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Abstract 
An adaptive controller is presented in this paper to control an n-link flexible-joint 
manipulator with time-varying uncertainties. The function approximation technique (FAT) 
is utilized to represent time-varying uncertainties in some finite combinations of orthogonal 
basis. The tedious computation of the regressor matrix needed in traditional adaptive 
control is avoided in the new design, and the controller does not require the variation 
bounds of time-varying uncertainties needed in traditional robust control. In addition, the 
joint acceleration is not needed in the controller realization. Via the Lyapunov-like stability 
theory, adaptive update laws are derived to give convergence of the output tracking error. 
Moreover, the upper bounds of tracking errors in the transient state are also derived. A 2 
DOF planar manipulator with flexible joints is used in the computer simulation to verify the 
effectiveness of the proposed controller. 
 
Keywords: Adaptive control; Flexible-joint robot; FAT 

 
1. INTRODUCTION 
In practical applications, most controllers for robot manipulators equipped with harmonic 
devices are based on rigid-body dynamics formulation. To achieve high precision tracking 
performance, the joint flexibility should be carefully considered.1 However, the modeling of 
flexible-joint robots is far more complex than that of rigid-joint robots. Besides, the 
mathematical model of the robot inevitably contains model inaccuracies such as parametric 
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uncertainties, and unmodeled dynamics. Since these inaccuracies may degrade the 
performance of the closed-loop system, any practical design should consider their effects. 
Under the problems of joint flexibility and model inaccuracies, several strategies based on 
adaptive control or robust control for flexible-joint robots had been proposed. 
Spong2,3 proposed an adaptive controller for flexible-joint robots by using the singular 
perturbation formulation. Chen and Fu4 presented a two-stage adaptive control scheme for a 
single-link robot based on a simplified dynamic model. Khorasani5 designed an adaptive 
controller using the concept of integral manifolds for n-link flexible-joint robots. Without 
using the velocity measurements, Lim et. al.6 proposed an adaptive integrator backstepping 
scheme for rigid-link flexible-joint robots. Dixon et. al.7 designed an adaptive partial state 
feedback controller by using a nonlinear link velocity filter. Yim8 suggested an output 
feedback adaptive controller based on the backstepping design. Kozlowski and Sauer9,10 
suggested an adaptive controller under the assumption of bounded disturbances to have 
semiglobal convergence. Tian and Goldenberg11 proposed a robust adaptive controller with 
joint torque feedback. Jain and Khorrami12 suggested a robust adaptive control for a class of 
flexible-joint robots that are transformable to a special strict feedback form. However, like 
most adaptive control strategies, the uncertainties should be linearly parameterizable into 
regressor form13. Availability of the regressor matrix is crucial to the derivation of adaptive 
controllers for robot manipulators. This is because traditional adaptive control strategies 
have a common assumption that the uncertain parameters should be constant or slowly time 
varying. Therefore, the robot dynamics is linearly parameterized into known regressor 
matrix and an unknown vector with constant parameters. In general, derivation of the 
regressor matrix for a given robot is tedious. Once it is obtained, we may find that, for most 
robots, elements in the unknown vector are simple combinations of system parameters such 
as link mass, link length and moment of inertia, and these are sometimes relatively easy to 
measure.13  
Huang and Chen14 proposed an adaptive backstepping-like controller based on FAT15-28 for 
single-link flexible-joint robots with mismatched uncertainties. Similar to most backstepping 
designs, the derivation is too complex to robots with more joints. In this paper, we would 
like to propose a FAT based adaptive controller for n-link flexible-joint robots. The tedious 
computation of the regressor matrix is avoided in the new design. Moreover, the novel 
controller does not require the variation bounds of time-varying uncertainties needed in 
traditional robust control. In addition, the control strategy does not need to feedback joint 
acceleration. Convergence of the output error and the boundedness of all signals are proved 
using Lyapunov-like direct method with consideration of the effect of the approximation 
error. 
This paper is organized as follows: in section 2, we derive the proposed adaptive controller 
in detail; section 3 presents simulation results of a 2-D flexible-joint robot using the 
proposed controller; finally, some conclusions are given in section 4. 

 
2. MAIN RESULTS 
 

The dynamics of an n-rigid link flexible-joint robot can be described by29 

 

q)K(θqgqqqCqqD  )(),()(      (1) 
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where nq  is the vector of link angles, nθ is the vector of actuator angles, 
nu  is the vector of actuator input torques, )(qD  is the nn  inertia matrix, 

qqqC  ),(  is an n-vector of centrifugal and Coriolis forces, and g(q) is the gravity vector. 

J , B  and K  are nn  constant diagonal matrices of actuator inertias, damping and 
joint stiffness, respectively. Here, we would like to consider the case when the precise forms 
of )(qD , qqqC  ),(  and g(q) are not available and their variation bounds are not given. 
This implies that traditional adaptive control and robust control cannot be applicable. In the 
following, we would like to use the function approximation technique to design an adaptive 
controller for the flexible-joint robot. Moreover, it is well-known that derivation of the 
regressor matrix for the adaptive control of high DOF rigid robot is generally tedious. For 
the flexible-joint robot in (1) and (2), its dynamics is much more complex than that of its 
rigid-joint counterpart. Therefore, the computation of the regressor matrix becomes 
extremely difficult. Different form the conventional adaptive control schemes for robot 
manipulators, the proposed FAT-based adaptive controller does not need the computation 
of the regressor matrix. This largely simplifies the implementation of the control loop. 
Define q)-K(θτ   to be the vector of transmission torques, so (1) and (2) becomes11 
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where 1JKJ t , 1BKB t  and .),( qBqJqqq    Define signal vector 

Λees    and ,Λeqv  d  where n
d q  is the vector of desired states, 

dqqe   is the state error, and ),...,,( 21 ndiag Λ  with 0i  for all 
i=1, … n. Rewrite (3) in the form 

τCvvDgCssD         (5) 

 
A. Controller Design for Known Robot  
Suppose )(qD , qqqC  ),(  and g(q) are known, and we may design a proper control law 
such that τ  follows the trajectory below 

d   τ g Dv Cv K s      (6) 

where dK  is a positive definite matrix. Substituting (6) into (5), the closed loop dynamics 
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uncertainties, and unmodeled dynamics. Since these inaccuracies may degrade the 
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traditional robust control. In addition, the control strategy does not need to feedback joint 
acceleration. Convergence of the output error and the boundedness of all signals are proved 
using Lyapunov-like direct method with consideration of the effect of the approximation 
error. 
This paper is organized as follows: in section 2, we derive the proposed adaptive controller 
in detail; section 3 presents simulation results of a 2-D flexible-joint robot using the 
proposed controller; finally, some conclusions are given in section 4. 

 
2. MAIN RESULTS 
 

The dynamics of an n-rigid link flexible-joint robot can be described by29 

 

q)K(θqgqqqCqqD  )(),()(      (1) 

uq)K(θθBθJ         (2) 

where nq  is the vector of link angles, nθ is the vector of actuator angles, 
nu  is the vector of actuator input torques, )(qD  is the nn  inertia matrix, 

qqqC  ),(  is an n-vector of centrifugal and Coriolis forces, and g(q) is the gravity vector. 

J , B  and K  are nn  constant diagonal matrices of actuator inertias, damping and 
joint stiffness, respectively. Here, we would like to consider the case when the precise forms 
of )(qD , qqqC  ),(  and g(q) are not available and their variation bounds are not given. 
This implies that traditional adaptive control and robust control cannot be applicable. In the 
following, we would like to use the function approximation technique to design an adaptive 
controller for the flexible-joint robot. Moreover, it is well-known that derivation of the 
regressor matrix for the adaptive control of high DOF rigid robot is generally tedious. For 
the flexible-joint robot in (1) and (2), its dynamics is much more complex than that of its 
rigid-joint counterpart. Therefore, the computation of the regressor matrix becomes 
extremely difficult. Different form the conventional adaptive control schemes for robot 
manipulators, the proposed FAT-based adaptive controller does not need the computation 
of the regressor matrix. This largely simplifies the implementation of the control loop. 
Define q)-K(θτ   to be the vector of transmission torques, so (1) and (2) becomes11 

 

τqgqqqCqqD  )(),()(          (3) 

),( qqquττBτJ   tt        (4) 
 

where 1JKJ t , 1BKB t  and .),( qBqJqqq    Define signal vector 

Λees    and ,Λeqv  d  where n
d q  is the vector of desired states, 

dqqe   is the state error, and ),...,,( 21 ndiag Λ  with 0i  for all 
i=1, … n. Rewrite (3) in the form 

τCvvDgCssD         (5) 

 
A. Controller Design for Known Robot  
Suppose )(qD , qqqC  ),(  and g(q) are known, and we may design a proper control law 
such that τ  follows the trajectory below 

d   τ g Dv Cv K s      (6) 

where dK  is a positive definite matrix. Substituting (6) into (5), the closed loop dynamics 

www.intechopen.com



Advances in Robot Manipulators30

becomes .d  Ds Cs K s 0  Define a Lyapunov function candidate as .
2
1 DssTV   

Its time derivative along the trajectory of the closed loop dynamics can be computed as 

( 2 ) .T T
dV    s K s s D C s   Since CD 2  can be proved to be skew-symmetric, the 

above equation becomes 0.T
dV   s K s It is easy to prove that s is uniformly bounded 

and square integrable, and s  is also uniformly bounded. Hence, 0s  as t , or 
we may say 0e  as t . To make the actual τ  converge to the perfect τ  in (6), 
let us consider the reference model 
 

drdrdrrrrrrr τJτBτKτKτBτJ        (7) 

where n
r τ  is the state vector of the reference model and n

d τ  is the desired 

states. Matrices rJ
nn , rB nn  and rK nn  are selected such that 

dr ττ   exponentially. Define )(),( 1
drdrrddd τJτBKτττ    , we may rewrite (4) and (7) 

in the state space form as 
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matrices, and the pair ),( mm BA is controllable. Since all system parameters are assumed to 
be available at the present stage, we may select a controller in the form30 

),( qτhτxu ddp       (10) 

where nn 2 and nn  satisfy mpp ABA   and mp BB  , 

respectively, and qτqτh  dd ),( . Substituting (10) into (8) and after some 
rearrangements, we may have the system dynamics 

)( ddmpmp ττBxAx       (11) 

Define mpm xxe  and we may have the error dynamics directly from (9) and (11)  

mmm eAe        (12) 

Let rττe   be the output vector of the error dynamics (12) as 

mmeCe            (13) 

where nn
m

2C  is the augmented output matrix such that the pair ),( mm CA  is 

observable and the transfer function mmm s BAIC 1)(   is strictly positive real. Since 

mA  is stable, (12) implies 0me  as t . This further gives dττ  as 
t . 

 
B. Controller Design for Uncertain Robot 
Suppose )(qD , qqqC  ),(  and g(q) are not available, and q  is not easy to measure, we 

would like to design a desired transmission torque dτ  so that a proper controller u can be 

constructed to have dττ . 

Instead of (6), let us design a desired transmission torque dτ  as  

ˆˆˆd d   τ g Dv Cv K s      (14) 

where 1
4d n nK I , and D̂ , Ĉ  and ĝ  are estimates of )(qD , ),( qqC   and g(q), 

respectively. Substituting (14) into (5), we may have the closed loop dynamics  

ˆˆ ˆ( ) ( ) ( ) ( )d         dDs Cs K s τ τ D D v C C v g g    (15) 

If a proper controller u and update laws for D̂ , Ĉ  and ĝ  can be designed, we may have 

dττ , DDˆ , CCˆ  and ggˆ  so that (15) can give desired performance. Let 
us consider the control law 
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hτxu ˆ dp      (16) 

where ĥ  is an estimate of h . Substituting (16) into (8), we may have the system dynamics  

)ˆ()( hhBττBxAx  pddmpmp        (17) 

Together with (9), we may have the error dynamics 

)ˆ( hhBeAe  pmmm       (18) 

mmeCe            (19) 

If we may design an appropriate update law such that hhˆ , then (18) implies 
0me  as t . This further implies dττ  as t . Since D, C, g and h are 

functions of time, traditional adaptive controllers are not directly applicable. To design the 
update laws, let us apply the function approximation representation15-21 
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D D D C C C
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D W Z ε C W Z ε
g W Z ε h W Z ε

   (20a) 
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where )(  are positive numbers. Then (24) becomes 
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and cK . Owing to the existence of 1ε  and 2ε  the definiteness of V  cannot be 
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This further concludes that s, e , ie , DW~ , CW~ , gW~ , and hW~  are uniformly 

ultimately bounded(u.u.b.). The implementation of the desired transmission torque (14), 
control input (16) and update law (25) does not need to calculate the regressor matrix which 
is required in most adaptive designs for robot manipulators. The convergence of the 
parameters, however, can be proved to depend on the persistent excitation condition of the 
input. 
The above derivation only demonstrates the boundedness of the closed loop system, but in 

practical applications the transient performance is also of great importance. For further 
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This further concludes that s, e , ie , DW~ , CW~ , gW~ , and hW~  are uniformly 

ultimately bounded(u.u.b.). The implementation of the desired transmission torque (14), 
control input (16) and update law (25) does not need to calculate the regressor matrix which 
is required in most adaptive designs for robot manipulators. The convergence of the 
parameters, however, can be proved to depend on the persistent excitation condition of the 
input. 
The above derivation only demonstrates the boundedness of the closed loop system, but in 

practical applications the transient performance is also of great importance. For further 
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development, we may apply the comparison lemma32 to (30) to have the upper bound for V 

as 
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From (23), we obtain 
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Thus, the bound of   2TTT
es  for 0tt   can be derived from (31) and (32) as 
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From the derivations above, we can conclude that the proposed design is able to give 
bounded tracking with guaranteed transient performance. The following theorem is a 
summary of the above results. 
 
Theorem 1: Consider the n-rigid link flexible-joint robot (1) and (2) with unknown parameters 
D, C, and g then desired transmission torque (14), control input (16) and update law (25) 

ensure that  

(i)  error signals s, e , DW~ , CW~ , gW~ , and hW~  are u.u.b.  

(ii) the bound of the tracking error vectors for 0tt   can be derived as the form of (33), if 
the Lyapunov-like function candidates are chosen as (23). 
Remark 1: The term with )(  in (25) is to modify the update law to robust the closed-loop 

system for the effect of the approximation error17. Suppose a sufficient number of basis 
functions )(  is selected so that the approximation error can be neglected then we may 

have 0)(  , and (26) becomes 
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It is easy to prove that s and e  are also square integrable. From (21) and (22), s  and e  
are bounded; as a result, asymptotic convergence of s and e can easily be shown by 
Barbalat’s lemma. This further implies that dτ τ  and dqq  even though D, C, 
and g are all unknown. 
Remark 2: Suppose 1 and 2 cannot be ignored but their variation bounds are available16,17 i.e. 

there exists positive constants 1 and 2 such that 11 ε , and 22 ε . To cover the 

effect of these bounded approximation errors, the desired transmission torque (14) and the 
control input (16) are modified to be 
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where robust1 and robust2 are robust terms to be designed. Let us consider the Lyapunov-like 
function candidate (23) and the update law (25) again. The time derivative of V can be 
computed as  
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122  τ  where 

k
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the k-th element of  e, we may have 0V , and asymptotic convergence of the state error 
can be concluded by Barbalat’s lemma. 
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development, we may apply the comparison lemma32 to (30) to have the upper bound for V 
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From the derivations above, we can conclude that the proposed design is able to give 
bounded tracking with guaranteed transient performance. The following theorem is a 
summary of the above results. 
 
Theorem 1: Consider the n-rigid link flexible-joint robot (1) and (2) with unknown parameters 
D, C, and g then desired transmission torque (14), control input (16) and update law (25) 

ensure that  

(i)  error signals s, e , DW~ , CW~ , gW~ , and hW~  are u.u.b.  

(ii) the bound of the tracking error vectors for 0tt   can be derived as the form of (33), if 
the Lyapunov-like function candidates are chosen as (23). 
Remark 1: The term with )(  in (25) is to modify the update law to robust the closed-loop 
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It is easy to prove that s and e  are also square integrable. From (21) and (22), s  and e  
are bounded; as a result, asymptotic convergence of s and e can easily be shown by 
Barbalat’s lemma. This further implies that dτ τ  and dqq  even though D, C, 
and g are all unknown. 
Remark 2: Suppose 1 and 2 cannot be ignored but their variation bounds are available16,17 i.e. 

there exists positive constants 1 and 2 such that 11 ε , and 22 ε . To cover the 

effect of these bounded approximation errors, the desired transmission torque (14) and the 
control input (16) are modified to be 
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where robust1 and robust2 are robust terms to be designed. Let us consider the Lyapunov-like 
function candidate (23) and the update law (25) again. The time derivative of V can be 
computed as  

  2121 robust
T

robust
TTTV τeτses

e
s

Qes 


  







  (37) 

 

By picking T
nrobust ss ])sgn()sgn([ 111 τ , where sk, k=1,…,n is the k-th 

element of s, and T
robust n

ee ])sgn()sgn([
122  τ  where 

k
e , k=1,…,2n is 

the k-th element of  e, we may have 0V , and asymptotic convergence of the state error 
can be concluded by Barbalat’s lemma. 
 

www.intechopen.com



Advances in Robot Manipulators38

3. SIMULATION STUDY 
 

Consider a planar robot (Fig.1) with two rigid links and two flexible joints represented by 
the differential equation (1), and (2). The quantities mi, li, lci and Ii are mass, length, gravity 
center distance and inertia of link i, respectively. Actual values of link parameters in the 
simulation are18 m1=0.5kg, m2=0.5kg, l1=l2=0.75m, lc1=lc2=0.375m, I1=0.09375kg-m2, and 
I2=0.046975kg-m2. The actuator inertias, damping, and joint stiffness are 

),)(01.0,02.0( 2mkgdiag J    )sec/)(4,5( radNmdiag B  and 

)/)(100,100( radNmdiagK  respectively. We would like the end-point to track a 
0.2m-radius circle centered at (0.8 m, 1.0 m) in 10 seconds. To have more challenge, we pick 
the initial condition of the link angles and the motor angles as 

   001.940.184- Tq and   T 001.940.184-θ that are 
significantly away from the desired trajectory. The initial value of the reference model state 

vector is   T 000.72-0.39rτ  which is the same as the initial value of the 

desired reference input dτ . The controller gains are selected as (0.1,0.1)d diagK  

and ).5,5(diagΛ   Each element of D, C, g and h  is approximated by the first 41 
terms of the Fourier series. The simulation results are shown in Fig. 2 to 8. Fig. 2 shows the 
tracking performance of the end-point and the desired trajectory in the Cartesian space. It is 
observed that the end-point trajectory converges nicely to the desired trajectory, although 
the initial position error is quite large. Fig. 3 is the joint space tracking performance. It shows 
that the transient response vanishes very quickly. Fig. 4 is the actuator inputs in N-m. Fig. 5 
to 8 are the performance of function approximation for D, C, g and h respectively. Since the 
reference input does not satisfy the persistent excitation condition, some estimates do not 
converge to their actual values but remain bounded as desired. It is worth to note that in 
designing the controller we do not need much knowledge for the system. All we have to do 
is to pick some controller parameters and some initial weighting matrices. 

 
4. CONCULSIONS 
 

In this paper, we have proposed a FAT-based adaptive controller for a flexible joint robot 
containing time-varying uncertainties. The new design is free from regressor calculation and 
knowledge of bounds of uncertainties.  
Feedback of the joint acceleration is also avoided. The function approximation technique is 
used to deal with time-varying uncertainties. Using the Lyapunov like analysis, rigorous 
proof of the closed loop stability has been investigated with consideration of the 
approximation error. Computer simulation results justify its feasibility of giving satisfactory 
tracking performance on a 2-D flexible-joint robot although we do not know much 
knowledge about the system model. 

 
Fig. 1. 2-DOF planar robot 
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Fig. 2. Tracking performance of end-point in the Cartesian space (－ actual; --- desired). 
Initial position of end-point is at the point (0.6m, 0.6m). After some transient, the tracking 
error is very small, although we do not know precise dynamics of the robot. 
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3. SIMULATION STUDY 
 

Consider a planar robot (Fig.1) with two rigid links and two flexible joints represented by 
the differential equation (1), and (2). The quantities mi, li, lci and Ii are mass, length, gravity 
center distance and inertia of link i, respectively. Actual values of link parameters in the 
simulation are18 m1=0.5kg, m2=0.5kg, l1=l2=0.75m, lc1=lc2=0.375m, I1=0.09375kg-m2, and 
I2=0.046975kg-m2. The actuator inertias, damping, and joint stiffness are 

),)(01.0,02.0( 2mkgdiag J    )sec/)(4,5( radNmdiag B  and 

)/)(100,100( radNmdiagK  respectively. We would like the end-point to track a 
0.2m-radius circle centered at (0.8 m, 1.0 m) in 10 seconds. To have more challenge, we pick 
the initial condition of the link angles and the motor angles as 

   001.940.184- Tq and   T 001.940.184-θ that are 
significantly away from the desired trajectory. The initial value of the reference model state 

vector is   T 000.72-0.39rτ  which is the same as the initial value of the 

desired reference input dτ . The controller gains are selected as (0.1,0.1)d diagK  

and ).5,5(diagΛ   Each element of D, C, g and h  is approximated by the first 41 
terms of the Fourier series. The simulation results are shown in Fig. 2 to 8. Fig. 2 shows the 
tracking performance of the end-point and the desired trajectory in the Cartesian space. It is 
observed that the end-point trajectory converges nicely to the desired trajectory, although 
the initial position error is quite large. Fig. 3 is the joint space tracking performance. It shows 
that the transient response vanishes very quickly. Fig. 4 is the actuator inputs in N-m. Fig. 5 
to 8 are the performance of function approximation for D, C, g and h respectively. Since the 
reference input does not satisfy the persistent excitation condition, some estimates do not 
converge to their actual values but remain bounded as desired. It is worth to note that in 
designing the controller we do not need much knowledge for the system. All we have to do 
is to pick some controller parameters and some initial weighting matrices. 

 
4. CONCULSIONS 
 

In this paper, we have proposed a FAT-based adaptive controller for a flexible joint robot 
containing time-varying uncertainties. The new design is free from regressor calculation and 
knowledge of bounds of uncertainties.  
Feedback of the joint acceleration is also avoided. The function approximation technique is 
used to deal with time-varying uncertainties. Using the Lyapunov like analysis, rigorous 
proof of the closed loop stability has been investigated with consideration of the 
approximation error. Computer simulation results justify its feasibility of giving satisfactory 
tracking performance on a 2-D flexible-joint robot although we do not know much 
knowledge about the system model. 

 
Fig. 1. 2-DOF planar robot 
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Fig. 2. Tracking performance of end-point in the Cartesian space (－ actual; --- desired). 
Initial position of end-point is at the point (0.6m, 0.6m). After some transient, the tracking 
error is very small, although we do not know precise dynamics of the robot. 
 

www.intechopen.com



Advances in Robot Manipulators40

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

Time(sec)

an
gl

e 
of

 li
nk

 1
 (r

ed
)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

Time(sec)

an
gl

e 
of

 li
nk

 2
 (r

ed
)

 
Fig. 3. The joint space tracking performance(－ actual; --- desired). The real trajectory 
converges very quickly. 
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Fig. 4. Actuator input. 
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Fig. 5. Approximation of D matrix(－ estimate; --- real). Although the estimated values do 
not converge to the true values, they are bounded and small. 
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Fig. 6. Approximation of C matrix(－ estimate; --- real). 
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Fig. 3. The joint space tracking performance(－ actual; --- desired). The real trajectory 
converges very quickly. 
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0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Time(sec)

D
(1

1)

0 2 4 6 8 10
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time(sec)

D
(1

2)

0 2 4 6 8 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time(sec)

D
(2

1)

0 2 4 6 8 10
0.09

0.095

0.1

0.105

0.11

0.115

0.12

Time(sec)

D
(2

2)

 
Fig. 5. Approximation of D matrix(－ estimate; --- real). Although the estimated values do 
not converge to the true values, they are bounded and small. 
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Fig. 7. Approximation of vector g(－ estimate; --- real). 
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Fig. 8. Approximation of vector h(－ estimate; --- real). 
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The notation Tr(.) denotes the trace operation. 
Proof: The proof is straightforward as below: 
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 Let W be defined as in Lemma A.2, and W~  is a matrix defined as WWW ˆ~  , 
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Lemma A.4:  

 Let W be defined as in Lemma A.2, and W~  is a matrix defined as WWW ˆ~  , 

where Ŵ  is a matrix with proper dimension. Then  
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Proof:  
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 In the above lemmas, we consider properties of a block diagonal matrix. In the 
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Lemma A.7:  
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