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1. Introduction 
 

During the last two decades, there has been significant progress in the area of adaptive 
control design of nonlinear systems (Krstic et al., 1995; Sastry & Isidori, 1989; Slotine & Li 
1991; Spooner et al., 2002). Most of the developed adaptive control schemes assume that an 
accurate model of the system is available and the unknown parameters appear linearly with 
respect to known nonlinear functions. However, this assumption is not sufficient for many 
practical situations, because it is difficult to precisely describe a nonlinear system by known 
nonlinear functions and, therefore, the problem of controlling nonlinear systems with 
incomplete model knowledge remains a challenging task. 
As a model free design method, fuzzy control has found extensive applications for complex 
and ill-defined plants (Passino & Yurkovich, 1998; Wang, 1994). Basically, fuzzy control is a 
human knowledge-based design methodology which is driven accordingly by fuzzy 
membership functions and fuzzy rules. However, it is sometimes difficult to find the 
matched membership functions and fuzzy rules for some plants, or the need may arise to 
tune the controller parameters if the plant dynamics change. In the hope to overcome this 
problem, based on the universal approximation theorem and on-line learning ability of 
fuzzy systems, several stable adaptive fuzzy control schemes have been developed to 
incorporate the expert knowledge systematically (Spooner & Passino, 1996; Spooner et al., 
2002; Su & Stepanenko, 1994; Wang, 1994). The stability analysis in such schemes is 
performed by using the Lyapunov approach. Conceptually, there are two distinct 
approaches that have been formulated in the design of a fuzzy adaptive control system: 
direct and indirect schemes. The direct scheme uses fuzzy systems to approximate unknown 
ideal controllers (Chang, 2000; Chang, 2001; Labiod & Boucherit, 2003; Li & Tong, 2003; 
Ordonez & Passino, 1999; Spooner & Passino 1996; Wang, 1994), while the indirect scheme 
uses fuzzy systems to estimate the plant dynamics and then synthesizes a control law based 
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on these estimates (Boulkroune et al., 2008a; Boulkroune et al., 2008b; Chang, 2000; Chang, 
2001; Chekireb et al., 2003; Chiu, 2005; Golea et al., 2003; Labiod et al., 2005; Ordonez & 
Passino, 1999; Spooner & Passino 1996; Su & Stepanenko, 1994;  Wang, 1994).  
For uncertain single-input single-output (SISO) nonlinear systems, fuzzy adaptive control 
schemes were proposed in (Chang, 2001; Essounbouli & Hamzaoui, 2006; Labiod & 
Boucherit, 2003; Spooner & Passino, 1996; Su & Stepanenko, 1994; Wang, 1994). The problem 
of adaptive fuzzy control of uncertain multi-input multi-output (MIMO) nonlinear systems 
is more difficult because of the coupling that exists between the control inputs and the 
outputs. This problem was studied in (Boulkroune et al., 2008a; Boulkroune et al., 2008b; 
Chang, 2000; Chekireb et al., 2003; Chiu, 2005; Golea et al., 2003; Labiod et al., 2005; Li & 
Tong, 2003; Ordonez & Passino, 1999; Tlemcani et al., 2007 ; Tong et al., 2000; Zhang & YI, 
2007). We note that the direct adaptive approach turns out to require more restrictive 
assumptions than the indirect case, but is perhaps of more interest because it does not 
present any possible controller singularity problem. 
In the aforementioned papers, the adjustable parameters of the fuzzy systems are updated 
by an adaptive law based on a Lyapunov approach, i.e., the parameter adaptive laws are 
designed in such a way to ensure the convergence of a Lyapunov function. However, for an 
effective adaptation, it is more judicious to directly base the parameter adaptation process 
on the identification error between the unknown function and its adaptive fuzzy 
approximation (Labiod & Guerra, 2007a; Labiod & Guerra, 2007b). 
This chapter presents direct and indirect adaptive fuzzy control schemes for a class of 
continuous-time uncertain MIMO nonlinear dynamic systems. The proposed schemes are 
based on the results in (Labiod & Guerra, 2007a). In the direct approach, since fuzzy systems 
are used to approximate unknown ideal controllers, the adjustable parameters of the used 
fuzzy systems are updated using a gradient descent algorithm that is designed to minimize 
the error between the unknown ideal controllers and fuzzy controllers. On the other hand, 
in the indirect approach, since fuzzy systems are used to approximate the system’s 
unknown nonlinearities, the adjustable parameters of the used fuzzy systems are updated 
using a gradient descent algorithm that is designed to minimize the error between the 
system’s unknown nonlinearities and the used fuzzy systems. In both approaches, the 
stability analysis of the closed-loop system is performed using a Lyapunov approach. In 
particular, it is shown that the tracking errors are uniformly ultimately bounded and 
converge to a neighbourhood of the origin. 
The organization of this chapter is as follows. The problem formulation and fuzzy systems 
description are given in section 2. The MIMO direct adaptive fuzzy controller with a proof 
of the stability results are presented in section 3. The MIMO indirect adaptive fuzzy 
controller with its stability analysis is given in section 4. Section 5 presents simulation 
results of the proposed direct adaptive control scheme applied to a two-link robot 
manipulator. Finally, section 6 concludes the chapter.  

 
2. Problem formulation 
 

We consider a class of uncertain MIMO nonlinear systems modeled by 
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Then, dynamic system (1) can be written in the following compact form 

      r  y f x G x u  (2) 

The control objective is to design adaptive control  iu t  for system (1) such that the output 

 iy t  follows a specified desired trajectory  diy t  under boundedness of all signals. 
Throughout this study we need the following assumptions. 
A1: The matrix  G x  is symmetric positive definite and bounded as  0 p pg g  I G x I , 

where pI  is the p p  identity matrix, g  and g  are some positive constants. 

A2:  The desired trajectory  diy t  is a known bounded function of time with bounded 
known derivatives up to the ir  order. 
Remark 1: Notice that Assumption A1 is a sufficient condition ensuring that the matrix 
 G x  is always regular and, therefore, system (1) is feedback linearizable by a static state 

feedback. Although this assumption restricts the considered class of MIMO nonlinear 
systems, many physical systems, such as robotic systems (Slotine & Li, 1991), fulfill such a 
property. 
Define the tracking errors as 
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and the filtered tracking errors as 
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From (4),   0is t   represents a linear differential equation whose solution implies that the 

tracking error  ie t  and its derivatives up to 1ir   converge to zero (Slotine & Li, 1991). 
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Then equation (5) can be written in matrix form as 
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If the nonlinear functions  f x  and  G x  are known, to achieve the control objectives, one 
can use the following ideal nonlinear control law (Labiod & Guerra, 2007b) 
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ps s     s . 

Effectively, when we select the control input as *u u , equation (7) simplifies to 
 

  0 0tanh   s K s K s  (9) 

 
or, equivalently 
 

  0 0tanh , 1, ,i i i i is k s k s i p      (10) 

 
From which we can conclude that   0is t   as t   and, therefore,  ie t  and all its 
derivatives up to 1ir   converge to zero. 
It is clear that if  f x  and  G x are completely unknown, the proposed nonlinear control 
law (8) is not feasible. In this case, in order to overcome this design difficulty, we propose to 
use fuzzy systems to construct adaptively the unknown functions. The idea is to use fuzzy 
systems to identity the entire unknown control function (8) in the direct approach, and to 
identify the unknown nonlinear functions  f x  and  G x  in (8) in the indirect approach. 
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mz z   zz  to a scalar output variable fy  , where 

1 mz z    z  and 
iz   . If we define iM  fuzzy sets j

iF , 1, , ij M  , for each input 

iz , then the fuzzy system will be characterized by a set of if-then rules of the form (Wang, 
1994; Jang & Sun, 1995; Passino & Yurkovich, 1998)  
 

 k
1 1R : If is and and is Then is 1, ,k k k

m m f fz G z G y y k N   
 
where  1 , , iMk

i i iG F F  , 1, ,i n  , k
fy  is the crisp output of the k -th rule, and N  is the 

total number of rules. 
By using the singleton fuzzifier and the product inference engine, the final output of the 
fuzzy system is given as follows (Wang, 1994; Jang & Sun, 1995; Passino & Yurkovich, 1998) 
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where  j

i
iF

x  is the membership function of the fuzzy set j
iF . 

By introducing the concept of fuzzy basis functions (Wang, 1994), the output given by (11) 
can be rewritten in the following compact form 
 

    T
fy z w z  (12) 

 

where 1 , ,
TN

f fy y      is a vector grouping all consequent parameters, and 

     1 , ,
T

Nw w   w z z z  is a set of fuzzy basis functions defined as 
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The fuzzy system (12) is assumed to be well-defined so that  1

0N
jj




 z  for all zz . 

It has been proved in (Wang, 1994) that fuzzy systems in the form of (12) with Gaussian 
membership functions can approximate continuous functions over a compact set to an 
arbitrary degree of accuracy provided that enough number of rules are considered. So, for a 
general smooth nonlinear function  f z  defined from n  to  , there exists a fuzzy system 

in the form of (12) with some optimal parameters *  such that 
 

    *sup Tf    
zz z w z ), 

 
where   is a positive constant. Thus, one can express  f z  as 
 

     *Tf   z w z z , 
 
where   z  is the fuzzy approximation error satisfying   z  for zz . 
In this chapter, it is assumed that the structure of the fuzzy system and the fuzzy basis 
function parameters are properly specified in advance by the designer. This means that the 
designer decision is needed to determine the structure of the fuzzy system (that is, 
determine relevant inputs, number of membership functions for each input, membership 

 

function parameters, number of rules), and the consequent parameters should be calculated 
by learning algorithms. 
It should be noticed that fuzzy systems can be replaced by any other linearly parameterized 
universal function approximator without any technical difficulty such as neural networks 
and wavelet networks. However, only fuzzy logic systems can make use of linguistic 
information in a systematic way. 

 
3. Direct adaptive fuzzy control 
 

In section 2 we have established that there exists an ideal control law *u  given by (8) that 
can achieve the control objective. However, this nonlinear controller cannot be used since it 
depends on unknown functions. In this section, to circumvent this problem, we propose to 
use adaptive fuzzy systems for approximating this ideal controller, and the error between 
the fuzzy controller and the ideal controller will be used to update the free parameters of the 
fuzzy controller. 
To develop the control law, we represent each component of the ideal input control vector 

* * *
1 , , pu u   u  by a fuzzy system in the form of (12) as the following 

      * * ; 1, ,T
i i i iu i p    z w z z  (14) 

where ,
TT T   z x s ,  i z  is the fuzzy approximation error, *

i  is an unknown ideal 

parameter vector that minimizes the function  i z  over an operating compact set z , and 

 iw z  is a fuzzy basis function vector assumed suitably specified by the designer. In this 
study, we assume that the used fuzzy systems do not violate the universal approximation 
property on the compact set z , which is assumed large enough so that the variable z  
remains inside it under closed-loop control. So it is reasonable to assume that the fuzzy 
approximation error is bounded for all zz . 
Let us denote 
 

     1 , ,
T

p     z z z ; * * *
1 , ,

TT T
p      ,      1 , , pdiag    w z w z w z  

 
Therefore, one can write (8) as 
 

    * *T   u w z z  (15) 

 
Since the ideal parameter vector *  is unknown, let us use its estimate   instead to form 
the adaptive control  

    T u z w z  (16) 
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The next step should be the design of an adaptive law for the free parameters   such that 
the control law u  approximates, as best as possible, the ideal controller *u . To this end, let 
us define the error between the controllers *u  and u  as: 

 * ue u u  (17) 

 
The error ue  represents the actual deviation between the unknown function *u  and the 
online fuzzy approximator (16), while the fuzzy approximation error   z  represents the 

minimum possible deviation between the unknown function *u  and the online fuzzy 
approximator, i.e.   z  represents the minimum possible value of ue . 
Using (15) and (16), (17) becomes 
 

      * T T     
ue u w z w z z  (18) 

 
where *     is the parameter estimation error vector. 
Adding and subtracting    *G x u  to the right-hand side of (7), we obtain the error equation 
governing the closed-loop system 
 

        * *    s v f x G x u G x u G x u  (19) 

 
With (8) and (18), (19) becomes 
 

    0 0tanh     us K s K s G x e  (20) 

 
Now, consider a quadratic cost function; that measures the discrepancy between the ideal 
controller and the actual fuzzy controller, defined as 
 

            * *1 1
2 2

TT T TJ      u ue G x e u w z G x u w z  (21) 

 
We use the gradient descent method to minimize the cost function (21) with respect to the 
adjustable parameters  . Consequently, applying the gradient method (Slotine & Li, 1991; 
Ioannou & Sun, 1996), the minimizing trajectory  t  is generated by the following 
differential equation 

  J      (22) 

 

 

where   is a positive constant parameter. 
From (21), the gradient of  J   with respect to   is 

     J 



 

 uw z G x e  

 
Therefore, the gradient descent algorithm becomes 
 

     
uw z G x e  (23) 

 
We recall here that the ideal controller *u  is unknown, so the error signal ue  defined in (17) 
is not available. Equation (20) will be used to overcome this design difficulty. Indeed, from 
(20), we see that even if the error vector ue  is not available, the vector   uG x e  is available, 
and it is given by 
 

   0 0tanh   uG x e s K s K s  
 
Therefore, (23) becomes 
 

     0 0tanh     w z s K s K s  (24) 

 
As shown by (Ioannou & Sun, 1996), an adaptive law in the form of (24) cannot guarantee 
the boundedness of the parameters   in the presence of approximation errors, which are 
unavoidable in such adaptive schemes. So, to improve the robustness of the adaptive law 
(24) in the presence of approximation errors, we modify it by introducing a  -modification 
term as follows (Ioannou & Sun, 1996)  
 

     0 0tanh        w z s K s K s  (25) 

 
where   is a small positive constant.  
The following theorem summarizes the stability result for the proposed direct adaptive 
control scheme. 
 
Theorem 1: Consider the system in (1) with the control law defined by (17). Suppose that 
Assumptions A1 and A2 hold, the approximation error   z  in (18) is bounded as   z  where 
  is a positive constant, and that the free parameters   are updated according to (25). Then, all the 
closed-loop signals are uniformly ultimately bounded, and the tracking errors are attracted to a 
neighbourhood of the origin whose size can be adjusted by control parameters. 
  
Proof: Let us consider the following Lyapunov function candidate 
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   s s  (26) 

 
Differentiating (26) with respect to time and using (20) and (25), we get 
 

         0 0tanhT T T TV          
u us K s s K s s G x e w z G x e  (27) 

 
With (18), (27) becomes 
 

          0 0tanhT T T T T TV            
u u u us K s s K s s G x e e G x e z G x e  (28) 

 
Using the following inequalities 
 

2 2*

2 2
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T T T   u u uz G x e e G x e z G x z  
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2 2

T T T u u us G x e e G x e s G x s  

we have 
 

            
2 2*

0 0
1 1tanh
2 4 2 2

TT T TV               
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 
u us K G x s s K s e G x e z G x z (29) 

 
Since   z  and  G x  are assumed bounded in this study and *  is a constant vector, we 
can define a positive constant bound 1  as 
 

       2*
1

1sup
2

T
t     z G x z  

Then, (29) can be simplified to 
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1 1tanh
2 2 4

T T T
pV g            

 
u us K I s s K s e G x e   (30) 

 
We assume here that each design parameter ik  is chosen such that 2ik g  and we let 

 12min 2i p ik g    . Consequently, (30) can be bounded by 

 

    1 0 0 1 1 1
1tanh
4

T TV V V           u us K s e G x e  (31) 

where  1 min ,   . 
From (31), one can establish that the Lyapunov function candidate satisfies the following 
condition 

     11 1

1 1

0 0 tV t V e  
 

 
    

 
 (32) 

This last condition implies that  ts  and  t  are uniformly bounded, and that  ts  is 

uniformly ultimately bounded with respect to the set  1 1: 2   s s s . This 

consequently leads to uniform boundedness of the tracking errors 
    1

1 12 2ij j j r
i ie t     , 0, , 1ij r  , 1, ,i p   (Slotine & Li, 1991). 

 
Remark 2: In the absence of the approximation error, i.e.,   0 x  in (18), by setting 0   

in (25), one can show that the tracking errors are asymptotically stable, i.e.,   0ie t   as 
t  , for 1, ,i p  . 
Remark 3: It is worth noticing that the parameter updating law (25) is not implementable in 
case the derivative of  ts  is not available. However, a discrete implementable version of 
(25) can be obtained. Rewriting (25) as  
 

         1 2

t t

t t t t

t t t d d        
 

     s , 

 

where t  is a small positive constant,  1  w z  and 

    2 0 0tanh      w z K s K s . Using the fact that d dts s , the expression of  t  
becomes 

     
 

 

 1 2

s t t

t t t t

t t t d d      
 

     
s

s . 

 

By assuming that  1 t ,  2 t  and  ts  are continuous time functions and that t  is small 
enough, a discrete implementable version of (25) is given by: 
            1 2t t t t t t t t t t t               s s , which represents a good discrete 

approximation of the parameter update law (25) if t  is chosen sufficiently small.   

 
4. Indirect adaptive fuzzy control 
 

In this section we propose to indirectly approximate the unknown ideal controller (8) by 
identifying the unknown functions  if x  and  ijg x  using fuzzy systems. First, let us 
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 1 1
2 2

T TV  


   s s  (26) 

 
Differentiating (26) with respect to time and using (20) and (25), we get 
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With (18), (27) becomes 
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Using the following inequalities 
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Since   z  and  G x  are assumed bounded in this study and *  is a constant vector, we 
can define a positive constant bound 1  as 
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We assume here that each design parameter ik  is chosen such that 2ik g  and we let 

 12min 2i p ik g    . Consequently, (30) can be bounded by 
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where  1 min ,   . 
From (31), one can establish that the Lyapunov function candidate satisfies the following 
condition 
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This last condition implies that  ts  and  t  are uniformly bounded, and that  ts  is 

uniformly ultimately bounded with respect to the set  1 1: 2   s s s . This 

consequently leads to uniform boundedness of the tracking errors 
    1
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i ie t     , 0, , 1ij r  , 1, ,i p   (Slotine & Li, 1991). 

 
Remark 2: In the absence of the approximation error, i.e.,   0 x  in (18), by setting 0   

in (25), one can show that the tracking errors are asymptotically stable, i.e.,   0ie t   as 
t  , for 1, ,i p  . 
Remark 3: It is worth noticing that the parameter updating law (25) is not implementable in 
case the derivative of  ts  is not available. However, a discrete implementable version of 
(25) can be obtained. Rewriting (25) as  
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where t  is a small positive constant,  1  w z  and 

    2 0 0tanh      w z K s K s . Using the fact that d dts s , the expression of  t  
becomes 
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 

 1 2

s t t

t t t t
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By assuming that  1 t ,  2 t  and  ts  are continuous time functions and that t  is small 
enough, a discrete implementable version of (25) is given by: 
            1 2t t t t t t t t t t t               s s , which represents a good discrete 

approximation of the parameter update law (25) if t  is chosen sufficiently small.   

 
4. Indirect adaptive fuzzy control 
 

In this section we propose to indirectly approximate the unknown ideal controller (8) by 
identifying the unknown functions  if x  and  ijg x  using fuzzy systems. First, let us 
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assume that the nonlinear functions  if x  and  ijg x  can be approximated, over a compact 
set Dx , by fuzzy systems of the form of (12) as follows 
 

          * * *; , 1, ,
i i i

T
i i f i f ff f f i p    x x x x w x   (33) 

          * * *; , , 1, ,
ij ij ij

T
ij ij g ij g gg g g i j p    x x x x w x   (34) 

 
where  

if
 x  and  

ijg x  are fuzzy approximation errors, *
if

  and *
ijg  are optimal 

parameter vectors that minimize functions  
if

 x  and  
ijg x , respectively, and  

if
w x  

and  
ijgw x  are fuzzy basis function vectors assumed suitably specified by the designer. 

In this study, we assume that the used fuzzy systems do not violate the universal 
approximation property on the operating compact set Dx , which is assumed large enough 
so that state variables remain within Dx  under closed-loop control. So it is reasonable to 
assume that the minimum approximation errors are bounded for all D xx . 
Since the ideal parameter vectors *

if
  and *

ijg  is unknown, let us use their estimates 
if

  and 

ijg  instead to form the adaptive approximations 

 

    ˆ , 1, ,
i i

T
i f ff i p x w x   (35) 

    ˆ , , 1, ,
ij ij

T
ij g gg i j p x w x   (36) 

 
Denote 

     1
ˆ ˆ ˆ, ,

T

pf f   f x x x ,      1 , ,
T

f fp     f x x x  

 
   

   
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ˆ ˆ
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p pp
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 
 
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 
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x x
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x x
,  

   

   

11 1

1

g g p

gp gpp
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

 

 
 

  
 
 


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
G

x x
x

x x
 

 
Now we can write an expression for the adaptive control law 
 

       1
0 0

ˆˆ tanh     u G x f x v K s K s  (37) 

 

This control term results from (8) by using the adaptive fuzzy approximations  f̂ x  and 

 Ĝ x  instead of actual functions  f x  and  G x , respectively. 

Adding and subtracting   f̂ x  and  Ĝ x u  to the right-hand side of (7), we get 

 

              ˆ ˆˆ ˆ      s v f x f x G x G x u G x u f x  (38) 

Using the control law (37), (38) becomes 

            0 0
ˆ ˆtanh       s K s K s f x f x G x G x u  (39) 

where each element of the vector s  is given by 

            0 0
1

ˆ ˆtanh
p

i i i i i i i ij ij j
j

s k s k s f f g g u


      x x x x  (40) 

The next task should be the design of adaptive laws for the free parameters fi  and gij  such 

that    ˆ ˆf x G x u  approximates, as best as possible, the unknown nonlinear function 

   f x G x u . To this end, let us define the modelling error me  between    f x G x u  and 

   ˆ ˆf x G x u  as: 

                    ˆ ˆˆ ˆ
m        e f x G x u f x G x u f x f x G x G x u  (41) 

where each component of the vector me  is given by 

                     * *

1 1

ˆ ˆˆ ˆ
p p

mi i i ij ij j i i ij ij j i
j j

e f f g g u f f g g u 
 

         x x x x x x x x x  (42) 

      
1

i i ij ij

p
T T

mi f f g g j i
j

e u  


  w x w x x   (43) 

with      
1

i ij

p

i f g j
j

u  


 x x x , and *
i i if f f     and *

ij ij ijg g g    . 

 
Then, from (39) and (41) we have 
 

   0 0tanhm    e s K s K s  (44) 

 

Now, consider a quadratic cost function; that measures the discrepancy between the 
unknown nonlinearities and their adaptive fuzzy approximations, defined as 
 

            
2

1 1

1 1 ˆ ˆ
2 2

p p
T
m m i i ij ij j

i j
J f f g g u

 

 
      

 
 e e x x x x  (45) 

 

Applying the gradient method, the minimizing trajectories  fi t  and  gij t  are generated 
by the following differential equations 
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assume that the nonlinear functions  if x  and  ijg x  can be approximated, over a compact 
set Dx , by fuzzy systems of the form of (12) as follows 
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In this study, we assume that the used fuzzy systems do not violate the universal 
approximation property on the operating compact set Dx , which is assumed large enough 
so that state variables remain within Dx  under closed-loop control. So it is reasonable to 
assume that the minimum approximation errors are bounded for all D xx . 
Since the ideal parameter vectors *

if
  and *

ijg  is unknown, let us use their estimates 
if
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ijg  instead to form the adaptive approximations 
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Now we can write an expression for the adaptive control law 
 

       1
0 0

ˆˆ tanh     u G x f x v K s K s  (37) 

 

This control term results from (8) by using the adaptive fuzzy approximations  f̂ x  and 

 Ĝ x  instead of actual functions  f x  and  G x , respectively. 

Adding and subtracting   f̂ x  and  Ĝ x u  to the right-hand side of (7), we get 
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Using the control law (37), (38) becomes 

            0 0
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where each element of the vector s  is given by 
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The next task should be the design of adaptive laws for the free parameters fi  and gij  such 

that    ˆ ˆf x G x u  approximates, as best as possible, the unknown nonlinear function 

   f x G x u . To this end, let us define the modelling error me  between    f x G x u  and 

   ˆ ˆf x G x u  as: 
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where each component of the vector me  is given by 

                     * *

1 1

ˆ ˆˆ ˆ
p p

mi i i ij ij j i i ij ij j i
j j

e f f g g u f f g g u 
 

         x x x x x x x x x  (42) 

      
1

i i ij ij

p
T T

mi f f g g j i
j

e u  


  w x w x x   (43) 

with      
1

i ij

p

i f g j
j

u  


 x x x , and *
i i if f f     and *

ij ij ijg g g    . 

 
Then, from (39) and (41) we have 
 

   0 0tanhm    e s K s K s  (44) 

 

Now, consider a quadratic cost function; that measures the discrepancy between the 
unknown nonlinearities and their adaptive fuzzy approximations, defined as 
 

            
2

1 1

1 1 ˆ ˆ
2 2

p p
T
m m i i ij ij j

i j
J f f g g u

 

 
      

 
 e e x x x x  (45) 

 

Applying the gradient method, the minimizing trajectories  fi t  and  gij t  are generated 
by the following differential equations 
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 
 

fi

gij

fi

gij

J

J




  

  

   


  



  (46) 

 
where   is a positive constant parameter. 
Therefore, the gradient descent algorithm becomes 
 

 
 
 
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gij gij j mi

e

u e

 

 

 




w x

w x



  (47) 

 
Since the modelling error me  is not available, equation (44) will be used to overcome this 
design difficulty. Then, we obtain 
 

 
    
    

0 0

0 0

tanh
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fi fi i i i i
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  

    


   

w x

w x

 
 

 (48) 

 
In order to improve the robustness of the adaptive law (48) in the presence of approximation 
errors, we modify it by introducing a  -modification term as follows (Ioannou & Sun, 1996)  
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

    

w x
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 (49) 

 
where   is a small positive constant.  
Before proceeding we need to introduce an assumption about the approximation errors 
        f Gx x x u . Since   x  depends upon the control input u ,   x  is not assumed 

bounded by constant bounds but it is assumed bounded by functional bounds. 
A3: The function         f Gx x x u  is bounded as follows 
 

  2
0

1
; 0, 0, ,

p

i i i
i

s i p   


   x  . 

 
The following theorem summarizes the stability result for the proposed indirect adaptive 
control scheme. 
 
Theorem 2: Consider the system in (1) with the control law defined by (37). Suppose that 
Assumptions A1-A3 hold and that the free parameters of the used fuzzy systems are updated 
according to (49). Then, all the closed-loop signals are uniformly ultimately bounded, and the 

 

tracking errors are attracted to a neighbourhood of the origin whose size can be adjusted by control 
parameters. 
 
Proof: Let us consider the following Lyapunov function candidate 
 

 2

1 1

1 1 1
2 i i ij ij

p p
T T

i f f g g
i j

V s    
  

 
    

 
      (50) 

 
Differentiating (26) with respect to time and using (40), (43), (44) and (49), we get 
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Using the following inequalities 
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we obtain 
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Since    2 2

1

p

i
i

 


x x  and using assumption A3, we have 
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with  
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 
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 
  . 

 
We assume here that each design parameter ik  is chosen such that  1i ik    and we let 

 12min 1i p i ik     . Consequently, (53) can be bounded by 
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where   is a positive constant parameter. 
Therefore, the gradient descent algorithm becomes 
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Since the modelling error me  is not available, equation (44) will be used to overcome this 
design difficulty. Then, we obtain 
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In order to improve the robustness of the adaptive law (48) in the presence of approximation 
errors, we modify it by introducing a  -modification term as follows (Ioannou & Sun, 1996)  
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where   is a small positive constant.  
Before proceeding we need to introduce an assumption about the approximation errors 
        f Gx x x u . Since   x  depends upon the control input u ,   x  is not assumed 

bounded by constant bounds but it is assumed bounded by functional bounds. 
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The following theorem summarizes the stability result for the proposed indirect adaptive 
control scheme. 
 
Theorem 2: Consider the system in (1) with the control law defined by (37). Suppose that 
Assumptions A1-A3 hold and that the free parameters of the used fuzzy systems are updated 
according to (49). Then, all the closed-loop signals are uniformly ultimately bounded, and the 

 

tracking errors are attracted to a neighbourhood of the origin whose size can be adjusted by control 
parameters. 
 
Proof: Let us consider the following Lyapunov function candidate 
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Differentiating (26) with respect to time and using (40), (43), (44) and (49), we get 
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we obtain 
 

   
2 22 22 2 * * 2

0
1 1 10

11 tanh
2 2 2 2 2i i ij ij

p p p
i

i i i i mi f f g g i
i j j

sV k s k s e        
  

  
              
   x   (52) 
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We assume here that each design parameter ik  is chosen such that  1i ik    and we let 

 12min 1i p i ik     . Consequently, (53) can be bounded by 
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  2 0 0 2 2 2
1tanh
2

T T
m mV V V           s K s e e  (54) 

where  2 min ,   . 
From (54), one can establish that the Lyapunov function candidate satisfies the following 
condition 

     22 2

2 2

0 0 tV t V e  
 

 
    

 
 (55) 

This last condition implies that  ts ,  
if

t  and  
ijg t  are uniformly bounded, and that 

 ts  is uniformly ultimately bounded with respect to the set  2 2: 2   s s s . This 

consequently leads to uniform boundedness of the tracking errors 
    1

2 22 2ij j j r
i ie t     , 0, , 1ij r  , 1, ,i p   (Slotine & Li, 1991). 

 
Remark 4: Since the matrix  Ĝ x  is generated on line, the control law (37) is not well-

defined if  Ĝ x  becomes not regular. To overcome this singularity problem, we use a 

regularized inverse as in (Labiod et al., 2005) given by         
11

0
ˆ ˆ ˆ ˆT T

pI


    G x G x G x G x , 

where 0  is a small positive constant. 
Remark 5: In the absence of the approximation error, i.e.,   0 x , by setting 0   in (49), 

one can show that the tracking errors are asymptotically stable, i.e.,   0ie t   as t  , for 
1, ,i p  . 

 
5. Simulation results 
 

In this section, we test the proposed direct adaptive fuzzy control scheme on the tracking 
control of a two-link rigid robot manipulator with the following dynamics (Labiod et al., 
2005; Slotine & Li, 1991; Tong et al., 2000): 

  1
1 11 12 1 12 1 2

2 21 22 2 21 0
q M M u qhq h q q
q M M u qhq

                       
          

   
 

 (56) 

where 

    11 1 3 2 4 22 cos 2 sinM a a q a q   , 22 2M a ,    21 12 2 3 2 4 2cos sinM M a a q a q    , 

    3 2 4 2sin cosh a q a q  , 

with 

 2 2 2
1 1 1 1 1c e e ce ea I m l I m l m l     , 2

2 e e cea I m l  , 3 1 cose ce ea m l l  , 4 1 sine ce ea m l l  . 

 

In the simulation, the following parameter values are used 
 

 1 1 1 11, 2, 1, 0.5, 0.6, 0.12, 0.25, 30 .e c ce e em m l l l I I           

Let  1 2, Tq qy ,  1 2, Tu uu  ,  1 1 2 2, , , Tq q q qx   , and 
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   
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11 1211 12 1

21 2221 22

M Mg g
M Mg g



   
     

  

x x
G x M

x x
. 

 
Then, the robot system given by (56) can be expressed as 
 

     y f x G x u  (57) 

 
which is in the input-output form given by (2). Since the matrix M  is positive definite 
(Slotine & Li, 1991), then it is always regular and   1G x M  is also positive definite. 
The control objective is to force the system outputs 1q  and 2q  to follow the desired 
trajectories    1 sindy t t  and    2 cosdy t t , respectively. 
To synthesize the direct adaptive fuzzy controller, two fuzzy systems in the form of (12) are 
used to generate the control signals 1u  and 2u . Each fuzzy system has 

       1 1 2 2, , ,
T

e t e t e t e t   z    as input, and for each input variable jz , 1, ,4j   , three 
Gaussian membership functions are defined as 
 

 1

21.251exp
2 0.6j

j
jF

z
z

         
,  2

2
1exp
2 0.6j

j
jF

z
z

         
,  3

21.251exp
2 0.6j

j
jF

z
z

         
. 

 
The robot initial conditions are    0 0.25 0 0.5 0 T

x , and the initial values of the 

parameter estimates  1 0  and  2 0  are set equal to zero. The design parameters used in 
this simulation are chosen as follows:  
 

1 1  , 2 1  ,  1,1diagK ,  0 5,5diagK , 0 0.01  , 5  , and 0.001  . 
 
The simulation results for the first link are shown in Fig. 1, those for the second link are 
shown in Fig. 2, and the control input signals are shown in Fig. 3. We can note that the 
actual trajectories converge to the desired trajectories and the control signals are almost 
smooth. These simulation results demonstrate the tracking capability of the proposed direct 
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From (54), one can establish that the Lyapunov function candidate satisfies the following 
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t  and  
ijg t  are uniformly bounded, and that 

 ts  is uniformly ultimately bounded with respect to the set  2 2: 2   s s s . This 

consequently leads to uniform boundedness of the tracking errors 
    1

2 22 2ij j j r
i ie t     , 0, , 1ij r  , 1, ,i p   (Slotine & Li, 1991). 

 
Remark 4: Since the matrix  Ĝ x  is generated on line, the control law (37) is not well-

defined if  Ĝ x  becomes not regular. To overcome this singularity problem, we use a 

regularized inverse as in (Labiod et al., 2005) given by         
11

0
ˆ ˆ ˆ ˆT T

pI


    G x G x G x G x , 

where 0  is a small positive constant. 
Remark 5: In the absence of the approximation error, i.e.,   0 x , by setting 0   in (49), 

one can show that the tracking errors are asymptotically stable, i.e.,   0ie t   as t  , for 
1, ,i p  . 

 
5. Simulation results 
 

In this section, we test the proposed direct adaptive fuzzy control scheme on the tracking 
control of a two-link rigid robot manipulator with the following dynamics (Labiod et al., 
2005; Slotine & Li, 1991; Tong et al., 2000): 

  1
1 11 12 1 12 1 2

2 21 22 2 21 0
q M M u qhq h q q
q M M u qhq

                       
          

   
 

 (56) 

where 

    11 1 3 2 4 22 cos 2 sinM a a q a q   , 22 2M a ,    21 12 2 3 2 4 2cos sinM M a a q a q    , 

    3 2 4 2sin cosh a q a q  , 

with 

 2 2 2
1 1 1 1 1c e e ce ea I m l I m l m l     , 2

2 e e cea I m l  , 3 1 cose ce ea m l l  , 4 1 sine ce ea m l l  . 

 

In the simulation, the following parameter values are used 
 

 1 1 1 11, 2, 1, 0.5, 0.6, 0.12, 0.25, 30 .e c ce e em m l l l I I           

Let  1 2, Tq qy ,  1 2, Tu uu  ,  1 1 2 2, , , Tq q q qx   , and 

    
 

  11 2 1 21

22 1 0
qf hq h q q
qf hq

       
       

   

x
f x M

x
  


,  

      
   

1
11 1211 12 1

21 2221 22

M Mg g
M Mg g



   
     

  

x x
G x M

x x
. 

 
Then, the robot system given by (56) can be expressed as 
 

     y f x G x u  (57) 

 
which is in the input-output form given by (2). Since the matrix M  is positive definite 
(Slotine & Li, 1991), then it is always regular and   1G x M  is also positive definite. 
The control objective is to force the system outputs 1q  and 2q  to follow the desired 
trajectories    1 sindy t t  and    2 cosdy t t , respectively. 
To synthesize the direct adaptive fuzzy controller, two fuzzy systems in the form of (12) are 
used to generate the control signals 1u  and 2u . Each fuzzy system has 

       1 1 2 2, , ,
T

e t e t e t e t   z    as input, and for each input variable jz , 1, ,4j   , three 
Gaussian membership functions are defined as 
 

 1

21.251exp
2 0.6j

j
jF

z
z

         
,  2

2
1exp
2 0.6j

j
jF

z
z

         
,  3

21.251exp
2 0.6j

j
jF

z
z

         
. 

 
The robot initial conditions are    0 0.25 0 0.5 0 T

x , and the initial values of the 

parameter estimates  1 0  and  2 0  are set equal to zero. The design parameters used in 
this simulation are chosen as follows:  
 

1 1  , 2 1  ,  1,1diagK ,  0 5,5diagK , 0 0.01  , 5  , and 0.001  . 
 
The simulation results for the first link are shown in Fig. 1, those for the second link are 
shown in Fig. 2, and the control input signals are shown in Fig. 3. We can note that the 
actual trajectories converge to the desired trajectories and the control signals are almost 
smooth. These simulation results demonstrate the tracking capability of the proposed direct 
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adaptive controller and its effectiveness for control tracking of uncertain multivariable 
nonlinear systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Tracking curves of link 1: actual (solid lines); desired (dotted lines). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Tracking curves of link 2: actual (solid lines); desired (dotted lines). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Control input signals:  1u  (solid line); 2u  (dotted line). 

 

6. Conclusion 
 

In this chapter, stable direct and indirect adaptive fuzzy controllers for a class of MIMO 
nonlinear systems with uncertain model dynamics are presented. In the direct scheme, 
fuzzy systems are used to construct adaptively an unknown ideal controller and their 
adjustable parameters are updated by using the gradient descent method in order to 
minimize the error between the unknown controller and the fuzzy controller. In the indirect 
scheme, the controller design is based on the approximation of the system’s unknown 
nonlinearities by using fuzzy systems. The free parameters of the used fuzzy systems in this 
case are updated using a gradient descent algorithm that is designed to minimize the 
identification error between the unknown nonlinearities and their adaptive fuzzy 
approximations. Both approaches do not require the knowledge of the mathematical model 
of the plant, guarantee the uniform boundedness of all the signals in the closed-loop system, 
and ensure the convergence of the tracking errors to a neighbourhood of the origin. 
Simulation results for direct adaptive control scheme performed on a two-link robot 
manipulator illustrate the method. Future works will focus on extension of the approach to 
more general MIMO nonlinear systems and its improvement by introducing a state observer 
to provide an estimate of the state vector. 
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Fig. 1. Tracking curves of link 1: actual (solid lines); desired (dotted lines). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Tracking curves of link 2: actual (solid lines); desired (dotted lines). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Control input signals:  1u  (solid line); 2u  (dotted line). 
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