We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

4

Petri Net Robotic Task Plan Representation:
Modelling, Analysis and Execution

Hugo Costelha

Institute for Systems and Robotics, Instituto Superior Técnico

Superior School of Technology and Management, Polytechnic Institute of Leiria
Portugal

Pedro Lima
Institute for Systems and Robotics, Instituto Superior Técnico
Portugal

1. Introduction

As the usage of robots in everyday tasks increases, there is a need to improve our knowledge
concerning the execution of those robotic tasks. Robotic task models are usually not based on
formal approaches but tailored to the task at hand. Applying discrete event system concepts to
model robotic tasks provides a systematic approach to modelling, analysis and design, scaling
up to realistic applications, and enabling analysis of formal properties, as well as design from
specifications.

Most of the work found on the literature concerning the design of robotic tasks using Dis-
crete Event Systems is based on Finite State Automata for code generation (Dominguez-Brito
et al., 2000), qualitative specifications (Kosecka et al., 1997), some quantitative specifications
(Espiau et al., 1995), modularisation (Kosecka et al., 1997) and even to model multi-robot sys-
tems (Damas & Lima, 2004). Work using Petri nets to design robotic tasks under temporal
requirements, focusing also on the generation of real-time, error-free code can be found in
(Montano et al., 2000). Petri net Plans were introduced in (Ziparo & locchi, 2006) for design
and execution of task plans. However, these do not close the loop, i.e., do not consider the
actual implications of the actions on the environment, focusing mostly on the design.

In this chapter we describe a Petri net based framework which allows a systematic approach
for modelling, analysis and execution of robotic tasks. This framework is divided in three
layers: task plan models, action models and environment models. The models range from the
robot decision-making algorithms (task plan models) to the environment dynamics, due to
physics and/or actions of other agents (environment models).

In the proposed models, Petri net places represent tasks, primitive actions and logic predicates
set by sensor readings. These logic predicates provide and abstraction of the world relevant
features. By composing these models, and applying analysis techniques, important a priori
information can be obtained regarding the properties of the task. The models are based on
Marked Ordinary Petri Nets and Generalised Stochastic Petri Nets (Murata, 1989), allowing

www.intechopen.com

66 Autonomous Agents

for transitions to be immediate or stochastic, and leading to both the retrieval of logical proper-
ties, such as deadlocks and resource conservation, and (probabilistic) performance properties,
such as probability or average time to reach a desired state.

Given the action and environment models, different task plans can be quickly evaluated using
the analysis techniques, allowing for a priori quality /performance based decisions. Further-
more, due to the introduced abstractions and inherent Petri net restrictions, the state space is
reduced.

By introducing comunication models we further extend the framework to model cooperative
robotic tasks, namely those involving the coordination of two or more robots, which require
the exchange of synchronisation messages, either using explicit (e.g., wireless) or implicit (e.g.,
vision-based observation of teammates) communication. Different communication models al-
low the analysis of different scenarios, such as perfect communication, delayed communica-
tion or absence of communication.

Extensive tests were done using a robotic soccer scenario under full observability.

2. Petri Nets

Petri nets (Petri, 1966) are a widely used formalism for modelling Discrete Event Dynamic
Systems (DEDS). They allow modelling important aspects such as synchronisation, resources
availability, concurrency, parallelism and decision making, providing at the same time a high
degree of modularity, making them suitable to model robotic tasks.

Petri nets are preferred to Finite State Automata (FSA) due to their larger modelling power
and because one can model the same state space with a smaller graph. Moreover, although
composition of Petri nets usually leads to an exponential growth in the state space (as for
FSA), graphically the growth is linear in the size of the composed graphs given that the state
is distributed. This makes the design process simpler for the task designer, and helps manag-
ing the display of the tasks both for monitoring and designing purposes. Moreover, we use
Marked Ordinary Petri Nets (MOPN) and Generalised Stochastic Petri Nets (GSPN) (Murata,
1989), allowing the retrieval of logical and (probabilistic) performance properties.
Modularity in Petri nets is achieved since each resource can be modeled separately and then
composed with others. Although composition operators exist for FSA, Petri nets can model
subsystems with input and output places, so that they can be connected as in a circuit.

2.1 Marked Ordinary Petri Nets
The simplest models we use are Marked Ordinary Petri nets:

Definition 2.1. A marked ordinary Petri net is a five-tuple PN = (P, T, 1,0, M), where:

* P={p1,p2 .., Pn} is afinite, not empty, set of places;
T = {t1,t2,...,tm} is a finite set of transitions;

I = P x T represents the arc connections from places to transitions, such that ij; = 1 if, and
only if, there is an arc from p; to t;, and ij; = O otherwise;

O = T X P represent the arc connections from transition to places, such that o;; = 1 if, and
only if, there is an arc from t; to p;, and oj; = 0 otherwise;

M(j) = [m1(), ..., my ()] is the state of the net, and represents the marking of the net at time
j, where my, (j) = q means there are q tokens in place py, at time instant j. M (0) is the initial
marking of the net.

www.intechopen.com

Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution 67

Fig. 1. A simple Petri net.

A simple MOPN is depicted in Fig. 1. Basically we have two types of nodes: places, rep-
resented by circles, and transitions, represented by filled rectangles. The places can contain
any number of tokens, represented by the number of dots (or a number) inside the place. For
instance, in the Petri net shown in Fig. 1 place p; and place p3 both have one token, while
place p; has zero tokens.

The state of the net is given by the marking of the net, which in turn is given by the number
of tokens in the places. For instance, the initial marking of the Petri net from Fig. 1 is given by
My =11,0,1].

In this class of Petri nets, all the transitions are immediate (have zero firing time), i.e., once they
are enabled and fired, the new marking is instantly reached.

When referring to input or output nodes of a particular node, we are referring to the nodes
connected to or from that node. For instance, transition t3 has places pp and p3 as its input
places, while it has only one output place, p;.

2.2 Generalised Stochastic Petri Nets
MOPN:Ss are suited for qualitative analysis, but not for performance analysis. For this purpose,
one uses generalised stochastic Petri nets.

Definition 2.2. A standard GSPN is an eight-tuple PN = (P, T, 1,0, My, R, S), where:
e P,T, 1,0, My are as defined in 2.1;

* T is partitioned in two sets: T; of immediate transitions and T of exponential transitions;

* Rs a function from the set of transitions Tg to the set of real numbers, R (t Ej> = Jj, where ji;
is called the firing rate of t;;

* Sisaset of random switches, which associate probability distributions to subsets of conflicting
immediate transitions.

Stochastic (exponential) transitions, once enabled, fire only when an exponentially distributed
time d; has elapsed. This definition of GSPNs includes also the possibility of associating a
probability distribution to conflicting immediate transitions, by the use of the random switches.
These random switches can be static (invariant to the marking of the net) or dynamic (depen-
dent on the marking of the net).

We use a particular implementation of random switches, by associating weights to the
immediate transitions, as described in Definition 2.3.

Definition 2.3. A GSPN is an eight-tuple PN = (P, T, 1,0, Mg, R, W), where:

www.intechopen.com

68 Autonomous Agents

pl tE1L p2 ti

Fig. 2. Generalised stochastic Petri net.

e P,T, 1,0, My, R are as defined in 2.2;

* W is a function from the immediate transitions set T to a set of real numbers, W (t 1].) = wj,
where wj is the weight associated with immediate transition ty;

* For any given marking, the probability of firing an enabled transition t; is equal to w; / YV, where
W is the sum of the weights of all enabled transitions for the given marking.

Consider the GSPN model depicted in Fig. 2. In this example, tg, is an exponential timed
transition (drawn with a unfilled rectangle), while t;, t;, and ¢, are immediate transitions
with associated weights. Initially t; is enabled, since p; has tokens, and will fire after an
exponentially distributed time with rate y; has elapsed. The token flows from p; to p, and,
since tj, is an immediate transition, it will immediately flow from p; to p3, reaching marking
M3 = [0,0,1]. In this marking ¢ 1, and ¢y, form a set of conflicting transitions, whereas only
one will fire, according to the following probabilities:

w»
Wy + w3

w3

Pr (tg) = o
f(Iz) Wy + W3

Pr(tr) =
If t7, is fired, the marking remains the same, if ¢}, is fired, the net returns to the initial marking.
The GSPN marking is a semi-Markov process with a discrete state space given by the reacha-
bility graph of the net for an initial marking (Murata, 1989; Viswanadham & Narahari, 1992).
A Markov chain can be obtained from the marking process, and the transition probability
matrix computed by using the firing rates of the exponential timed transitions and the prob-
abilities associated with the random switches. This enables the use of tools already available
to analyse Markov chains directly from the GSPN, instead of relying on, e.g., Monte Carlo
simulation.

2.3 Additional Specifications

In our framework, we embody the Petri net models with some additional building blocks,
namely macro places, and make use of the place labels to distinguish between different types
of places, such as: action macro places, predicate places and regular (or memory) places. These
different types of places do not introduce any change regarding the execution of the Petri
nets, but are key in the analysis process explained later.

Regular (or memory) places are normal Petri net places, without any special properties. The
remaining types of places are described in the following sections.

www.intechopen.com

Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution 69

predicate.NOT_SeeBall @ Q predicate. SeeBall

Fig. 3. Representation of predicate by a set of places.

2.3.1 Predicate Places

Predicate places are used to represent logic predicates, having always one or zero tokens.
Although Predicate Petri nets exist in the literature (Rock & Kresman, 2006), the tools available
to work with this type of Petri nets are very scarce. As such, we use regular places to represent
predicates, as explained next.

Definition 2.4. A predicate place p is a place associated with the predicate P, described by p |= P,
such that:

* Y, Pj=true & my(j) =1

* V;, P = false & my(j) =0,

where P; is the predicate P at time step j.

Basically, a place representing a predicate has one token if that predicate is true and zero
tokens otherwise.

Definition 2.5. A Petri net model of a predicate is a MOPN where:
e P = {-p,p}, whereand —p and p are predicate places associated with predicates —=P() and P()

respectively;
e | =Q;
e O=0Q;

o V]'Mj = [0,1] V [1,0].

Although we could achieve the same results by using just one place for representing a predi-
cate, that would lead to the use of inhibitor arcs. Once again we rather maintain the use of the
base Petri nets, with minimal extensions added, so as to be able to use a larger set of available
Petri tools. Furthemore, although it increases the number of places, it does not increase the
state space, and provides a cleaner interface to the user.

As an example, a Petri net model representing the predicate SeeBall is depicted in Figure
3. Note the usage of the predicate. (or, alternatively, p.) prefix to denote that the place is a
predicate place, and the NOT_ prefix to denote the negated predicate.

2.3.2 Macro Places

Macros, albeit not always using the same definition, are used to create hierarchical Petri nets
(Bernardinello & Cindio, 1992), leading to a higher degree of modularity. The use of macro
places allows the drawing of entire Petri net models from lower layers has single places in
higher layers, providing for cleaner and reusable models.

Places associated with macros will also have a particular prefix in the place label. Furthermore,
since macro places represent entire Petri nets, we need to have expansion algorithms when
obtaining one single Petri net without macro places. These details will be given later in Section
41.

www.intechopen.com

70 Autonomous Agents

3. Modelling Single-Robot Tasks using Petri Nets

The base framework used throughout this work was developed aiming at:

Modularity - fostering the reuse of developed components;

Design - providing an intuitive, and possibly graphical, task design solution;

Analysis - providing means to analyse a robotic task both before and after its execution;

Execution - keeping the models suitable for execution, taking into account that its implemen-
tation would have to follow the framework theoretical foundations.

To achieve these goals, a Petri net based solution was developed, using four different layers,
as depicted in Figure 4.

2 Organization
12 |
I §| Layer T
1 % Behaviour 11
I m| Coordinator Layer 1
.| 1_ Action Executor '!
‘7l Layer 1
21 1
«
<1 I

Fig. 4. Models Hierarchy.

Each layer is formed by a set of Petri net models which represent different granularity levels,
being the Environment layer the bottom one, and the Organisation layer the top one. The
meaning of each layer is as follows:

Environment Layer Petri net models at this level represent changes made by other agents
(such as other robots) or even physics (such as the braking of a free rolling ball);

Action Executor Layer At this level we find Petri net models of the actions, representing
the changes performed in the environment by these actions, and the conditions under
which these changes can occur;

Action Coordinator Layer Here lies the Petri net based task plan models, which basically
consist of compositions of actions;

Organisation Layer This layer is where higher decision models appear, such as goal selection,
thus consisting of compositions of Action Coordinator Layer models.

As can be seen in Figure 4, all models are used in the analysis process, but only the two higher
layers and, partially, the Action Executor layer models will be used for execution. This will
be further explained in the following sections. Note that, currently, we have not implemented
the Organisation layer yet.

3.1 Environment Layer

To better understand how the Environment models are designed, consider a free rolling ball.
In this case, due to friction on the floor, it is expected that the ball will stop after some time.
To model this process using a GSPN model under our framework, we must first discretise it,
such that we can describe it through the use of logic predicates. In this example, we could

www.intechopen.com

Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution 71

consider that the ball could be moving fast, slowly or be stopped, and that the ball will, with
time, pass from the fastest movement to the stopped state. With this discretisation, we can
model the free ball movement with the Petri net model depicted in Figure 5.

predicate.BallMovingFast predicate.BallMovingSlow predicate.BallStopped

predicate.NOT_BallMovingFast predicate.NOT_BallMovingSlow predicate.NOT_BallStopped
Fig. 5. Petri net model of a moving ball.

If, for instance, one also wanted to model the fact that some other agent could increase the
ball speed, we could add transitions in the opposite direction, albeit with different associated
rates, considering the probability of that occurrence. Furthermore, it is also possible to include
several transitions with different rates associated with the same state change, as in the example
depicted in Figure 6. In this example, the rate at which the ball slows down depends on the
weather conditions.

predicate.lsSnowing

predicate.BallMovingFast predicate.BallMovingSlow predicate.BallStopped

predicate.NOT_BallMovingFast | predicate.MOT_BallMovingSlow predicate.NOT_BallStopped

predicate.NOT_IsSnowing

Fig. 6. Petri net model of a moving ball considering thee weather conditions.

3.2 Action Executor Layer

Each action Petri net model is a GSPN which represents how the action impacts the environ-
ment and under which conditions. As such, each action model consists on a set of transitions
representing the environment changes, which can be associated to the success or failure of
the action, following the rules described in Definition 3.1. The general model of an action is
depicted in Figure 7.

Definition 3.1. A Petri net model of an action is a GSPN, where:

1. P = Pr U Pg contains only predicate places, where

www.intechopen.com

72 Autonomous Agents

Desired
Effects

Intermediate
Effects

Success
Effects

Effects

p.NOTiFh p-F,
p.NOT_F, p.F,
p.F,
p.F,
Failure
Effects
p,NOTﬁFX p,FX
failure :
p.NOT_F, p.F,
pF,
p.F

Running-conditions

Fig. 7. General action model.

Pr is the effects place set;

Pr is the running-conditions place set;

2. All places in Pg have “r.” after the “predicate.” prefix;

3. Pg = Pg, U Pg,, where Pg, and P, are designated respectively success places set and failure
places set.

4. Pg, = PEs, U PESD, where PEs, and PEsD are designated respectively intermediate effects
place set and desired effects place set.

5. All places in Pg; have “e.” after the “predicate.” prefix;
6. T =TsUTrwith Ts N Tr = @, where:

Ts is the set of transitions associated with successful impact of the action;

www.intechopen.com

Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution 73

Tr is the set of transitions associated with failure impact of the action;

7. If there is an arc from place py, associated to predicate P, to transition t;, then there is an arc
from t; to place py, associated to predicate —P, or an arc back to py;

8. All transitions have one input arc from each running-condition;

9. If a desired effect place is an output place of a transition, then all the desired effects places are
also output places of that transition;

10. All transitions t in Tg have the label success; 0r sj;

11. All transitions t in Tr have the label failure;or fj;

Having the running-conditions as input places of all transitions models the fact that the action
can only cause any impact on the environment if these conditions are met. Given that all places
are predicate places, rule 7 implies that the action model maintains the predicates Definition
2.5, resulting in a safe Petri net (has at most one token per place for all markings).

As an example, consider an action named CatchBall, where the purpose of the robot is to
catch a ball. It would be expected that the robot could only catch the ball if it were near the
ball and if it could see the ball, meaning its running-conditions would be CloseToBall and
SeeBall. Furthermore, the desired-effects of this action would be catching the ball, i.e., getting
the predicate HasBall to true. This results in the Petri net model show in Figure 8.

Effects success

predicate.MOT_HasBall ;; predicate. e.HasBall
Running-conditions
predicate.r.CloseToBall

predicate.r.SeeBall

Fig. 8. Petri net model of action CatchBall.

Failures were not explicitely included in this model. Although including them is possible, and
even expected in many situations, these are already implicitely present, since this model will
be composed with the environment model, which models changes performed by others.

For execution purposes the Action Executor models are used partially, by using only the
running-conditions and desired-effects to prevent using each action outside their scope.

3.3 Action Coordinator Layer

The Action Coordinator layer contains Petri net models of the task plans. A Petri net model
of a task plan consists of a MOPN where places are associated with actions. Places associated
with actions are referred to as action places, and correspond to action macro places.

To better explain this topic, we will follow an example of a soccer playing robot. In this ex-
ample, the robot uses actions Move2Ball, CatchBall, Dribble2Goal, Aim2Score and
Kick2Goal, resulting in the task plan Petri net model depicted in Figure 9.

www.intechopen.com

74 Autonomous Agents

action.StandBy

predicate.SeeBall t1 predicate.HOT_seeBall

predicate.RobotMearOppGoal action.o.Kick2Goal

Fig. 9. Petri net model of the Score_Goal task.

7

Note that we use “action.” in the labels prefixes to denote action places. The label “o.” is
used to denote which places should be marked in the desired final state of a given task model,
denoting them as output places. Although this knowledge is not used yet, it will allow us to
determine a task desired-effects in the future. There is no need to mark the places which are
marked in the initial state, since this information is already given by the initial marking of the
task model.

4. Analysis of Single-Robot Tasks

Given that all layers are modelled using Petri nets, we can compose all these models together
in a single Petri net model. This single Petri net model represents the overall task, which we
can analyse a priori. This analysis can be both for logical (e.g. deadlocks) and probabilistic
performance properties (e.g. probability of reaching a given state).

Furthermore, there are a number of properties that must be met during design time, which
allow for some error detection at an early stage of development. As an example consider the
boundedness of the net. Given that we are using predicate places, they can have only one or
zero tokens. If one detects more than one token in a predicate place at design time, or that
the sum of tokens in the two places associated with a predicate is not always one, it means
that there is an error in the models. In the predicate places case, this translates to a simple
design rule which states that if a given predicate p is an input place of a transition ¢, then
one, and only one, of predicate places NOT_p or p must be an output place of transition ¢.
If additionally one requires macro places to have at most one token, it results in a safe net
requirement (i.e., have at most one token for all places, for all possible markings). Having the
total number of tokens in the two places associated with a predicate equal to one is referred
in Petri nets as a place invariant (Murata, 1989), which can also be determined from a priori
analysis.

Having the modelling and analysis processes integrated under the same framework allows
for a design process based on a continuous loop of design-analysis-design. This loop guides
the development of the tasks in a structured way, leading to improved task plans even before
gathering results from the execution process.

www.intechopen.com

10

11

12

13
14
15
16

Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution 75

Furthermore, data also can also be extracted from the execution process in order to analyse
the task a posteriori, and to further improve the models.

4.1 Expansion Process

The Expansion Process enables us to obtain the single Petri net for analysis by merging all the
environment, action and task Petri net models. The place labels play an important role in this
process, since these allow us to distinguish between the different types of places.

The expansion process is performed using Algorithm 4.1 while obeying the following set of
rules:

* Predicate places with the same label are considered the same place;
* Macro places are always different places, regardless of their label;
* All transitions are different, regardless of their label.

The action macro places function as enabling places of all transitions on the associated models,
i.e., if there is a token in the action macro place, then the transitions of the associated Petri net
model are enabled (as long as the running-conditions and remaining input predicate places are
true).

Algorithm 4.1: Full task Petri net model generation algorithm.

Input: Environment, task and action Petri net models
Output: Full Petri net model of the task

begin
Create an empty Petri Net, denoting it full-net;
foreach environment model do
Add the environment model to full-net;
Prefix all added transitions with the name of the model;
end
Add the task model to full-net;
foreach action macro place in full-net do
Add the Petri net model of the action associated with the action macro place to
full-net;
Add an arc from the action macro place to all transitions in the added Petri net
model;
Add an arc from all transitions in the added Petri net model to the action macro
place;
Prefix the action macro place label with an “e” to denote that this is no longer a
macro place, i.e., it has been expanded;
Prefix the labels of all added transitions with the name of the action;

end
Remove the tokens from all predicate places;

end

Prefixing the transitions with the model names during the expansion algorithm enables us to
distinguish them while performing the analysis of the final model.

After having obtained the single Petri net, one needs to choose an initial state for the task by
setting the number of tokens in the predicate places. Having set the initial marking of the net,

www.intechopen.com

76 Autonomous Agents

one can use available tools such as PIPE (Akharware, 2005) or TimeNET (Zimmermann, 2001)
to study the task properties.

5. Execution of Single-Robot Tasks

In order to be able to execute the task plans developed within the framework, one needs to
have a Petri net execution framework. In our case we have implemented such a framework in
the decision layer of our MeRMalD middleware (Barbosa et al., 2007).

In MeRMalD, the sensorial part of the implementation keeps the predicates up to date (at least
all the predicates that are revelant at any given state). Given a Petri net based task plan model,
the Petri net Executor checks which transitions are enabled, considering the current selected
actions and enabled predicates, and fires them accordingly. All actions that have tokens at
any given moment are the actions that will be enabled. We have also taken advantage of part
of the information provided at the Action Executor level, namely the running-conditions, so as
to prevent running an action at the lower level when these are not satisfied.

The execution of the tasks can be monitored in order to assert and compare experimental
results with the theoretical ones, allowing to check the models for errors or needed improve-
ments.

6. Single-robot Task Example

p-BallownGoal p-BalllearOwnGoal p-BallMidField t2 p- BallNearOppGoal p.BalloppGoal

. IA-

l T, HasBaII
\ p.HasBall p.NOT_HasBall
p.HOT_| BallOwnGoaI p.NOT_BalllearOwnGoal p.NOT_BallMidField p- NOT BallNearOPPGoal p-NOT_BalloppGoal
(a) Ball position model. (b) HasBall model

p.RobotNearOwnGoal p.RobotMidField p.RobotNearOppGoal
p.CloseToBall p.MHOT ClosaToBall

O O O "

p-HOT_RobotHearOwnGoal p.HMOT_RobotMidField p.NOT_RobotMearOppGoal p-HOT_HasBall

(c) Robot Position model. (d) CloseToBall model
Fig. 10. Environment models for task Score_Goal.

To illustrate the framework application, we will detail a robotic soccer example using the
single-robot task plan depicted in Figure 9. In this task we use the following predicates:

Ball position: BallOwnGoal, BallNearOwnGoal, BallMidField, BallNearOppGoal,
BallOppGoal,;

Robot position: RobotNearOwnGoal, RobotMidField, RobotNearOppGoal;
Other: SeeBall,HasBall,CloseToBall.

www.intechopen.com

Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution

77

p.RobotHearOwnGoal

p.NOT_BalllearOwnGoal

p.NOT_BallownGoal

p.NOT_BallOppGoal
p-HOT_RobotMidField
p-NMOT_BalllearOppGoal

p-RobotMearOppGoal

p.RobotHearOwnGoal

p-BalllearOwnGoal

p-NOT_CloseToBall

p-HOT_RobotMNearOwnGoal

.RobotMidField

p-HOT_RobotHearOppGoal

p.NOT_RobotMearOwnGoal

p.RobotMidField

p.BalllearOwnGoal

p.NOT_RobotMearOppGoal

p.RobotMidField

p-BalllearOppGoal

p-r-SeeBall

(a) Move2Ball model.

p.-MOT_RobotMidFizld
p-NOT_RobotNearOwnGoal p.NOT_RobotNearOppGoal

p.e.RobotHearOppGoal

p-RobotHearOwnGoal
p. e.BallMearOppGoal

p.BallHear0wnGoal ¥

p.HOT_BallNearOwnGoal| p.MOT_BallMidFizldp.NOT_BallllearOppGoal

p.r.HasBall

(b) Dribble2Goal model.
Fig. 11. Action models

p.NOT_BalloppGoal
p.MOT_BallMidFizld
p-MOT_Balllear0wnGoal
p-RobotHearOppGoal

p.BallNearOppGoal

p.NOT_BalloppGoal
p.HOT_BallNearOppGoal
p.MOT_BallNear0wnGoal
p.RobotMidField

p.BallMidField

p-HOT_BallOppGoal O’

p.NOT_BallMidField
p.MOT_BsallNearOppGoal
p-RobotNear0wnGoal

p-BallNearOwnGoal

p.r-HasBall é

(c) Kick2Goal model.

p.NOT_RobotMidField

p.RobotMearOwnGoal

p.HOT_RobotMidField

p.-RobotNearOppGoal

¢ p.RobotMNearOppGoal

p.=e. CloseToBall

p.HOT_BallNearOppGoal

p.e.BalloppGoal

p.BallMidField

p.BallNear0wnGoal

p.MOT_HasBall

p.MOT_BallMidField
p.=.BalloppGoal
p.BallNearOppGoal
p.BallNear0ownGoal

p-NOT_HasBall

p.HOT_BallMearOwnGoal
p-e.BalloppGoal
p-BallMidField
p-BallNearOppGoal

p.MOT_HasBall

Predicate HasBall is true when the robot has posession of the ball, while CloseToBall is
true when the robot is near the ball. The soccer field was divided in three regions, leading to
the ball and robot position models, plus predicates Bal10wnGoal and BallOppGoal, which
are true when a goal is scored in our goal or in the opponent goal, respectively.

www.intechopen.com

78 Autonomous Agents

The environment models for this task are depicted in Figure 10. As can be seen from the
models, we considered that the ball can be moved without being a direct result of the robot
actions, or leave the proximity of the robot, as long as the robot does not hold the ball (Figure
10a and Figure 10d, respectively). The Petri net model in Figure 10b models the fact that
the robot will eventually loose the ball posession. Furthermore, we considered that the robot
could always see the ball, meaning predicate SeeBall is always true.

The actions used in this task are StandBy, Move2Ball, CatchBall (see Figure 8),
Dribble2Goal and Kick2Goal, with the models being depicted in Figure 11. Note that
we used labels s, for success transitions, and f, for failure transitions. The St andBy model is
not shown because it is an empty model, i.e, since it does not perform changes in the environ-
ment, it does not contain any transition.

Table 1 gives a summary of the actions running-conditions and desired-effects. Recall that this
information is available in the predicate labels of the action models, as explained in Section
3.2.

Action Running-conditions Desired-effects
StandBy - -
MoveZ2Ball SeeBall CloseToBall
CatchBall SeeBall,Close2Ball HasBall
Dribble2Goal HasBall RobotNearOppGoal, BallNearOppGoal
Kick2Goal HasBall BallOppGoal

Table 1. Action properties.

The Move2Ball action is used by the robot to get near the ball. The model basically makes
the robot position predicates change torwards the ball position predicate that is true, as long
as the robot sees the ball. We include additional tests to avoid the robot moving to the ball
when this is inside a goal.

The CatchBall action purpose is to grab the ball when the robot is close to the ball. As such,
it makes the predicate HasBall become true, as long as the robot sees the ball and is near the
ball.

The Dribble2Goal action is used by the robot to take the ball from its current posi-
tion to near the opponent goal, thus changing the robot and ball position predicates until
BallNearOppGoal and RobotNearOppGoal become true, as long as the robot has the ball.
Action Kick2Goal purpose is to score a goal, making the predicate Bal1lOppGoal become
true, as long as the robot has the ball. While actions StandBy, Move2Ball, CatchBall
and Dribble2Goal do not explicitely include failures, the Kick2Goal action models does
so. In action Kick2Goal we explicit modelled the fact that the robot can shoot torwards the
goal from any place of the field, but the ball can end in any place of the field. Transitions s;
correspond to success transitions, while transitions f; correspond to failures. By setting an
higher rate to transition s then s, and s3, we are setting an higher probably of scoring when
closer to the opponent goal. The other actions failures are modelled through the environment
models. For instance, the predicate HasBall can become false at any time (see Figure 10b),
leading to a failure of actions such as CatchBall and Dribble2Goal.

The rates used in the various models are as follows: 0.1 for the environment model rates
except for the HasBall model, which we used 0.2; 1.0 for all action success transitions, except
for transitions s, and s3 in action Kick2Goal, where we used 1/4 and 1/8 respectively; for
the failure transitions we used 1/4. Note that since these are theoretical models, we consired

www.intechopen.com

Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution 79

time to be measured in time units, meaning that an exponential transition with a rate of 1.0
will fire in average 1.0 times per time unit when enabled.

6.1 Results

We performed three transient tests of the task plan model shown in Figure 9 with TimeNET
(Zimmermann, 2001), by considering different weights for transitions t5 and ¢; (the only ran-
dom switch available):

Shoot_First: by assigning weight 0 to transition t5 and weight 1 to t7, t5 will never fire, mean-
ing the robot goes from action Cat chBall to action Kick2Goal without going through
action Dribble2Goal, thus kicking to the goal as soon as it grabs the ball;

Shoot_50_50: by assigning weigh 1 to transitions f5 and t;, the robot chooses one of
Dribble2Goal and Kick2Goal with probability 0.5, as soon as it grabs the ball while
running action CatchBall;

Shoot_Later: by assigning weight 1 to transition 5 and weight 0 to t7, t; never fires, meaning
the robot runs action Kick2Goal after having run action Dribble2Goal successfully.
As such, the robot will only kick the ball when it has posession of the ball and it is near
the opponent goal;

For each test we placed the robot near its goal and the ball in the field center, resulting
in the following initial predicate state: NOT_BallOwnGoal, NOT_BallNearOwnGoal,
NOT_BallMidField, BallMidField, NOT_BallNearOppGoal, NOT_BallOppGoal,
RobotNearOwnGoal, NOT_RobotMidField, NOT_RobotNearOppGoal, SeeBall,
NOT_HasBall and NOT_CloseToBRall.

Since none of the actions performs changes on the environment when the ball is inside a
goal, one can expect the task to include deadlocks, corresponding to scored goals. Qualitative
analysis of the full task model confirmed that expectation, resulting in six deadlock states,
corresponding to a goal scored from any of the three field regions into one of the two possible
goals. Furthermore, we determined that the task is safe, having at most on token per place.
Each test consisted in analysing the task running from the initial marking until a deadlock
occurred (goal scored), computing the number of expected tokens in places BallOwnGoal
and BallOppGoal over time. This measure corresponds to the probability of having a goal
scored in our goal or the opponent goal, yielding the results depicted in Figure 12.

The plots confirm that the ball must end in one of the goals, given that the sum of the proba-
bilities of scoring in either goal when the system is already stationary is one.

As expected, kicking as soon as the robot grabs the ball leads to a lower scoring probability in
the long term, since the the robot kicks from any position on the field, leading to more failures.
However, analysing the initial time instants, depicted in Figure 13, shows that shooting the
ball immediately leads to a higher scoring probability in the short term.

This is one example of interesting a priori results one can obtain using this framework. This
knowledge can then be used in runtime, for instance, to change the weights of transitions ts
and t; according to the score status and the game time left.

In qualitative terms, we determined that the task is safe, i.e., there is at most one or zero tokens
in each place for all markings. Given that the action models are safe (see Definition 3.1), and
the task Score_Goal is also safe (considering all possible predicate states), this results was
expected. Furthermore, we also determined that all two places associated to a predicated
formed place invariants wiht a total of 1 tokens, thus fully obeying Definition 2.5, as expected.

www.intechopen.com

80

Autonomous Agents

Transient analysis using TimeNET for measure BallOppGoal_Probability

1T 1
09 NG 0.9
Y:0.8084 - X:500
- Y:0.7853
0.8 B DI A SEA e S) S N S H 0.8
PP i e]
P -
a o, o= X: 500 07F
~ Y:0.7504
/.
= 0.6’/ 7t — — Shoot_First = 06
1y ;o hy
z /] — — — Shoot_50_50 s
5 05[], — Shoot_Later 5 051
© ©
Q Iy Q
o o
a 047, o 04f
I
)
0.3 i 031
| ~ +=
0.2 021 Dt it
2
Vol
0.1 011 7
0 i i i i i i i i i i 0 i i
0 50 100 150 200 250 300 350 400 450 500 0 50 100

Time [time units]

(a) Probability of scoring in the opponent goal.

Transient analysis using TimeNET for measure BallOwnGoal_Probability

—— Shoot_First
— — — Shoot_50_50
Shoot_Later

X: 500
Y: 0.2496

Fig. 12. Score goal probability evolution.

X: 500

L~ mY:02147

200 250 300 350 400 450 500

Time [time units]

(b) Probability of scoring in our goal.

Transient analysis using TimeNET for measure BallOppGoal_Probability (short-term)

0.051

0.045

0.041

0.0351

0.03

0.025

Probability(t>t")

0.02

0.015

0.01

0.005

— — Shoot_First
— — — Shoot_50_50
— Shoot_Later

7
7
1/
4

4

N

0
0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time [time units]

Fig. 13. Probability of scoring in the opponent goal (initial time instants).

7. Modelling Multi-Robot Tasks using Petri Nets

The main difference between individual tasks and cooperative multi-robot tasks, is that some
kind of synchronism must occur between the robots during task execution. This synchronism
occurs through the use of communication, either explicitly or implicitly. Explicit communica-
tion happens when a robot (the sender) sends a message directly to the other robot(s), usually
using Ethernet or wireless communications. Implicit communication happens when a robot,
or robots, (the receivers) perceive some situation regarding the sender robot. As such, in or-
der to model multi-robot tasks with our Petri Net based framework, we need first to introduce

communication models.

7.1 Communication Models

The major problem when using communication is the time information takes to go from the
sender to the receiver, which, theoretically, can go from zero time to infinite time (communica-
tion failure). To model communication, we considered three different communication models,

www.intechopen.com

Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution 81

which cover this time range. The base concept in these models is that a robot has a predicate
place at a given value and wishes to transmit that information to a teammate. The teammate,
upon receiving the information, gets its predicate updated to the same value as its teammate.
The simplest communication model is presented in Figure 14a. Here the communication is
considered instantaneous and always successful. Increasing the model complexity by adding
a probabilistic arrival time for the communication, results in the model depicted in Figure 14b.
In this case, communications are still considered always successful, but the amount of time it
takes varies according to an exponential distribution. The full communication model is pre-
sented in Figure 14c. Here, we not only include a varying time delay, but also the possibility
that the transition never reaches its destination, thus modelling communication failures.

sendMsg sendMsg

success success

Sender

Receiver

Sender

Receiver

recvMsg recvMsg

(a) Deterministic communication (b) Communication model with
model without failures. exponentially distributed time and
no failures.

. s.failure
failure s
sendMsg
sendMsg >] L]
s.success
success M
Sender

T Sender L

Receiver Receiver T _1°
recvMsg r.success recvMsg

(c) Full communication model with (d) Separate view of the full
exponentially distributed time and communications model.
failures.

Fig. 14. Communication models.

Given the various communication models, we can choose which one to use, according to the
context where the model is being applied and the properties we wish to analyse. When using
the communication models, they will be seen in a distributed way to simplify the graphical
view, as depicted in Figure 14d. Note that, when seen distributed, the communication transi-
tions include a prefix to distinguish if the transition belongs to the sender or the receiver.

7.2 Communication Actions

In order to use the communication models to model direct communication between robots
during a relational task, we define Communication Actions, which will be used to establish
the required synchronisation. These actions, besides the specifications already defined for
ordinary actions, include an additional reset mechanism. This mechanism is used to model

www.intechopen.com

82 Autonomous Agents

the fact that a communication event, when sent, is only received if the receiving robot, or
robots, are expecting it, otherwise the event is ignored. For each sending communication
model there will always be a receiving communication action model. As an example, see the
Action Executor level models of actions SendReady2Receive and RecvReady2Receive in
Figure 15a and Figure 15b respectively.

@ Q input output
p.NOT_Sent_Ready2ReceiveBall p.Sent_Ready2ReceiveBall @ O

s.success
s failure p.NOT_Got_Ready2ReceiveBall p.Got_Ready2ReceiveBall

nsucess
N

Reset !
mechanism |

init_ok

I
I
| I
5 Linit_reset /:\ Reset mechanism
p.r.RobotNearOppGoal Q p.r.HasBall O
(a) Action SendReady2Receive model. (b) Action RecvReady2Receive model.

Fig. 15. Communication actions example.

Note that the running-conditions cannot be connected to the reset mechanism, as the token
must be able to pass from place input to place output regardless of the current state.

The two depicted actions can be used to synchronise a two-robot behaviour, by running one
in each robot.

7.3 Multi-Robot Task Plans

With the introduction of the communication models and communication actions, specifying a
multi-robot task is similar to the specification of individual robot tasks. The major difference
is that we need to use communication actions to ensure that the behaviours running during a
multi-robot task execution are synchronised. For now we are assuming that the choice of run-
ning a relational task was already done, and focus on the multi-robot task execution analysis.

7.4 Analysis of Multi-Robot tasks

The analysis of multi-robot tasks in this framework is similar to the individual robot tasks
case, adding the introduction of the communication models and actions. The difference relies
on the fact that one needs to prefix the place labels identifying the robot they belong to, so as to
distinguish between what is running in each robot, and the expansion of the communication
actions need an additional step. Since each robot can run the same communication action
at different times during the execution of a task plan, and the resulting Petri net used for
analysis is static, simply expanding the communication actions would not work. This needed
additional step corresponds to the creation of analysis versions of the communication actions,
which is implemented through the following items:

1. Move the transition associated with the communication from the receiving action model
to the sending action model. The receiving transition is merged back with the successful
sending transition, i.e, we obtain a single transition, located in the sending action, by
connecting the arcs previously connected to the receiving transition to the successful
sending transition;

www.intechopen.com

Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution 83

2. Add the counter RUNNING_commAct ion to the receiving communication action with a
token. Counter places have the prefix “c”;

3. Make the added counter a running-condition of the sending communication action, con-
nected only with the successful transition associated with the communication event.

The introduced counter will indicate the number of instances of receiving actions running in
each robot and, most important, it will allow to track if a robot receiving action is running or
not. This counter will be treated like a predicate at the expansion phase, i.e., every counter
with the same label will be considered the same place.

With these analysis versions, the communicaton actions can be used anywhere in a robot task
model, allowing for any receiving action to pair with the associated sending action, indepen-
dently of where the communication actions appear in the task models. As an example, con-
sider again the communication actions SendReady2Receive and RecvReady2Receive in
a two robot setup, with their analysis versions depicted in Figure 16a and Figure 16b.
Naturally, it should be expected to have always at most one token in the counter, otherwise
multiple actions were sending the same message simultaneously. This property can be com-
puted during the analysis phase.

input output

© O

p.NOT_R1_Got_Ready2ReceiveBall p.R1| Got_Ready2ReceiveBall

success
failure

p.NOT_R2_Sent_Ready2 k— p.R2_Sepit_Ready2ReceiveBal

init_reset c.R1_RUNNING_recvReady2ReceiveBall

p.r.R2_RobotNearOppGoal Q input @ Q

p.r.R1_HasBall O p.NOT_R1_Got_Ready?ReceiveBall

O

c.r.R1_RUNNING_recvReady2ReceiveBall init_reset|p.R1_Got_Ready2ReceiveBall

(a) Action SendReady2Receive model for analysis. (b) Action RecvReady2Receive model for
analysis.

Fig. 16. Communication actions example.

Although the action places are always considered different places, regardless of their label,
these are also prefixed with the robot label, since different robots can have different action
models. During the expansion of the macro places for analysis, all the communication action
macro places are expanded into their analysis version instead of their original version. If we
have more than two robots, then a selection mechanism must be used to select to which robot,
or robots, the message is to be sent. The user never needs to see the analysis versions of the
actions, since these are used only internally for analysis, and are automatically created from
their original versions.

www.intechopen.com

84 Autonomous Agents

7.5 Multi-Robot Task Example

To illustrate the application of the framework to the multi-robot case, we will consider a pass
example between two robots, the kicker and the receiver.

Given two tasks, coordinatedKick, for the kicker, and coordinatedReceive, for the
receiver, a two-robot PASS task plan corresponds to a single coordinatedPass relational
task, which consists of running both individual tasks in parallel, one in each robot. The key
here is to make sure that both individual tasks run synchronously, either by implicit or explicit
communication.

We assume that some higher level took the decision that the robots should commit with the
coordinated pass, and will focus on the task execution analysis, keeping the critical sections
synchronised.

For this example, we used the same list of predicates used in the single-robot example (see Sec-
tion 6), plus predicates Got_Ready2ReceiveBall and Sent_Ready2ReceiveBall, asso-
ciated to the communication actions. In terms of environment models we will use a ball po-
sition model (Figure 10a) and, per robot, one position model (Figure 10c), a lost ball model
(Figure 10b) and a ball proximity model (Figure 10d).

For the PASs relational task plan we used actions StandBy, Move2Ball (Figure 11a) and
CatchBall (Figure 8), used previously in the single robot example, plus the following ac-
tions:

Go2KickerPosture: The robot which has the ball, the kicker, moves to the kicker posture
to be ready to pass the ball (Figure 17b), which is always considered to be near its own
goal;

SendReady2Receive: The receiver acknowledges that it is ready to receive the ball (Figure
15a);

RecvReady2Receive: Waits for a communication from the receiver to know it is ready to
receive the ball (Figure 15b);

PassBall: Passes the ball to another robot. In this case we considered that passes are only
done from near its own goal or the midfield to near the opponent goal (Figure 17c);

Go2ReceiverPosture: The robot moves to a destination posture, which is good for receiv-
ing the ball. We considered the receiving posture to be always near the opponent goal
(Figure 17a).

All transitions were removed from the action Move2Ball model except transition sy, so as to
allow the robot to be able to capture the ball only when near the opponent goal.

Task CoordinatedKick is obtained by running actions Go2KickerPosture and
RecvReady2Receive in parallel, followed by action PassBall upon getting predi-
cates Ready2Pass and GotReady2Receive to true. Task CoordinatedReceive is
formed by a sequence of actions, starting with Go2ReceiverPosture, followed by
SendReady2Receive when predicate RobotNearOppGoal gets true, ending with action
CatchBall when SentReady2Receive gets true. Regarding communication, the rel-
evant actions for the coordinatedPass relational task are RecvReady2Receive and
SendReady2Receive, the two communication actions detailed previously. The Petri net
models of both tasks are depicted in Figure 18a and Figure 18b.

Given that our focus here is on the analysis of the execution of a multi-robot task, without
using yet selection or commitment mechanisms, we consider a scenario where both robots are
already set up for the execution of the pass. As such, the pass between the two robots can be
obtained through the PASS task plan depicted in Figure 19.

www.intechopen.com

Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution

p.NOT_RobotNearOppGoal p-e.RobotlearOppGoal

p.RobotMidField p-NOT_RobotMidField

p.RobotHearOwnGoal p.MOT_RobotMearOwnGoal

p-NOT_RobotMidField p-RobotMidField

(a) Action Go2ReceiverPosture model.

p-BallMidField
p.NOT_BallMearOwnGoal
p-RobotMidField

p-NOT_RobotMearOwnGoal

p-NOT_BallMidField

p-e.Balllear0OwnGoal

p-NOT_RobotMidField

p-e.RobotHearOwnGoal

p.r.HasBall

p-BallNearOppGoal

p-HOT_BallMidField

p-RobotNearOppGoal

p-NOT_BallNearOppGoal

p-BallMidField

p-NOT_RobotMearOppGoal

p-BallNearOwnGoal

p.NOT_BallNearOppGoal

p-BallMidField

p-MOT_BalllearOppGoal

p.r.HasBall

p-e.BallllearOppGoal

p-HOT_BallNearOwnGoal

p-MOT_HasBall

p-e.BalllearOppGoal

p.MOT_BaliMidFizld

p.RobotMidField p.HOT_HasEall

p-HOT_RobotMidField

(b) Action Go2KickerPosture model. (c) Action PassBall model.

Fig. 17. Action models used in the multi-robot example.

p.Got_Ready2ReceiveBall

a.GoZKickerPosture
a.CatchBall

a.Move2Ball

a.Go2ReceiverPosture a,SendReady2ReceiveBall

a.PassBall
p-RobotNearOppGoal

a.RecvReady2ReceiveBall p.Sent_ReadyZReceive p-CloseToBal

(a) Task CoordinatedKick model. (b) Task CoordinatedReceive model

Fig. 18. Task models used in the multi-robot example.

p-R1_Got_Ready2ReceiveBall

p-MOT_R1_HasBall

Kicker
a.R1_Go2KickerPosture

k2

a.R1_PassBall a.R1_StandBy

a.R1_RecvReady2ReceiveBall

a.N2_Go2ReceiverPosture a.R2_SendReady2ReceiveBall a.R2_Move2Ball a.R2_CatchBall a.R2_StandBy

/-—-\ 1
o 5
N/ |
r1 r2 3
p.R2_RobotNearOppGoal
p-R2_HasBall

p-R2_Sent_ReadyZReceive p-R2_CloseToBal

Receiver

Fig. 19. PAss task plan.

www.intechopen.com

86 Autonomous Agents

7.6 Results

The setup used for the results consisted on placing both robots in the mid-
field area, with robot R1 holding the ball, resulting in the following initial
predicate state: NOT_BallOwnGoal, NOT_BallNearOwnGoal, BallMidField,
NOT_BallNearOppGoal, NOT_BallOppGoal, NOT_R1_RobotNearOwnGoal,
R1_RobotMidField, NOT_R1_RobotNearOppGoal, R1_SeeBall, R1_HasBall,
R1_CloseToBall, NOT_R1_Got_Ready2ReceiveBall, NOT_R2_RobotNearOwnGoal,
R2_RobotMidField, NOT_R2_RobotNearOppGoal, R2_SeeBall, NOT_R2_HasBall,
NOT_R2 CloseToBall, and NOT_R2_Sent_Ready2ReceiveBall.

We analysed the PASS task plan success probability by monitoring the number of tokens in
place action.R2_StandBy. Since robot R2 only reaches action StandBy if it was able to
successfully receive the ball, reaching this action means the PASS task plan was successful.
The first results were conducted considering a deterministic environment (by removing the
stochastic transitions from the environment models). Given that no failures were explicitely
included in the action models, the only failure in this case is the communication failure. As
such, the plan success probability should depend only on the relation between the communi-
cation failure and success rates, yielding:

ACOW[W! success

‘l 1 lﬂil success —
A«Comm Success Acomm fallure

Exp. Action Comm. Comm. Plan success
success rates | success rates | failure rates | probability
1 1 1 1 0.50
2 1 1 10 0.09
3 1 10 1 0.91
4 1 10 10 0.50
5 10 10 10 0.50

Table 2. Plan success probability vs transition rates with deterministic environment.

Table 2 shows the results obtained with different transitions rates for this setup, confirm-
ing the above statement. The graph showing the expected number of tokens in place
action.R2_StandBy over time is shown in Figure 20 for experiments 1, 4 and 5. This graph
shows that, although the stationary plan success probability only depends on the communi-
cation rates, increasing the success transition rates leads to a performance improvement in the
short term.

Next we introduced additional failures by including the full models for HasBall and
CloseToBall environment models for each robot, as shown in Figure 10b and Figure 10d.
The ball position model was kept deterministic, without stochastic timed transitions. We
tested this setup with different transition rates, obtaining the results show in Table 3.

In this case, increasing the communication success also increases the plan success probability
as expected, but only to a certain point, as experiments 5 and 6 show. Only by increasing the
remaining action transitions success rate can we further increase the plan success probability.
In experiment 7, the success rates are much higher than the failure rates, leading to an almost
100% success probability.

www.intechopen.com

Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution 87

Transient analysis using TimeNET for #action.R2_StandBy

05 e
045 JRoas
e
04r G
, /
L ¢/
0.35)
/
= L s I WS Y S B |
T 0.3 e as~ " "cs” v MeF
= ’, L = 110,410
Z 0250 i _ _ _
_§ // , XAS—1O, }\.CS—1O, KCF—1O
x 021 77
-
0.15[/o
’y
/
0.1 s
s/
0.051 ’/
‘y
7z
0 = I I I I I I i
0 2 4 6 8 10 12 14

Time [time units]

Fig. 20. PASs task plan success probability over time for different transition rates.

Exp. Env. rates Action Comm. Comm. Plan success
HasBall | CloseToBall | success rates | success rates | failure rates | probability
1 0.2 0.1 1 1 1 0.32
2 0.2 0.1 1 1 10 0.06
3 0.2 0.1 1 10 1 0.62
4 0.2 0.1 1 10 10 0.34
5 0.2 0.1 1 100 0.1 0.69
6 0.2 0.1 1 10000 0.0001 0.69
7 0.2 0.1 10 10000 0.0001 0.96

Table 3. Plan success probability vs transition rates with probabilistic environment.

Qualitatively we could determine, like in the single-robot example, that the task is safe, and
that the predicate places form place invariants. Furthermore, as expected, both setups end
always in deadlock, given that the tasks are sequential.

8. Conclusions and Future Directions

Petri nets provide a practical and intuitive way of modelling robotic tasks and associated
components, being also appropriate to monitor the execution of tasks given their graphical
nature. The fact that a GSPN is equivalent to a Markov chain brings an additional advantage
by allowing the use of currently available tools and techniques to extract important a priori
information about a given task.

Being able to model the actions more thoroughly at a lower level allows for mores realistic
models, without compromising the analysis possibilities. Furthermore we can create all the
models separately and build the task plan by creating a network of actions. This task plan can
be ran directly on the robots for execution purposes and, for analysis purposes, we compose
all the models that were designed separately onto one single Petri net, and analyse that net.
The introduction of communication models allowed the extension of the framework to multi-
robot tasks, enabling a priori extraction of qualitative and quantitative properties of multi-
robot tasks. Different communication models enable the study of the impact of a range of
communication problems on the task success. We are currently improving the communication

www.intechopen.com

88 Autonomous Agents

action models to allow modelling broadcast type messages, which will allow for easier multi-
robot tasks (with any number of robots) modelling.

Tests were performed using simulated robotic soccer scenarios which showed the applicability
of the framework for both single-robot and multi-robot tasks. Qualitative properties, such as
deadlock and safeness, and quantitative properties, such success probability over time, of the
task were obtained from the full Petri net model.

In order to fully enable the use of the framework for multi-robot tasks, one still needs to
implement selection and commitment mechanism. These mechanisms already exist in the
literature (Cohen & Levesque, 1991; Palamara et al., 2009; van der Vecht & Lima, 2005) and we
are working on incorporating them in our models. When analysing the complete models we
will also be able to extract properties concerning the selection and commitment maintenance.
We are currently implementing an identification algorithm which will allow building the ac-
tion and environment models from real world data, leading to more realistic models. Fur-
thermore, we plan to introduce observation models, allowing the use of the framework under
scenarios without full observability.

Acknowledgements

This work was supported by the Portuguese Fundacdo para a Ciéncia e Tecnologia under
under grant SFRH/BD/ 12707/2003 and ISR/IST pluriannual funding through the PIDDAC
Program funds.

9. References

Akharware, N. (2005). PIPE2: Platform Independent Petri Net Editor, Master’s thesis, Imperial
College of Science, Technology and Medicine, University of London.

Barbosa, M., Ramos, N. & Lima, P. (2007). Mermaid - multiple-robot middleware for intelligent
decision-making, IAV2007 - 6th IFAC Symposium on Intelligent Autonomous Vehicles.

Bernardinello, L. & Cindio, E. D. (1992). A survey of basic net models and modular net classes,
Advances in Petri Nets 1992, The DEMON Project, Springer, pp. 304-351.

Cohen, P. R. & Levesque, H. J. (1991). Teamwork, Noiis 25(4): 487-512.

Damas, B. D. & Lima, P. U. (2004). Stochastic Discrete Event Model of a Multi-Robot Team
Playing an Adversarial Game, Proceedings of the 5th IFAC/EURON Symposium on In-
telligent Autonomous Vehicles.

Dominguez-Brito, A. C., Andersson, M. & Christensen, H. I. (2000). A Software Architecture
for Programming Robotic Systems based on the Discrete Event System Paradigm,
Technical Report CVAP244, ISRN KTH/NA/P-00/13-SE, Centre for Autonomous Sys-
tems, KTH (Royal Institute of Technology).

Espiau, B., Kapellos, K., Jourdan, M. & Simon, D. (1995). On the Validation of Robotics Con-
trol Systems Part I: High Level Specification and Formal Verification, Technical Report
2719, INRIA.

Kosecka, J., Christensen, H. I. & Bajcsy, R. (1997). Experiments in Behaviour Composition,
Robotics and Autonomous Systems 19: 287-298.

Montano, L., Garcia, F. J. & Villaroel, J. L. (2000). Using the Time Petri Net Formalism for
Specification, Validation, and Code Generation in Robot-Control Applications, The
International Journal of Robotics Research 19(1): 59-76.

Murata, T. (1989). Petri nets: Properties, analysis and applications, Proceedings of the IEEE
77(4): 541-580.

www.intechopen.com

Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution 89

Palamara, P. E, Ziparo, V. A., Iocchi, L., Nardi, D. & Lima, P. (2009). Teamwork design based
on petri net plans, pp. 200-211.

Petri, C. A. (1966). Kommunikation mit automaten, Technical report. English translation.

Rock, A. & Kresman, R. (2006). On Petri nets and predicate-transition nets, Proceedings of the
International Conference on Software Engineering Research and Practice & Conference on
Programming Languages and Compilers, SERP 2006, pp. 903-909.

van der Vecht, B. & Lima, P. U. (2005). Formulation and Implementation of Relational Be-
haviours for Multi-robot Cooperative Systems, Proceedings of RoboCup-2004: Robot
Soccer World Cup VIII, Springer-Verlag, pp. 516-523.

Viswanadham, N. & Narahari, Y. (1992). Performance Modeling of Automated Manufacturing
Systems, Prentice Hall.

Zimmermann, A. (2001). TIMENET - a software tool for the performability evaluation with
stochastic petri nets.

Ziparo, V. A. & locchi, L. (2006). Petri net plans, Proceedings of the Fourth International Workshop
on Modelling of Objects, Components, and Agents (MOCA’06), pp. 267-290.

www.intechopen.com

90

Autonomous Agents

www.intechopen.com

Autonomous Agents
Edited by Vedran Kordic

ISBN 978-953-307-089-6

Hard cover, 130 pages

Publisher InTech

Published online 01, June, 2010
Published in print edition June, 2010

Multi agent systems involve a team of agents working together socially to accomplish a task. An agent can be
social in many ways. One is when an agent helps others in solving complex problems. The field of multi agent
systems investigates the process underlying distributed problem solving and designs some protocols and
mechanisms involved in this process. This book presents a combination of different research issues which are
pursued by researchers in the domain of multi agent systems.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hugo Costelha and Pedro Lima (2010). Petri Net Robotic Task Plan Representation: Modelling, Analysis and
Execution, Autonomous Agents, Vedran Kordic (Ed.), ISBN: 978-953-307-089-6, InTech, Available from:
http://www.intechopen.com/books/autonomous-agents/petri-net-robotic-task-plan-representation-modelling-
analysis-and-execution

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE EBMIERFEK6SS LiEEPrREB ARG DA 4058 TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same
license.

