
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Security in Large-Scale Open Distributed Multi-Agent Systems 107

Security in Large-Scale Open Distributed Multi-Agent Systems

M.A. Oey, M.Warnier and F.M.T. Brazier

0

Security in Large-Scale Open

Distributed Multi-Agent Systems

M.A. Oey, M. Warnier and F.M.T. Brazier
Delft University of Technology

The Netherlands

1. Introduction

Designing large-scale distributed multi-agent systems that operate in open environments,
such as the Internet, creates new challenges, especially with respect to security issues. Agents
are autonomous, pro-active, communicative, goal-directed, often capable of learning, and
sometimes mobile (8). Mobile agents traverse the network to access services and resources
they need to achieve the goals they pursue. The potential of mobile agent technology in sec-
tors such as E-Commerce (17; 18), E-Health (29) and E-Governance (10; 52) is well recognized.
In these sectors, security issues such as authentication, authorization, privacy, and copyright
are of utmost importance. Data access control is mandatory: by moving agents to the location
at which data is stored, data access and processing can be done locally and controlled.
Many security requirements need to be addressed for large-scale distributed multi-agent sys-
tems in open environments. The focus of this chapter lies on security requirements specific
for agent systems rather than security requirements for distributed computer systems in gen-
eral. Section 2 identifies the most relevant security requirements for agent systems. This set
of requirements is a minimum that needs to be fulfilled for secure agent systems in open en-
vironments. Sections 3 through 7 discuss the security requirements and possible solutions in
detail. The solutions are illustrated within the context of the AgentScape (20) agent platform.
This platform has been chosen as it has been specially designed to be used in a large-scale,
distributed, open environment. However, similar implementations of these solutions are pos-
sible in other agent platforms.
The chapter closes with an overview of a number of well-known agent platforms, such as
AgentScape (20), Ajanta (23), SeMoA (41), and JADE (5) with its security extensions JADE-
S (34) and S-Agent (16). The discussion focuses on what techniques these agent systems have
used to solve some of the discussed security requirements.

2. Security Issues in Agent Systems

An agent system, a specific type of distributed computer system, needs to address not only
security requirements related to distributed computer systems, but also multi-agent system
specific security requirements. This section identifies a minimum set of security requirements
specific to multi-agent systems that needs to be fulfilled for it to operate securely in an open
environment.

6

www.intechopen.com

Autonomous Agents108

2.1 Principals in an Agent System

Conceptually, multi-agent systems are distributed, networked, computer systems in which
agent owners run communicating agents that access resources on hosts, each of which runs
an agent platform (i.e., an instance of an agent middleware) that is under the control of a
platform administrator.1 The bold terms are the major principals in a multi-agent system.
Each of these principals faces security threats. A secure agent system must protect these prin-
cipals and their communication with other principals against security threats. For example,
secure communication is needed to protect the communication between two agents, but also
between two platforms and between an agent and a platform or the agent’s owner. In a large-
scale, distributed system, such as the Internet, communication is usually over long distances
and can be intercepted or monitored. In a closed environment, all principals in an agent sys-
tem are known in advance and usually trusted, therefore, security measures are often implicit.
However, in a more open environment, more explicit security measures are needed to guard
against security threats.
Traditionally, security threats are described using the terms confidentiality, integrity, and
availability: the CIA-triad (46). Confidentiality refers to the ability to prevent access by those
that are not authorized. Integrity refers to the ability to prevent any unauthorized modifica-
tion. Availability refers to keeping resources accessible at all times to authorized parties. A
prerequisite for guarding confidentiality, integrity, and availability is identity management (9),
which encompasses naming and authentication. Naming is the ability to identify each in-
dividual principal in an agent system. Authentication is the ability to verify a principal’s
identity. For example, reliable authentication is needed as malicious parties may want to im-
personate certain principals in order to gain access to that principal’s privileges.
The next sections look at security threats in an agent system from the viewpoint of the two
most important stakeholders in an agent system: the agent owner and the agent platform’s
administrator.

2.2 Security Threats for the Agent’s Owner

An agent performs its actions on behalf of its owner, which is usually a legal entity, such as a
human or an organization: the agent owner. The main security concerns for an agent owner
are confidentiality and integrity of his agent, any data it carries, and any communication to
and from the agent. Confidentiality is directly related to guarding the privacy of an agent’s
owner. For example, in an e-health environment, agents acting on behalf of patients carry
privacy-sensitive information that should not be revealed to others.
Agent mobility introduces extra security risks, as agents run on hosts that are out of the con-
trol of the agent’s owner. For example, malicious parties can start agent platforms with the
intent to eavesdrop or manipulate agents that they host. This malicious host problem is hard
to solve, as platforms in general have full control over the agents that run on them. The most
effective solutions involve the use of trusted hardware. Unfortunately, these solutions are usu-
ally also the more costly solutions to implement. Software-only solutions give less protection
but are more practical to implement. The malicious host problem exists foremost in open
environments. It is reasonable to assume that in closed environments all hosts are trusted
to behave well and that adequate authorization mechanisms have been installed to prevent
unauthorized users of the platform to have access to an agent’s private data.

1 The term agent platform or middleware refers to software running on hosts to support agents; agent system
refers to the whole system of agents, agent owners, agent platforms, platform administrators, etc.

www.intechopen.com

Security in Large-Scale Open Distributed Multi-Agent Systems 109

Availability of an agent is a requirement for an agent owner that can be implemented by an
agent owner himself, possibly supported by a platform. For example, to make an agent more
fault tolerant, an agent owner can start two (or more) copies of an agent and send them to
different platforms, so that if one agent dies, the other can continue, keeping the agent avail-
able to its owner. Alternatively, an agent owner can trust a platform owner to take adequate
measures to guarantee the availability of an agent platform.

2.3 Security Threats for the Platform’s Administrator

A host’s administrator can run an agent platform (i.e., an instance of the agent middleware)
on his host. An agent platform enables visiting agents to (paid) access to a host’s resources.
The main security concerns for an agent platform’s administrator (who is not necessarily the
same as the host’s administrator) are confidentiality, integrity, and availability of the agent
platform, its resources, and any communication from and to the agent platform.
In open environments, a platform must prepare for deliberate attacks, from outside, as well
as inside. Mobile malicious agents can first migrate to a platform and try to attack a platform
from the inside. Attacks typically include gaining unauthorized access to a host’s resources
or accessing the data of other agents running on that host. To protect against the threat of
malicious agents a resource access control mechanism must be installed that enforces an au-
thorization mechanism that determines who is allowed to access which resource and to what
extent.
A typical resource in an agent system that may be the target of availability threats is the
lookup service. The lookup service is a database that keeps track of the current locations of
all agents in an agent system. An agent system needs this information, for example, to deliver
messages to agents sent from other agents. In an open environment, an attacker could start
an agent platform, join the agent community and subsequently fill the lookup service with
false information about locations of agents. This attack renders the information in a lookup
service useless and consequently paralyzes an agent system as a whole. This specific attack
is a form of a Denial-of-Service attack and illustrates the necessity of a secure lookup ser-
vice which guarantees the correctness of its information. Without it, a platform administrator
cannot guarantee the availability of the agent platform.

2.4 Summary

The next list summarizes the security requirements discussed in this section. Each require-
ment is either a prerequisite for security or is associated with a threat to one of the two main
principals in an agent system: agent owner or platform administrator.

• Prerequisite: Naming and Authentication – the ability to verify the identity of princi-
pals.

• Prerequisite: Communication Security – confidentiality and integrity of data sent be-
tween agents, services, hosts, etc. must be guaranteed.

• Agent owner: Malicious Host protecting an agent’s confidentiality and integrity even if
it runs on a malicious host.

• Platform administrator: Malicious Agent – protecting a host’s confidentiality and in-
tegrity from malicious agents.

• Platform administrator: Secure Lookup Service – guarding the information in the lookup
service.

www.intechopen.com

Autonomous Agents110

This set of security requirements forms a bare minimum for agent systems in open environ-
ments. In addition to these security requirements other requirements common to all dis-
tributed computer systems need to be addressed, such as fault tolerance, availability, backups,
traceability, etc. For agent systems in specific domains more stricter security requirements
may apply as well. For example, in privacy sensitive environments anonymity may be an
important requirement.
The remainder of this chapter focuses on the specific security requirements in order. Each
requirement is discussed in more detail and one or more possible solutions are presented.
Sections 3 and 4 discuss the prerequisites naming and authentication, and communication
security. Next, Section 5 focuses on the main security threat to an agent owner: the malicious
host. Finally, Sections 6 and 7 look at threats to a platform administrator and discuss the
malicious agent and a secure lookup service.

3. Naming and Authentication

As mentioned above, identity management is an important security requirement in an open,
distributed agent system. The ability to name principals and authenticate them is an impor-
tant part of identity management.

3.1 Naming

Before authentication can be done, principals in an agent system must first have a (unique)
identifier: a name. This name does not have to be human-readable; it can be a meaning-
less string, as long as it is machine-readable. In principle, names can be static, which means
they do not change over the lifetime of a principal, or dynamic. For humans and organiza-
tions static names are a more logical choice, however for (mobile) agents in an agent system,
dynamic names have their use. For example, agent names could contain a reference to the
location where an agent resides (location-dependent names, see also Section 7), which makes
locating the agent trivial. However, for the remainder of this chapter it is assumed that princi-
pals have globally unique identifiers (GUIDs), which are static names. The term global does
not necessarily have to imply that the identifier is unique in the universe, but it suffices that
the identifier is unique within an instance of a running agent system. It can be assumed that
in any agent system, something similar to GUIDs is used to name principals.
Another property of naming is whether principals can have more than one name. For ex-
ample, if an agent has multiple names, it can use these names as pseudonyms. Pseudonyms
can be used to implement anonymity (51): an agent can use a different pseudonym for each
interaction with another agent.
To illustrate, AgentScape (20) (see Section 8) actually has two naming schemes. First, agents
are identified internally by GUIDs, which are kept private to the middleware. Second, agents
are externally visible through their (static) handles. Each agent can have more than one handle
at a time, which allows them to implement a form of anonymity as each handle is a pseudonym.
Note that naming is not sufficient for authentication as there is no mechanism to verify that a
name corresponds to the correct principal. Authentication is discussed in the next section.

3.2 Authentication: a Public Key Infrastructure

Many ways of authentication are known and used in the world. One well-known method is
the use of username and password combinations. Only if the correct password is supplied
is the user authenticated. A more elaborate scheme requires a PKI, a Public Key Infrastruc-
ture, that uses asymmetric key encryption also known as public-key cryptography (27). Every

www.intechopen.com

Security in Large-Scale Open Distributed Multi-Agent Systems 111

principal (agent, user, host, etc.) that needs to be able to be authenticated creates a key-pair,
consisting of a public and a private key. These keys have the property that data encrypted with
one key can be decrypted by the other, and given one key it is computationally infeasible to
derive the other key. Every principal publishes its public key to the world, but keeps its own
private key private. The identity of a principal can now be verified by checking whether the
principal can correctly decrypt a message encrypted with the principal’s public key. Only the
real owner of that public-private key pair can decrypt the message assuming the private key
has been kept private. Whether the public key is indeed the public key of the correct principal
and not of an imposter impersonating that principal using its own generated keypair is the
task of the PKI.
The public key infrastructure is used to securely publish public keys of principals. A public
key is published together with the corresponding principal’s personalia. This combination
is called a certificate. This certificate is also (digitally) signed (25) by a Certificate Authority
(CA), after it has verified that the public key and principal are indeed legitimate, which, for
example, involves showing a passport to an official of the CA. All principals publish their
public key in the form of signed certificates. Anyone who trusts the signing CA can use that
certificate and be confident that the public key and the principal both stated in the certificate
are valid and belong to each other. In short, an agent system is able to solve the authentication
problem by using a PKI, where all principals create a public/private keypair and a trusted CA
signs all corresponding certificates.
For completeness, signing a certificate is done by adding an encrypted version of the certificate
(actually, a hash of it) to the certificate. Encryption is done with the private key of the CA,
which means that everyone can verify the signature with the public key of the CA, but nobody
can forge the signature. The public key of the CA is assumed to have been distributed securely
to all participants. Note that safely distributing the certificates of a handful of CAs is more
feasible than distributing the certificates of all participants.
In AgentScape, a public key infrastructure is installed. Agent owners, locations, and hosts
have public and private key pairs. This ensures that locations and hosts can mutually authen-
ticate and set up secure communication channels, using SSL (see Section 4).

3.3 Linking an Agent and its Owner

In many situations, an agent must be uniquely and undeniably linked to its owner (e.g., a
human or organization). This link is part of authenticating an agent and is necessary, for ex-
ample, to charge the owner if agents make purchases on the web or to help determine liability
whenever agents misbehave. This section discusses, in the context of agent based systems,
how agents can be ‘bound’ to their owner.
As mentioned before, it is assumed that an agent can be identified by a GUID. Conceptually,
an agent consists of meta-data, (executable) code, and data that an agent has ‘found’ on a
particular host. The meta-data of an agent contains at least the following: the GUID of this
agent, the name of this agent’s owner, and a signed (by the owner) hash of this agent’s code.
The signature ensures that agent and owner are bound to each other. For authentication to
succeed, it is important that the public key of an agent owner is stored in a PKI.
For example, in AgentScape, when an agent is injected, the agent platform checks if the agent
code is indeed signed. If verification is successful the agent obtains a GUID and a handle is
returned to the agent owner. Assuming the owner keeps this handle secret, it can be used
to communicate between agent and owner. Next, the injected agent is started by the agent
platform. If the agent misbehaves in some way, the owner can be contacted and be held

www.intechopen.com

Autonomous Agents112

responsible for the agent’s actions. The agent injection procedure is similar in other agent
systems.

4. Communication Security

In distributed agent systems communication is manifold. The (distributed) components that
make up the agent system’s middleware need to communicate with each other to maintain a
running agent platform, and the agents themselves communicate with each other, with (ex-
ternal) services, and with the platform. Confidentiality of communication between agents,
services, hosts, etc. must be guaranteed. Threats can be external or internal. External eaves-
droppers may want to listen in on agents to find out privacy-related information, may want
to disrupt the agent platform, or may want to impersonate other agents or services, etc.

4.1 Common Security Attacks

Many types of attacks are known that target communication channels. Two very common
attacks are man-in-the-middle attacks and replay attacks. This section briefly explains these
two attacks to illustrate the kind of attacks possible on communication channels. For clarity,
the names Alice, Bob, and Mallory, which are commonly used in cryptography, are used to
explain these security attacks.
With a man-in-the-middle attack, an attacker (Mallory) tries to put himself in between the
communication path of two others (Bob and Alice). When Bob tries to contact Alice, Mallory
steps in posing as Alice, and forwards the request to Alice, but now pretending to be Bob. As
a result, Bob and Alice both think they are talking privately to each other, while in fact Mallory
is able to intercept all data that is sent by them. This form of attack succeeds if Mallory is
able to impersonate Bob and Alice successfully. A replay attack is a threat where an attacker
deliberately resends or delays messages that were sent previously. Since the attacker does not
alter messages, the receiving party does not have any reason to refuse incoming messages,
unless it has the ability to detect that a message is a resent copy or an old delayed message.
To see the effect of a replay attack, consider the consequences of a message that contains a
money-transfer order for an online bank application.

4.2 Encryption

A common technique to guarantee confidentiality and integrity of communication is encryp-
tion. Two well-known techniques are SSL-based communication (32) and IPsec (26). SSL is
widely used to provide secure connections to webservers (e.g., the https protocol). All data
sent over a connection between two parties is encrypted with a shared-key. The key is ex-
changed in a hand-shake phase during the setup of the connection. Authentication, that is,
the method to ensure that a party actually is who he/she claims to be, usually involves a
certificate signed by a trusted third party (i.e., a certificate authority) whom both communi-
cating parties trust. After the hand-shake successfully completes, both parties can be assured
that their communication remains confidential. In agent systems, the setup of the encrypted
SSL-connection is usually done by the agent middleware. As a consequence, the agent mid-
dleware’s internal communication is also secure. In addition, all agent-to-agent communica-
tion is automatically encrypted transparently, under the assumption that communication is
supported by the agent middleware, which is almost always the case.
The other technique is IPsec. This protocol uses encryption at a much lower level than SSL
does. SSL uses encryption at the application level, which means the encryption is performed

www.intechopen.com

Security in Large-Scale Open Distributed Multi-Agent Systems 113

by the application, an agent platform. In contrast, IPsec is performed by the underlying oper-
ating system. The advantage of this technique is that both agent application developers and
agent system developers have secure communication available to them automatically. How-
ever, most agent platforms provide their own secure communication (usually via SSL) as it is
relatively simple to implement and they then do not have to rely on the underlying operating
system to support IPsec.
For example, AgentScape currently supports SSL-based communication between hosts and
locations. This provides the basis for hosts/locations to authenticate each other. Further-
more, all messages transmitted between hosts/locations, including migration of agents, are
encrypted to ensure confidentiality. The PKI is used to link host/location identities in a secure
manner.

5. Malicious Hosts

To an agent owner, protecting an agent’s code and the data it has acquired while traversing a
network is his main security concern. Especially, when agents are used in open environments
such as the Internet, where agents execute outside the control of the agent’s owner. Hosts
on which an agent resides may be malicious, yet temporarily have complete control of the
agent’s runtime environment. It is often infeasible to determine the trustworthiness of hosts
in advance in open environments.
Unfortunately, in practice, it is almost impossible to protect a migrating agent if it runs on
hosts that are outside the control of an agent’s owner. Such a malicious host can view and
alter an agent’s (internal) state, or even delete the agent altogether. However, some hardware
and software solutions exist that try to provide security guarantees or at least allow others
to detect that an agent has been tampered with by a malicious host. Below some of these
solutions are discussed.
In principle, protecting agents from malicious hosts requires (39):

1. Protecting the integrity of the migration path of an agent

2. Protecting the integrity of the agent’s data and (binary) code

3. Ensuring confidentiality of the agent’s data

4. Ensuring integrity of the agent’s control flow

The migration of an agent from one host to another is called a migration step. A migration
path is a sequence of multiple migration steps that identifies all the hosts, in order, an agent
has visited. In principle, the integrity of the migration path (item 1, above) forms the basis
for detecting malicious hosts and/or preventing them from doing any harm. For example, a
number of techniques (6; 22; 39; 43) have integrity of agent migration paths as a premise, and
can be used to detect tampering with the agent (items 2 & 4). Solutions to protect an agent’s
migration paths are discussed in more detail at the end of this section (Section 5.5). Before
that, some solutions to protect an agent’s integrity, confidentiality, and control flow are briefly
presented.

5.1 Trusted Hardware

A technique that in principle can offer the most protection is using trusted hardware (Trusted
Computing (49)). Trusted hardware, such as the Trusted Platform Module (TPM), provides
guarantees of the hardware’s behavior. A TPM is a piece of hardware within a computer that
cannot be tampered with. It can perform cryptographic functions and store cryptographic

www.intechopen.com

Autonomous Agents114

keys securely. Software manufacturers can use a TPM to guarantee users that their software
running on a host has not been tampered with. A TPM can create a hash of the hardware
and software of a computer and check whether anything has been modified. Agents can use
this information to detect whether to trust a host or not, depending on whether they trust the
software manufacturer who created the agent middleware running on the host.
Another use of a TPM is for an agent to let certain critical operations be performed by a TPM.
An agent sends any input encrypted to the TPM, the TPM then operates on the data and
sends the result back to the agent. The result is encrypted in such a way that only the agent’s
owner can decrypt it after the agent returns to its owner. Unfortunately, both uses of the TPM
require specialized hardware. Requiring all computers to have specialized hardware restricts
the use of it for agent systems in an open environment. Therefore, the remainder of this section
focuses on software-only techniques.

5.2 Protecting an Agent’s Integrity

An agent needs to protect both it’s agent code as well as any data it carries. As mentioned
before, without trusted hardware, an agent cannot protect this data from being modified by a
malicious host. However, it is possible for an agent to detect, after a migration from a poten-
tially malicious host, whether that host has made any unwanted modifications to the agent’s
code and/or any data that the agent carried. The solution is the use of digital signatures.
To protect an agent’s code, the agent carries a signature from the agent owner over a hash

of the agent’s code. After migration, an agent platform checks whether the agent owner is
authorized (trusted) to run agents and whether the signed hash in the agent matches the actual
hash of the agent’s code it received. If not, then the agent has been modified and the agent
platform can notify the agent’s owner and refuse to start the agent. Since only the agent
owner can generate this signature, a malicious host cannot modify the agent’s code without
being detected.
The data that an agent carries can be protected as follows. A hash is calculated of each piece of
data that needs to be protected. Then all these hashes are stored in a table together with some
meta-data on each piece of data, such as its location within an agent. This table is then signed
and stored within the agent. If a malicious host modifies or removes a part of the protected
data or the table, the signature will not match and the modification will be detectable by the
agent or the agent owner.
Unfortunately, an agent cannot carry its own private key to sign data, because a malicious
host would then also have access to it and be able to fake signatures. Consequently, an agent
cannot sign its own data. Instead, an agent owner or a trusted third party should sign the
table. The agent has to migrate to the agent owner’s host or to the trusted third party’s host
first to get the signature. Migration to a trusted host makes this scheme a little cumbersome.
If, however, the migration path of an agent can be securely tracked (migration path integrity),
other solutions become possible (6; 22; 39; 43).

5.3 Protecting an Agent’s Confidentiality

To protect a malicious host from reading confidential data that an agent carries, it is sufficient
to encrypt that data with the public key of the agent’s owner, which ensures that only the
agent’s owner can read the data after the agent has returned to the owner. Encryption can be
done by an agent itself on the (trusted) host where it has acquired the data. Unfortunately,
after encryption an agent itself does not have access to the data either. If it needs access to

www.intechopen.com

Security in Large-Scale Open Distributed Multi-Agent Systems 115

encrypted data and it trusts the host it is on, it can set up a secure connection to the agent’s
owner and ask it to decrypt the data.

5.4 Protecting an Agent’s Control Flow

Unfortunately, protecting an agent’s control flow on a malicious host is virtually impossible
without dedicated trusted hardware. Basically, an agent would need to control (or at least
monitor) the runtime environment of the host on which it runs, which is impossible as the
host controls it. For example, a malicious host could deny or limit access to resources that an
agent has previously negotiated for. If the agent does not check for this, it would never notice
the fraud. Even worse, even if an agent checks for fraud, a really malicious host could change
the control-flow of the agent to skip this check.
The best an agent can do is to use the techniques described above to protect the confidentiality
and integrity of the data it carries, to at least detect whether the agent has been tampered with.
The agent can then can redo its operation again at a more trusted host after migration.

5.5 Protecting an Agent’s Migration Path

One fundamental (and unsolvable) problem for agent migration is that a malicious host can
always delete an agent in its entirety. This can never be prevented. However, it is possible to
detect which host deleted an agent. The only thing that is needed for this is the preservation
of the integrity of the migration path of an agent. An agent owner can then simply follow the
migration path of an agent and conclude which host deleted the agent. Of course for this to
work, a malicious host should not be able to forge the migration history of an agent. Once a
malicious host is identified as such, the host can be put on a black list, thereby preventing fur-
ther malicious behavior of the host in question. The main focus of this section is the detection
of breaches of integrity in migration paths of mobile agents.
The host on which an agent is initialized, is assumed to be trusted by the agent’s owner. This
host can be traced by all other hosts at any arbitrary moment in time. Hosts are assumed to
have full control over the agents they run. The consequence of this assumption is that hosts
are able to read and alter information stored inside agents. Although agents can decide to only
migrate to trusted hosts, that is, hosts that have a valid (signed) certificate, a trust relationship
does not give full guarantees with respect to a host’s behavior and intentions.
A number of solutions exist to protect the integrity of an agent’s migration path. A possible
solution uses a centralized trusted third party (TTP) (15) to authorize and keep track of mi-
gration paths of agents. The trusted third party can be physically located elsewhere and does
not have to be part of the agent system itself. However, all users of an agent system must trust
that the trusted third party is not malicious and cannot be compromised. Secure communi-
cation channels (see Section 4) to the TTP and digital signatures (25) (see also 5.2) are used
to secure the migration protocol against fraud. Unfortunately, malicious hosts can simply
migrate an agent between them without informing the TTP. Furthermore, a centralized TTP
forms a single point of failure and can become a performance bottleneck for large-scale agent
systems. Multiple TTPs can be used to improve scalability. For example, in the home based
approach, each agent uses its own initial (trusted) host as its TTP. Alternatively, Roth (39) uses
co-operating agents that use each other as TTP.
A decentralized solution to secure the migration path of an agent is signature chaining (45),
which stores an agent’s migration path in an agent itself, together with an agent’s code and
data. Digital signatures are used to protect the migration path against tampering by a mali-
cious host. In this method, each host adds the next migration step to the migration path that

www.intechopen.com

Autonomous Agents116

was already stored in the agent and signs the entire path, including the signatures of previ-
ous hosts in the migration paths. By signing the entire migration path the signatures of all
participating hosts are chained together. Each new migration step adds another connected
link to the signature chain. Unfortunately, verifying long signature chains is computationally
intensive, and a malicious host can remove arbitrary cycles from a migration path if an agent
(accidentally) visits the same malicious host for a second time (45).
Another scalable solution that uses the notion of distributed trust to secure migration paths
is described in (53). In this solution, other hosts in the migration path authorize and check
each following migration step. Increasing the number of hosts required to authorize a migra-
tion makes the migration protocol more resistant to co-operating malicious hosts. Spreading
trust over multiple hosts in an agent system clearly has benefits in terms of scalability and it
strengthens the security mechanism, as a ‘single point of failure’ no longer exists. Orthogo-
nally, a dedicated trust model that can distinguish the –relative– trustworthiness of hosts in
multiple agent systems can be of much additional value. Reputation and trust models (1) have
been studied in the context of agent systems by, for example, (19; 36).

6. Malicious Agents

The previous section discusses the malicious host problem. This section focuses on the com-
plementary problem: malicious agents. Just as agent owners want to protect their agents
against potentially malicious hosts, so do platform administrators want to protect their hosts
against potentially malicious migrating agents. Malicious agents typically attempt to gain ac-
cess to resources on a host they are not authorized to use. Such access includes attempts to
access private data of the host, private data of other agents, or to use additional computational
resources that have not been negotiated. Fortunately, there are a number of techniques that
a platform administrator can apply to reduce the threat of malicious agents and control their
access to a host’s resources. This section discusses a few of these techniques and subsequently
focuses on the subject on how to configure and manage access to resources for agents.

6.1 Sandboxing Agents

Most solutions to securing hosts from malicious agents entail monitoring every action that an
agent attempts on a host. Whenever an agent makes a call to the middleware API, it is inter-
cepted by a security manager. The security manager checks the system policy to determine if
an action, such as migration and resource access, should be allowed or denied. For example, a
host could decide that it does not allow agents to use remote web-services (i.e., not running on
the local host). Every attempt to contact a remote web-service will be blocked by the security
manager.
Many agent platforms are Java-based (14), and in Java one of the primary solutions towards
securing mobile code is to execute any remote code in a protection domain or sandbox. A
sandbox limits the set of operations that the remote code may call. For example, sandboxing
typically restricts network access as well as access to the local filesystem. Java provides agent
system programmers the tools to define sandboxes by using a security manager and/or custom
class loaders. In Java the actual sandbox is enforced and implemented by the underlying JVM,
for interpreted scripting languages such as Python and Safe-Tcl the sandbox is implemented
by the interpreter. For C or C++ (binary code) agents are ‘jailed’ (50).
Sandboxing and jailing are examples of solutions with which agents are run in contained
environments limiting the amount of damage they can cause to the systems on which they
run. An alternative solution is to only run agents of trusted owners. Whom to trust is up to

www.intechopen.com

Security in Large-Scale Open Distributed Multi-Agent Systems 117

the platform administrator. In this solution, agents are only trusted if they are signed by a
reputable software manufacturer, whom the user trusts not to provide malicious agents. The
simplicity of this scheme is also its weakness: the security of the system lies in the belief that
the signer is trustworthy. The weakness of this system has already been shown as digital
signing certificates have been issued to people masquerading as a representative of a well
known software maker (12). Furthermore, small and open source software makers may not
have the financial capability to purchase such signing certificates. Of course, digital signatures
can be combined with sandboxing to create a more robust security solution.
Finally, a more elaborate security approach is the use of proof-carrying code (30) (applied
to the mobile agent paradigm described in (31)). Agents carry a machine-verifiable proof with
them that specifies their expected and acceptable behavior. Each host is equipped with a the-
orem prover to ensure that an agent’s code indeed adheres to its specification. Unfortunately,
constructing the proof is very labor intensive (21), which makes this approach less practical.
Sandboxes and security managers restrict an agent’s actions. However, a security manager
first needs to know when to allow or deny an agent’s request to access a resource: access con-
trol. In a flexible environment, principals may first want to negotiate about which resources
they need, to what extent, and at what price. The outcome of this resource negotiation is input
to the security manager that monitors and authorizes access to resources as negotiated. For
example, the WS-Agreement standard (3) which provides a negotiation protocol for the do-
main of web services can be used. Mobach (28) has applied and extended this standard in the
field of distributed agent systems.
Specifying security permissions can be an elaborate job, prone to mistakes. The remainder of
this section discusses how the combination of roles and sets of predefined policies simplify
this task. Security policies allow users of agent systems to manage the security features of the
multi-agent system of their choice. Developers of agent systems have the opportunity to ship
a number of security policies with their software. For example, an effective default policy is
one that will not prevent users from performing vital tasks, but will protect the host against
some of the most common security issues. In contrast, ‘high security’ policies should be used
in security critical environments. Such policies are very restrictive. Below a security policy
framework is discussed and illustrated within AgentScape (20).

6.2 Resource Access Control

Once the basic security features, such as an agent naming scheme and authentication (see
Section 3), are in place, the next requirement is an authorization mechanism. Conceptually,
an authorization mechanism needs to specify who is allowed to do what and to what extent.
There are a number of principals involved in any agent platform. For example, principals
in AgentScape are locations, world administrators, resources and their administrators, and
agents and their owners. Similar principals can be identified in any other agent platform.
In any agent platform agents can perform a number of basic actions to achieve their goals,
such as communication, migration, access to resources, etc. Controlling which principal can
perform which action is a structure that can be readily managed using a Role Based Access
Control (RBAC) (44; 54) mechanism.

6.3 Roles, Users, and Permissions

RBAC is an access control architecture that models roles, users and permissions. RBAC is
designed to reflect real-world relations between users and permissions. Each role is associated
with a set of permissions corresponding to logical tasks that users can perform. Users are

www.intechopen.com

Autonomous Agents118

assigned one or more roles. The advantage of this setup is that changing the permissions
of a whole group of users with a specific role can be easily done by simply changing the
permissions of the corresponding role.
Defining roles, users and permissions can be straightforward. First a number of permissions
are defined and assigned to roles. Users are then associated with these roles. Table 1 shows
some example (Role, Permission) pairs, denoting the capabilities of each role. Note that each
role can have multiple permissions. Table 2 assigns roles to a set of users. These users are
shown as textual names, but would in practice be represented by a unique identifier.

Role Permission to perform action

BasicAgent Migrate, Execute

TrustedAgent Migrate, Execute, AccessRes

AgentOwner Inject, GetResult

ResourceAdmin AccessRes, ChangePerms, GetLogs

Table 1. RBAC Example Role Permission Table

Role User

BasicAgent SimpleAgent1, SimpleAgent2

TrustedAgent ClaireTradingAgent, DaveStockAgent

DatabaseAccess Alice, Claire

ResourceAdmin Trent, Steve

Table 2. RBAC Example Role User Table

Agent owners form the base of the trust mechanism. They are ultimately responsible for
the actions of their agents. Therefore, by default, agents hold the permissions granted to their
owners, but these permissions can be further restricted when appropriate. Access to resources
is explicitly specified in an RBAC policy.
The RBAC system can be dynamically updated, that is, roles can be changed, users can be
added or removed from roles, and permissions can be assigned and removed from roles. De-
termining, specifying, and managing roles, users, and permissions is the responsibility of an
administrator of each host. Part of this management can be delegated to (privileged) users to
keep the task manageable. For example, a database administrator can be given the right to
manage permissions to databases for which he is responsible. Agent owners can manage the
rights of their own agent. Note that an agent owner cannot give its agents more rights than
he himself has been given by a platform’s administrator.
In an open system, every agent platform is autonomous. Therefore, each host can have its own
RBAC policy. In addition, if multiple hosts co-operate in one single administrative domain
(called a location in AgentScape terminology) each administrator of a host can define different
(e.g., stricter) restrictions for its resources than a location administrator and vice versa. Both
policies are enforced together; actions are only permitted if both policies agree.

6.4 Security Manager

To enforce resource access control, every action of an agent must first be authorized by an
RBAC system before the action can be executed. Whenever an agent attempts to perform a
security relevant action, a Security Manager checks whether the agent is authorized to per-
form this action. This check is a two-step process. First, the Security Manager determines the

www.intechopen.com

Security in Large-Scale Open Distributed Multi-Agent Systems 119

GUID of the agent and determines the role, or roles, of which the GUID is a member. Second,
the Security Manager determines if one or more of these roles is authorized to perform the
requested action.
It is worthwhile to note that not only a platform’s administrator, but also an agent owner needs
to trust the security manager. After an agent owner has negotiated for resources and possibly
paid for access, an agent owner expects the security manager to grant access as negotiated.
Similar to monitoring of Service Level Agreements (SLA) a trusted third party module can
be used to monitor and log the communication between client (agent) and service provider
(host) (37).

6.5 Parameterization of Permissions

A selection of the basic security relevant actions used in AgentScape is shown in Table 3. In
most agent systems similar actions can be identified. These actions reflect the basic abilities
of agents. The permissions for these actions can be extended with parameters. Parameters
are used to further refine the granularity of permissions. For example, negotiation can be
restricted to specific types of resources. Parameters are defined in parentheses. A special
parameter, ‘*’, is supported to allow all types of an action to be permitted by a role. This
notation is used to avoid having to explicitly specify every type of resource and every location
when wishing to grant access to them. Permissions are positive, that is, if access to a resource
is not explicitly granted, access is denied.

Action Principal Description

Migrate Agent Migrate from one Location to another.

Inject Owner Launch an Agent in a Location.

AccessRes Agent Access a resource provided by a location.

Negotiate Agent Negotiate access to a remote location.

Lookup Agent Access yellow or white pages lookup service.

SendMsg Location/Agent Send a message to a remote location.

RecvMsg Location/Agent Receive a message from a remote location.

Table 3. Common Security Relevant Actions

In most cases, locations and hosts typically utilize generic policies for all agents. That is, most
locations and hosts are not expected to specifically restrict access to resources, unless these
resources are of specific importance. For example, most hosts will allow all agents access to
CPU and memory resources, but access to special databases are more carefully controlled.
Parameterization simplifies expressing permissions for roles, and also allows more fine-
grained access for system resources to be defined. This can be used, for example, to define
policies that limit the locations to which agents may migrate. To illustrate parameterization
consider the Role/Permission table shown in Table 4. In this table, normal agents (BasicA-
gent) are allowed to execute and access CPU and Memory resources. Only trusted agents,
that is, agents with the role TrustedAgent, are authorized to access the price database.

Role Permission

BasicAgent Migrate(*), Execute, AccessRes(CPU,Memory)

TrustedAgent Migrate(*), Execute, AccessRes(CPU,Memory,PriceDB)

Table 4. Database Resource Role-Permission Table

www.intechopen.com

Autonomous Agents120

6.6 Agent Injection

RBAC requires all users (agents, humans, etc.) to be associated with one or more roles. New
human users are usually entered into an RBAC system by a location’s administrator. However,
new agents injected by human users can be automatically added by an agent platform in
an RBAC system with the corresponding permissions as described by an agent platform’s
administrator. The agent injection protocol in AgentScape is as follows. When a principal
wishes to inject an agent into an AgentScape location, the principal first contacts the location
and they perform a two-way authentication. Once authenticated, a location will accept agents
injected into that location by a specific principal if, and only if, the principal is authorized to
perform injections.
Once an agent is injected into a location, the location assigns a GUID to the agent instance.
This GUID is also automatically entered as a new user into the Role-User table of both the
location and the host that is going to run the agent, and is assigned to, at most, the same roles
as the owner. Owner roles are defined by each location individually. In addition, default roles
can be used for unknown agents and owners. To limit the growth of a Role-User table, an
agent’s entry can be removed as soon as the agent finishes or successfully migrates to another
location. After successful migration, the GUID of the agent will be entered into the Role-

User table of the receiving location and host. If owners are removed from a role, any agent
belonging to that owner loses that role.

6.7 Security Policies

While security can be a major concern for resource and location administrators, it is not always
the case that these principals are either particularly interested, or trained to, define their own
security policies. For this reason, it is advisable to have a set of predefined default policies.
These predefined policies range from simple, non-restrictive policies, used for agent systems
deployed in a well known environment, to stronger, restrictive policies, where agent systems
operate in a more hostile environment. These two extremes are described in the context of the
following two case studies: a closed world and a hostile world.
In a simple closed world environment, locations are controlled by well known entities and are
all trusted. Communication between locations is cryptographically secured and each location
is known and trusted by every other location. The major threat to the middleware is that of
malicious agents. Agent owners must be authenticated. Once authenticated, agents are au-
thorized to perform any and all actions. Therefore, the authorization mechanism is not used
for access control, but is instead used for auditing purposes: whenever an agent performs a
security relevant action, it is logged for possible later examination by the location administra-
tor. While a simple system is common in small, closed environments, the provision of services
on the web, with the associated access of these services by software agents demonstrates that
such an environment cannot be assumed.
In a hostile environment locations are controlled by entities that are not always known by every
principal. Agents are authenticated by their initial location as before, but the authorization
mechanism is now used to enforce location-specific restrictions. The security manager moni-
tors usage of specified resources and ensures that all accesses are restricted by the negotiated
limits. Any breaches of these limits are logged and execution of the agent responsible is im-
mediately suspended. Migration is only authorized between the original ‘home’ host–the host
where the agent started–and remote hosts. Therefore, migration from one remote host to an-
other forces an agent to first return to the home host. This is enforced to prevent malicious
hosts attempting to inject or read data developed from a prior migration. For example, the

www.intechopen.com

Security in Large-Scale Open Distributed Multi-Agent Systems 121

result of a price check from a prior website should not be available when performing a price
check at a competitor’s site.
Within a hostile environment, not only locations and hosts may want to constrain the actions
of agents, but also agent owners may want to restrict the actions their agents are allowed to
perform on their behalf. These actions include the ability to negotiate, migrate, inject, access
resources, purchase items on the web, etc.
In summary, the security architecture outlined in this section and illustrated within the Agent-
Scape agent system provides a flexible means to define and manage agent access to specific
functionality. Flexibility is provided in two areas: firstly, hosts and locations have the ability
to control access to resources that they control. Secondly, owners can constrain their agents
from performing actions that, while they are authorized by the locations and hosts, are not
desirable to the owner. For more information see (35).

7. Secure Lookup Service

Every distributed agent system has some way of naming agents, and a way of mapping agent
names to their location. Finding the location of an agent is useful, for example, for co-locating
agents, that is, migrating agents to run on the same host to improve performance by reducing
communication costs. Sometimes the names of agents already contain a reference to their
location (location-dependent names), in which case, resolving the name to a location becomes
trivial. However, with location-dependent names, agents do not have stable names as after
a migration their names will have changed. Such agents are more difficult to track for other
agents. With location-independent names, the names remain stable after migration, but the
agent system needs a lookup service to map an agent’s name to its current location.
A lookup service is a generic name for a global service that keeps track of where each agent
is located and how to communicate with it. Another name often used is white pages. To
prevent agents and services from impersonating other agents and services, the information in
a lookup service must be trustworthy. However, in an open environment, where anyone can
join the agent community, guarding the information in a lookup service is a challenge.
Scalable location services are essential in distributed systems and, in particular, for multi-
agent systems. Domain Name System (DNS) is a very successful realization of a location ser-
vice that resolves symbolic names to contact addresses (IP addresses). DNSSEC (Secure DNS)
has been designed to support authentication preventing spoofing and man-in-the-middle at-
tacks (4). Both DNS and DNSSEC, however, are not designed to deal with highly dynamic
entities such as mobile agents. The dynamic nature of mobile agents in Internet-scale, open
network systems requires a different type of approach for registering, deregistering, and re-
trieving location information. Scalability and integrity are of utmost importance as (up-to-
date) agent location information is a prerequisite of successful agent mobility.
This section presents an approach for a scalable and secure location service.

7.1 Information in the Lookup Service

To make a lookup service secure, the service should store not only agent-ids and their current
location, but also provide ways for its users to determine the validity (i.e., trustworthiness)
of that information. In an open environment, users of a lookup service know that a lookup
service may be compromised and may contain false information. One way to solve this prob-
lem is to have information published in the lookup service be signed by its publisher. The
validity of the information returned by a lookup server depends on the level of trust placed
in the signing publisher. Signing is done with public-key cryptography. This system requires

www.intechopen.com

Autonomous Agents122

a public-key infrastructure (PKI). The PKI ensures that public-keys are published in a secure
and authenticated manner.
It is possible to integrate (a simple version of) a PKI and the lookup service. In this case, the
lookup service holds two types of information: Agent-Location information and Certificates.
The first piece of information is simply an (Agent-id, Location) pair, denoting the current lo-
cation of a specific agent. This information is signed by the platform that currently holds the
agent. Certificates are signed (location, public-key) pairs denoting that the specified public
key is the public key of the platform running on that specified location. Note that it is possible
for platforms to sign their own certificates: self-signed certificates. However, the trustworthi-
ness of self-signed certificates is questionable in an open, hostile environment.
Each certificate is signed by a principal, which is either a root certificate authority or another
platform. By allowing platforms to sign certificates containing public keys of other platforms
a web of trust (13) can be build. Platforms should only sign a certificate for another platform
if it trusts that the other platform is not malicious. Users of the lookup service can follow the
chain of signatures in the certificates until they find a signature of a platform that they trust.
This principle assumes that trust is transitive, that is, you trust everyone that is trusted by
someone you trust. This principle may be too naive for some and they can restrict themselves
to only trust information that is signed by someone they trust directly.

7.2 Using the Secure Lookup Service

This section describes how a secure lookup service is used in an agent platform, such as Agent-
Scape. Agents are identified by a GUID and locations are identified by their name (location-
name). Each location is responsible for publishing the location information for all of the agents
it currently hosts. Furthermore, when a location starts, it first publishes its public-key via a
certificate so others can verify the signature of all information published by this platform. This
certificate is signed by a (root) certificate authority. Note that it is assumed that the public keys
of root certificate authorities are well-known and that everyone has obtained a copy of them in
a secure manner. For example, platform administrators could exchange certificates in person.
In addition, the started platform can sign certificates for other platforms, indicating that it
trusts and ‘endorses’ the information signed by those platforms. Which platforms to trust is
usually determined by a platform’s administrator and is typically stored in a list by the agent
platform.
Below, the main functionality of a location service is briefly discussed.

7.2.1 Registering an Agent.

When an agent is injected into an agent system its location is registered by the lookup service.
First, the hosting agent platform creates a (agent GUID, locationname) pair. This information
is signed by the hosting platform and published in the lookup service for others to find.

7.2.2 Deregistering an Agent.

Deregistering is done by explicitly publishing that the agent does not have a current location
anymore, indicating that the agent no longer exists. To prevent the information in a lookup
service from growing too much, information in the lookup service could have an expiration
time, that is, a lookup service removes expired information automatically, unless the informa-
tion is republished periodically. In this case, an alternative solution for deregistering an agent
is to simply let an agent’s location information expire from the lookup service, that is, to not
republish the information for that agent. Note, that until the information expires, the lookup

www.intechopen.com

Security in Large-Scale Open Distributed Multi-Agent Systems 123

service will errantly report an agent’s location, but this is not severe, as any attempt to con-
tact the agent will simply fail with an error that the agent does not exist anymore. Choosing
smaller expire times decreases this problem, but requires valid information to be republished
more often.

7.2.3 Lookup of an Agent’s Location.

Agent lookup is done by searching the lookup service for all information pairs concerning an
agent’s GUID.

• If no information is found an agent does not exist (anymore).

• If multiple pairs are found, the platform filters the pairs by only looking at informa-
tion signed by known and trusted platforms. The most recently published information
indicates the current location of the agent. The recentness of information can be deter-
mined by including version numbers (e.g., timestamps) with each published piece of
information.

A less strict trust-model would allow a recursive search for certificates of signing platforms
until a certificate is found that is signed by a trusted platform.

7.2.4 Agent Migration.

Agent migration is the most complicated scenario: care must be taken to ensure the agent is
not accidentally ‘dropped’ or duplicated, for example, when one of the locations crashes or
network connectivity is lost. Another important issue is to correctly update an agent’s location
in the lookup service.
The basic agent migration procedure is as follows, given an agent A, and locations X and Y.

• Agent A, running on location X, indicates its wish to migrate to location Y.

• Location X contacts location Y and transfers agent A.

• Location Y acknowledges to location X that agent A has been received.

• Location X stops republishing location information for agent A, but maintains a for-
warding pointer for agent A to location Y in case other agents try to contact agent A on
the old location.

• Location Y publishes that agent A is now located at location Y. As this piece of informa-
tion has a higher version number than the previous information published by location
X, this marks location Y as the current location of agent A.

7.3 Scalability

The previous section focused on the problem that the information in a lookup service must
be authenticated and its integrity guaranteed. Another problem to tackle is scalability. In a
distributed environment with potentially many hundreds of thousands of agents (or more)
and many migrations, the lookup service can quickly become a performance bottleneck, es-
pecially if a centralized lookup service is used. One technique for scalability is Peer-to-Peer
technology. For example, a distributed hash table (DHT) (38; 42; 47) is a decentralized lookup
datastructure that is similar to a hashtable and aimed at performance.
A DHT stores (key, value) pairs and allows quick retrieval of the value associated with a
particular key. The data can be spread over the participating nodes, but can also be replicated
to increase lookup performance and/or to make the system more fault tolerant. A DHT is a
self-managed datastructure. The nodes themselves are responsible for balancing the load and

www.intechopen.com

Autonomous Agents124

maintaining the data. Nodes can dynamically join and leave the DHT without disrupting the
service. These properties make a DHT very scalable, and therefore, make it a good candidate
for implementing a distributed lookup service.
In a lookup service based on a DHT, the (key, value) pairs stored in the DHT are the signed
(agent-id, location) information pairs. An agent’s location can be quickly retrieved via the
DHT. Furthermore, each platform’s certificate is stored as a (location, certificate) pair, making
verifying signatures straightforward. Note that certificates are relatively static which means
that they are easily cached at each host, making lookups in the lookup service necessary only
for unknown public-keys, or when the cached copy is too old. Caching increases the per-
formance of the distributed lookup service even further. Experiments in AgentScape with a
secure lookup service based on a DHT, as described in this section, have shown promising
results with respect to performance (33).

8. Agent Systems Overview

Many dozens of agent systems have been designed and developed over the last ten years or
so. Some of them have reached quite a mature state and have an active community supporting
and using the agent system. This section briefly introduces and discusses a few representative
agent systems: AgentScape (20), Ajanta (23), SeMoA (41), and Jade (5). These agent systems
are chosen because they are well-known and/or have a focus on security aspects. Each of
these systems provides centralized access control. In contrast, the security solutions presented
in the previous sections all emphasize a distributed solution.
The discussion of each agent system focuses on their security architecture and the different
approaches taken by these agent systems to deal with individual security requirements. An
extensive and detailed discussion of each agent system is out of the scope of this chapter.

8.1 AgentScape

AgentScape (20) is a middleware layer that supports open, distributed, large-scale agent sys-
tems. It was designed especially to be used in a large-scale, distributed, heterogeneous, open
environment. Its design provides minimal but sufficient support for agent applications within
an open environment, and can be extended to incorporate new functionality or adopt (new)
standards into the platform. AgentScape is written in Java and therefore runs on multiple
operating systems. It also supports agents written in different programming languages, such
as Java, Jason (7), and C.
Within AgentScape, agents are active entities that reside within locations, consisting of multiple
hosts, and services are external software systems accessed by agents. Each host runs an instance
of the AgentScape middleware. AgentScape uses a Public Key Infrastructure (PKI). Agent
owners, locations and hosts have public key pairs. This ensures that locations and hosts can
mutually authenticate and set up secure communication channels, using SSL.
Furthermore, every agent has a GUID that is assigned by the agent platform. This GUID is
an identifying reference used by the middleware to address an agent and perform operations,
such as deliver messages, stop and/or pause, migrate or even kill and/or remove the agent.
A GUID is private to the middleware. Externally, agents use handles. An agent can have
as many handles as it requires. Handles can be published publicly, making access to the
agents for others possible. An agent’s handles are uniquely linked to its GUID, but the agent’s
GUID cannot be deduced from its handles, which makes them suitable as pseudonyms (see
Section 3.1).

www.intechopen.com

Security in Large-Scale Open Distributed Multi-Agent Systems 125

8.2 Ajanta

Ajanta (24) is a mobile-agent system based on the Java programming language. Security and
robustness have been primary concerns in Ajanta’s development. Ajanta platforms can guard
themselves against malicious agents. An Ajanta system consists of several AgentServers run-
ning on hosts. Each agent server creates a confined execution environment for visiting agents
and provides them controlled access to local resources. Agents can migrate to other agent
servers, communicate with each other, query their environment, etc. The implementation of
Ajanta’s security architecture is based on proxies and Java’s security model to restrict, con-
trol, and (remotely) monitor running agents. Agents do not have direct references to a host’s
resources. Instead they have to go through proxies, which check whether the agent has the
authorization to access that resource. Furthermore, agent owners can use encryption to secure
parts of the agent’s data, thereby guaranteeing the data’s confidentiality and integrity.

8.3 SeMoA

Secure Mobile Agents (SeMoA) (40) is an extensible Agent platform, written in Java, designed
to counter certain protocol attacks and malicious agents. SeMoA has a RBAC-based access
control architecture. SeMoA is also designed to load agents in a secure manner, as each agent
is loaded in a separate class loader. This enforces separation between agents, and prevents
agents interfering with other code executing within a location. Execution of agents is managed
explicitly, with access to features such as threads and resources mediated upon.

8.4 Jade with Jade-S and S-Agent

The Java Agent Development Platform (JADE) (5) is a popular FIPA-compliant agent middle-
ware platform. There are a number of extensions to JADE that provide a security architecture
to the system, in particular S-Agent (16) and the JADE-S plugin (34).
S-Agent extends JADE with the intention of providing data confidentiality and addressing
the malicious host problem, described in Section 5. S-Agent provides two solutions to the
malicious host problem without the need for secure hardware. These solutions are implemen-
tations of two different security protocols, the ACCK protocol (2) and the TX protocol (48).
ACCK uses a trusted third party to ensure that a host does not act maliciously. The TX proto-
col uses a threshold scheme, where two or more agents must agree that an action is authorized
before that action will be allowed. This eliminates the need for a trusted third party. However,
it can require more protocol interactions, depending on the number of parties required for the
threshold to be met.
JADE-S is an extension to JADE providing decentralized access control. It uses the SPKI (11)
trust management system. Trust management systems have a number of advantages com-
pared to the traditional identity-based systems created using X.509. Policies and certificates
are created and maintained separately from the application. The terminology used within
the policies and/or credentials is application defined. They are represented in an application
specific fashion, allowing the application designer to decide what characteristics are required.
Agents are explicitly granted permissions, and only agents trusted by the location are autho-
rized to execute code at that location.

9. Summary

Security in multi-agent systems is a major concern, particularly in multi-agent systems de-
ployed in a large-scale, distributed, and open environment. Finding a balance between re-

www.intechopen.com

Autonomous Agents126

stricting access to resources and allowing enough openness to let the whole system function
efficiently and effectively is the challenge.
This chapter has identified threats to the two main stakeholders in an agent system: the agent
owner and the platform administrator. The security requirements looked at included identity
management, secure communication, and maintaining confidentiality, integrity, and availabil-
ity for the stakeholders. These requirements need to be fulfilled for any secure agent system.
Each security requirement has been discussed in detail and solutions have been illustrated in
the AgentScape agent platform.

Acknowledgments

This work is a result of support provided by the NLnet Foundation (http://www.nlnet.
nl). The authors wish to thank Benno Overeinder, David Mobach, Thomas Quillinan, Kassidy
Clark, Reinier Timmer, and Reinout van Schouwen for their contributions.

10. References

[1] A. Abdul-Rahman and S. Hailes. A distributed trust model. In Proceedings of the 1997
workshop on New security paradigms, pages 48–60. ACM Press, 1998.

[2] J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Cryptographic security for
mobile code. In IEEE Symposium on Security and Privacy, pages 2–11, 2001.

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. Web services agreement negotiation specification (WS-
AgreementNegotiation) (draft). https://forge.gridforum.org/projects/graap-wg, 2004.

[4] D. Atkins and R. Austein. Threat analysis of the domain name system. IETF RFC 3833,
Aug. 2004.

[5] F. Bellifemine, A. Poggi, and G. Rimassa. JADE–A FIPA-compliant agent framework.
Proceedings of PAAM, 99:97–108, 1999.

[6] E. Bierman and E. Cloete. Classification of malicious host threats in mobile agent com-
puting. In Proceedings of the 2002 annual research conference of the South African institute
of computer scientists and information technologists on Enablement through technology, pages
141–148. RSA, 2002.

[7] R. H. Bordini, M. Wooldridge, and J. F. Hübner. Programming Multi-Agent Systems in
AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley & Sons, 2007.

[8] P. Braun and W. Rossak. Mobile Agents: Basic Concepts, Mobility Models, and the Tracy
Toolkit. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[9] S. Clauß and M. Köhntopp. Identity management and its support of multilateral security.
Computer Networks, 37(2):205–219, 2001.

[10] A. Csetenyi. Electronic government: perspectives from e-commerce. In Proceedings of the
11th International Workshop on Database and Expert Systems Applications, pages 6–8. IEEE
Computer Society Washington, DC, USA, 2000.

[11] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI certificate
theory. Request for Comment (RFC) 2693, Internet Engineering Task Force, September
1999.

[12] B. Fonseca. VeriSign issues false Microsoft digital certificates. http://www.

infoworld.com/articles/hn/xml/01/03/22/010322hnmicroversign.html,
March 2001. Infoworld.

[13] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates, Inc., Sebastopol, CA, USA,
1996.

www.intechopen.com

Security in Large-Scale Open Distributed Multi-Agent Systems 127

[14] L. Gong. Inside Java™2 Platform Security. The Java™Series. Addison Wesley, June 1999.
ISBN: 0-201-31000-7.

[15] H. Guan, H. Zhang, P. Chen, and Y. Zhou. Integration and Innovation Orient to E-Society
Volume 1, volume 251 of IFIP International Federation for Information Processing, chapter
Mobile Agents Integrity Research, pages 194–201. Springer, 2008.

[16] V. Gunupudi and S. R. Tate. SAgent: A Security Framework for JADE. In Proceedings of
the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MASâĂŹ06), 2006.

[17] R. H. Guttman, A. G. Moukas, and P. Maes. Agent-mediated electronic commerce: a
survey. The Knowledge Engineering Review, 13(02):147–159, 2001.

[18] M. He, N. R. Jennings, and H. F. Leung. On agent-mediated electronic commerce. IEEE
Transactions on Knowledge and Data Engineering, 15(4):985–1003, 2003.

[19] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt. Developing an integrated trust and
reputation model for open multi-agent systems. In Proceedings of the 7th International
Workshop on Trust in Agent Societies, pages 65–74, 2004.

[20] IIDS. AgentScape Agent Middleware. http://www.agentscape.org.
[21] B. Jacobs, M. Oostdijk, and M. Warnier. Source Code Verification of a Secure Payment

Applet. Journal of Logic and Algebraic Programming, 58(1-2):107–120, 2004.
[22] G. Karjoth, N. Asokan, and C. Gülcü. Protecting the computation results of free-roaming

agents. Personal Technologies, 2(2):92–99, 1998.
[23] N. M. Karnik and A. R. Tripathi. Agent Server Architecture for the Ajanta Mobile-Agent

System. In Proceedings of the 1998 International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’98), pages 66–73, July 1998.

[24] N. M. Karnik and A. R. Tripathi. Design Issues in Mobile Agent Programming Systems.
IEEE Concurrency, 6(6):52–61, July–September 1998.

[25] C. Kaufman, R. Perlman, and M. Speciner. Network Security, PRIVATE Communication in
a PUBLIC World. Prentice Hall, 2nd edition, 2002.

[26] S. Kent and R. Atkinson. Security architecture for the internet protocol. IETF RFC 2401,
Nov. 1998.

[27] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, Boca Raton, FL, 1997.

[28] D. G. A. Mobach. Agent-Based Mediated Service Negotiation. PhD thesis, Computer Science
Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, May 2007.

[29] A. Moreno and J. L. Nealon. Applications of Software Agent Technology in the Health Care
Domain. Birkhauser, 2003.

[30] G. C. Necula and P. Lee. Proof-carrying code. In Proceedings of the 24th Symposium on
Principals of Programming (POPL). ACM, 1997.

[31] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. Special Issue
on Mobile Agent Security, pages 61–91, 1997.

[32] Netscape Inc. Secure sockets layer website. http://www.mozilla.org/projects/
security/pki/nss/ssl/draft302.txt.

[33] B. J. Overeinder, M. A. Oey, R. J. Timmer, R. van Schouwen, E. Rozendaal, and F. M. T.
Brazier. Design of a secure and decentralized location service for agent platforms. In
Proceedings of the Sixth International Workshop on Agents and Peer-to-Peer Computing (AP2PC
2007), May 2007.

www.intechopen.com

Autonomous Agents128

[34] A. Poggi, M. Tomaiuolo, and G. Vitaglione. Security and trust in agent-oriented middle-
ware. In R. Meersman and Z. Tari, editors, OTM Workshops 2003, number 2889 in LNCS,
pages 989–1003. Springer-Verlag, 2003.

[35] T. B. Quillinan, M. Warnier, M. A. Oey, R. J. Timmer, and F. M. T. Brazier. Enforcing
security in the agentscape middleware. In Proceedings of the 1st International Workshop on
Middleware Security (MidSec). ACM, December 2008.

[36] S. D. Ramchurn, C. Sierra, L. Godo, and N. R. Jennings. A computational trust model
for multi-agent interactions based on confidence and reputation. In Proceedings of the 6th
International Workshop of Deception, Fraud and Trust in Agent Societies, pages 69–75, 2003.

[37] O. Rana, M. Warnier, T. B. Quillinan, and F. M. T. Brazier. Monitoring and reputation
mechanisms for service level agreements. In Proceedings of the 5th International Workshop
on Grid Economics and Business Models (GenCon), Las Palmas, Gran Canaria, Spain., Au-
gust 2008. Springer Verlag.

[38] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable content-
addressable network. In SIGCOMM, pages 161–172, 2001.

[39] V. Roth. Mutual protection of co-operating agents. In J. Vitek and C. D. Jensen, editors,
Secure Internet programming: security issues for mobile and distributed objects, volume 1603
of LNCS, pages 275–285. Springer-Verlag, 2001.

[40] V. Roth and M. Jalali. Concepts and architecture of a security-centric mobile agent server.
In Proc. Fifth International Symposium on Autonomous Decentralized Systems (ISADS 2001),
pages 435–442. IEEE Computer Society, 2001.

[41] V. Roth and M. Jalali-Sohi. Concepts and architecture of a security-centric mobile agent
server. In Proceedings of the Fifth International Symposium on Autonomous Decentralized
Systems, pages 435–442, Dallas, Texas, U.S.A., March 2001.

[42] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In Middleware 2001, volume 2218 of Lecture Notes in
Computer Science, pages 329–350. Springer-Verlag, Berlin, Germany, 2001.

[43] T. Sander and C. F. Tschudin. Protecting Mobile Agents Against Malicious Hosts. Mobile
Agents and Security, 60, 1998.

[44] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control
models. IEEE Computer, 29(2):38–47, February 1996.

[45] A. Saxena and B. Soh. Authenticating mobile agent platforms using signature chaining
without trusted third parties. In Proceedings of the 2005 IEEE International Conference on
e-Technology, e-Commerce and e-Service, (EEE’05)., pages 282–285, 2005.

[46] W. Stallings. Cryptography and network security: principles and practice. Prentice Hall, 2006.
[47] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, F. Kaashoek, F. Dabek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup protocol for Internet applications.
IEEE/ACM Transactions on Networking, 11(1):17–32, Feb. 2003.

[48] S. R. Tate and K. Xu. Mobile agent security through multi-agent cryptographic protocols.
In Proceedings of the 4th International Conference on Internet Computing, pages 462–468, Las
Vegas, NV., 2003.

[49] Trusted Computing Group. TPM main specification. http://www.

trustedcomputinggroup.org/resources/tpm_main_specification, July
2007.

[50] G. van ’t Noordende, A. Balogh, R. F. H. Hofman, F. M. T. Brazier, and A. S. Tanenbaum.
A secure jailing system for confining untrusted applications. In Proc. 2nd International
Conference on Security and Cryptography (SECRYPT), pages 414–423, July 2007.

www.intechopen.com

Security in Large-Scale Open Distributed Multi-Agent Systems 129

[51] M. Warnier and F. M. T. Brazier. Organized anonymous agents. In Proceedings of The Third
International Symposium on Information Assurance and Security (IAS’07). IEEE, August 2007.

[52] M. Warnier, F. M. T. Brazier, and A. Oskamp. Security of distributed digital criminal
dossiers. Journal of Software (Academy Publisher), 3(3), March 2008.

[53] M. Warnier, M. A. Oey, R. J. Timmer, B. J. Overeinder, and F. M. T. Brazier. Enforcing
integrity of agent migration paths by distribution of trust. Int. J. of Intelligent Information
and Database Systems, 3(4), 2009.

[54] X. Zhang, S. Oh, and R. Sandhu. PDBM: A flexible delegation model in RBAC. In Proceed-
ings of the 7th ACM Symposium on Access Control Models and Technologies (SACMAT 2003),
Como, Italy, 2003.

www.intechopen.com

Autonomous Agents130

www.intechopen.com

Autonomous Agents

Edited by Vedran Kordic

ISBN 978-953-307-089-6

Hard cover, 130 pages

Publisher InTech

Published online 01, June, 2010

Published in print edition June, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Multi agent systems involve a team of agents working together socially to accomplish a task. An agent can be

social in many ways. One is when an agent helps others in solving complex problems. The field of multi agent

systems investigates the process underlying distributed problem solving and designs some protocols and

mechanisms involved in this process. This book presents a combination of different research issues which are

pursued by researchers in the domain of multi agent systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

M.A. Oey, M.Warnier and F.M.T. Brazier (2010). Security in Large-Scale Open Distributed Multi-Agent

Systems, Autonomous Agents, Vedran Kordic (Ed.), ISBN: 978-953-307-089-6, InTech, Available from:

http://www.intechopen.com/books/autonomous-agents/security-in-large-scale-open-distributed-multi-agent-

systems

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

