤ r − d) + v(r)P(r − d ≤ W < r + c).

If r < d then we have v(r) = v(r)P(0 ≤ W < r + c). Since r < d < 1/2 < 1 − c, P(0 ≤ W <

r + c) < 1 and hence v(r) = 0. If d ≤ r < 1 − c, then we obtain v(r) = (r − d)/(1 − c − d),
since P(W ≤ r − d) = r − d and P(r − d ≤ W < r + c) = c + d. Similarly, if r ≥ 1 − c then we
have v(r) = 1. Thus it follows that

v(r) = I[1−c,∞)(r) + (r − d)/(1 − c − d)I[d,1−c)(r).

We completely obtained the values V(r) and v(r). By the way we easily see that X̂(r) =

X̂n(r) = E[X̂(r)]I(W≤r+c), where

E[X̂(r)] = rI[1−c,1)(r) + I[1,∞)(r),

and
E[Ŷ(r)] = Ŷ(r) = Ŷn(r) = P[Z ≤ r]I(−∞,d)(r) + I[d,∞)(r).

Now v(r) is a distribution function in r. Let U is a random variable corresponding to v(r).
Then we see that E[U] = (1 − c + d))/2.
We shall next compare our model with the classical Dynkin’s game in this example. Let

Jn = ess inf ess sup
τ∈Γn σ∈Γn

E[g(τ, σ)|Fn],

J
n
= ess sup ess inf

σ∈Γn τ∈Γn

E[g(τ, σ)|Fn],
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be minimax and maxmin value processes, respectively. Then we have Jn = J
n
= J, say, since

Jn = J
n

does not depend upon n in this example. Also, by solving the relation

J = mid(W − c, W + d, E[J]),

we have E[J] = (1 − c + d)/2, which coincide with E[U]. However, the distribution function
of J is represented by

P(J ≤ x) = (x − d)I[d,(1−c+d)/2)(x) + (x + c)I[(1−c+d)/2,1−c)(x) + I[1−c,∞)(x),

which is different from that of U, that is, v(r).
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