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1. Introduction     

Probabilistic Risk Analysis (PRA) has been widely recognized for its crucial role in various 
disciplines. The investigation and assessment of system failure or system malfunction is a 
main interest in PRA. A system is considered in a failure status when the system cannot 
satisfy a set of prescribed performance criteria. The prescribed performance criteria are 
referred to as the performance functions. The performance functions are explicitly or 
implicitly defined in terms of random variables that characterize the problems of interest.   
The performance functions also divide the high dimension space of random variables into a 
failure domain and a safe domain. The failure domain is the subspace of random variables 
that result in the failure of system. The complementary subspace is the safe domain. 
The essential information that is particularly desired from PRA includes Point of Maximum 
Likelihood (PML) in failure domain and the failure probability. PML represents the 
combination of variable magnitudes that most likely contribute to the failure and to the 
corresponding failure probability. In practice, systems under consideration can be highly 
non-linear and large. It is also possible that the performance functions of systems are 
implicit, non-linear, non-differentiable, noisy, and can only be characterized in terms of 
numerical values. Computation of failure probabilities under such situations of complex 
systems and complicated failure domains thus generally demands considerable 
computational efforts and resources in order to obtain results with high confidence levels, 
especially in case of rare-event analysis. 
The objective here is to show how Genetic Algorithms (GAs) can enhance the capability in 
PRA for numerous key aspects of risk-based information. Fundamental problems in PRA 
will be first addressed. GAs in context of PRA is next described. The demonstration of 
capability enhancement then follows. The demonstration starts from the application of GAs 
to the determination of PML. A generic problem in which it is not possible to visualize the 
failure domain due to its dimensionality and non-linearity characteristics is considered.   
The capability in PRA is significantly enhanced by GAs in such a way that the PRA can be 
accomplished without the requirement of a priori knowledge about the geometry of failure 
domain. The enhancement of the capability in PRA of rare events is subsequently illustrated.   
A numerical technique which utilizes the GAs-determined PML is introduced. The 
technique is referred to as an Importance Sampling around PML (ISPML). ISPML computes 
the failure probabilities of rare events with a considerably less computational effort and 
resource than Monte Carlo Simulation (MCS). In this regards, GAs enhance the capability in O
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PRA, distinctively for rare-event analysis, through the use of considerably less 
computational effort and resource. Another important capability enhancement by GAs is the 
derivation of suboptimal Importance Sampling Functions (ISFs). The confidence levels of the 
computed failure probabilities become evidently improved with the utilization of 
suboptimal ISFs. The capability in PRA from the viewpoint of analysis accuracy is, therefore, 
enhanced through an aid of GAs. Afterwards, it is shown that the determination of multiple 
failure modes with almost equal magnitudes of likelihood in PRA can be realized with GAs. 
This is accomplished via the population-based search characteristics of GAs. Following the 
demonstration of GAs role in enhancing PRA capability, the crucial aspects of the chapter 
will be summarized at the end. 

2. Fundamental problems in Probabilistic Risk Analysis (PRA) 

Consider an event DF which is defined by 

 ( )( ) ( )( ) ( )( ){ } 0 and  and 0 and 0| 21 ≤≤≤= XXXX NCF gggD …  (1) 

More specifically, the event DF represents a failure event of multiple and parallel minor 
failures.   gk(X) is the k-th performance function and NC is the total number of performance 
functions.   The state of a system is defined by the performance function in such a way that 

 ( )
⎩
⎨
⎧
>
≤

=
safe ;0

fail ;0
Xkg

; k = 1,…, NC (2) 

in which X = [X1 … XNRV]T is the vector of NRV random variables. Geometrically, DF is the 
subspace in a multidimensional space of random variables 

NRVX,,X …1
 and will be referred 

to as the failure domain. 
Each realization of X in DF in (1) represents the combination of variable magnitudes that 
result in the system failure. Among possible realizations of X, the so-called Point of 
Maximum Likelihood (PML) in failure domain is of particular interest in PRA. PML 
represents the combination of variable magnitudes that most likely contribute to the system 
failure.   Determination of PML is a fundamental problem in PRA. 
Apart from the information about the PML, another relevant fundamental problem in PRA 
is the computation of the probability pF of the failure event DF. The failure probability pF is 
crucial information and obtained from 

 ( ) xxX dfp

FD

F ∫=  (3) 

in which fX(x) is the Joint Probability Density Function (JPDF) of X1,…, XNRV. 
PML yields the highest value of the JPDF in failure domain. The region in the neighborhood 
of PML naturally contributes to the failure probability more than the other regions in the 
failure domain. Such a region is referred to as an importance region. Consequently, the 
information about PML is highly valuable in the computation of failure probability, in 
addition to the characteristics of failure event. It will be shown via the numerical examples 
in subsequent sections that the incorporation of PML information to the computation of 
failure probability will considerably improve the computational efficiency. These 
applications include the PRA of rare events and the derivation of suboptimal ISFs. 
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In the next section, the application of Genetic Algorithms (GAs) to PRA will be described.   
The description is aimed at using GAs for solving the fundamental problems in PRA, i.e. the 
determination of PML and the computation of failure probability. 

3. Genetic Algorithms (GAs) in PRA  

3.1 General 

The fundamental and other problems in PRA can be formulated in forms of optimization 
problems. The optimization problems include constrained and unconstrained optimization 
problems. The constrained optimization problem for maximizing an objective function is 
expressed as 

Maximize    ( )x1O   (4) 

Subject to  ( ) 01 ≤xg   (5.1) 

                      … 

    ( ) 0≤xkg   (5.k) 

                      … 

 ( ) 0≤xNCg   (5.NC) 

, where ( )x1O  is the objective function of [ ]TNRVxx …1=x . xj is the realization of the jth 

random variable. The constrained maximization problem appears in the determination of 
PML. 
The constrained minimization problem which appears in the determination of multiple 
design points reads 

Minimize ( )x2O   (6) 

Subject to  ( ) 01 ≤xg   (7.1) 

                     … 

 ( ) 0≤xkg   (7.k) 

                     … 

 ( ) 0≤xNCg   (7.NC) 

O2(x) is the objective function. 
Similarly, the unconstrained optimization for minimization an objective function is expressed as 

Minimize ( )x3O   (8) 

, where ( )x3O  is the objective function. Such an unconstrained minimization problem is 

found in the derivation of suboptimal ISFs. Each optimization problem above will be written 

in a more specific form for each particular PRA problem. 
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The objective functions of the forms represented by expressions (4), (6), and (8) are generally 
nonlinear. The constraints (5) and (7) represent the performance functions (2). The 
performance functions in practical PRA are generally implicit functions of random variables 
comprising a high dimensional space. In addition, the performance functions can be non-
linear, non-differentiable, noisy, and can only be characterized in terms of numerical values. 
There can also simultaneously be several numbers of parallel performance functions. 
The operational features and solution capabilities of GAs suggest that the algorithms can 
effectively cope with those prescribed problem characteristics and requirements. 
Consequently, GAs are considered a potential tool for crucial problems in PRA. The 
following subsections contain the GAs elements in context of PRA application. 

3.2 Chromosome representation 

GAs work in two spaces alternatively. The selection process is performed in the space of 
original variables while the genetic operations are done in the space of coded variables.   
Both spaces are referred to as solution and coding space, respectively (Gen & Cheng, 1997). 
GAs encrypt each trial solution into a sequence of numbers or strings and denote the 
sequence as a chromosome. A simple binary coding for real values as proposed by 
(Michalewicz, 1996) is employed for representing chromosomes. According to the utilized 
coding scheme, each realization of the jth random variable Xj in the solution space is 
represented by a binary string as shown in Figure 1. The combination of these strings forms 
a chromosome in the coding space. The evaluation of chromosome fitness is done in the 
solution space of Xj while the genetic operations are performed in the coding space of 
chromosome. 
 

 

Fig. 1. Chromosome representation using binary coding for real values (Michalewicz, 1996). 

3.3 Reproduction process 

Reproduction in GAs is a process in which individual chromosomes are reproduced 
according to their fitness values. Fitness in an optimization by GAs is defined by a fitness 
function. Based on the optimization problem as described by Eq. (4) and the set of 
constraints (5), the fitness function F(x) of a chromosome representing a vector x of variables 
in the solution space is defined as 

 ( )
( )

( ) ( )⎪⎩

⎪
⎨
⎧

−= ∑
=

infeasible is  ;

feasible is  ;

1

1

1

xxx

xx

x
NC

j

jjvkO

O

F
 (9) 

The fitness function for the constrained minimization problem defined by (6) and (7) is 
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 ( )
( )

( ) ( )⎪
⎩

⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

=

infeasible is  ;1

feasible is  ;1

1

2

2

xxx

xx

x NC

j

jjvkO

O

F
 (10) 

Note that the penalty term in this minimization case is added to the objective function. 
An adaptive penalty scheme which is introduced by (Barbosa & Lemonge, 2003) and 
improved by (Obadage & Hampornchai, 2006) will be employed to handle the constraints. 
The improved adaptive penalty scheme shows its excellent capability in handling a very 
large number of constraints (Harnpornchai  et al., 2008). This adaptive scheme is given by 

 ( )( ) ( )

( )
inf

1
2

1

max
j

j NC

l

l

v
k O

v
=

< >
=

< >⎡ ⎤⎣ ⎦∑

x
x

x

 (11) 

, where max(O1inf(x)) is the maximum of the objective function values at the current  
population in the infeasible region, vj(x)  is the violation magnitude of the jth constraint.  
<vj(x)> is the average of vj(x) over the current population.  kj is the penalty parameter for the 
jth constraint defined at each generation. The violation magnitude is defined as 

 ( ) ( ) ( )
⎩
⎨
⎧ >

=
otherwise ;0

0 ; xx
x ll

l

gg
v  (12) 

The reproduction operator may be implemented in a number of ways. The easiest and well-
known approach is the roulette-wheel selection (see e.g. (Goldberg, 1989 and Deb, 1995)).   
According to the roulette-wheel scheme, the kth chromosome will be reproduced with the 
probability of  

 

∑
=

=
NPop

l

l

k

k

F

F
P

1

 (13) 

, in which NPop is the population size. The fitness value Fk is obtained from either Eq. (9) or 

(10). Note that subscript k in Fk signifies that the fitness value is computed for each 

respective kth chromosome. It is interesting to note that GAs utilize only the numerical 

values of the objective function and of its associated constraints for the evaluation of the 

chromosome fitness, as seen from Eqs. (9) – (12). This advantageous feature makes GAs 

readily applicable to real-world problems where the performance functions are generally 

implicit with respect to random variables. 

3.4 Genetic operators 

In accordance with the binary representation of chromosomes, a simple binary crossover is 
applied (confer Figure 2). 
The mutation operation also assists the exploration for potential solutions which may be 

overlooked by the crossover operation. According to the chromosome representation, a 

binary mutation is employed for the purpose (confer Figure 3). 
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Fig. 2. Crossover of two chromosomes. 

 

Fig. 3. Mutation on a chromosome. 

3.5 Multimodal GAs 

Simple GAs perform well in locating a single optimum but face difficulties when requiring 
multiple optima (see e.g. (De Jong, 1975; Mahfoud, 1995a; Mahfoud, 1995b and Miller & 
Shaw, 1995)). Niching methods can identify multiple solutions with certain extent of 
diversity (Miller & Shaw, 1995). Among niching methods, Deterministic Crowding Genetic 
Algorithms (DCGAs) (Mahfoud, 1995a and Mahfoud, 1995b) have been commonly used in 
multimodal functions optimization. It is noted that DCGAs is originally designed for 
unconstrained optimization problems. The adaptive penalty described in the previous 
subsection will be used in conjunction with DCGAs to handle constraints. 
DCGAs work as follows. First, all members of population are grouped into NPop/2 pairs, 
where NPop is the population size. The crossover and mutation are then applied to all pairs.   
Each offspring competes against one of the parents that produced it. For each pair of 
offspring, two sets of parent-child tournaments are possible. DCGAs hold the set of 
tournaments that forces the most similar elements to compete.  The following provides a 
pseudo code of DCGAS (Brownlee, 2004). 
 

NPop : Population size. 
d(x, y) : Distance between individuals x and y. 
F(x) : Fitness of individual population member. 
 

1. Randomly initialize population. 
2. Evaluate fitness of population. 
3. Loop until stop condition: 

a. Shuffle the population. 
b. Crossover to produce NPop/2 pairs of offspring. 
c. Apply mutation (optional). 
d. Loop for each pair of offspring: 

i. If(d(parent1,child1)+d(parent2,child2)) ≤ (d(parent2,child1)+d(parent1,child2)). 
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                               1.       If F(child1)  >  F(parent1), child1 replaces parent1. 
                               2.       If F(child2)  >  F(parent2), child2 replaces parent2. 

ii. Else 
                               1.       If F(child1)  >  F(parent2), child1 replaces parent2. 
                               2.       If F(child2)  >  F(parent1), child2 replaces parent1. 
 

In the following section, the applications of GAs to enhance the capability in PRA for 

numerous key aspects of risk-based information will be demonstrated. 

4. Roles of GAs in enhancing PRA capability 

4.1 Determination of PML 
4.1.1 Problem formulation 

The likelihood of each combination of variable magnitudes in contributing a failure event is 

an interesting issue in PRA. The focus is particular on the so-called Point of Maximum 

Likelihood (PML) in failure domain. PML represents the combination of variable 

magnitudes that most likely contribute to the failure and to the corresponding failure 

probability. Since PML is the point of highest JPDF in failure domain DF, the PML x* can be 

obtained from solving the following optimization problem: 

Maximize    ( ) ( )xx XfO =4
  (14) 

Subject to  ( ) 01 ≤xg   (15.1) 

                                   … 

 ( ) 0≤xkg   (15.k) 

                    … 

 ( ) 0≤xNCg   (15.NC) 

 

in which fX(x) is the JPDF of X.   X = [X1 … XNRV]T.   Xl is the lth random variable.   gk(x) (k = 
1, …, NC)  is the kth performance function. N and NC are the total number of basic random 
variables and the total number of performance functions, respectively. The fitness function 
is defined as 

 ( )
( )

( ) ( )⎪⎩

⎪
⎨
⎧

−= ∑
=

infeasible is  ;

feasible is  ;

1

4

4

xxx

xx

x
NC

j

jjkO

O

F ν
 (16) 

, where kj and vj(x) are defined as in Eqs. (11) and (12), respectively. 

4.1.2 Numerical example 1 

Consider the following performance function (Lee et al. 2006)  

 ( ) Mg localu σσ −=Y  (17) 
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where Y is the vector of random variables constituting the performance function (17).   
uσ is 

a random variable.   M

localσ  is defined as 

 
( )y

M

/M

m

σ
σ

ref

op

local =
 (18) 

 
1.333

L
ref

M
M =  (19) 

 ( )
⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛=

Θ
ΘΘπσ

28
4 y

2

mL

f

t

D

t

D
costRM  (20) 

 ( ) 8642 00008500040906009817078540 ΘΘΘΘΘ ....f −+−=  (21) 

The description of each random variable is given in Table 1. 
 

Variable Distribution Type Mean COV 

D Normal 4.3x10-3 0.10 

L Normal 100x10-3 0.10 

πΘ /  Normal 0.5 0.10 

Do Normal 114.3x10-3 0.02 

yΣ  Log-normal 326x106 0.07 

uΣ  Log-normal 490x106 0.01 

Table 1. Description of  random variables in Numerical Example 1 and 2. 

mop and t  are deterministic variables. mop is equal to 16x103 whereas t is set to be 8.6x10-3.   
Rm is defined as 

 
2

EI
m

RR
R

+
=  (22) 

, where                                      

  ( )tDR 2
2

1
oI −=   (23) 

 
2

o

E

D
R =  (24) 

More specifically,  

 
⎥⎦
⎤

⎢⎣
⎡ ΣΣ

Θ
= uyoDLD

π
Y  (25) 

GAs have been applied to determine PML.   The objective function according to Eq. (14), is 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )uuyyoo/L5 σσπθ ΣΣπΘ ffdf/flfdfO DD=Y  (26) 
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The magnitude of the constraint violation, according to Eqs. (12) and (17), is 

 ( ) ( )
⎩
⎨
⎧ >−

=
otherwise ;0

0 ;localu Y
Y

gMσσν  (27) 

The corresponding fitness function is thus 

 ( ) ( ) ( )
( ) ( )⎩

⎨
⎧

−
≤

=
otherwise ;

0 ;

5

5

YY

YY
Y

νkO

gO
F  (28) 

GAs search employs the population size of 100. The number of generations used in the 

search is 200. A two-point crossover is utilized with the crossover rate of 0.8. The mutation 

rate is taken as 0.002. The resulting PML is shown in Table 2.    
 

PML Magnitude at PML 

d* 5.28x10-3 

l* 1.00x10-1 

πθ /*  5.47x10-1 

d*o 1.07x10-1 
*

yσ  3.24x108 

∗
uσ  3.99x108 

Table 2.   PML in Numerical Example 1. 

The performance function in this example is highly nonlinear and implicit function of 
random variables. The performance function is also defined in terms of a mixture of 
different types of random variable, not only a normal type. It should be noted that the 
operation of GAs in determining the PML does not require prior knowledge about the 
problem characteristics. GAs, therefore, can enhance the capability in PRA for the 
determination of PML in complicate situations. 

4.2 PRA of rare events by Importance Sampling around PML (ISPML) 
4.2.1 Background notion 

The probability pF of the failure event DF as defined by Eq. (3) inevitably requires 
computational procedures for its accurate assessment in practical problems. It is widely 
recognized that Monte Carlo Simulation (MCS) is the only tool that is applicable to a wide 
range of problems in assessing failure probability. A major drawback of MCS is that the 
procedure requires large sample sizes in order to compute probabilities of very low orders 
in PRA of rare events when demanding high confidence levels. An efficient strategy for 
overcoming this undesirable situation is the utilization of the so-called importance sampling 
(Fishman, 1996). The notion behind the importance sampling is that the procedure performs 
more sampling in the importance region of failure domain. From the probabilistic 
characteristics of PML, the region in the neighborhood of PML can be regarded as the 
importance region because PML yields the highest value of the JPDF in failure domain. 
Consequently, the importance sampling should purposely concentrate around PML. 
Using the importance sampling technique, Eq. (3) is modified to 
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 ( ) ( )
( ) ( ) yy
y

y
y X

X

X dh
h

f
IpF ∫=  (29.1) 

, or  

 ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
=

Y

Y
Y

X

X

h

f
IEp hF

  (29.2) 

in which I(Y) is the indicator function and is defined as 

 ( )
⎩
⎨
⎧

∉
∈

=
F

F

D

D
I

Y

Y
Y

 ;0

 ;1  (30) 

Note that the subscript h signifies that the expectation E is taken with respect to an 
importance sampling JPDF or Importance Sampling Function (ISF) hX(x).   According to 
MCS, the failure probability is estimated as 

 ( ) ( )
( )

jX

jX

j
Y

Y
Y
h

f
I

Nsim
P

Nsim

j

F ∑
=

≅
1

1  (31) 

in which Yj is the jth realization sampled from the ISF hX(x) and Nsim is the sample size. 
The PML obtained from GAs search can enhance the efficiency of MCS. The efficiency 
enhancement is accomplished by employing the GAs-searched PML as the sampling center 
of the ISF hX(x). This sampling scheme is denoted as an Importance Sampling using PML 
(ISPML). For the purpose of procedure clarity, the original JPDF fX(x) will be rewritten as 

fX(x|μ =μo) in which μ denotes the mean vector. μo is the original mean vector. According to 
the ISPML, the ISF hX(x) takes the form 

 ( ) ( )*|fh xたxx XX ==  (32) 

, where x* is PML.   That is the ISF has the same functional form as the original JPDF.   The 
mean vector of the ISF, however, is different from that of the original JPDF and takes the 
PML as the mean vector.   Consequently, the estimate of the failure probability is 

 ( ) ( )
( )*

Nsim

j

F
|f

|f
I

Nsim
P

xたY

たたY
Y

jX

jX

j =

=
≅ ∑

=

o

1

1  (33) 

4.2.2 Numerical example 2 

Based on the GAs-searched PML, the ISF according to the ISPML procedure takes the form 
of Eq. (32), i.e. 

  [ ]T*** dld uyo σσπθ=た  (34) 

The ISF as defined by Eqs. (32) and (34) is used to compute the failure probability according 
to the performance function (17). The results are compared with MCS. The estimate of the 
failure probability in each MCS and ISPML methodology is based on 10 independent runs. 
The sample size per each run of ISPML is 1,000 whereas that of MCS is 1,000,000. Table 3 
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compares the numerical results from both methodologies. Note that the Coefficient of 
Variation of the estimate of failure probability PF (COVPF) is defined as 

 
F

PF
PF

P

.D.S
COV =  (35) 

FP  is the sample mean of PF. S.D.PF is the sample standard deviation of PF. Lower 

magnitudes of COVPF signify higher confidence levels of probability estimates. 
 

Methodology 
FP  COVPF Nsim 

MCS 1.00x10-6 0.94 1,000,000 

ISPML 1.28x10-6 0.34 1,000 

Table 3. Comparison of numerical results from MCS and ISPML. 

It is obvious from Table 3 that the sample size used by ISPML is much smaller than the 
sample size for MCS but ISPML results in smaller order of the COVPF. More precisely, MCS 
employs the sample sizes 1,000 times larger than ISPML does. The accuracy of ISPML is, 
however, remarkably higher than that of MCS. 
This numerical example testifies that the computation of event probability can demand 
considerable computation resource, though the variable space is not of high dimension, 
when demanding high confidence levels of analysis results. It also shows that GAs help 
realize the estimation of low probabilities in the situation where the sample sizes may be 
prohibitively provided due to constrained computational resources. From the viewpoint of 
computational efficiency and accuracy, the capability in PRA of rare events is thus 
substantially enhanced by GAs. 

4.3 Derivation of suboptimal Importance Sampling Functions (ISFs) 
4.3.1 Problem formulation 

ISPML defines an ISF as given by Eq. (32). However, there can be other definitions of ISF.   

The ideal ISF is the sampling JPDF that results in a zero-variance estimate. However, it is not 

possible in general to obtain such an optimal ISF because the determination of the optimal 

ISF depends on the underlying probability being computed (Fishman, 1996). Consequently, 

it is most desirable to obtain other alternative ISFs that reduce the variance of probability 

estimate as much as possible. Such variance-minimizing ISFs will be defined herein as 

suboptimal ISFs. The variance of probability estimate is denoted as VARh[PF] or simply 

VAR. The subscript h informs again that the variance is taken with respect to the ISF hX(y).   

Since the ISF hX(y) is unknown and needs to be determined, the variance-minimization 

problem for determining suboptimal ISFs is necessarily taken with respect to another pre-

defined JPDF qX(y). It can be shown that the variance-minimization problem (Harnpornchai, 

2007) can be formulated as 

 ( ) ( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
YY

YY
Y

XX

XX

qh

ff
IEq

h

2   imizeMin  (36) 

The prescribed sampling function qX(y) is referred to as a pre-sampling JPDF. The ISF hX(x) 
which is obtained from the variance-minimization problem is a suboptimal ISF. 
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If the ISF hX(x) can be completely defined by a vector of parameters [ ]TNPνν …1=ち , in 

which jν  is the jth parameter characterizing the JPDF of ISF and NP is the total number of 

JPDF parameters, then the variance-minimization problem (36) is specifically written as:  

 ( ) ( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
YちY

YY
Y

XX

XX

ち qh

ff
IEq

;
   Minimize 2  (37) 

The expectation in (36) is approximated by 

 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )∑
=

≅⎥
⎦

⎤
⎢
⎣

⎡ Npre

k kk

kk

kq
qh

ff
I

Npreqh

ff
IE

1

22

;

1

; YちY

YY
Y

YちY

YY
Y

XX

XX

XX

XX  (38) 

The samples Yk (k = 1,…, Npre) are generated according to the pre-sampling JPDF qX(y).   The 
corresponding variance-minimization problem becomes:  

 ( )ち
ち 6   Minimize O  (39) 

, where 

 ( ) ( ) ( ) ( )
( ) ( )∑

=

=
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XX
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The objective function (40) can be of highly complicate nature in practical problems, e.g., 
highly non-linear, non-convex, and high-dimensional. The complex nature normally arises 
from the collective characteristic of the JPDFs that build up the objective function (40). GAs 

are considered a promising tool for searching the variance-minimizing parameters ν* = [ν1* 

… νNP*]T under the circumstance of such a complicate objective function.   When using GAs 
for the unconstrained minimization problem (39), the fitness function is defined as 

 ( ) ( )ちち
6

1

O
F =  (41) 

The following subsection illustrates how GAs are applied for deriving a suboptimal ISF.    

4.3.2 Numerical example 3 

Consider two independent and identical random variables of normal type X1 and X2, whose 
JPDF is given by 

 ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−

=
∏

2
2

2212

1

21
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/

j

x
expx,xf πX

 (42) 

The failure event DF3 is defined as 

 ( ) ( )( ) ( )( ){ }0 and 0 212211213 ≤≤= X,XgX,Xg|X,XDF
 (43) 

The performance functions are 

 ( ) 1211 5 XX,Xg −=  (44.1) 
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 ( ) 2212 5 XX,Xg −=  (44.2) 

A JPDF of two identical and independent normal PDF is used as the pre-sampling PDF 
qX(x), i.e.  
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The pre-sampling is performed around the PML in failure domain. It can be shown that the 
PML is (5.0, 5.0) for the performance functions (44). Correspondingly, the mean vector of the 

pres-sampling JPDF qX(x) is equal to [5.0 5.0]T, i.e., 0521 .PP == μμ . The vector of the 

standard deviation is, however, set to that of the original JPDF fX(x), i.e., 0121 .PP == σσ .   

The pre-sampling around PML utilizes the sample size of 100, i.e. Npre = 100. Each 

realization [ ] T
kk XX 21=Y  must be checked with the performance functions (44.1) and 

(44.2) in order to determine the value of I(Yk), following 

 ( ) ( ) ( )
⎩
⎨
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=
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Y  (46) 

The ISF employs the same parametric JPDF as the original JPDF. Correspondingly, the ISF is 
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in which ν = [μ1 σ1 μ2 σ2]T  is the vector of the ISF parameters to be optimized.    

GAs are utilized to determine the variance-minimizing parameters. The search procedure 

employs Npop = 100, the crossover rate of 0.8, and the mutation rate of 0.002. The variance-

minimizing parameters [ ]T1211

∗∗∗∗∗ = σμσμち  from the GAs search are 

[ ]T30153015 .... . 

The suboptimal ISF with the determined variance-minimizing parameters 

[ ]T30153015 ....  is utilized for estimating the failure probability. The probability 

estimate is the average of 10 independent runs of the optimal ISF. The resulting VAR is also 

computed, based on those 10 computed values of probability. Each optimal ISF run employs 

a sample size of 1,000. The results are summarized in Table 4. 
 

FP  VAR COVPF 

8.33x10-14 1.11x10-29 0.04 

Table 4. Computation of failure probability by the GAs-derived suboptimal ISF. 

Although the problem considered is of low dimension, the failure probability is at extremely 
low order, i.e. 10-14. The magnitude of the COVPF from the GAs-derived suboptimal ISF is 
extremely low, i.e. 0.04. In other words, the confidence level of the probability estimate is 
considerably high. For such an order of estimate and a confidence level, MCS requires a 
sample sizes at least 1016. The order of the sample size used by the suboptimal ISF is thus 
1013 times less that that required by MCS for the same COVPF as indicated in Table 4.    
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This numerical example shows that GAs facilitate the derivation of suboptimal ISFs.It 

should be noted that the knowledge of problem is unnecessary at all for the GAs operation. 

Consequently, high confidence levels in PRA of complex problems becomes possible even if 

there is no or little a priori knowledge of the problems. 

4.4 Determination of multiple design points 
4.4.1 Problem characteristics 

Design point is the point on the limit state surface that is nearest to the origin in a standard 

normal space. In optimization context, the design point is the global minimum obtained 

from solving a constrained optimization problem. However, it is possible that there are 

other local minima whose distances to the origin are of similar magnitudes to the global 

minimum. The global minimum and local minima lead to the situation of multiple design 

points. When multiple design points exist, PRA based only on any single design point 

among multiple design points may result in an underestimation of failure probability. 

Determination of global optimum as well as local optima leads to multiple solutions, which 

is classified as a multimodal optimization problem.     

The following subsections intend to demonstrate how GAs enhance the capability in PRA to 

cope with multiple failure events or modes. Such an application is important when several 

failure events are almost equally critical. It will be shown that the determination of multiple 

design points is readily accomplished using DCGAs. The adaptive penalty technique as 

described in the afore-mentioned subsection will be combined with DCGAs for handling 

constraints. This is a novelty because multimodal GAs were originally designed for 

unconstrained multimodal optimization.  

From the definition of the design point, the design point U* is obtained from solving the 
following constrained optimization problem:  

Minimize ( )
21

1

2

7

/
NRV

i

iUO ⎟
⎠

⎞
⎜
⎝

⎛
== ∑

=

UU   (48) 

Subject to constraint    ( ) 0=Ug   (49) 

in which  U = [U1 … UNRV]T denotes the vector of standard normal variables. g(U) is the 

performance function. g(U) = 0 denotes the limit state surface and g(U) ≤ 0 indicates the 

failure state corresponding to the performance function.  The equality constraint is modified 

to an inequality constraint 

 ( ) ε≤Ug   (50) 

, or 

 ( ) 0≤UG   (51.1) 

, where  

 ( ) ( ) ε−= UU gG   (51.2) 

in which ε is the tolerance and set to a small value, e.g. 0.01.    

www.intechopen.com



Enhancement of Capability in Probabilistic Risk Analysis by Genetic Algorithms  

 

135 

4.4.2 Numerical example 4 

Consider a parabolic performance function as introduced in (Kiureghian & Dakessian, 1998):  

 ( ) ( )2

1221 eXXbX,Xg −−−= κ  (52) 

where b, κ,  and e are deterministic parameters. Xl and X2 are standard normal variables. In 

this example, b = 5, κ = 0.5 and e = 0.1. This set of parameters leads to two design points.    
 

 

a) 5th generation b) 20th generation 

 
c) 50th generation d) 100th generation 

 

e) 200th generation f) 300th generation 

Fig. 4. Chromosomes distribution at various generations by DCGAS for two design points 
problem. 
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DCGAs are employed to determine both design points. The tolerance parameter  ε is set to 
0.01. The parameters of the DCGAs are given in Table 5. The fitness function is 

 ( ) ( ) ( )
( ) ( )[ ]⎩

⎨
⎧

+
≤

=
otherwise;1

0;1

8

8

UU

UU
U
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 (53) 

, where 
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 ( ) ( ) ( ) εκ −−−−== 2

1221 eXXbX,XGG U   (55) 
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=
otherwise ;0
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21

X,XGX,XG
X,Xν   (56) 

 

Parameters Value 

Population Size 1000 

Crossover Probability 1.0 

Number of Executed Generations 300 

Table 5. DCGAs parameters. 

The distributions of chromosomes at consecutive generations by DCGAs are displayed in 

Figure 4. The solutions after the first generation are totally spread over the search area in the 

beginning. The solutions are then assembled in the parabolic topology during the course of 

optimization. After consecutive numbers of generations, the chromosomes gradually 

accumulate at two distinct design points. The objective function values, the optima or design 

points, and their corresponding distances to the origin are shown in Table 6. The numerical 

results are compared with the results from the literature (Kiureghian & Dakessian, 1998) in 

Table 6. The search method used in (Kiureghian & Dakessian, 1998) belongs to the class of 

gradient-based search and will be herein referred to as Gradient-based Search with 

Incrementally Added Constraint (GSIAC). 
 

Optima Method ( )*** X,X 21=U  ( )** X,Xg 21
 ( )** X,XO 217

 

DCGAS (-2.77, 0.88) 1.55x10-3 2.91 
1 

GSIAC (-2.74,0.97) -2.80x10-3 2.91 

DCGAS (2.83, 1.27) 3.55x10-3 3.10 
2 

GSIAC (2.92,1.04) -1.62x10-2 3.10 

Table 6. Comparison of design points and their respective safety indices of two design 
points from DCGAS and the literature (Kiureghian & Dakessian, 1998). 

It is clear that DCGAs yield the design points that are close to the results from GSIAC. It 
should be noted that the multimodal GAs work in a different manner from such a sequential 
search method as GSIAC, where the decision on the numbers of the desired design points 
must be made by the user. The population-based operation of GAs makes the search 
circumvent the problem of selecting appropriate starting search point, as appeared in the 
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gradient-based methods. In addition, the fundamental mechanisms of multimodal GAs are 
able to automatically detect and capture several design points.    
The whole operation of multimodal GAs shows that a priori knowledge about the geometry 
of performance function is not required. This makes GAs operable to practical problems 
where the geometry of performance functions cannot be generally visualized. Therefore, the 
capability in PRA of multiple failure events with almost equal levels of likelihood can be 
enhanced by using GAs. 

5. Conclusion 

The enhancement of capability in Probabilistic Risk Analysis (PRA) by Genetic Algorithms 
(GAs) is described. Several key aspects of PRA that are enhanced by GAs include the 
determination of Point of Maximum Likelihood (PML) in failure domain, Monte Carlo 
Simulation (MCS)-based PRA of rare events under highly constrained computational 
resources, the improvement of confidence levels in PRA results by applying GAs-
determined suboptimal Importance Sampling Functions (ISFs), and the automatic and 
simultaneous detection of multiple failure modes with almost equal likelihoods. All of these 
achievements are attributed to the problem knowledge-free operation of GAs. This feature 
of capability enhancement is testified via numerical examples where complicate and thus 
non-visualizable performance functions as well as mixtures of different random variables 
are considered. Consequently, the capability in PRA is naturally enhanced to practical 
problems. 
The present application of GAs to PRA is limited to the uncertainty of aleatory type. Future 
application of GAs will be extended to the uncertainty of epistemic type or the combination 
of both types. Such extended application of GAs will enhance the capability in PRA to the 
cases where expert opinions and their corresponding degrees of belief are included in the 
analysis. The analysis then becomes more rationale and realistic. Since DCGAs exhibit 
genetic drift, it is also beneficial to develop novel multimodal GAs that reduce the genetic 
drift and increase the search stability in the future. The algorithms to be developed should 
eliminate or require least a priori knowledge about the search space so that the algorithms 
are efficiently and effectively applicable to practical problems. 
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