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1. Introduction     
 

In recent years, establishing more and more explicit, complete and accurate dynamic models 
for the special category of flexible link manipulators has been a formidable challenging and 
still open problem in robotics research. 
This chapter is devoted to a methodological presentation of the application of Timoshenko 
beam (TB) theory (TBT) concepts to the mathematical description of flexible link robotic 
manipulators dynamics, as a more refined modeling approach compared to the classical 
Euler-Bernoulli (EB) theory (EBT) which is the conventionally adopted one. 
Compared with the conventional heavy and bulky rigid robots, the flexible link 
manipulators have their special potential advantages of larger work volume, higher 
operation speed, greater payload-to-manipulator weight ratio, lower energy consumption, 
better manoeuvrability and better transportability. However, their utilization incurs a 
penalty due to elastic deformation and vibration typically associated with the structural 
flexibility. As a consequence, the motion planning and dynamics modeling of this class of 
robotic manipulators are apparently made extremely complicated, as well as their tip 
position control.  
The complexity of modeling and control of lightweight flexible manipulators is widely 
reported in the literature. Detailed discussions can be found in (Kanoh et al., 1986; Baruh & 
Taikonda, 1989; Book, 1990; Yurkovich, 1992; Book, 1993; Junkins & Kim, 1993; Canudas de 
Wit et al., 1996; Moallem et al., 2000; Benosman et al., 2002; Robinett et al., 2002; Wang & 
Gao, 2003; Benosman & Vey, 2004; Dwivedy & Eberhard, 2006, Tokhi & Azad, 2008). 
In order to fully exploit the potential advantages offered by these lightweight robot arms, 
one must explicitly consider the effects of structural link flexibility and properly deal with 
(active and/or passive) control of vibrational behavior. In this context, it is highly desirable 
to have an explicit, complete and accurate dynamic model at disposal. 
In this chapter, we aim to present the details of our investigations concerned with deriving 
accurate equations of motion of a flexible link robot arm by the use of the TBT. 
In the first part of this work, a brief review of different beam theories and especially that of 
Timoshenko is given. Then, based on the TBT, the emphasis is essentially set on a detailed 
description of the different steps, allowing the obtaining of accurate and complete 
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governing equations of the transversely vibrating motion of an actuated lightweight flexible 
link robot arm carrying a payload at its free end-point. To display the most relevant aspects 
of structural properties inherent to the modeled deformable link studied as a beam, 
important damping mechanisms often ignored, internal structural viscoelasticity (Kelvin-
Voigt damping) and external viscous air damping, are included in addition to the TBT 
effects of cross section shear deformation and rotational inertia.  
In the other part of this chapter, an illustrative application case of the above presentation is 
rigorously highlighted. A new comprehensive dynamic model of a planar single link flexible 
manipulator considered as a shear deformable TB with internal structural viscoelasticity is 
proposed. On the basis of the combined Lagrangian-Assumed Modes Method with specific 
accurate boundary conditions (BCs), the full development details leading to the 
establishment of a closed form dynamic model, suitable for control purposes, are given. 

 
2. Timoshenko Beam Theory Based Mathematical Modeling 
 

2.1 Brief review of beam theories 
A rigorous mathematical model widely used for describing the transverse vibration of 
beams is based on the TBT (or thick beam theory) (Timoshenko, 1974) developed by 
Timoshenko in the 1920s. This partial differential equation (PDE) based model is chosen 
because it is more accurate in predicting the beam’s response than the EB beam (EBB) theory 
(EBBT) (Meirovitch, 1986) one (Aldraihem, 1997; Geist & McLaughlin, 2001; Stephen, 2006; 
Salarieh & Ghorashi, 2006). Indeed, it has been shown in the literature that the predictions of 
the TB model are in excellent agreement with the results obtained from the exact elasticity 
equations and experimental results (Trail-Nash & Collar, 1953; Huang, 1961; Stephen, 1982; 
Han et al., 1999; Stephen, 2006). 
Historically, the first important beam model was the one based on the EBT thin or classical 
beam theory as a result of the works of the Bernoulli's (Jacob and Daniel) and Euler. This 
model, established in 1744, includes the strain energy due to the bending and the kinetic 
energy due to the lateral displacement of the beam. In 1877, Lord Rayleigh improved it by 
including the effect of rotary inertia in the equations describing the flexural and longitudinal 
vibrations of beams by showing the importance of this correction especially at high 
frequency frequencies (Rayleigh, 2003). In 1921 and 1922, Timoshenko proposed another 
improvement by adding the effect of shear deformation (Timoshenko, 1921; Timoshenko, 
1922). He showed, through the example of a simply-supported beam, that the correction due 
to shear is four times more important than that due to rotary inertia and that the EB and 
Rayleigh beam equations are special cases of his new result. As a summary, four beam 
models can be pointed out (Table 1), the EBB and TB models being the most widely used. 
As seen above, the TBT accounts for both the effect of rotary inertia and shear deformation, 
which are neglected when applied to EBBT. The transverse vibration of the beam depends 
on its geometrical and material properties as well as the external applied torque. The 
geometrical properties refer mainly to its length  , size and shape of its cross-section such 
as its area A , moment of inertia I  with respect to the central axis of bending, and 
Timoshenko’s shear coefficient k  which is a modifying factor ( 1k  ) to account for the 
distribution of shearing stress such that effective shear area is equal to kA . The material 
properties refer to its density in mass per unit volume ρ , Young’s modulus or modulus of 
elasticity E  and shear modulus or modulus of rigidity G . 

  

 

                                   Effect 
Beam model 

Lateral 
displacement 

Bending 
moment  

Rotary 
inertia 

Shear 
deformation 

Euler-Bernoulli + + – – 
Rayleigh + + + – 
Shear + + – + 
Timoshenko + + + + 

Table 1. The four beam models with the corresponding effects 

 
2.2 The flexible robotic system: Definitions and variables 
The flexible manipulator physical system under consideration is shown in Fig. 1. It consists 
of a pinned-free or a clamped-free with tip payload (see Fig. 2) planar moving flexible arm 
which can bend freely in the horizontal plane. The deflection which is the transverse 
displacement of the link from the X -axis is denoted by ( , )w x t . 
 

 
Fig. 1. Pinned and clamped configurations of the considered flexible link manipulator arm 
 
The Fig. 1. is a “top” view of the manipulator in deflection and the axis of rotation of the 
rigid hub ( 0Z ) is perpendicular to robot evolution plane. The 0 0X Y  coordinate frame is 
the inertial frame of reference. The one indicated by X Y  is a frame of reference that 
rotates with the overall structure. 
For the pinned case (Loudini et al., 2007a; Loudini et al., 2007b), the X -axis is intersecting 
the center of mass of the whole system. In the clamped case (Loudini et al., 2006), the X -
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important damping mechanisms often ignored, internal structural viscoelasticity (Kelvin-
Voigt damping) and external viscous air damping, are included in addition to the TBT 
effects of cross section shear deformation and rotational inertia.  
In the other part of this chapter, an illustrative application case of the above presentation is 
rigorously highlighted. A new comprehensive dynamic model of a planar single link flexible 
manipulator considered as a shear deformable TB with internal structural viscoelasticity is 
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accurate boundary conditions (BCs), the full development details leading to the 
establishment of a closed form dynamic model, suitable for control purposes, are given. 
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distribution of shearing stress such that effective shear area is equal to kA . The material 
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axis is tangent to the beam at the base (Bellezza et al., 1990). 
 

  
Fig. 2. The two different cases: (a) Clamped-Mass, (b) Pinned-Mass  

 
In Fig. 2., the first case is named Clamped-Mass, meaning that one end is blocked in both 
angular and vertical direction, and the other end is carrying an inertia load. 
The second case is named Pinned-Mass and, as before, it is locked at one end in the vertical 
direction but free to move in the angular like if it were mounted to a rotary actuator that did 
not provide a torque, and carrying an inertia load at the other end. 
Considering, as usual, the flexible link as a beam, its cross-section height is assumed to be 
larger than the base. This constrains deflections to occur only in the horizontal plane. Thus, 
those due to gravity are assumed negligible. 
As depicted in Fig. 1, the robot manipulator is essentially composed of a rigid hub, a flexible 
link and a payload. These three parts are characterized by different physical and mechanical 
parameters (see the nomenclature at the end of the chapter). In particular, the rotating 
inertia of the actuating servomotor and the pinning (clamping) rigid hub are modeled as a 
single hub inertia hJ . The payload is modeled as an end mass pM  with a rotational inertia 

pJ . ( )η t  being the rotating X -axis angular position, the angular position of the hub, ( )θ t  
(for the pinned case), and that of a point of the deflected link, ( , )α x t , are, respectively given, 
for small deflections, by: 
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x

   (2) 

 
2.3 Derivation of the governing equations of motion 
The kinematics of deformation of an element of the deflected link with width dx  at position 
x  are shown in Fig. 3. Due to the effect of shear, the original rectangular element changes its 
shape to somewhat like a parallelogram with its sides slightly curved. 
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Fig. 3. Kinematics of deformation of a bending element 
 
This element undergoes a shearing force ( , )S x t  and a bending moment ( , )M x t . On the 
opposite side, which corresponds to a position x dx , the shearing force ( S dS ) is 
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Likewise the moment force ( M dM ) at the position x dx  is 
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Note that the total deflection is due to both bending and shear forces, so that the shear angle 

( , )σ x t  (or loss of slope) is equal to the slope of centerline (neutral axis) ( , )w x t
x




 less slope of 

bending ( ,t)γ x : 
 

 ( , )( , ) ( , )w x tσ x t γ x t
x


 


 (5) 

 
The shear force S  is given by 
 

 ( , )( , ) ( , ) ( , )w x tS x t kAGσ x t kAG γ x t
x

     
 (6) 

 
By considering the "standard linear solid (SLS) model" or Zener model (Zener, 1965), with 
the stress-strain law given by 
 

 D D
ν εν C Eε K
t t

 
  

 
 (7) 

 
and assuming linear variations of strain and stress across the beam depth, the total moment 
obtained by integrating first moment of stress across the beam cross section is (Baker et al., 
1967): 

 0( , ) 1 ( , )D D xM x t C M I E K γ x t
t t
              

 (8) 

 
The total internal moment (bending and damping) M  is then given by (Banks & Inman, 
1991; Banks et al., 1994) 
 

 
2( , ) ( , )( , ) D

γ x t γ x tM x t EI K I
x x t

 
 
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The equation of motion of the studied single link elastic robot arm can be derived by 
considering both the equilibrium of the moments and the forces. 
Taking moments as positive in the counter-clockwise direction, their summation with 
disregarding the second order term of dx , yields the relation between the spatial change in 
the bending moment and the shear force 
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where the term 
2

2

( , )γ x tρI
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


 stands for the distributed rotational inertia given by the product 

of the mass  moment of inertia of the cross section and the angular acceleration. 

  

 

The relation that fellows balancing forces is 
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
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, 
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
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 represent, respectively, the air resistance force 

and the distributed transverse inertial force. 
 
Substitution of (6) and (9) into (10) and likewise (6) into (11) yields the two coupled 
equations of the damped TB motion: 
 

 
3 2 2

2 2 2
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 (12) 
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 (13) 

 
If the damping effects terms are suppressed, the classical set of two coupled PDEs 
developed by Timoshenko (Timoshenko, 1921; Timoshenko, 1922) arises: 
 

 
2 2
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 (15) 

 
The modeled beam cross-sectional area and density being uniform, equations (14) and (15) 
can be easily decoupled as follows: 
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Note that the total deflection is due to both bending and shear forces, so that the shear angle 
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By considering the "standard linear solid (SLS) model" or Zener model (Zener, 1965), with 
the stress-strain law given by 
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and assuming linear variations of strain and stress across the beam depth, the total moment 
obtained by integrating first moment of stress across the beam cross section is (Baker et al., 
1967): 
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The total internal moment (bending and damping) M  is then given by (Banks & Inman, 
1991; Banks et al., 1994) 
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The equation of motion of the studied single link elastic robot arm can be derived by 
considering both the equilibrium of the moments and the forces. 
Taking moments as positive in the counter-clockwise direction, their summation with 
disregarding the second order term of dx , yields the relation between the spatial change in 
the bending moment and the shear force 
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where the term 
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
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 stands for the distributed rotational inertia given by the product 

of the mass  moment of inertia of the cross section and the angular acceleration. 

  

 

The relation that fellows balancing forces is 
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 represent, respectively, the air resistance force 

and the distributed transverse inertial force. 
 
Substitution of (6) and (9) into (10) and likewise (6) into (11) yields the two coupled 
equations of the damped TB motion: 
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If the damping effects terms are suppressed, the classical set of two coupled PDEs 
developed by Timoshenko (Timoshenko, 1921; Timoshenko, 1922) arises: 
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The modeled beam cross-sectional area and density being uniform, equations (14) and (15) 
can be easily decoupled as follows: 
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Similar to the those established in (De Silva, 1976;  Sooraksa & Chen, 1998), equation (16) is 
the fifth order TB homogeneous linear PDE with internal and external damping effects 
expressing the deflection ( , )w x t . 
We have added to this equation the following initial and pinned (clamped)-mass boundary 
conditions (Loudini et al., 2007a, Loudini et al., 2006): 
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The classical fourth order TB PDE is retrieved if the damping effects terms are suppressed: 
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If the effect due to the rotary inertia is neglected, we are led to the shear beam (SB) model 
(Morris, 1996; Han et al., 1999): 
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but, if the one due to shear distortion is the neglected one, the Rayleigh beam equation (Han 
et al., 1999; Rayleigh, 2003) arises: 
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Moreover, if both the rotary inertia and shear deformation are neglected, then the governing 
equation of motion reduces to that based on the classical EBT (Meirovitch, 1986) given by 
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If the above included damping effects are associated to the EBB, the corresponding PDE is 
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The resolution of the PDE with mixed derivative terms (16) is a complex mathematical 
problem. Among the few methods existing in the literature, we cite the following 
approaches with some representative works: the finite element method (Kapur, 1966; Hoa, 
1979; Kolberg 1987), the Galerkin method (Wang and Chou, 1998; Dadfarnia et al., 2005), the 
Rayleigh-Ritz method (Oguamanam and Heppler, 1996), the Laplace transform method 
resulting in an integral form solution (Boley & Chao, 1955; Wang & Guan, 1994; Ortner & 
Wagner, 1996), and the eigenfunction expansion method, also referred to as the series or 
modal expansion method (Anderson, 1953; Dolph, 1954; Huang, 1961; Ekwaro-Osire et al., 
2001; Loudini et al. 2006; Loudini et al. 2007a; Loudini et al. 2007b). 
 
In the latter one, ( , )w x t  can take the following expanded separated form which consists of 
an infinite sum of products between the chosen transverse deflection eigenfunctions or 
mode shapes ( )nW x , that must satisfy the pinned (clamped)-free (mass) BCs, and the time-
dependant modal generalized coordinates ( )nδ t : 
 

 
1

( , ) ( ) ( )n n
n

w x t W x δ t




  (27) 

 
2.4 Dynamic model deriving procedure 
In order to obtain a set of ordinary differential equations (ODEs) of motion to adequately 
describe the dynamics of the flexible link manipulator, the Hamilton's or Lagrange's 
approach combined with the Assumed Modes Method (AMM) (Fraser & Daniel, 1991; 
Loudini et al. 2006; Loudini et al. 2007a; Loudini et al. 2007b; Tokhi & Azad, 2008) can be 
used. 
 
According to the Lagrange's method, a dynamic system completely located by n  
generalized coordinates iq  must satisfy n  differential equations of the form: 
 

 i

i i i
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F

dt q q q
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    
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, 0,1,2,i    (28) 

 
where L  is the so-called Lagrangian given by           
 
 L T U   (29) 
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If the effect due to the rotary inertia is neglected, we are led to the shear beam (SB) model 
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but, if the one due to shear distortion is the neglected one, the Rayleigh beam equation (Han 
et al., 1999; Rayleigh, 2003) arises: 
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Moreover, if both the rotary inertia and shear deformation are neglected, then the governing 
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T  represents the kinetic energy of the modeled system and U  its potential energy. Also, in 
(28) D  is the Rayleigh's dissipation function which allows dissipative effects to be included, 
and iF  is the generalized external force acting on the corresponding coordinate iq . 
Theoretically there are infinite number of ODEs, but for practical considerations, such as 
boundedness of actuating energy and limitation of the actuators and the sensors working 
frequency range, it is more reasonable to truncate this number at a finite one n  (Cannon & 
Schmitz, 1984; Kanoh & Lee, 1985; Qi & Chen, 1992). 
 
The total kinetic energy of the robot flexible link and its potential energy due to the internal 
bending moment and the shear force are, respectively, given by (Macchelli & Melchiorri, 
2004; Loudini et al. 2006; Loudini et al. 2007a; Loudini et al. 2007b): 
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The dissipated energy due to the damping effects can be written as (Krishnan & Vidyasagar, 
1988; Loudini et al. 2006; Loudini et al. 2007a; Loudini et al. 2007b): 
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Substituting these energies expressions into (28) accordingly and using the transverse 
deflection separated form (27), we can derive the desired dynamic equations of motion in 
the mass ( B ), damping ( H ), Coriolis and centrifugal forces ( N ) and stiffness ( K ) matrix 
familiar form: 
  

  
2

2

( ) ( )
( ), ( ) ( ) ( )
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B H N q t q t Kq t F t

dt dt
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with 1 2( ) ( ) ( ) ( ) ( ) T

nq t θ t δ t δ t δ t    ; ( ) 0 0 0 TF t τ    . 
 
If we disregard some high order and nonlinear terms, under reasonable assumptions, the 
matrix differential equation in (33) could be easily represented in a state-space form as 
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with ( ) 0 0 Tu t τ    ; 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
T

n nz t θ t δ t δ t θ t δ t δ t   
    . 

Solving the state-space matrices gives the vector of states )(tz , that is, the angular 
displacement, the modal amplitudes and their velocities. 

 
3. A Special Case Study: Comprehensive Dynamic Modeling of a Flexible 
Link Manipulator Considered as a Shear Deformable Timoshenko Beam 
 

In this second part of our work, we present a novel dynamic model of a planar single-link 
flexible manipulator considered as a tip mass loaded pinned-free shear deformable beam. 
Using the classical TBT described in section 2 and including the Kelvin-Voigt structural 
viscoelastic effect (Christensen, 2003), the lightweight robotic manipulator motion 
governing PDE is derived. Then, based on the Lagrange's principle combined with the 
AMM, a dynamic model suitable for control purposes is established.  

 
3.1 System description and motion governing equation 
The considered physical system is shown in Fig. 4. The basic deriving procedure to obtain 
the motion governing equation has been described in the previous section, and so only an 
outline giving the main steps is presented here. 
The effect of rotary inertia being neglected in this case study, equation (10) expressing the 
equilibrium of the moments becomes: 
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The relation that fellows balancing forces is 
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Substitution of 6 and 9 into 35 and likewise 6 into 36 yields the two coupled equations of the 
damped SB motion: 
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Equations 37 and 38 can be easily decoupled to obtain the fifth order SB homogeneous linear 
PDEs with internal damping effect expressing the deflection ),( txw  and the slope of 
bending t),(x  
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T  represents the kinetic energy of the modeled system and U  its potential energy. Also, in 
(28) D  is the Rayleigh's dissipation function which allows dissipative effects to be included, 
and iF  is the generalized external force acting on the corresponding coordinate iq . 
Theoretically there are infinite number of ODEs, but for practical considerations, such as 
boundedness of actuating energy and limitation of the actuators and the sensors working 
frequency range, it is more reasonable to truncate this number at a finite one n  (Cannon & 
Schmitz, 1984; Kanoh & Lee, 1985; Qi & Chen, 1992). 
 
The total kinetic energy of the robot flexible link and its potential energy due to the internal 
bending moment and the shear force are, respectively, given by (Macchelli & Melchiorri, 
2004; Loudini et al. 2006; Loudini et al. 2007a; Loudini et al. 2007b): 
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The dissipated energy due to the damping effects can be written as (Krishnan & Vidyasagar, 
1988; Loudini et al. 2006; Loudini et al. 2007a; Loudini et al. 2007b): 
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Substituting these energies expressions into (28) accordingly and using the transverse 
deflection separated form (27), we can derive the desired dynamic equations of motion in 
the mass ( B ), damping ( H ), Coriolis and centrifugal forces ( N ) and stiffness ( K ) matrix 
familiar form: 
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2

( ) ( )
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dt dt
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with 1 2( ) ( ) ( ) ( ) ( ) T

nq t θ t δ t δ t δ t    ; ( ) 0 0 0 TF t τ    . 
 
If we disregard some high order and nonlinear terms, under reasonable assumptions, the 
matrix differential equation in (33) could be easily represented in a state-space form as 
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z z

z
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
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with ( ) 0 0 Tu t τ    ; 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
T

n nz t θ t δ t δ t θ t δ t δ t   
    . 

Solving the state-space matrices gives the vector of states )(tz , that is, the angular 
displacement, the modal amplitudes and their velocities. 

 
3. A Special Case Study: Comprehensive Dynamic Modeling of a Flexible 
Link Manipulator Considered as a Shear Deformable Timoshenko Beam 
 

In this second part of our work, we present a novel dynamic model of a planar single-link 
flexible manipulator considered as a tip mass loaded pinned-free shear deformable beam. 
Using the classical TBT described in section 2 and including the Kelvin-Voigt structural 
viscoelastic effect (Christensen, 2003), the lightweight robotic manipulator motion 
governing PDE is derived. Then, based on the Lagrange's principle combined with the 
AMM, a dynamic model suitable for control purposes is established.  

 
3.1 System description and motion governing equation 
The considered physical system is shown in Fig. 4. The basic deriving procedure to obtain 
the motion governing equation has been described in the previous section, and so only an 
outline giving the main steps is presented here. 
The effect of rotary inertia being neglected in this case study, equation (10) expressing the 
equilibrium of the moments becomes: 
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M x t

S x t
x


 


 (35) 

 
The relation that fellows balancing forces is 
 

 
2

2

( , ) ( , )S x t w x t
ρA

x t

 


 
 (36) 

 
Substitution of 6 and 9 into 35 and likewise 6 into 36 yields the two coupled equations of the 
damped SB motion: 
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    
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w x t γ x t w x t
kAG ρA

x x t

   
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    
 (38) 

 
Equations 37 and 38 can be easily decoupled to obtain the fifth order SB homogeneous linear 
PDEs with internal damping effect expressing the deflection ),( txw  and the slope of 
bending t),(x  
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Fig. 4. Physical configuration and kinematics of deformation of a bending element of the 
studied flexible robot manipulator considered as a shear deformable beam  
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We affect to the equation (39) the same initial and pinned-mass boundary conditions, given 
by equations 18, 19, and 21, with taking into account the result established by (Wang & 
Guan, 1994; Loudini et al., 2007b) about the very small influence of the tip payload inertia on 
the flexible manipulator dynamics: 
 
UInitial conditions:U 0( ,0)w x w , 00

( , )t t
w x t w


   (41) 

 
UBCs at the pinned end (root of the link): 
 
 

0
( , ) 0

x
w x t


 : zero average translational displacement (42) 
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20
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( , )( , ) hx
x

w x tM x t J
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

 
: balance of bending moments (43) 

 
UBCs at the mass loaded free end: 
 
 ( , ) 0

x
M x t





: zero average of bending moments (44) 
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( , ) ( , )
p

x x

M x t w x t
M
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 


  

: balance of shearing forces (45) 

 
The classical fourth order SB PDEs are retrieved if the damping effect term is suppressed: 
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 (47) 

 
Moreover, if shear deformation is neglected, then the governing equation of motion reduces 
to that based on the classical EBT, given by 25. 
 
If the above included damping effect is associated to the EBB, the corresponding PDE is 
 

 
5 4 2

4 4 2

( , ) ( , ) ( , )
0D

w x t w x t w x t
K I EI ρA

x t x t

  
  

   
 (48) 

 
To solve the PDEs with mixed derivative terms (39) and (40), we have tried to apply the 
classical AMM which is well known as a computationally efficient scheme that separates the 
mode functions from the shape functions. 
The forms of equations (39) and (40) being identical, ( , )w x t  and ( , )γ x t  are assumed to 
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We affect to the equation (39) the same initial and pinned-mass boundary conditions, given 
by equations 18, 19, and 21, with taking into account the result established by (Wang & 
Guan, 1994; Loudini et al., 2007b) about the very small influence of the tip payload inertia on 
the flexible manipulator dynamics: 
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Moreover, if shear deformation is neglected, then the governing equation of motion reduces 
to that based on the classical EBT, given by 25. 
 
If the above included damping effect is associated to the EBB, the corresponding PDE is 
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To solve the PDEs with mixed derivative terms (39) and (40), we have tried to apply the 
classical AMM which is well known as a computationally efficient scheme that separates the 
mode functions from the shape functions. 
The forms of equations (39) and (40) being identical, ( , )w x t  and ( , )γ x t  are assumed to 
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share the same time-dependant modal generalized coordinate ( )δ t  under the following  
separated forms with the respective mode shape functions (eigenfuntions) Φ( )x  and Ψ( )x  
that must satisfy the pinned-free (mass) BCs: 
 

 
( , ) Φ( ) ( )

( , ) Ψ( ) ( )

w x t x δ t

γ x t x δ t




 (49) 

 
Unfortunately, the application of 49 has not been possible to derive the mode shapes 
expressions. This is due to the unseparatability of some terms of 39 and 40. 
To find a way to solve the problem, we have based our investigations on the result pointed 
out in (Gürgöze et al., 2007). In this work, it has been established that the characteristic 
equation of a visco-elastic EBB i.e., a Kelvin-Voigt model (given in our chapter by 48), is 
formally the same as the frequency equation of the cantilevered elastic beam (the EB 
modeled by 25). Thus, we can assume that the damping effect affects only the modal 
function ( )δ t . So, the mode shape is that of the SB model (46, 47). 
 
Applying the AMM to the PDEs 46 and 47, we obtain 
 

 Φ ( ) ( ) Φ ( ) ( ) Φ( ) ( ) 0iv ρEI
EI x δ t x δ t ρA x δ t

KG
     (50) 

 

 Ψ ( ) ( ) Ψ ( ) ( ) Ψ( ) ( ) 0iv ρEI
EI x δ t x δ t ρA x δ t

KG
     (51) 

 
Separating the functions of time, t , and space x : 
 

 
( ) Φ ( ) Ψ ( )

constant
( ) Φ( ) Φ ( ) Ψ( ) ( )

iv iv

ii ii

δ t x x
λρA ρ ρA ρδ t x x x ψ x

EI KG EI KG

      
 


 (52) 

 
The differential equation for the temporal modal generalized coordinate is 
 
 ( ) ( ) 0δ t λδ t   (53) 
 
Its general solution is assumed to be in the following forms: 
 
 ( ) cos( )jωt jωtδ t De De F ωt φ     (54) 
 
where 
 
 2λ ω  (55) 
 

  

 

The constants D  and its complex conjugate D  (or F  and the phase  ) are determined 
from the initial conditions. The natural frequency ω  is determined by solving the spatial 
problem given by 
 

 

2 2

2 2

Φ ( ) Φ ( ) Φ( ) 0

Ψ ( ) Ψ ( ) Ψ( ) 0

iv ii

iv ii

ρ ρA
x ω x ω x

KG EI
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x ω x ω x

KG EI

  

  

 (56) 

 
The solutions of 56 can be written in terms of sinusoidal and hyperbolic functions 
 

 
1 2 3 4

1 2 3 4

Φ( ) sin cos sinh cosh

Ψ( ) sin cos sinh cosh

x C ax C ax C bx C bx

x D ax D ax D bx D bx

   

   
 (57) 

 
where 
 

 
2 2

2 2 2 2 2 2;
2 2 2 2

ρ ρ ρA ρ ρ ρA
a ω ω ω b ω ω ω

KG KG EI KG KG EI

   
            

   
 (58) 

 
The constants , ; 1,4k kC D k   of 57 are determined through the BCs 42-45 rewritten on the 
basis of 49, 53 and 55 as follows: 
 
 Φ(0) 0  (59) 
 

 2Ψ (0) Φ (0) Φ (0)hJ
ω J

EI
       (60) 

 
 Ψ ( ) 0   (61) 
 

 2Φ ( ) Ψ( ) Φ( ) Φ( )pM
ω M

KAG
        (62) 

 
By applying 59-62 to 57, we find these relations 
  
 2 4C C   (63) 
 
 1 3 1 3aD bD aJC bJC     (64) 
 
 1 2 3 4cos sin cosh sinh 0aD a aD a bD b bD b        (65) 
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     

 
1 2 2 2 1 1 3 4 4

4 3 3

cos sin cosh

sinh 0

C a C M D a C a C M D a C b C M D b

C b C M D b
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  

   

 
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The relations between the unknown constants kC  and kD  are obtained by substituting 57 
into 38: 
 

 
2 2 2 2

1 2 2 1 3 4 4 3; ; ;
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D C D C D C D C
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R
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From 63 and 67, we obtain  
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From some combinations of 63-69, we find the relations 
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sinh sin

a b R bR b
a b b

R a bJ R a
D D D D

a R b
b a

b R a

  
  
  
  

 
 

  

  

 

 (72) 

 

 

 
21 21

2 2 2 2

2

4 1

2

41 1

sin cos sinh

cosh

cosh

aMD R RD aM aR bM
a a b

R a R a b R a R b

aM
b

R aD DR
b

R b

D D

        
       
 
 
 

 
 
  
 
 
 
  



   

 

  (73) 

 
Replacing (63) and (69)-(73) into (57), we obtain 
 

 
 1 21 31

1 21 31 41

Φ( ) sin cos cosh sinh

Ψ( ) sin cos sinh cosh

x C ax C ax bx C bx

x D ax D ax D bx D bx

     

     
 (74) 

 
In order to establish the frequency equation, we rewrite the equations 63-66 as fellows 
 
 2 4 0C C   (75) 
 
    2 2

1 2 3 4 0aJC R a C bJC R b C       (76) 

 
        

1 2 3 4

2 2 2 2
1 2 3 4sin cos sinh cosh 0

CF CF CF CF

R a a C R a a C R b b C R b b C          
   

 (77) 

 

 5 6 7

8

1 2 3

4

cos sin cos sin cosh sinh

sinh cosh 0

CF CF CF

CF

R R Ra M a C M a a C b M b C
a a b

R b M b C
b

                 
     

    
 

      
  

  


 (78) 
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     

 
1 2 2 2 1 1 3 4 4

4 3 3

cos sin cosh

sinh 0

C a C M D a C a C M D a C b C M D b

C b C M D b

        

  

   

 
 (66) 

 
The relations between the unknown constants kC  and kD  are obtained by substituting 57 
into 38: 
 

 
2 2 2 2

1 2 2 1 3 4 4 3; ; ;
R a R a R b R b

D C D C D C D C
a a b b

    
       

 
 (67) 

 
or 
 

 
       1 2 2 1 3 4 4 32 2 2 2

; ; ;
a a b b

C D C D C D C D
R a R a R b R b

    
   

 (68) 

 

where 
2ρω

R
KG

 . 

 
From 63 and 67, we obtain  
 

 
 
 

2

3 1 31 12

a R b
D D D D

b R a


  


 (69) 

 
From some combinations of 63-69, we find the relations 
 

 

 
 

  
 

2

2

2 1 21 12 2 22

2 2

sinh sin

cos cosh sinh

a R b
b a

b R a
C C C C

a b R bR b
a b b

R a bJ R a

 
 
 
   

  
  

   

 

  

 (70) 

 

 
21 21 21 21

3 1 31 1

cos sin cosh sinh

sinh cosh

R R R
MC a C M a MC b C b

a a bC C C CR
M b b

b

    
        

      
 
  

   

 
 (71) 

 

  

 

 

  
 

 
 

2 2 22

2 2

2 1 21 12

2

cos cosh sinh

sinh sin

a b R bR b
a b b

R a bJ R a
D D D D

a R b
b a

b R a

  
  
  
  

 
 

  

  

 

 (72) 

 

 

 
21 21

2 2 2 2

2

4 1

2

41 1

sin cos sinh

cosh

cosh

aMD R RD aM aR bM
a a b

R a R a b R a R b

aM
b

R aD DR
b

R b

D D

        
       
 
 
 

 
 
  
 
 
 
  



   

 

  (73) 

 
Replacing (63) and (69)-(73) into (57), we obtain 
 

 
 1 21 31

1 21 31 41

Φ( ) sin cos cosh sinh

Ψ( ) sin cos sinh cosh

x C ax C ax bx C bx

x D ax D ax D bx D bx

     

     
 (74) 

 
In order to establish the frequency equation, we rewrite the equations 63-66 as fellows 
 
 2 4 0C C   (75) 
 
    2 2

1 2 3 4 0aJC R a C bJC R b C       (76) 

 
        

1 2 3 4

2 2 2 2
1 2 3 4sin cos sinh cosh 0

CF CF CF CF

R a a C R a a C R b b C R b b C          
   

 (77) 

 

 5 6 7

8

1 2 3

4

cos sin cos sin cosh sinh

sinh cosh 0

CF CF CF

CF

R R Ra M a C M a a C b M b C
a a b

R b M b C
b

                 
     

    
 

      
  

  


 (78) 
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Consider the coefficients of the four equations as a matrix C  given by 
 

 
2 2

1 2 3 4

5 6 7 8

0 1 0 1
aJ R a bJ R b

C
CF CF CF CF
CF CF CF CF

 
   
 
 
  

 (79) 

 
In order that solutions other than zero may exist, the determinant of C  must me null. This 
leads to the frequency equation 
 

 

     

   

     

   

2 2 2 2

2 2 2

22 2 2 2 2

2 2

cos sinh

sin cosh

sin sinh

cos cosh 0

a R
RJ R b a b MaJ R b a b

b a
R

a b MbJ R a a b
b

b
RJ a b RJ R a M a b a b

a
a b

J R a R b a b
b a

 
       

 

 
    

 

 
      

 

 
    

 

  

   

   

  

 (80) 

 
3.2 Derivation of the dynamic model 
As explained before, the energetic Lagrange’s principle is adopted. 
The total kinetic energy is given by 
 
 h pT T T T    (81) 
 
where hT , T  and pT  are the kinetic energies associated to, respectively, the rigid hub, the 
flexible link, and the payload: 
 

 21
( )

2
h hT J θ t   (82) 

 

 
2

2

0

1 ( , )
( ) ( ) ( , )

2

w x t
T ρA xθ t θ t w x t dx

t

             




   (83) 

 

 

22
21 ( , ) 1 ( , )

( ) ( ) ( , ) ( )
2 2

p p p

x x

w x t w x t
T M xθ t θ t w t J θ t

t t x 

                                               

    (84) 

 
The potential energy of the system, U , can be written as 

  

 

 
2 2

0 0

1 ( , ) 1 ( , )
( , )

2 2
γ x t w x t

U EI dx KAG γ x t dx
x x

    
          

 

 (85) 

 
The dissipated energy D  may be written as 
 

 
23

2

0

1 ( , )
2 D

w x t
D K I dx

x t
 

    


 (86) 

 
Using, for ease of manipulation, the following notations and substitutions 
 

12

12 12

12

2 2 2 2 2
1 1 1 2

0 0

2 2
2 2 1 2 3 3 1 2

0 0 0 0

2
4 4 1 2

0 0

Φ Φ ( ) ; Φ Φ ( ) ; Φ Φ ( ) ; Φ Φ ( ); Γ Φ ( ) ; Γ Φ ( )Φ ( ) ;

Γ Ψ ( ) ; Γ Ψ ( )Ψ ( ) ;Γ Φ ( ) ; Γ Φ ( )Φ ( ) ;

Γ Ψ ( ) ; Γ Ψ ( )Ψ ( )

i

i i

i

i i i i i i i i i

i i

i

x dx x x dx

x dx x x dx x dx x x dx

x dx x x dx

        

     

   

 

   



 

   

   

 

   

12

12 21

2
5 5 1 2 6

0 0 0

7 7 1 2 7 2 1

0 0 0

; Γ Φ ( ) ; Γ Φ ( )Φ ( ) ; Γ Φ ( ) ;

Γ Φ ( )Ψ ( ) ; Γ Φ ( )Ψ ( ) ; Γ Φ ( )Ψ ( ) .

i i

i

i i

i i

x dx x x dx x x dx

x x dx x x dx x x dx

    

    

   

  

  

  

 

 
we obtain 
 

 

 

   

   

1

2 12

1 2

1

2 3 2 2 2 2
1 1 1

2 2 2 2
2 1 2 1 2 1 1 2

6 1 1 1 6 2 2 2

1 1

1 1 1( ) Φ Γ ( ) ( )
2 3 2

1 Φ Γ ( ) ( ) Φ Φ Γ ( ) ( ) ( )
2

Γ Φ Φ ( ) ( ) Γ Φ Φ ( ) ( )

1 Γ Φ
2

h p p p

p p

p p p p

p

L J J M ρA θ t M ρA δ t θ t

M ρA δ t θ t M ρA δ t δ t θ t

ρA M J θ t δ t ρA M J θ t δ t

ρA M

        
 

   

      





  

   

   

  

      

    

 

 

 

2

12

1 1 1 1

2 2 2 2

12 21 12

2 2 2 2 2 2
1 1 1 2 2 2

1 1 2 1 2 1 2

2
7 3 2 4 1

2
7 3 2 4 2

7 7 3

1Φ ( ) Γ Φ Φ ( )
2

Γ Φ Φ Φ Φ ( ) ( )

1 1Γ Γ Γ Γ ( )
2 2

1 1Γ Γ Γ Γ ( )
2 2

Γ Γ Γ Γ

p p p

p p

J δ t ρA M J δ t

ρA M J δ t δ t

KAG KAG EI δ t

KAG KAG EI δ t

KAG KAG KAG

     

   

      

      

  

   

   

  

  

 

 

  
12 122 4 1 2Γ ( ) ( )EI δ t δ t  

 (87) 
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Consider the coefficients of the four equations as a matrix C  given by 
 

 
2 2

1 2 3 4

5 6 7 8

0 1 0 1
aJ R a bJ R b

C
CF CF CF CF
CF CF CF CF

 
   
 
 
  

 (79) 

 
In order that solutions other than zero may exist, the determinant of C  must me null. This 
leads to the frequency equation 
 

 

     

   

     

   

2 2 2 2

2 2 2

22 2 2 2 2

2 2

cos sinh

sin cosh

sin sinh

cos cosh 0

a R
RJ R b a b MaJ R b a b

b a
R

a b MbJ R a a b
b

b
RJ a b RJ R a M a b a b

a
a b

J R a R b a b
b a

 
       

 

 
    

 

 
      

 

 
    

 

  

   

   

  

 (80) 

 
3.2 Derivation of the dynamic model 
As explained before, the energetic Lagrange’s principle is adopted. 
The total kinetic energy is given by 
 
 h pT T T T    (81) 
 
where hT , T  and pT  are the kinetic energies associated to, respectively, the rigid hub, the 
flexible link, and the payload: 
 

 21
( )

2
h hT J θ t   (82) 

 

 
2

2

0

1 ( , )
( ) ( ) ( , )

2

w x t
T ρA xθ t θ t w x t dx

t

             




   (83) 

 

 

22
21 ( , ) 1 ( , )

( ) ( ) ( , ) ( )
2 2

p p p

x x

w x t w x t
T M xθ t θ t w t J θ t

t t x 

                                               

    (84) 

 
The potential energy of the system, U , can be written as 

  

 

 
2 2

0 0

1 ( , ) 1 ( , )
( , )

2 2
γ x t w x t

U EI dx KAG γ x t dx
x x

    
          

 

 (85) 

 
The dissipated energy D  may be written as 
 

 
23

2

0

1 ( , )
2 D

w x t
D K I dx

x t
 

    


 (86) 

 
Using, for ease of manipulation, the following notations and substitutions 
 

12

12 12

12

2 2 2 2 2
1 1 1 2

0 0

2 2
2 2 1 2 3 3 1 2

0 0 0 0

2
4 4 1 2

0 0
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Based on the Lagrange’s principle combined with the AMM, and after tedious 
manipulations of extremely lengthy expressions, the established dynamic equations of 
motion are obtained in a matrix form by: 
 

 


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2 2 2
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 
1 1 1 122 3 2 7 4Γ Γ 2 Γ ΓK KAG KAG EI    ;  

12 12 12 21 1223 3 2 7 7 4Γ Γ Γ Γ ΓK KAG KAG KAG EI     ; 

 

 
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2 2 2 233 7 3 2 42 Γ Γ Γ ΓK KAG KAG EI     

 

  

 

4. Conclusion 
 

An investigation into the development of flexible link robot manipulators mathematical 
models, with a high modeling accuracy, using Timoshenko beam theory concepts has been 
presented. 
The emphasis has been, essentially, set on obtaining accurate and complete equations of 
motion that display the most relevant aspects of structural properties inherent to the 
modeled lightweight flexible robotic structure. 
In particular, two important damping mechanisms: internal structural viscoelasticity effect 
(Kelvin-Voigt damping) and external viscous air damping have been included in addition to 
the classical effects of shearing and rotational inertia of the elastic link cross-section. 
To derive a closed-form finite-dimensional dynamic model for the planar lightweight robot 
arm, the main steps of an energetic deriving procedure based on the Lagrangian approach 
combined with the assumed modes method has been proposed. 
An illustrative application case of the general presentation has been rigorously highlighted. 
As a contribution, a new comprehensive mathematical model of a planar single link flexible 
manipulator considered as a shear deformable Timoshenko beam with internal structural 
viscoelasticity is proposed. 
On the basis of the combined Lagrangian-Assumed Modes Method with specific accurate 
boundary conditions, the full development details leading to the establishment of a closed 
form dynamic model have been explicitly given. 
In a coming work, a digital simulation will be performed in order to reveal the vibrational 
behavior of the modeled system and the relation between its dynamics and its parameters. It 
is also planned to do some comparative studies with other dynamic models.  
The mathematical model resulting from this work could, certainly, be quite suitable for control 
purposes. Moreover, an extension to the multi-link case, requiring very high modeling 
accuracy to avoid the cumulative errors, should be a very good topic for further 
investigation. 
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A  link cross-section area 
B  inertia matrix   

DC  viscoelastic material constant 
D  dissipated energy 
E  link Young’s modulus of elasticity 
F  vector of external forces 
G  shear modulus 
H  damping matrix 
I  link moment of inertia 

hJ  hub and rotor (actuator) total inertia 
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k  shear correction factor 
K  stiffness matrix 
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  link length 
L  Lagrangian 
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q   vector of generalized coordinates 
S  shear force 
t  time 
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x  coordinate along the beam 
Φ ( )n x  n th transverse mode shape 
Ψ ( )n x  n th rotational mode shape 
( , )α x t  angular position of a point of the deflected link 

nδ  n th modal amplitude 
ε  strain 
ν  normal stress 
( )θ t  angular position of the rotating X -axis  

ρ  link uniform linear mass density 
σ  shear angle 
τ  actuator torque applied at the base of the link 

nω  n th natural frequency of vibration 

ndω  n th damped natural frequency of vibration 
( , )γ x t  rotation of cross-section about neutral axis 
( )η t  rotating X -axis angular position 

nξ  n th damping ratio. 
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