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Double Layer Architectures for Automatic 
Speech Recognition Using HMM 

Marta Casar and José A. R. Fonollosa 
Dept. of Signal Theory and Communication, Universitat Politècnica de Catalunya (UPC), 

Barcelona, Spain 

1. Introduction 

Understanding continuous speech uttered by a random speaker in a random language and 
in a variable environment is a challenging problem for a machine. Broad knowledge of the 
world is needed if context is to be taken into account, and this has been the main source of 
difficulty in speech-related research. Automatic speech recognition has only been possible 
by simplifying the problem - which involves restricting the vocabulary, the speech domain, 
the way sentences are constructed, the number of speakers, and the language to be used-, 
and controlling the environmental noise. 
Current speech recognition systems are usually based on the statistical modelling of the 
acoustic information, generally using hidden Markov models (HMM). However, these 
systems are subject to some restrictions regarding the incorporation of other speech-related 
knowledge that might have an influence on the recognition rate.  
The evolution of Automatic Speech Recognition (ASR) technology over the last few years 
has led to the development of applications and products that are able to operate under real 
conditions by acknowledging the above-mentioned limitations (or simplifications). ASR 
applications include dialogue systems, speech-based interfaces (such as automatic access to 
information services) and voice-controlled systems (like voice-driven database retrieval).  
Due to the number of potential ASR applications, research efforts have been focused on 
developing systems that can accept spontaneous speech in a wide range of environments 
and from a wide range of speakers. However, in the case of spontaneous speech, large 
vocabularies must be considered. Moreover, language must be modelled by a non-restrictive 
grammar, which takes into account events that are common in natural speech, such as 
truncated or grammatically incorrect sentences, non-speech-events and hesitation. To deal 
with this, and to be able to introduce all the information available into the recognition 
architecture, a change of paradigm from conventional speech recognition had to be 
proposed.
In this chapter, we will talk about different approaches to a double layer architecture using 
HMM for ASR, which should allow other, non-acoustic information to be incorporated and 
more complex modelling of the speech signal than has been possible up to now. After 
analyzing different approaches, the main conclusions will be summarized and possible 
further work in this field will be briefly discussed. 

Source: Robust Speech Recognition and Understanding, Book edited by: Michael Grimm and Kristian Kroschel,
ISBN 987-3-90213-08-0, pp.460, I-Tech, Vienna, Austria, June 2007
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2. ASR Using HMM 

2.1 Standard systems 

A standard ASR system is based on a set of so-called acoustic models that link the observed 
features of the voice signal to the expected phonetics of the hypothesis sentence. The most 
typical implementation of this process is probabilistic, namely Hidden Markov Models 
(HMM) (Rabiner, 1989; Huang et al., 2001). 
A Markov model is a stochastic model that describes a sequence of possible events in which 
the probability of each event only depends on the state attained in the previous event. This 
characteristic is defined as the Markov property. An HMM is a collection of states that fulfils 
the Markov property, with an output distribution for each state defined in terms of a 
mixture of Gaussian densities (Rabiner, 1993). These output distributions are generally 
made up of the direct acoustic vector plus its dynamic features (namely, its first and second 
derivatives), plus the energy of the spectrum. Dynamic features are the way of representing 
context in an HMM, but they are generally only limited to a few subsequent feature vectors 
and do not represent long-term variations. Frequency filtering parameterization (Nadeu et 
al., 2001) has become a successful alternative to cepstral coefficients. 
Conventional HMM training is based on maximum likelihood estimation (MLE) criteria 
(Furui & Sandhi, 1992), via powerful training algorithms such as the Baum-Welch algorithm 
and the Viterbi algorithm. In recent years, the discriminative training method and the 
minimum classification error (MCE) criteria, which is based on the generalized probabilistic 
descent (GPD) framework, has been successful in training HMMs for speech recognition 
(Juang et al., 1997). For decoding, both the Viterbi and Baum-Welch algorithms have been 
implemented with similar results, but the former showed better computational behaviour. 
The first implementations of HMMs for ASR were based on discrete HMMs (DHMMs). In a 
DHMM, a quantization procedure is needed to map observation vectors from the 
continuous space to the discrete space of the statistical models. Of course, there is a 
quantization error inherent to this process, which can be eliminated if continuous HMMs 
(CHMMs) are used.  
For CHMMs, a different form of output probability function is needed. Multivariate 
Gaussian mixture density functions are an obvious choice, as they can approximate any 
continuous density function (Huan et al., 2001). However, computational complexity can 
become a major drawback in the maximization of the likelihood by way of re-estimation, as 
the M-mixture observation densities used must be accommodated.  
In many implementations, the gap between the discrete and continuous mixture density 
HMM has been bridged under certain minor assumptions. For instance, in a tied-mixture 
HMM the mixture density functions are tied together across all the models to form a set of 
shared kernels.
Another solution is a semi-continuous HMM (SCHMM), in which a VQ codebook is used to 
map the continuous input feature vector x to ok, as in a discrete HMM. However, in this case 
the output probabilities are no longer used directly (as they are in a DHMM), but rather 
combined with the VQ density functions. That is, the discrete model-dependent weighting 
coefficients are combined with the continuous codebook’s probability density functions.  
From another point of view, semi-continuous models are equivalent to M-mixture 
continuous HMMs, with all the continuous output probability density functions shared by 
all the Markov states. Hence, SCHMMs maintain the modelling ability of large-mixture 
probability density functions. In addition, the number of free parameters and the 
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computational complexity can be reduced, because all the probability density functions are 
tied together, thus providing a good compromise between detailed acoustic modelling and 
trainability. 
However, standard ASR systems still do not provide convincing results under changeable 
environmental conditions. Most current commercial speech recognition technologies still 
work using either a restricted lexicon (i.e. digits or a definite number of commands) or a 
semantically restricted task (i.e. database information retrieval, tourist information, flight 
information, hotel services, etc.). Extensions to more complex tasks and/or vocabulary still 
have a reputation for poor quality and are thus viewed with scepticism by both potential 
users and customers. 
Because of the limitations of HMM-based speech recognition systems, research has had to 
progress in a number of different directions. Rather than adopting an overall approach to 
tackling problems, they have generally been dealt with individually. Regarding robust 
speech recognition, the spectral variability of speech signals has been studied using different 
methods, such as variable frame rate (VFR) search analysis of speech. Model adaptation has 
also been on scope or, more specifically, speaker adaptation and vocal tract normalization 
(VTN).
Language modelling research has played a significant role in improving recognition 
performance in continuous speech recognition. However, another problem that faces 
standard speech recognition is the dependency of the models obtained regarding to the 
speakers (or database) used for training. Speaker adaptation can be used to overcome this 
drawback, as it performs well as a solution to certain tasks. However, its benefits are not 
entirely clear for speaker-independent tasks, because the adaptation costs are higher.  
Of all the active fields of research in speech recognition, we will focus our attention on those 
closest to the approach presented in this chapter. 

2.2 Modelling temporal evolution using temporal and trajectory models 

At the outset of speech recognition research, the application of statistical methods, i.e. 
Markov Models, proved to be clearly advantageous. First-order Markov Models are 
sufficiently flexible to accommodate variations in probability along an utterance and, at the 
same time, simple enough to lend themselves to mathematically rigorous optimization and 
the deployment of search strategies. However, as the Markov property is an artificial 
constraint forced upon a model of the temporal speech utterance, it was expected that some 
speech characteristics would not be correctly modelled.  
Several approaches for modelling temporal evolution have been proposed in the past. 
Temporal models have been used to optimally change the duration and temporal structure 
of words. Experiments showed that first-order Markov chains do not model expected local 
duration effectively. Thus, different approaches for a more explicit modelling of duration 
led to an improvement in performance.  
Some approaches started by directly introducing continuously variable duration into the 
HMM. In (Russell & Cook, 1987) and (Bonafonte et al., 1996), each HMM state is expanded 
to a sub-HMM (ESHMM) that shares the same emission probability density and performs 
the correct state duration distribution using its own topology and transition probability. To 
reduce the loss of efficiency introduced by the ESHMM, a post-processor duration model 
can be implemented (Wu et al., 2005) using the output of a Viterbi algorithm and ranking 
the proposed paths through the use of better models for state duration. However, 
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incorporating explicit duration models into the HMM also breaks up some of conventional 
Markov assumptions. When HMM geometric distribution is replaced with an explicitly 
defined one, Baum-Welch and Viterbi algorithms are no longer directly applicable. 
In (Bonafonte et al., 1993), Hidden Semi-Markov models (HSMMs) are proposed as a 
framework for a more explicit modelling of duration. In these models, the first-order 
Markov hypothesis is broken in the loop transitions. The main drawback of an HSMM, 
however, is an increase in the computational time by a factor of D, D being the maximum 
time allowed in each state. Hence, the Viterbi algorithm must be modified to cope with this 
higher complexity and to limit the computational increase.  
An alternative to this is to model the occupancy of each HMM state by means of a Markov 
chain (Vidal et al., 2004). This occupancy is represented using a distribution function (DF). 
Thus, each state of the initial HMM is expanded by the DF estimated for that state.  
In another approach to overcome the limitations of standard HMM framework, alternative 
trajectory models have been proposed that take advantage of frame correlation. Although 
these models can improve the speech recognition performance, they generally require an 
increase in model parameters and computational complexity.  
In (Tokuda et al., 2003) a trajectory model is derived by reformulating the standard HMM 
whose state output vector includes static and dynamic feature parameters. This involves 
imposing the explicit relationship between the static and dynamic features. A similar 
technique is based on maximizing the models’ output probability under the constraints 
between static and dynamic features.  
A smooth speech trajectory is also generated from an HMM by maximizing the likelihood 
subject to the constraints that exist between static and dynamic features. A parametric 
trajectory can be obtained using direct relationships between the vector time series for static 
and dynamic features, or from mixture distribution HMMs (Minami et al., 2003). This 
method chooses the target sequence of Gaussian distributions by selecting the best Gaussian 
distribution for each state during Viterbi decoding. Thus, the relationship between the 
cepstrum and the dynamic coefficients is now taken into account in the recognition phase, 
unlike in previous approaches. 

2.3 Second-order models (HMM2) 

HMM-based speech modelling assumes that the input signal can be split into segments, 
which are modelled as states of an underlying Markov chain, and that the waveform of each 
segment is a stationary random process. As previously mentioned, the sequence of states in 
an HMM is assumed to be a first-order Markov chain. This assumption is motivated by the 
existence of efficient, tractable algorithms for model estimation and recognition.  
To overcome the drawbacks of regular HMMs regarding segment duration modelling and 
trajectory (frame correlation) modelling, some authors have proposed a new class of models 
in which the underlying state sequence is a second-order Markov chain (HMM2) (Mari et 
al., 1997). These models show better state occupancy modelling, at the cost of higher 
computational complexity. To overcome this disadvantage, an appropriate implementation 
of the re-estimation formulation is needed. Algorithms that yield an HMM only Ni times 
slower than an HMM1 can be obtained, Ni being the average input branching factor of the 
model. 
Another approach to a second-order HMM is a mixture of temporal and frequency models 
(Weber et al., 2003). This solution consists of a primary (conventional) HMM that models the 
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temporal properties of the signal, and a secondary HMM that models the speech signal's 
frequency properties. That is, while the primary HMM is performing the usual time 
warping and integration, the secondary HMM is responsible for extracting/modelling the 
possible feature dependencies, while also performing time warping and integration.  
In these models, the emission probabilities of the temporal (primary) HMM are estimated 
through a secondary, state-specific HMM that works in the acoustic feature space. Such 
models present a more flexible modelling of the time/frequency structure of the speech 
signal, which results in better performance. Moreover, when such systems are working with 
spectral features, they are able to perform non-linear spectral warping by implementing a 
form of non-linear vocal-tract normalization.  
To solve the increase in computational complexity associated with this solution, the Viterbi 
algorithm must be modified, which leads to a considerable computational increase.  
The differences in performance between an HMM and HMM2 are not particularly 
remarkable when a post-processor step is introduced. In this post-processor step, durational 
constraints based on state occupancy are incorporated into conventional HMM-based 
recognition. However, in this case HMM2s are computationally better, while the complexity 
increase is similar in both cases. 

2.4 Layered speech recognition 

With regard to the integration of different information into the ASR architecture, and going 
one step further from the HMM2, several authors have proposed using layered HMM-based 
architectures (Demuynck et al., 2003).  
Layered ASR systems fit all the knowledge levels commonly used in automatic speech 
recognition (acoustic, lexical and language information) in a final model. From these 
architectures, a modular framework can be suggested that allows a two-step (or multi-step) 
search process. The usual acoustic-phonetic modelling is divided into two (or more) 
different layers, one of which is closer to the voice signal for modelling acoustic and 
physical characteristics, whilst the other is closer to the phonetics of the sentence. The 
modelling accuracy and the ease with which acoustic and phonetic variability can be 
managed are thus expected to increase. 
By splitting the recognition scheme into an acoustic lower layer and a language-based upper 
layer, the introduction of new functionalities may be consigned to the second layer. The goal 
is to develop models that are not limited by acoustic constraints (such as left-to-right 
restrictions). This also provides an open field for the introduction of new (and high-level) 
information with no loss of efficiency. Moreover, layered architectures can increase speaker 
independence if the upper layer is trained with a different set of recordings to that used for 
the acoustic layer, which approaches conditions similar to those faced in the recognition of 
unknown speakers.  
In the following sections, two approaches for a double-layer architecture are presented and 
justified. Thanks to the advantages mentioned above, layered architectures are expected to 
bring standard HMM-based ASR systems up to date. 
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3. HMM State Scores Evolution Modelling 

3.1 Justification 

In standard HMM-based modelling, feature vectors only depend on the states that 
generated them. Dynamic features (generally first and second derivatives of the cepstral 
coefficients and derivatives of the energy) are used to represent context in HMM. However, 
they only consider a few subsequent vectors and do not represent long-term variations. 
Moreover, first-order Markov chains do not effectively model expected local duration. 
Furthermore, as seen above, incorporating explicit state duration models into the HMM 
breaks up some of conventional Markov assumptions. An alternative way of incorporating 
context into an HMM lies in taking a similar approach to the evolution of state scores as that 
used for well-known trajectory models. However, in this case a double-layer architecture is 
used. 
In (Casar & Fonollosa, 2006a), a method is presented for incorporating context into an HMM 
by considering the state scores obtained by a phonetic-unit recognizer. These state scores are 
obtained from a Viterbi grammar-free decoding step that is added to the original HMM, 
which yields a new set of “expanded” HMMs. A similar approach was used by (Stemmer et 
al., 2003), who integrated the state scores of a phone recognizer into the HMM of a word 
recognizer, using state-dependent weighting factors. 

3.2 Mathematical formalism 

To better understand the method for implementing HMM state scores evolution modelling 
presented in (Casar & Fonollosa, 2006a), the formulation on which it relies must be 
introduced. 
In a standard SCHMM, the density function bi (xt) for the output of a feature vector xt by
state i at time t is computed as a sum over all codebook classes m  M (the number of 
mixture components): 

= ≈, ,( ) · ( | , ) · ( | )i t i m t i m t
m m

b x c p x m i c p x m   (1) 

where p(xt|m) = N(xt,µm,Σm) denotes the Gaussian density function shared across all Markov 

models and ci,m are the weights for the kth codeword that satisfy ci,m =1.
As in (Stemmer et al., 2003) probability density functions can be considered that make it 
possible to integrate a large context x1t-1 = x1,.... xt-1 of feature vectors observed thus far into 
the HMM output densities.  
If we tried to directly integrate this context into bi, this would result in a large increase of 
computational effort. Therefore, a new hidden random variable l (henceforth called class
label) is introduced, which is a discrete representation of the feature vectors x1t-1. These class 
labels l can correspond to the units whose context is to be modelled, for instance phone 
symbols.  
From now on, each state i not only chooses between the codebook classes m  M but also 
takes an independent decision for the class label l. The integration of l into the output 
density makes bi dependent on the history x1t-1.
Thus, Equation (1) is expanded by defining the new output probability and integrating the 
context, as in (Stemmer et al., 2003): 
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1 1
1 1

,

( | ) ( | , )· ( , | , )t t
i t t

m l

b x x p x l m P l m i x− −
=   (2) 

Moreover, as x1t-1 is the same for all states i at time t there is no increase in the computational 
complexity of the algorithms for training and decoding.  
However, the representation of bi (xt|x1t-1) needs additional simplifications if the number of 
parameters to be estimated is to be reduced. 
Since the decisions of l and m are independent, we can use the following approximation: 

1 1 1
1 1 1( , | , ) ( | , )· ( | , )t t tP l m i x P l i x P m i x− − −

=  (3) 

and as m does not depend on x1 t-1, P(m|i,x1t-1) = P(m|i)= ci,m .
Thus, Equation (3) can be reformulated as: 

1 1
1 , 1( , | , ) · ( | , )t t

i mP l m i x c P l i x− −
=   (4) 

We can also split the second term P(l|i, x1t-1) into two parts in which i is considered 
separately from x1 t-1 and by applying Bayes’ rule: 

1 1
1 , 1( | , ) · ( | )t t

l iP l i x C P l x− −
=   (5) 

where Cl,i is related to P(l|i) by means of a variable proportionality term.  
To summarize, we can express Equation (2) by splitting the separately considered 
contributions of m and l, thus: 

1 1
1 , , 1( | ) · ( | ) · · ( | ) ( | )t t

i t i m t l i t
m l

b x x c p x m C P l x p x l− −
≈   (6) 

where the first term corresponds to Equation (1). 
In this case, we do not want to introduce the modelling of the context for each feature vector 
into the HMM output densities, but to create a new feature by modelling the context. A new 
probability term is defined: 

' 1
, 1( ) · ( | ) ( | )t

i t l i t
l

b x C P l x p x l−
=  (7) 

Thus, when a regular bi(xt) for each spectral feature and a bi'(xt) for the phonetic-unit feature 
are combined, the joint output densities of the expanded set of models are equivalent to 
Equation (6). 
We can express P(l|x1t) = P(l|xt,x1t-1), and applying Bayes’ rule to the second term of this 
expression:

1 1
1 1

1 1
1

( | , ) ( | )
( | )

( , )

t t
t t

t
t

p x l x P l x
P l x

p x x

− −

−
=  (8) 

Given that class l is itself a discrete representation of feature vectors x1t-1, we can 
approximate p(xt|l,x1t-1)  p(xt|l).
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Likewise, p(xt,x1t-1) is a constant in its evaluation across the different phonetic units so we 
can simplify Equation (8) to P(l|x1 t) = K p(xt|l) P(l|x1t-1) (with K as a constant). 
Finally,  

' '
, 1( ) · ( | )t

i t l i
l

b x C P l x=   (9) 

The new terms in Equation (9) are obtained as follows: C’l,i is estimated during the Baum-
Welch training of the expanded set of models, whilst P(l|x1t) corresponds to the state scores 
output obtained by the Viterbi grammar-free decoding step. Thus, the output probability 
distribution of the models in the second layer can be estimated through a regular second 
training process.  

3.3 Recognition system 

The double-layer architecture proposed (Figure 1) divides the modelling process into two 
levels and trains a set of HMMs for each level. For the lower layer, a standard HMM-based 
scheme is used, which yields a set of regular acoustic models. From these models, a 
phonetic-unit recognizer performs a Viterbi grammar-free decoding step, which provides (at 
each instant t) the current most likely last state score for each unit.  
This process can also be seen as a probabilistic segmentation of the speech signal, for which 
only the last state scores associated with the unit with the highest accumulated probability 
are kept.

Training 
corpus

training

Viterbi
Grammar-free

training

HMM_1

HMM_2

HMM_1 HMM_2

Viterbi
Grammar-free

Viterbi
Recognized
output

Speech
input

RECOGNITION

TRAINING

Figure 1. Double-layer ASR system with HMM state scores modelling 

Let us consider, for instance, semidigit acoustic models for the first layer. In this case, labels l
in the second layer represent the last states of each semidigit model. Thus, the output 
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density value for each unit can be computed as the probability that the current state st of a 
semidigit model is equal to l:

1 1( | ) : ( | )t t
tP l x P s l x= =   (10) 

where P(st =l|x1t) is calculated from the forward score: 

1
1

1

( , )
( | )

( , )

t
t t

t t
t

j

P s l x
P s l x

P s j x

=
= =

=
 (11) 

The last state scores probability will be the new parameter to be added to the original set of 
features (spectral parameters). Henceforth, five features are considered for further training 
the joint output densities of the expanded set of HMM parameters. However, they are not 
independent features as the phonetic-unit feature models the evolution of the other features.  
A weighting factor w is also introduced, as in (Stemmer et al., 2003) to control the influence 
of the new parameter regarding the spectral features. A global, non-state-dependent 
weighting factor will be used. 
In Table 1, digit chain recognition results obtained using this architecture are compared with 
the baseline results obtained using the regular RAMSES SCHMM system (Bonafonte et al., 
1998). Results show a significant improvement in both sentence and word recognition rates.  

Configuration 

System w 

Sentence 
recognition rate 

Word
recognition rate 

Relative reduction 
in WER 

Baseline - 93.304 % 98.73 % -  

0.5 93.605 % 98.80 % 5.51 % 
Layered 

0.2 93.699 % 98.81 % 6.3 % 

Table 1. Recognition rates using expanded state-scores based HMM. 

The relevance of choosing a suitable weighting factor w is reflected in the results. Different 
strategies can be followed for selecting w. In this case, as in Stemmer et al. (2003), an 
experimental weighting factor is selected and its performance verified using an independent 
database.  

4. Path-based Layered Architectures 

4.1 Justification 

HMM-based speech recognition systems rely on the modelling of a set of states and 
transitions using the probability of the observations associated with each state. As these 
probabilities are considered independent in SCHMMs, the sequence of states leading to each 
recognized output remains unknown. Thus, another interesting approach for implementing 
the second layer of a double-layer architecture consists in training the appearance pattern 
instead of modelling the temporal evolution of the states scores. 
In (Casar & Fonollosa, 2003b) the “path” followed by the signal is modelled; each final 
active state is taken as a step. Recognition is then associated with decoding the best 
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matching path. This aids the recognition of acoustic units regardless of the fact that they 
may vary when they are uttered in different environments or by different speakers, or if 
they are affected by background noise.  
Let us examine an example using phoneme HMMs, with three states each, which allows a 
maximum leap of 2 for intra-model state transitions, as in Figure 2.  

Figure 2. A three-state HMM with a maximum leap of 2 for intra-model state transitions 

Thus, when a word is uttered, for example “zero”, the speech signal is able to go through 
the different states of the models associated with each of the word’s phonemes. The graph in 
Figure 3 represents the different “paths” that the speech signal can follow through these 
states at the decoding stage.  
As the intra-model and inter-model state transitions allowed are also represented, by 
modelling this path we are also modelling the different durations of the utterance as local 
modifications of the path.  
In a double-layer framework, the recognition architecture is broken down into two levels 
and performs a conventional acoustic modelling step in the first layer. The second layer is 
consigned to model the evolution followed by the speech signal. This evolution is defined as 
the path through the different states of the sub-word acoustic models defined in the first 
layer. 
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Figure 3. Example of paths that can be followed when the word “zero” is uttered 
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To model this path without taking into account the causal relationships between neighbour 
states, we can implement a transparent second layer. This is because we are doing a direct 
mapping of the acoustic probabilities of the activated states. However, while in traditional 
acoustic HMMs the Gaussian densities model the probability with which a state generates 
certain spectral parameters (acoustic or physical information), the new HMM generated in 
this second layer will give the probability of being at a certain point of the path followed by 
the speech signal. 
If we take it one step further, the context of each state will be considered in the process of 
modelling the path. As shown in Figure 5, the speech signal will now be modelled by means 
of the different paths through the activated states, in which each path has its own associated 
probability. Thus, each state will be allowed to be part of different paths and to have 
different contexts. This increases the variability of the path and helps to model different 
utterances of the same speech symbol. 

4.2 Mathematical formalism 

In a semi-continuous HMM, a VQ codebook is used to map the continuous input feature 
vector x to ok (the kth codeword) by means of the distribution function f(x|ok). Therefore, we 
can use a discrete output probability distribution function (PDF) bj(k) for state j:

1

( ) ( ) ( | )
M

j j k
k

b x b k f x o
=

=   (12) 

If Equation (12) is taken as the output density function of the models from the first layer, the 
input into the HMM of the second layer will be the vector of state probabilities given by the 
acoustic models of the first layer. Hence, a new set of semi-continuous output PDFs b’j (k) is 
defined for the second layer:  

' '

1

( ) ( ) ( )
M

j j k
k

b x b k b x
=

=   (13) 

This equation can also be expressed in terms of a new distribution function f’(x|bk), where
the output probability vectors bk play the role usually carried out by ok in the first level. In 
fact, by doing this we are defining a new codebook that covers the sub-word state-
probability space by means of the distribution function f’(x|bk) = bk (x).
The new weights b’(x) will be obtained through a new Baum-Welch estimation in a second 
modelling step. New observation distributions for the second-layer HMM are trained using 
the same stochastic matrix as that of the original acoustic HMM.  
In practice, as M and M' are large, Equations (12) and (13) are simplified using the most 
significant values of I and I'. Thus, it is possible to avoid certain recognition paths from 
being activated, and this can result in a different decoding when I  I'. This simplification 
also means that the preceding and following states to be activated for each state are pruned. 
In the previous formulation, we model the path followed by the signal, taking each final 
active state as a step, but without studying the possible causal relationships between 
adjacent states. When context-dependent path-based modelling is implemented, the 
mapping of the models will be undertaken using windows centred in each state and that 
embrace one or more adjacent states, that is, the states that are most likely to have been 
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visited before the current state and those that will most probably become future ones. 
Therefore, instead of taking the output probability vectors bk of the first layer as ok for the 
new distribution function f’(x|bk), we will work with a combination between the output 
probabilities of the adjacent states considered.  

4.3 Path-based double-layer architectures 

The main aims of the path-based double-layer architecture developed are twofold: firstly, to 
achieve a better modelling of speech units as regards their variation when they are uttered 
in a changeable environment, and secondly, to improve speaker independence by taking 
advantage of the double layer.  
Two implementations are possible for the second layer, namely, the state context in the 
definition of the path can either be taken into account or ignored. The two schemes are 
presented below. Firstly, in the one-state width path-based modelling scheme, the state 
context is not considered, that is, the path followed by the signal is considered without 
taking into account the causal relationships between adjacent states. This context is 
subsequently introduced in the L-state width path-based modelling scheme. In this case, L-1 
is the number of adjacent states considered as the significant context for each state of the 
path.

Path-based modelling without context 
In Figure 4, a basic diagram of the proposal for a double-layer architecture that implements 
path-based modelling without context in the second layer is shown.  
The first layer of both the training and recognition schemes is equivalent to a regular 
acoustic HMM-based system. The second layer consists in mapping the acoustic models 
obtained in the first layer into a state-probability-based HMM. In addition, a new codebook 
that covers the probability space is defined. This means that we are no longer working with 
spectral parameter distributions but with the probabilities for the whole set of possible 
states. Thus, we have moved from the signal space (covered by the spectrum) to the 
probability space (defined by the probability values of each of the states).  
In traditional HMMs, Gaussian densities model the probability with which a state generates 
certain spectral parameters (acoustic information). The new HMMs generated by this second 
layer will give the probability of being at a certain point of the path followed by the speech 
signal.
In practice, this means that in acoustic HMMs the probability of reaching a certain state si of 
model mi depends on the parameterization value of the four spectral features, which depend 
on physical and acoustic characteristics. For instance, the “z” in “zero” may vary 
considerably when it is uttered by two different speakers (in terms of acoustic and physical 
parameters). It is the task of the HMM parameter to achieve a correct modelling of these 
variations. However, if a very flexible model is trained to accept a wide range of different 
utterances in the acoustic segment, the power of discrimination between units will be lost.  
When we are working with  path-based HMM, we are directly modelling the probability of 
reaching state si of model mi regardless of the acoustic features’ values. We use the new 
codebook to map the spectral feature to the new probability space. Thus, we decode the 
path followed by the speech signal in terms of the probabilities of each active state.  
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Figure 4. Basic diagram of a one-state width path-based double-layer ASR system 

As the models are mapped to a space of dimension N (the total number of HMM states from 
the first layer), some pruning can be implemented by keeping only the N/2 most significant 
values (see Equation (13)). We are therefore constraining the possible states preceding and 
following each active state, which prevents some recognition paths from being activated. 
This solution will increase speed, and an improvement in recognition performance is also 
expected.
In fact, this can be seen as a similar strategy to CHMM Gaussian mixture pruning, in which 
each state is modelled using a mixture of private Gaussians and only the most likely 
mixtures are considered. 

L-states width path-based modelling 
From a mathematical point of view, speech signals can be characterized as a succession of 
Markov states, in which transitions between states and models are restricted by the topology 
of the models and the grammar. Hence, each state of every model is unique, even though 
the topology can allow multiple repetitions.  
Thus, speech can be modelled by means of different state successions (or paths). Each path has 
its own associated probability, which allows one state to be part of different paths (see 
Figure 5). Furthermore, the context of each state becomes relevant, which brings about a 
higher variability in the possible paths that make up an utterance.
However, the maximum likelihood estimation criteria still apply. Thus, the path with 
maximum likelihood will be that configured by the succession of states that maximizes the 
joint probability (defined by the product of probabilities of each state in the path).  
Theoretically, each path should be defined as the complete succession of states. However, as 
can be seen in Figure 5, the number of paths to consider can become too high (close to 
infinite) if the total number of previous and following states is considered for each state 
context.  
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LL

Figure 5. Different paths go into a certain state. Only those enclosed in a window of length L 
will be considered. 

In practice, each state context is limited to a window of length L in order to allow 
generalization and to make implementation computationally feasible. That is, we will not 
deal with the whole path followed by the signal in the successive states defining a certain 
speech utterance. Instead, for each state that defines the path only the possible previous and 
subsequent L/2-1 states will be considered. Grammatical (phonetic) concordance along the 
path will likewise be verified.  
By stretching this simplification to its limit, if a window of length L=1 were used we would 
be directly mapping the acoustic models into state-probability models in the same way as in 
the previous proposal (path-based modelling without context). This means that this second 
proposal can be seen as an extension of the previous one.  
The training and recognition schemes for this architecture, in which L-states width path-
based modelling in the second layer are implemented, is very similar to the previous one 
(for path-based modelling without context, see Figure 4). Only some modifications to the 
second layer of the training scheme are needed to take the L-states with context into 
account.  
In this case, by mapping the acoustic models obtained in the first layer, a new codebook that 
covers the probability space is built. Furthermore, a table with all the possible state 
combinations is defined, which takes the aforementioned restrictions into account. If all state 
combinations are considered, the input speech is statistically defined and a new set of 
parameters is obtained. These parameters represent the probabilities of each sequence of 
states. A new set of state-probability-based models is built, which makes it possible to 
decode the path followed by the speech signal that uses the state probability parameters.  
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4.4 Results 

If working with the first implementation, without considering the context for the path-based 
modelling in the second layer, it is assumed that there is a “transparent” second layer, as it 
is equivalent to a direct mapping of the acoustic probabilities. Performance would be 
expected to be equivalent to that of a baseline system (without the second layer being 
implemented). However, due to (and thanks to) the pruning implemented by keeping only 
the most significant N/2 values of the total number of HMM states (N), it is possible to 
prevent some recognition paths from being activated. 
For the L-states width path-based modelling, the total number of possible state 
combinations represented in the new codebook is a result of considering the characteristics 
of the acoustic models in the lower layer (number of models and number of states) and the 
window length. Again, for the new representation of the input signal that uses the 
probability space codebook, only the most significant N/2 values will be kept.  
In Table 2, digit recognition results obtained with these two architectures are compared 
against the baseline results obtained with a regular RAMSES SCHMM system (Bonafonte et 
al., 1998). Using one-width path-based modelling for the second layer, there is an 
improvement in the sentence and word recognition rate. This is achieved thanks to a 
positive weighting of the states with higher likelihood (implicit in the solution proposed) 
and the pruning of the preceding and following states to be activated for each state.  
The results for the L-states width path-based modelling show a noticeable improvement in 
sentence and word recognition, but lower than that resulting from the first approach. This 
responds to the growth of the information to be modelled and the pruning performed, 
which induces a loss of information.  
However, the general performance of the L-states width path-based implementation for the 
second layer is good and the flexibility of this approach would allow added value 
information to be introduced into the recognition. Recognition speed, which is slightly 
higher than with the first implementation, is also a point in its favour.  
The gain obtained by these two approaches is also shown by means of the word error rate 
(WER). As the original recognition error rate of the baseline is low for the task under 
consideration, the perceptual relative reduction of the WER achieved is a good measure of 
the goodness of these solutions. Therefore, what would initially seem to be just a slight 
improvement in the (word/sentence) recognition rates can actually be considered a 
substantial gain in terms of perceptual error rate reduction. 

Recognition system 
Sentence 

recognition rate 
Word

recognition rate 
Relative reduction 

in WER 

Baseline 93.304 % 98.73 % - 

One-state width  
path-based double-layer 

94.677 % 99.10 % 29.1% 

L-states width  
path-based double-layer 

93.717 % 98.98 % 19.7% 

Table 2. Recognition rates using path-based double-layer recognition architectures 
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5. Discussion 

The future of speech-related technologies is connected to the improvement of speech 
recognition quality. Until recently, speech recognition technologies and applications had 
assumed that there were certain limitations regarding vocabulary length, speaker 
independence, and environmental noise or acoustic events. In the future, however, ASR 
must deal with these restrictions and it must also be able to introduce other speech-related 
non-acoustic information that is available in speech signals.  
Furthermore, HMM-based statistical modelling—the standard state-of-the-art ASR—has 
several time-domain limitations that are known to affect recognition performance. Context 
is usually represented by means of spectral dynamic features (namely, its first and second 
derivatives). However, they are generally limited to a few subsequent feature vectors and 
do not represent long-term variations. 
To overcome all these drawbacks and to achieve a qualitative improvement in speech 
recognition, a change of paradigm from conventional speech recognizers has been proposed 
by several authors. Although some authors propose a move away from HMM-based 
recognition (or, at the very least, introducing hybrid solutions), we are adhering to Markov-
based acoustic modelling as we believe its approach is still unbeatable. However, to 
overcome HMM-related limitations certain innovative solutions are required. 
Throughout this chapter we have pointed out different approaches for improving standard 
HMM-based ASR systems. The main solutions for modelling temporal evolution and speech 
trajectory have been introduced, together with some ideas on how second-order HMMs deal 
with the same problems. These models provide an improvement in most cases, but they also 
require major modifications in the decoding of algorithms. Generally, there is also a 
considerable increase in complexity, even if this is compensated for by a moderate gain.  
Layered architectures have been presented, and special attention has been paid to the 
implementation of the second layer using extended HMMs. Two implementations for this 
second layer have been described in detail. The first relies on modelling the temporal 
evolution of acoustic HMM state scores. In the second one, the evolution of the acoustic 
HMM is modelled by the speech utterance as a new way of modelling state transitions. This 
can be done in two ways, namely, by taking into account or ignoring the context of each 
active state while the “path” followed by the speech signal through the HMM states is being 
modelled. Again, speech recognition performance improves that of a conventional HMM-
based speech recognition system, but at the cost of increased complexity.  
Although current research solutions should not be unduly concerned by the computational 
cost (due to the constant increase in the processing capacity of computers), it is important to 
keep their implementation in commercial applications in mind. Therefore, a great deal of 
work remains if layered architectures are to be generalized for large vocabulary applications 
that keep complexity down to a moderate level. 
Efforts should be made in the field of research for defining and testing innovative 
approaches to implementing layered architectures. Although keeping an HMM-based 
scheme for the different layers reduces the overall complexity, a change in paradigm may 
help to bring about significant improvements.  
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