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1. Introduction 
 

Vision-based robotic tracking, fixating and grasping control depends on many 
environmental factors in an unknown environment. The robot control systems lack 
robustness, and the calibration of the CCD cameras is very slow and tedious in the existing 
methods.  
Although the binocular cameras can solve some of these problems, it is necessary to rely 
on the time consuming and complicated 3-D reconstruction algorithms (8)-(9). Therefore, it 
is necessary to develop a more effective vision-based robotic tracking, fixating and 
grasping method, and use the robotic learning ability to improve the tracking, fixating and 
grasping in the unknown environment. 
This chapter presents an active stereo vision-based learning approach for robotic tracking, 
fixating and grasping. First, the many-to-one functional mapping relationships are derived 
to describe the spatial representations of the object in the workspace frame. Then, 
ART_NN and FF_NN are used to learn the mapping relationships, so that the active stereo 
vision system guides the end-effecter to track, fixate and grasp the object without the 
complicated coordinate transformation and calibration. Finally, the present approach is 
verified by simulation. 
 

2. Visual Tracking, Fixating and Grasping 
 

Active vision can easily realize selective attention and prevent an object to go out of the 
view fields of the cameras, therefore the active stereo vision-based robotic tracking, 
fixating and grasping can achieve greater flexibility in an unknown environment. 
Figure 1 shows an active stereo vision-based robotic system for the tracking, fixating and 
grasping. The CCD cameras have 5 DOF, the robot has 6 DOF, which constitute an 11 DOF 
tracking, fixating and grasping system. 
Because the active CCD cameras and the robot can move independently or together, the 
active CCD cameras can observe freely an object in Σo.  

According to the visual feed back information, the robot can track, fixate and grasp the 
object autonomously. 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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Figure 1. A robot system with active vision 

 

3. Many-to-One Mapping Relationships 
 

Figure 2 shows the projective relationships between the active stereo vision system and 
the object in Σo. Let pi (i=1,2,3,…)be a feature point on the object. When the active stereo 
vision system tracks pi and its image coordinates are registered in the centers (ol, or) of the 
left and right image planes of the two cameras respectively, the active stereo vision system 
is known as fixation on pi. 
Let Qi=[θi7,θi8,…,θi11]

T
, Pi=[xoi, yoi, zoi]

T
 and Vi=[

l
ui1,

l
vi1,

r
ui1,

rνi1]
T
 be a joint angle vector of the 

active stereo vision system tracking pi, a spatial representation vector of pi in Σo and an 
image coordinate vector of pi on the left and image planes, respectively. It is known from 
Fig. 2 that when p1 and p2 are visible to the CCD cameras, Q2 and P2 of p2 identified by the 
active stereo vision system tracking on p2 should be different from Q1 and P1. If another 
joint angle vector Q3 is obtained by tracking p3, p1 and p2 are still visible. P1 and P2 are not 
changed from that obtained by tracking on p1 and p2, respectively, despite the image 
coordinate vectors V1 and V2 change on the image planes of the CCD cameras. Therefore, 
there exist many combinations of Qi and Vi which correspond to the same Pi, which means 
that Pi is invariant to the changing Qi and Vi. 

According to the projective geometry (7), Vi can be expressed as follows:  
 
                                                        Vi=φ(Qi,pi),    (i=1,2,3,…),                                                         (1) 

where φ is a nonlinear projective function which maps the object and the joint angles on 
the left and right image planes of the CCD cameras. Therefore, Pi is specified as  
                                                         Pi=ψ(Vi,Qi),   (i=1,2,3,…),                                                        (2) 
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where ψ is a nonlinear many-to-one mapping function, which denotes that the 
combinations of Qi and Vi correspond to Pi. On the other hand, it is known from Fig.2 that 
any combination of Qi and Vi should map to the same Pi, because pi is stationary feature. 
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Figure 2. Projection and fixation relationships 

 

4. Active Vision-Based Robot Control 
 

4.1 Tracking and Fixating Control  
 

It is known from Fig. 2 that when the active stereo vision system tracks pi, Vi is obtained 
for pi and Qi, we have from Equation (2), 
                                                           Pi=ψ(Vi,Qi),                                                                             (3) 

where the active stereo vision system tracks pi. When the active stereo vision system 
fixates pi and the coordinate vector VOi

 of pi corresponds to the centers (ol,, or) of the image 
planes, then the desired joint angle vector QOi which is necessary to bring VOi to VOi

 can be 
computed as follows: 
                                                             Pi =ψ(VOi,QOi),                                                                    (4.a) 

                                                   or    QOi =ψ–1
(VOi,Pi),                                                                   (4.b) 

where ψ and ψ–1 are invertible functions which can be used to control the fixation on pi, 

respectively. Because Pi has invariance, QOi
 can be computed by combining Equation (3) 

with Equation (4), 
                                                                                      

QOi=ψ–1
[VOi,ψ(Vi,Qi)],                                                              (5)  

therefore, QOi is used to control the active vision system to fixate pi.   
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4.2 Grasping Control 
 

Figure 3 shows the configuration parameters of the active stereo vision system. Let d, s, l 
be the distance, height of the CCD cameras and diameter of the sphere coordinate system. 
Let θiα, θiȕ, θiȖ be the configuration angles of the active stereo vision system and the spatial 
coordinates of pi in ΣC be C

Pi=[xci, yci, zci]
T
, respectively. When the active stereo vision 

system fixates pi,
C
Pi can be computed by the triangular geometry relationships in Fig. 3  

                                                              xci =l cos(θiȖ) sin(θiȕ),                                                        (6.a) 

                                                              yci =l cos(θiȖ) cos(θiȕ),                                                        (6.b) 

                                                                    zci =l sin(θiȖ).                                                                (6.c) 
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Figure 3. Configuration of the vision system 
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Figure 4. Frames of the active vision system 
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Figure 4 gives the joint coordinate frames of the robot joint system. In Fig. 4, let Σj(j= 

1,2,…,6), ΣB, ΣH, ΣC be a coordinate frame of ith robotic joint, base frame, coordinate frame 
of the end-effecter, camera frame, B

Pi =[xbi, ybi, zbi]
T
, 

H
Pi=[xhi, yhi, zhi]

T
, Pi=[xoi, yoi, zoi]

T
 be an 

Euclidian coordinate vector of pi in ΣB, ΣH, ΣO, respectively. 
By homogeneous transformation relationship, Bpi can be specified by  

                                                                                       H
Pi =

H
HC•

C
Pi,                                                                  (7.a) 

 
                                                                                         B

Pi=
B
H6•

6
HH•

H
Pi,                                                                 (7.b) 

 
                                                                                               O

Pi=
O
HB

 
•

B
Pi.                                                                    (7.c) 

where 
H
HC, 

6
HH, 

B
H6, 

O
HB are the homogeneous matrixes from ΣC to ΣH, ΣH to Σ6, Σ6  to ΣB, ΣB 

to ΣO , respectively. 
According to the robotic forward kinematics Λ[θr(t)]� R

6×1
, we obtain 

 
                                                                                            O

PHi=Λ[θr(t)],                                                                        (8) 

 
                                                       J[θr(t)]= )(/)]([ tθtθΛ

rr
∂∂ ,                                                              (9) 

 
                                                                                        O

Hi
P
•

=J[θr(t)] )( tθ r

• ,                                                                 (10) 

 
where 

O
PHi

 is the original coordinates of ΣH in ΣO, J[θr(t)]� R
6×1

 is a Jacobian matrix of the 
end-effecter, θr(t)� R

6×1
 is a reference joint angle vector of the end-effecter. Therefore, we 

have 

                                                            )(tθ r

•

=J
–1

[θr(t)]•  
O

Hi
P
•

.                                                           (11) 

 
When the sampling period of the robot joint control system T is every minute, it is suitable 
that using )(kθ r

•

=[θr(k+1)–θr(k)]/T to replace )(kθ r

•

 at time t=kT. Therefore, Equation (11) is 

discreted by  
 

                                                      [θr(k+1)–θr(k)]/T = J
–1

[θr(k)]•
 O

Hi
P
•

,                                        (12.a) 

 

                                                       or θr(k+1)= θr(k)+TJ
–1

[θr(k)]•
 O

Hi
P
•

,                                       (12.b) 

 

where O
Hi

P
•

(k)= )]1()([ −− kPkP
Hi

O

Hi

O /T, θr(k+1) can be used to control the robot joint angles. When 

O
Hi

P =
O

i
P , the end-effecter can grasp the object.   

 

5. Visual Robot Learning Control System 
 

5.1 Visual Learning Control System 
 

In order to obtain the nonlinear many-to-one mapping function, ART_NN are combined 
with FF_NN to learn ψ defined in Equation (3). The architecture of ART_NN, FF_NN and 
the vision-based robot control system based on ART_NN and FF_NN are showed in Figs. 
5 and 6, respectively. 
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(a) Architecture of ART_NN 
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(b) Architecture of FF_NN 

Figure 5. Architectures of ART_NN and FF_NN 

 
5.2 Learning of ART_NN and FF_NN  
 

In Fig. 5, Tij, Bij,
AB

gl
w , BC

lj
w and CD

ji
w are weights. The self-adaptive resonance algorithms for 

ART_NN and the learning algorithms for FF _NN are omitted. In Fig. 6, the ART_NN 
require two types of inputs Vi and Qi, where Vi corresponds to the image coordinates of pi 

on the image planes of the CCD cameras, and Qi is the joint angle coordinates 
corresponding to the CCD cameras tracking pi. The ART_NN clusters Vi into classes within 
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the category layer. The class number in each category layer depends on a vigilant 
parameter which is a real number between zero and one.  
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Figure 6. A Robotic Learning Control System 

 
In Fig. 6, K1 and K2?R

6×6 are the coefficient matrixes which were specified empirically. Ele 

and Ere?R
6×6 are the differences between the two learning trials, respectively, and the PID 

controller is used to obtain the joint servoing control with high accuracy. 
 

6. Simulations  
 

To evaluate the validity of the active stereo vision-based robotic tracking, fixating and 
grasping in the unknown environment, the simulations are carried out using the models of 
the active stereo vision system installed in the end-effecter.  
For controlling the robot to track, fixate and grasp the object, first, ART_NN1 and ART_ 
NN2, FF_NN1 and FF_NN2 learn the many- to-one functional mapping relationships by 
generating 10000 random pairs of Vi and Qi signals corresponding to pi. The ART_NN1 
created 500 classes for the inputs from the right CCD camera, and the ART_NN2 also 
created 500 classes for the inputs from the left CCD camera.  
The spatial coordinates of pi are computed by using in the tracking, fixating and grasping 
control loop. 
The simulation results denote that the errors for all of the three components of the spatial 
representation converged to within 2% of its dynamic range. These results show that the 
learning of ART_NN and FF_NN is fast, convergent and the end-effecter can also arrive at 
the position of the object. 
 

7. Conclusions 
 

The following conclusions are drawn from the above experiments: 
(1) There exist many-to-one mapping relationships between the joint angles of the active 
stereo vision system and the spatial representations of the object in the workspace frame. 
(2) ART_NN and FF_NN can learn the mapping relationships in an invariant manner to 
the changing joint angles. The vision and joint angle signals of the active vision system 
corresponding to the object correspond to the same spatial representation of the object. 
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(3) The present approach was evaluated by simulation using the models of an 11 DOF 
active stereo vision system and the simulation confirms that the present approach has high 
robustness and stability. 
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