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1. Introduction     

Optimization is a widespread notion: a large number of concrete problems require, during 
the solving process, optimizing a set of parameters (or variables) with respect to a given 
objective function (or fitness function). These variables can take integer or real values. Such 
problems for which variables can only take integer values, are called combinatorial 
optimization problems. This paper focuses on combinatorial optimization problems. The set 
of all possible combinations of values for the variables of the problem represents the search 
space of the problem. Constraint combinatorial optimization problems - that is problems which 
define a set of constraints on the variables enabling a part of the search space - are not 
considered here. Global combinatorial optimization problems - for which the whole search 
space is available – are the main focus. In a large number of real problems, in particular in 
bioinformatics, the objective function is partially or entirely unknown. In this contest, it is 
however possible to calculate the value of the function in each point of the search space. 
This kind of problem is called a “black box” problem. Classical techniques of operations 
research are weakly or not at all fitted to black box problems. Consequently, evolutionist 
approaches of heuristic exploration strategies, have been developed specifically for black 
box problems. We are particularly interested in the complexity of such problems and in the 
efficiency of evolutionist methods to solve them. 

1.1 Definitions and notations 

Let X  = {x1, x2,…, xn} be a set of n binary variables and C = 2X the set of parts of X. X denotes 
an element of C. Let F be a function from C to R. A combinatorial optimization problem O is 
a problem of discovery of maxima, for every possible point X of the search space C, of the 
objective function F(X). Such a problem is said to be of size n. Its complexity is the minimum 
number of X of C for which F(X) has to be calculated in order to guarantee  the discovery of 
maxima. This number obviously depends on n but also on a large number of other 
parameters which influence can be greater than the influence of n. 

Let M =  {Xm ∈ C | ∀ Xi  ∈ C,  F(Xm) ≥ F(Xi)} the set of all the solutions of O (also called 
global maximums), that is the set of points C for which F is maximal.  
Exploration algorithms parse C using one or more operators which, from one or several 
points of C, will lead to one or several points of C. Let Ec be a subset (or sample) of C. We O
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define an operator o as a function from Ec1 to Ec2. Ec2 is said to be the set of points of C, 
which are neighboring points of Ec1 for operator o.  We define a function Vo, called 
neighborhood function of operator o, such as Vo(Ec1) = Ec2.  P = {C,F, Vo} is called a 
landscape of O for operator o. Therefore, a landscape depends on the neighborhood 
associated to an operator. 
It is now possible to define the notion of local maximum which depends on a neighborhood 
and consequently on an operator. The set of local maximums for a given operator o is the set 

Mo = {Xm ∈ C | ∀ Xi  ∈ Vo(Xm),  F(Xm) ≥ F(Xi)}. 
We define the basin of attraction of a maximum according to an operator as the set Bo(Xm) = 

{X0 ∈ C | ∃ X1,…, Xn , Xn = Xm ∈ Mo  and Xi+1 ∈ Vo(Xi)  ∀ 0 ≤ i ≤ n}, that is the set of points 
from which it is possible to reach the maximum repetitively applying the operator o. 
We call strict hill-climber a kind of exploration method that only uses operators of the form o: 

Ec1 → Ec2 with ∀ Xi  ∈ Ec1 and Xj  = o(Xi), F(Xj) ≥ F(Xi) and Xj ∈ Vo(Xi). We call stochastic hill-

climber a kind of exploration method that only uses operators of the form o: Ec1 → Ec2 with 

∀ Xi  ∈ Ec1, Xj ∈ Vo(Xi) and Xj  = o(Xi), P(F(Xj) ≥ F(Xi)) = g(Vo(Xi)) where g is a non-uniformly 
distributed function on [0..1] with a bias towards high values. In general, we also have |Ec1|  
= |o(Ec1)| = 1. The most used neighborhood for hill-climbers is the Hamming 

neighborhood. In this case, the neighborhood of a point Xi  ∈ C is Vo(Xi) = {Xj ∈ C | H(Xi,Xj) 
= 1} with H(Xi,Xj) the Hamming distance between Xi and Xj. 
We call evolutionary algorithm an exploration algorithm which maintains a sample Ec (called 

population) of points of C and uses an operator os, called selection operator, which, from Ec, 

produces another bias sample Ec’ such as Vos(Ec) = Ec and ∀ Xj  ∈ Ec’ = os(Ec) and ∀ Xi  ∈ Ec, 

Xj ∈ Vos(Ec) and P(F(Xj) ≥ F(Xi)) = g(Vos(Ec)) where g is a non-uniformly distributed 

function on [0..1] with a bias towards high values. Then, 0, 1 or several operators are 

probabilistically applied to each point of Ec’ leading to a new population. The same process 

is recursively reapplied to this new population until the end of the algorithm. 

1.2 Complexity of problems 

The complexity of combinatorial optimization problems has been extensively studied. 
Mostly, NP-completion proofs were first realized for classical problems - such as that of the 
knapsack, graph coloring, search of a clique of size k…- (Garey & Johnson, 1979; 
Papadimitriou & Steiglitz, 1998). These proofs are however not very informative indices. 
Indeed, it is well known that for a problem with NP-complete proof, there are, in most cases, 
instances of the problem that can be solved in polynomial time. Unfortunately, the problem 
properties that contribute to its complexity are not clearly known in most cases. This 
information worth discovering since it is often the key to design an efficient solving 
algorithm. Notions like the breaking in subproblems or the number of solutions of the 
problem have important consequences on its complexity. The complexity of a problem is 
also obviously directly linked to the efficiency of the algorithms applied to solve it and to 
the capacity of these algorithms to exploit the properties of this problem (Jones, 1995).  
The first property influencing the complexity is the number of maxima of F (Kallel et al., 
2001). For example, when |M| is large compared with |C|, an algorithm that evaluates 
points of C randomly and which has therefore an average complexity of |M|/|C|, is very 
efficient. In the extreme, the problem of “needle-in-a-haystack” (Forrest & Mitchell, 1993; 
Goldberg, 1989), in which F(X) is identical for 2n-1 points of C and has a higher value for the 
last point, is a problem of maximal complexity since no property can be exploited. A 
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landscape property that is more precise than the number of maxima is the number and the 
size of the basins of attraction. The higher the size of a basin of attraction of a maximum 
given an operator o is, the higher the probability of discovering this maximum from a 
random point of C and using an algorithm based on o is. Thus, the respective size of the 
basins of attraction of local and global maxima in a given landscape strongly influences the 
complexity of the exploration of this landscape.  
A second property is the epistasie level of a problem. It corresponds to the maximum 
number of other variables each of the n variables depends on. For example, a problem with 
zero epistasie is a problem in which all variables are independent1.  The epistasie is a more 
general concept than that of decomposability. Indeed, an epistasie level of k does not imply 
that the problem is decomposable into n/k completely independent sub-problems. The sub-
problems can share variables, and there can be, for example, n sub-problems of size k. k 
dependent variables are called a block. Blocks can overlap if they share some variables. A 
classical problem of size n, of epistasie level k with overlapping is the NK-landscape 
(Kauffman, 1989; Kauffman, 1993). The idea of the NK-landscape, or of its extensions the 
NKp-landscape (Barnett, 1998) and the NKq-landscape (Newman & Engelhardt, 1998), is to 
allow the easy building of problems with scalable difficulty and epistasie level. It has been 
demonstrated that the problem is NP-complete2 as soon as k is equal to two or more and 
when the problem is not decomposable into independent sub-problems (Thompson & 
Wright, 1996). 
Deceptive (or trap) functions are functions that have been defined to be difficult for hill-
climber algorithms. Ackley has suggested one of these functions and has shown that it 
produces an exponential number of local maxima in the landscape (with a Hamming 
neighborhood) (Ackley, 1987). Deceptive functions have been intensively studied and are 
often used as benchmark functions to validate exploration algorithms (Goldberg, 2002; Gras 
et al., 2004; Gras, 2004; Martin et al., 2003; Pelikan, 2002; Sastry et al., 2004; van Nimwegen et 
al., 1997). They can be viewed as a special case of the problem of the local maxima number. 
Knowing that local maxima are, by definition, linked to the chosen neighborhood, the 
notion of deceptive function is also linked to the neighborhood. It is possible to give an 
informal definition of deceptive function. An entirely ordered landscape can be obtained 

considering the set of all the possible values of F(X) for all X ∈ C sorted by growing value. If 
all the points of M, that is all global maxima, are execluded from this set and assuming C’ is 
the new set, a deceptive function can be informally defined by : a function for which the 
instantiation of variables xi  of the points of the sub-set of C’ points with the higher values3 is 
the most different from the instantiation of the variables xi of M points. In case of a binary 
function, the notion of “different” corresponds to the Hamming distance. This definition is 
linked to the Hamming neighborhood but it does not involve the notion of local maximum 
and is therefore almost independent of the chosen landscape. Then, it is possible to define 
intrinsically complex functions since this definition of complexity does not directly refer to a 

                                                 
1 The onemax problem, in which one searches the maximum of F(X), where  F(X) is the sum 
of the value of variables X, is a classical problem with zero epistasie. 
2 Indeed, the problem can be transformed into MAX-2-SAT which is NP-complete. 
3 The size of this sub-set is not specified but the higher it is, the more deceptive the function 
is. 
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specific landscape. Among classical deceptive function, we can cite the Ackley trap5 function 
(Ackley, 1987) or the Mitchell, Forrest and Holland royal road function (Mitchell et al., 1992). 

2. Genetic algorithms 

The complexity of combinatorial optimization problems is hard to define and to measure 
since numerous properties are involved and that these properties need a large amount of 
computation to be evaluated. The neighborhood, which produces a specific landscape for a 
function, is a major component of the complexity. It means that there is a great correlation 
between the exploration algorithm that is used (and then several neighborhoods) and the 
function to optimize: a given algorithm is efficient for a given class of function and vice 
versa a given function has a low complexity if an algorithm using its intrinsic properties is 
discovered. In this section, we are interested in the study of this link while uniquely 
considering evolutionary explorative methods (Michalewicz & Fogel, 2000; Baluja, 1996). For 
a wider study, including all the major exploration methods see (Gras, 2004). 

2.1 The cannonical approach 

The initiation step of a standard genetic algorithm is the random generation of a population, 
of a given size Tp of vectors X (the chromosomes). Each vector corresponds to a point of the 
search space and therefore to a given instantiation of all the variables. The algorithm 
consists in a repetition of three successive steps: (1) a fitness value equal to F(X) is associated 
to each vector X; (2) Tp vectors are randomly selected in the population with a probability 
depending on the fitness value of each vectors; (3) a series of genetic operators is applied 
stochastically to these vectors and the transformed vectors are then inserted in a new 
population. The three steps (called generations) are re-applied to this new population of size 
Tp.  
There are a large number of selection operators. The most frequent ones are the fitness 
proportionate selection, the elitist selection and the tournament selection. They allow the 
modulation of the selection pressure that is put on the population, that is the importance of 
the statistical bias towards the best solutions. Genetic operators of step (2) are also very 
varied. The most classical are the punctual mutation of a gene (the change of the 
instantiation of a variable) and the uniform one or two points crossovers (the instantiations 
of a series of variables are exchanged between two vectors). These operators allow the 
exploration of the search space by transforming one point into another. 
 Numerous operators are necessary for genetic algorithms, for example the size of the 
population, the probabilities that are associated with the genetic operators, the selection 
pressure, etc. A lot of experimental studies have been carried out to evaluate the influence of 
each parameter. The conclusions show that the influences vary considerably depending on 
the class of problem that is considered. Other studies focus on the comparison of exploration 
capacities of genetic algorithms and more specifically of crossover operators with those of 
multi-start strict hill-climbers (Jones, 1995; Baluja, 1996; Goldberg & Segrest, 1987; Sharpe, 
2000). Results show that in most cases, and more specifically in deceptive problems, 
standard genetic algorithms do not have better and even sometimes worse results results 
than hill-climber algorithms. However, we present more complete results in section 3, 
showing in which circumstances genetic algorithms are efficient.  
Several theoretical studies have been carried out to understand the behavior of genetic 
algorithms during the exploration process. They are based on either a modelization by a 
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Markovian process (Goldberg & Segrest, 1987; Moey C.J., Rowe, 2004), or on the study of the 
cumulants (average, standard deviation…) of the fitness value of the population of 
chromosomes during the successive generations (Prugel-Bennett & Rogers, 2001). These 
works are still limited to simple problems and it hardly seems realistic to apply them to 
more complex non-zero epistasie problems. The first attempt to analyze the convergence 
behavior of classical genetic algorithms involving the epistasie concept is linked to the 
notion of schemes (Holland, 1968). Goldberg (Goldberg, 1989) uses this notion to explain the 
behavior of classical genetic algorithms4. The idea is that the function to be optimized is 
composed of sub-functions, each of them based on a sub-set of variables that are represented 
by a scheme. The genetic algorithm selects and combines the best schemes to discover a 
good solution faster. Goldberg shows that a genetic algorithm handles Tp3 schemes in 
parallel and that is why it is efficient to solve such problems.  
Thierens et Goldberg have published several works on the evaluation of the capacities of 
genetic algorithms to solve deceptive problems  (Thierens & Goldberg, 1993; Thierens & 
Goldberg, 1994; Sastry & Goldberg, 2002; Thierens, 1999). When functions that are 
composed of a juxtaposition of deceptive sub-functions of size k are considered, they have 
evaluated the time t (number of generations) that is needed for the schemes corresponding 
to variables of sub-functions to mix correctly and to build the complete solution. They 
deduce from these evaluations the size of the population that is needed to assure the 
convergence of the exploration process towards the global maximum. These calculations 
show that the time of convergence and the size of the population of the genetic algorithm 
with one or two points crossovers is exponential with the number of dependences and the 
number of sub-functions. They conclude from these results that classical genetic algorithms 
are not able to solve these difficult problems. These studies have initiated the development 
of a new evolutionary approach aiming at discovering dependences between variables and 
solving the corresponding problem. We present this approach in the next section. 

2.2 The statisticall approach 

In parallel with the continuous developments of the canonical approach, a new kind of 
genetic algorithm appeared: probabilistic model-building genetic algorithms (PMBGA) 
(Muhlenbein & Mahnig, 2001; Larranaga & Lozano, 2002). On principle the population of 
chromosomes is considered as a sample of the search space, and the algorithm builds a 
probabilistic model of this sample and uses the model to generate a new population. The 
general algorithm is: 
1. t = 0 

Generate the initial population P(t) 
2. Select S(t)  a set of promising solutions (chromosomes)  
3. Construct M a statistical model of this set  
4. Generate  O(t)  a new set of solutions from this model 
5. Create a new population P(t+1) by replacing some solutions from P(t) by solutions from 

O(t) 
t = t + 1 

6. If the stop criterion is not reached then go to (2) 

                                                 
4 In this case the used genetic algorithm consists in a fitness proportionate selection, a 
punctual mutation and a one point crossover. 
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The first works in this domain are the Bit Based Simulated Crossover (BSC) (Syswerda, 
1993), the Population Based Incremental Learning (PBIL) (Baluja, 1994) and the Univariate 
Marginal Distribution Algorithm (UMDA) (Muhlenbein & Voigt, 1996). The idea of the last 
one was to replace the recombination step by a global recombination over the complete 
population. All these algorithms extract some statistics from the population for each 
variable independently. As a consequence, their performances are very poor (in particular 
less than the performances of a strict hill-climber) when the epistasis level of the problem is 
above zero. To get around this difficulty, others PMBGA have been proposed taking into 
account the probability distribution of more than two variables simultaneously. The 
factorized distribution algorithm (FDA) (Muhlenbein et al., 1999) for example, is based on 
the construction of a model M of the dependences between variables using a Bayesian 
network (Frez, 1998). It turns out that this algorithm is very efficient if it is fed with a sample 
of adequate size (function of k as we present later) and if the problem decomposition is 
already known (the network structure is an input of the algorithm). This efficiency is not 
surprising since when a problem is decomposable in independent sub-problems its 
complexity is considerably lowered. The main difficulty lies precisely in the discovery of 
these dependences for further exploitation. 
The approach called linkage learning has been devised to treat this difficulty (Harik, 1997). 
We focus on a sub-class called probabilistic linkage learning (Pelikan, 2002) or learning a 
Bayesian network (LFDA) (Muhlenbein & Mahnig, 2001). The principle is to learn a bayesian 
network representing the dependences between the problem variables during the 
exploration of the search space by the genetic algorithm. It is the approach chosen for the 
Bayesian Optimization Algorithm (BOA) (Pelikan et al., 1999). Learning a Bayesian network 
implies two things: to discover the network structure, that is, to discover the dependences, 
and to determine the conditional probabilities associated to the edges. The conditional 
probabilities are easily estimated from the observed frequencies in the sample (the 
population) of the simultaneous occurrences of each instance of each variable. Learning the 

network is much more complex since it involves determining which one of 
2

2n possible 
networks best represents the data (the sample). It is a NP-complete problem (Chickering et 
al., 1997) and a non-exact heuristic method must be used to build the network. Therefore it 
is not possible to guarantee the quality of the network obtained. BOA uses a greedy strategy 
to build the network by adding edges successively, beginning with the empty network. The 
algorithm needs a metric to measure the quality of the network (how good the network to 
model the data is) at each step of the construction. Then the algorithm is: (1) Initialize the 
network without any edge; (2) Between the basic operations (add, remove or inverse) for all 
the possible edges, choose the operation which best increases the quality of the network; (3) 
If the stop criterion is not reached, go to (2). The metric used in BOA is the Bayesian 
Information Criterion (BIC) (Schwarz, 1978). There is no perfect measure of network quality. 
The BIC measure is sensitive to noisy data and can overestimate the number of 
dependences. The Bayesian network learning process is a non-exact heuristic based on a 
measure likely to produce errors, therefore it is not possible to guarantee that the final 
network is composed of all and only all the real dependences of the problem.  

The global complexity is )2( 32 nkTpnkO k ⋅+⋅⋅⋅  (Sastry et al., 2004). It implies that the 

choice of the edge to add at each step is not made through computing the gain in measure 
for the global network for each possible edge but is only made through the value of gain 
from the empty network to the network with one edge (the values are pre-calculated 
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in )( 2 TpnO ⋅ ).  In this case, the choices are made only according to dependences between 

couples of variables and are therefore likely to be biased by deceptive problems in which 
dependences can be discovered only when k variables are observed simultaneously. Then, 
the Bayesian network is used to generate the new population. The total complexity of the 

generation of a new population is in )( TpnkO ⋅⋅ . 

Pelikan and Goldberg (Goldberg , 2002; Pelikan, 2002) propose a convergence proof for BOA 
based on the calculation of the size of the population. The size Tp of the population can be 

deduced: )2( 05.1nO k ⋅ . However, these calculations are performed with several 

approximations. The value of Fi(X)5 is supposed to have a normal distribution in the 
population. The probabilistic model is supposed to be exact, that is being a perfect model of 
the population statistics, but it is built with a drastic heuristic (greedy) algorithm. The 
quality measure is the BIC measure, but the BD measure is used in the complexity 
calculation. Finally, and this is also true for the calculation done on the canonical genetic 
algorithm, the mutation operator is never taken into account6. However, from these 

calculations, they give the convergence proof of BOA in )( nO generations. Associated with 

the values reported about the building of the Bayesian network, the global complexity of 

BOA can be deduced: ))12(( 22
7

+⋅⋅ knkO . Pelikan and Goldberg have proposed an 

extension of BOA called hierarchical bayesian optimization algorithm (hBOA) (Pelikan et al., 
2001). Its goal is to solve multi-level deceptive problems in which there are blocks of blocks, 
each level having its own fitness sub-function. hBOA principle is similar to that of BOA 
except that hBOA uses decision graphs to store the frequency table of the dependent 
variables and uses ecological niches system within its populations.  
Recent works bring several improvements to hBOA and others PMBGA (Sastry et al.., 
2004a). A first one bears on the mutation Building-Block-Wise concept (Sastry et al.., 2004b; 
Sastry & Goldberg., 2004a; Sastry & Goldberg., 2004b). Its principle consists in the discovery 
of blocks from the probabilistic model of the population. Then, it uses a mutation operator 
acting as a strict hill-climber on the sub-space of all the possible instantiations of each block. 

Therefore, a total of 
km 2⋅  evaluations are needed if the problem is composed of m blocks 

of size k. They have extend recently this approach to the BOA method (Lima et al., 2006). 
This approach is in fact strictly equivalent to the principle of dividing a problem into 
independent sub-problems and to solve each of them independently. This is, of course, 
much faster than solving directly the global problem. For that purpose, there is still a need 
for a population that should be large enough to discover the right model and a guarantee 
that the problem is decomposable into independent sub-problems. Another work is about 
the notion of fitness inheritance  (Pelikan & Sastry, 2004). Here, the idea is to avoid explicit 
computing of the fitness of each new explored point of the search space using estimation. 
This estimation is done by inheritance of information from the previous populations. The 
probabilistic model is used to determine what the schemes are, then, for each of them, their 
contribution to the total fitness is estimated. This estimation is realized by studying the 

                                                 
5 Which is the value of the sub-function corresponding to the block of i. 
6 The mutation operator does not explicitly exist in BOA but it has its equivalent. The 
process of generation of solution from the model is able to generate block instantiations that 
are not present in the initial population. 
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fitness distribution, in the previous population, of the solutions containing these schemes. 
The estimated values are used to calculate the fitness for a fraction of the new population. In 
spite of the loss in precision due to the estimation, the global improvement in total 
computing time can be significant. 

3. Efficiency of genetic algorithms 

3.1 Definition of the Problem 

We have carried out a study on the effects of the different properties presented in section 1.2 
on the efficiency of several evolutionary algorithms. We focus on the epistasie level, the 
relative position of variables in the representation of the problem and deceptive functions. 
We have studied the classical genetic algorithm behavior on these problems, of hBOA and of 
several simple PMBGAs using different probabilistic models. The functions that we have 
used in our study are all built according to a simple model: the sum of independent sub-
functions deceptive or not. Thus, the fitness function F is defined by : 

 )()(
1

i

m

i

i XFXF ∑
=

=   (1) 

with m the number of sub-functions Fi of size k = n / m and Xi the k variables of X involved 
in the sub-function Fi. Therefore, k corresponds to the epistasie level of F. There are two 
kinds of Fi sub-functions: 

 ∑
∈
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if 
t

iF  is deceptive. 

The position of variables of each sub-function in the complete representation of a solution 
(chromosome) can be in two different configurations: adjacent and non-adjacent. In the first 
configuration the numbering of variables of Fi is as follows: 

 { } { }miwithxxxX kkikikii ,,1,,, )1(2)1(1)1( …… ∈= +⋅−+⋅−+⋅−   (4) 

In the non-adjacent configuration, the numbering of variables of Fi is as follows: 

 { } { }miwithxxxX mkimiii ,,1,,, )1( …… ∈= ⋅−++   (5) 

All tests have been realized with Athlon 1.5 Ghz processors.  
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3.2 The canonical genetic algorithm 

The genetic algorithm we have used contains a punctual mutation with a probability of 
occurrence of 0.05, a one point crossover with a probability of occurrence of 0.45 and a two 
points crossover with a probability of occurrence of 0.5. One operator at most is applied to a 
given chromosome. It uses also a tournament selection of size 10. The value of these 
parameters has few consequences on the results. The first test function is composed of 120 

variables (|X| =120) and of m = 120/k deceptive sub-functions t

iF  of size k. The values of k 

vary from 4 to 12. We use the adjacent configuration. The size of the population is calculated 

with the formula proposed by Pelikan and Goldberg, 05.12 nTp k ⋅= , in order to compare 

the performances of each algorithm in the same condition. For each k value, the presented 
results correspond to the number of run, over 60 performed each time, for which the global 
maximum has been reached in less than 100 generations. Table 1 gives the number of 
failures over 60 runs.  
 

k 4 6 8 10 12 

Nb 
failures 

58 7 0 0 0 

Table. 1. Number of failures of the classical genetic algorithm among 60 runs for each k 
value and for the adjacent deceptive function. 

The results that are obtained in term of computation time and number of generations are 
given in figure 1. Because of the huge memory that is needed to store the population for the 
higher k value (Tp = 622 592 for k = 12), we limited the size of the population to Tp = 480 000. 
We observe that the classical genetic algorithm can easily discover the right solution even in 

problems that are considered to be very difficult ones (n = 120, k ≥ 10) if the population is 
large enough. It seems also that for high epistasie level the size of the population that is 
necessary to find the maximum is smaller than the size that is required by hBOA. However 
the population size of 2400 that is used for k = 4 is too small to discover the maximum in 
most cases.  

 

Fig. 1. Average time in seconds (plain line) and average number of generations (dot line) to 
discover the global maximum depending on the size k of the sub-functions (epistasie level). 
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The second test function is the same as the first one but with a non-adjacent configuration. 

The results that are obtained are very different from those of the first function. Indeed, the 

classical genetic algorithm is unable to discover the solution (100% fails) for k values, even if 

the population size is much more important than the necessary size for hBOA. For example, 

when k = 4 the population size should be 2432 and we have used a size of 480 000! It can be 

deduced that the operators that are used to explore the search space (mutation and 

crossover) are unsuited to the structure of the problem. They produce a neighborhood that 

makes the landscape particularly hard to explore. Crossovers destroy every block, or parts 

of blocks, that were previously built since the operator inevitably separates the variables of a 

given block. Thus, two neighboring points of the landscape, that is distant of one operator 

application, are totally different considering the function to optimize. On the other hand, in 

the adjacent configuration, crossovers are optimal neighborhood operators since they 

preserve and mix most of the blocks. That explains why classical genetic algorithm 

performances are extremely good for this problem. In general, it can be concluded that, if 

the problem has unknown dependences, the configurations used are very likely to be non-

adjacent and therefore the problem is unsolvable for classical genetic algorithm. Solvable 

problems for classical genetic algorithm are those that have no or few dependences, or those 

for which a deep knowledge about the problem structure can be used to design specifically 

adapted and efficient operators. (a) The manuscript must be written in English, (b) use 

common technical terms, (c) avoid abbreviations, don't try to create new English words,  

(d) spelling: Follow Merriam Webster´s Collegiate Dictionary, Longman or Oxford 

Dictionaries. 

3.2 The hBOA algorithm 

The population size is computed with 05.12 nTp k ⋅=  and the maximum number of 

generations is 100. All the other parameters are hBOA default parameters. The first test 

function is composed of 100 or 96 variables and of m = 100/k or m = 96/k (in order that m is 

an integer) deceptive sub-functions t

iF  of size k. The k value varies from 4 to 12 and the 

variables are in an adjacent configuration. The running time of hBOA is much higher than 

the one of the classical genetic algorithm, so only 12 runs have been performed for each 

problem. The results vary much more, so each result is detailed independently. 

1. n = 100, k = 4, Tp = 2 016. The global maximum (25) has been reached for each run with 
an average number of generations of 25 and an average running time of 20 seconds. 

2. n = 96, k = 6, Tp = 7 720. The global maximum (16) has never been reached during the 12 
runs. The average value is 15.7, which is much higher than the “trap” value (14.4) and 
close to the global maximum. It is reasonable to suppose that the maximum should 
have been reached with a few more generations. The average running time was 13 
minutes. 

3. n = 96, k = 8, Tp = 30 720. The global maximum (12) has never been reached during the 
12 runs. The value that has been reached was 10.8 for each run, which is the “trap” 
value. It is reasonable to suppose that the exploration process was trapped for a long 
time in a local maximum and was not able to reach the global maximum. The average 
running time was 1 hour and 53 minutes. A second experimentation (12 runs) has been 
done with the same function but with a double size population (Tp = 61 440). The 
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average running time was 4 hour and 50 minutes. The global maximum has never been 
reached during the 12 runs and the “trap” value has been slightly overtopped with a 
value of 10.9 each time. 

4. n = 100, k = 10, Tp = 129 000. The global maximum (10) has never been reached during 
the 12 runs. The value that has been reached was 9.1 for each run, which is the “trap” 
value. It is reasonable to suppose that the exploration process was trapped for a long 
time in a local maximum and was not able to reach the global maximum. The average 
running time was 12 hours 40 minutes. 

5. n = 96, k = 12, Tp = 491 520. The average running time was 61 hours, so we have only 
done 6 runs. The global maximum (8) has never been reached during the 6 runs. The 
value that has been reached was 7.4, which is slightly above the “trap” value (7.2). It 
reasonable to suppose that the process was not definitively trapped in a local maximum 
and that the result should have been slightly improved with more generations.  

One can already observe that, contrary to what has been published, in each situation in 

which it is supposed to be efficient, hBOA cannot discover the global maximum using the 

parameters established in the convergence proofs. hBOA results, presented in the literature, 

have always been obtained with function containing few dependences (maximum 6 or 8). 

The running time became prohibitive when the level of epistasie increased and there is no 

guarantee that the global maximum is discovered or that local maximum traps can be 

escaped. Heuristics that are used during the construction of the Bayesian network and not 

evaluated in the convergence proofs possibly have dramatic consequences on the efficiency 

of the exploration process.  

During our tests, we have observed a particular sensitiveness of hBOA to the structure of 

the fitness function. To our knowledge, this phenomenon is not described in the literature 

and does not appear in the convergence calculation of  Pelikan and Goldberg. We have 

therefore carried out another series of tests (12 in each case) in order to have a better 

understanding of this phenomenon. In the previous tests, the function t

iF  for n=96, k=8 and 

Tp=30 720 was the function presented in figure 2. We have done several tests in which we 

change this function by those which are presented in figure 3 to 5. These new functions 

correspond to change in the value of the difference between the global maximum value and 

the “trap” value of the function.   Once we have changed this function but with the same 

n=96, k=8 and Tp=30 720, very different results are obtained. For the function of the figure 3, 

the same results were obtained, that is the global maximum was never reached and the 

process was trapped in a local maximum corresponding to the “trap” value 10.8. For the 

function, of the figure 4, five global maxima were obtained for twelve runs with an average 

56 generations. For the seven failed runs the average score was 11.8, which is close to the 

global maximum. For the function, of the figure 5, the global maximum was obtained for the 

twelve runs with an average 15 generations.  

During our tests, we have observed a particular sensitiveness of hBOA to the structure of 

the fitness function. To our knowledge, this phenomenon is not described in the literature 

and does not appear in the convergence calculation of  Pelikan and Goldberg. We have 

therefore carried out another series of tests in order to have a better understanding of this 

phenomenon. In the previous tests, the function t

iF  for n = 96, k = 8 and Tp = 30 720 was the 

following the one of figure 2. 
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Fig. 2. The initial trap function 

 

 

Fig. 3. The second trap function 
 

 

Fig. 4. The third trap function 
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Even though these results need to be confirmed with more of experiments, the phenomenon 

seems to be relatively clear. It seems that a too large difference value between the global 

maximum and the solutions the most similar to the global maximum (in Hamming distance) 

makes the probabilistic model harder to construct and disables the discovery of the right 

dependences. Even though the heuristic for the bayesian network of hBOA construction has 

not been described in detail, results that are obtained tend to show that it rests in, at least in 

part, univariate frequencies. Indeed, the previous series of functions increasingly favor the 

selection of vectors that are composed of a majority of ‘1’. The global maximum is the vector 

entirely composed of ‘1’. Since the functions that favor the selection of ‘1’ also favor the 

construction of a model that predicts ‘1’ at each position, these functions are logically easier 

to solve. Another possible explanation for this phenomenon can be linked to the system that 

is used in hBOA to generate the population from the model. As it is emphasized in section 

2.2, Pelikan and Goldberg’s algorithm that generates the new population is not clear as it 

does not give any clue about the initialization process. It is therefore possible that this 

initialization is done from uni or bivariate frequencies and consequently introduces a bias in 

the population in favor of the values that are instantiated in the previous generation.  
 

 

 
 
 

Fig. 5. The fourth trap function. 

All these experimentations have been realized with the adjacent configuration. We have 

done the same experimentations with the non-adjacent configuration and the results are 

practically identical. That means that hBOA is not disrupted by the relative position of 

variables that are involved in a same block. It is to be expected because the position of 

variable in the chromosome/vector in the hBOA concept is not taken into account. It is an 

important result, which has not been published, because, as we have seen in the previous 

section, the classical genetic algorithm is totally unable to escape from the local maximum 

traps. The result demonstrates that hBOA is able to discover and exploit the problem 

dependences in a complex situation if the epistasie level is reasonable and if the structure of 

the function does not prevent the heuristics of the probabilistic model building and that of 

population generation from guiding the exploration towards the global maximum. 
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4. Tables and figures 

We have tried to understand what is possible to discover if only one piece of information 

about the problem is exploited. We have studied other probabilistic models to discover the 

dependences and designed new operators based on these models. We have limited our 

model to the representation of dependences of maximum size two and we have designed an 

algorithm, a variant of a classical genetic algorithm with a tournament selection, using 

specific operators based on our model. Then, we have tested our approach on problems 

with epistasie level above two (the problems presented in section 3.1 and 3.2). The principle 

of our algorithm is as follows. The frequencies of occurrence of all the couples of variables 

instantiations that are encountered in the population are computed at each generation. 

Then, we use these statistics to measure correlations between instantiations of variables. 

Operators that are based on these measurements are used to generate new solutions for the 

new population. 

We have compared different measures to study their capacities to discover the couples of 

dependent variables among the blocks of size above two (in our test problems, the sizes of 

the blocks range from 4 to 12). We have used the following measures: 

• The conjoint frequencies of two variables instantiations: 

 }1,0{,},,1{,),( 2121 ∈∈∀== φφφφ andnjixxf ji A  (6) 

 

• The conditional probability: 

 }1,0{},,1{,)|( 11 ∈∈∀= φφ andnjixxP ji …   (7) 

 

• The mutual information ),( ji xxM : 
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• The statistical implication (Blanchard et al., 2003; Kuntz et al., 2002)  
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with 
1φ=ix

n et 
2φ=jx

n  the number of times where xi is instantiated to φ1 and xj is 

instantiated to non φ2 respectively in the whole sample of size Tp and: 
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This last measure is a value of the degree of implication between two variable instantiations. 

It has been shown as being much more sensitive than the conditional probability.  

These tests have shown that none of these four measures is able to detect the instantiations 

of two variables corresponding to their instantiation in their own block in the global 

maximum. For example, in the case of blocks of size 8, if the variables x1 to x8 belong to the 

same block and have an instantiation of ‘1’ in the global maximum and an instantiation of ‘0’ 

in the local deceptive maximum, the four measures detect the strongest dependences for 

couples of variables instantiated to ‘00’ and the weakest for those instantiated to ‘11’. Thus, 

we confirm that it seems to be impossible to discover the right dependences when all the 

variables of a same block are not considered together (in the example, it would be necessary 

to measure dependences between the 8 variables simultaneously). When dependences of a 

problem are not known, it is therefore necessary to discover them completely to find the 

global maximum. The number of combination corresponding to the total number of possible 

dependences is the number of partitions of n variables and is therefore exponential with n. 

Consequently, either a heuristic is needed, for example the one that is used in hBOA for the 

construction of the bayesian network, or some information known about the problem 

structure has to be used to determine the dependences and then solve the problem (for 

example, sort variables so that they are in adjacent configuration).  

In this perspective, we have chosen to use an information about the problem structure, i.e. 

the fact that the sub-functions are deceptive, to try to build an efficient algorithm for theses 

problems. We use a PMBGA based on the four previously defined measures. We have 

designed an extremely simple operator to generate the new population. Knowing that the 

sub-functions to be optimized are deceptive, we have chosen to favour the less frequent 

instantiations in the population after a tournament selection. Indeed, with deceptive sub-

functions, instantiations corresponding to or similar to those of the deceptive local maxima 

are present in the population and selected with higher probabilities. Consequently, 

instantiations corresponding to or similar to those of the global maxima are largely under 

represented in the sample population. Therefore, our operator consists in the random 

selection of two variables xi and xj, then in choosing among the four possible instantiations 

of these two variables the one, φiφj, with the lowest value for the measure (that is the one 

with the lowest correlation). Finally, for the instantiation φi of the variable xi, the 

instantiation of all other variables xk are chosen in the following way: 

 

 ikxxmeasurexchoice kkiik

k

≠∀=== ),(minarg)( φφ
φ

  (11) 

 

with ),( kkii xxmeasure φφ == one of the four measures previously defined. A new 

solution is then built from these instantiations. We have used this algorithm for all the 

problems that are presented in section 3.1. We have observed that, using the same 
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population size than the one that is calculated for hBOA7, the global maximum is found in 

only one generation (that is, the computation of the first random population and its fitness 

evaluation, the tournament selection, the computation of the value of one of the four 

measures and the construction of one new solution) for all the tested problems, even those 

of size 120 with blocks of size 12 ! The optimal solution is therefore discovered in few 

minutes (few seconds for the smallest problem and 5 minutes for the largest ones, the global 

complexity is in O(n2) ) for problems for which hBOA does not find the solution in several 

days of computation! Thus, with no information about the dependences and their number, 

but uniquely using the information that the function is deceptive, we have designed a 

strategy that discovers the solution in 100% of the cases in few minutes even for very 

complex problems. 

To establish the limits of our approach, we have constructed a problem composed of half 

deceptive sub-functions and half non-deceptive sub-functions. In this case, our approach is 

totally unable to discover the solution. We have modified our method to handle such mixed 

problems. We have used several operators: classical mutation and crossover, our previously 

defined operator, and several operators doing mixed instantiation choices between high and 

low value of the measures (that is choosing very highly or very lowly correlated 

instantiations). Even with these new operators our method fails to discover the optimal 

solution. It can be easily understood because the discovery of the variables that participate 

to deceptive sub-functions and those that participate to non-deceptive sub-functions is it-self 

an NP-complete problem. We have verified that those kinds of mixed problem do not 

perturb hBOA. Indeed, hBOA reaches the same performances with this kind of function as 

with complete deceptive function in section 3.2. 

5. Conclusion 

A large number of properties are involved in the intrinsic complexity of a global 

combinatorial optimization problem. We have focused our studies on two particularly 

important properties: epistasis and deceptiveness. We first show that the canonical genetic 

algorithm is unable to solve problems (even simple ones) with epistasie when no 

information is available on the nature of the dependencies. We then propose to distinguish 

two classes of strategies: (1) those based on an algorithm that is dedicated to a unique 

problem using expert knowledge on the structure of this problem - we call it the expert 

strategy -  and (2) those based on the discovery, through modeling a bias sample of the 

search space, of the structure of the function to be optimized to determine a pertinent 

neighborhood for exploration - we call it the automated strategy. We study the capability of 

these two strategies using one representative of each class: hBOA for the automated class 

and a very simple algorithm, exploiting the unique knowledge that the problem is 

deceptive, for the expert class.  Depending on the nature of the problem, either one or the 

other of these classes can be efficient. If the first one is highly dependent to the information 

exploited and therefore to the expert’s knowledge, the second one is limited if the number of 

                                                 
7 We have as well noticed that these results are still true with population of size 2 or 4 times 
smaller. 
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dependences between the problem variables is high. However we have shown that hBOA 

can really discover dependences even in non-adjacent and mixed configurations. We have 

also shown how the use of partial information on the problem structure can lead to the 

definition of a highly efficient algorithm, solving very complex problems in a few minutes. 

Future work should focus on the study of new heuristic strategies building an informative 

probabilistic model of the problem and incorporating new probabilistic measures in this 

model and on how they can be coupled with an expert strategy. Such approaches should be 

applied to real complex problems, in particular in bioinformatics (Hernandez et al., 2008; 

Armañanzas et al., 2008), to assess their efficiency to solve real problems and to examine 

what new knowledge about the problem itself the probabilistic model is able to reveal. 
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