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1. Introduction    

Optimization is an important concept in science and engineering. Traditionally, methods are 
developed for unconstrained and constrained single objective optimization tasks. However, 
with the increasing complexity of optimization problems in the modern technological real 
world problems, multi-objective optimization algorithms are needed and being developed. 
With the advent of evolutionary algorithms in the last decades, multi-objective evolutionary 
algorithms (MOEAs) are extensively being investigated for solving associated optimization 
problems, e.g. (Deb et al., 2000, Zitzler & Thiele, 1999, Yao et al., 1999, Eiben et al., 1999). An 
updated survey of Ga-based MOEAs is given by (Coello, 1999). Evolutionary algorithms are 
particularly suitable for this, since they evolve simultaneously a population of potential 
solutions. These solutions are investigated in non-dominated solution space so that the 
optimized solutions in a multi-objective functions space form a front which is known as 
Pareto surface or front. Obtaining this simultaneous solution front in a single run is an 
appealing property that it is the incentive for a fast growing interest on MOEAs in the last 
decade. Although Pareto front is an important concept, its formation is not straightforward 
since the strict search of non-dominated regions in the multi-objective solution space 
prematurely excludes some of the potential solutions that results in an aggregated solutions 
in this very space. This means Pareto surface is not fully developed and the diversity of the 
solutions on the Pareto front is not fully exercised. Conventionally, non-dominated solutions 
with many objectives are usually low in number making the selection pressure toward the 
Pareto front also low, with aggregated solutions in the Pareto dominance-based MOEA 
algorithms (Sato, 2007). The purpose of this research is to investigate this issue and provide 
effective solutions with fast convergence together with diversity of solutions is maintained 
on the Pareto front. This goal has already attracted attention in the literature (Laumanns et 
al., 2002). This work addresses this issue with a novel concept of adaptive formation of 
Pareto front. This is demonstrated with an application from the domain of architectural 
design. The method is based on relaxed dominance domains, which basically refer to a 
degree of relaxation of the dominance in the terminology of MOEAs. In this book-chapter 
contribution, the relaxed dominance concept is explicitly described and applied. The 
organisation of this chapter is as follows. Section two describes the relaxed dominance 
concept. Section three describes the adaptive formation of Pareto front in a design 
application. This is followed by the conclusions in section four. O

pe
n 

A
cc

es
s 

D
at

ab
as

e 
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Evolutionary Computation, Book edited by: Wellington Pinheiro dos Santos,  
 ISBN 978-953-307-008-7, pp. 572, October 2009, I-Tech, Vienna, Austria

www.intechopen.com



 Evolutionary Computation 

 

418 

2. Design computation subject to multiobjective optimization 

Multi-objective optimization deals with optimization where several objectives are involved. 
These objectives are conflicting or in competition among themselves. For a single objective 
case there are traditionally many algorithms in continuous search space, where gradient-
based algorithms are most suitable in many instances. In discrete search spaces, in the last 
decade evolutionary algorithms are ubiquitously used for optimization, where genetic 
algorithms (GA) are predominantly applied. However, in many real engineering or design 
problems, more than two objectives need to be optimized simultaneously. To deal with 
multi-objectivity it is not difficult to realize that evolutionary algorithms are effective in 
defining the search direction. Basically, in a multi-objective case the search direction is not 
one but may be many, so that during the search a single preferred direction cannot be 
identified. In this case a population of candidate solutions can easily hint about the desired 
directions of the search and let the candidate solutions during the search process be more 
probable for the ultimate goal. Next to the principles of GA optimization, in MO algorithms, 
in many cases the use of Pareto ranking is a fundamental selection method. Its effectiveness 
is clearly demonstrated for a moderate number of objectives, which are subject to 
optimization simultaneously (Deb, 2001). Pareto ranking refers to a solution surface in a 
multidimensional solution space formed by multiple criteria representing the objectives. On 
this surface, the solutions are diverse but they are assumed to be equivalently valid. The 
eventual selection of one of the solutions among those many is based on some so-called 
higher order preferences, which require more insight into the problem at hand. This is 
necessary in order to make more refined decisions before selecting any solution represented 
along the Pareto surface. 
In solving multi-objective optimization, the effectiveness of evolutionary algorithms has 
been well established. For this purpose there are quite a few algorithms which are running 
quite well especially with low dimensionality of the multidimensional space (Coello et al., 
2003). However, with the increase of the number of objective functions, i.e. with high 
dimensionality, the effectiveness of the evolutionary algorithms is hampered. One measure 
of effectiveness is the expansion of Pareto front where the solution diversity is a desired 
property. For this purpose, the search space is exhaustively examined with some methods, 
e.g. niched Pareto ranking, e.g. (Horn et al., 1994). However these algorithms are rather 
involved so that the search needs extensive computer time for a satisfactory solution in 
terms of a Pareto front. Because of this extensive time requirement, distributed computing of 
Pareto-optimal solutions is proposed (Deb et al., 2003), where multiple processors are 
needed. They basically share the computational task with cooperation among each other, 
making the task scalable (Hughes, 2005, Jaszkiewicz, 2004). 
The issue of solution diversity and effective solution for multi-objective optimization 
problem described above is especially the due to elimination of many acceptable solutions 
during the evolutionary computation process, in case orthogonal standard Pareto 
dominance is used. This is a kind of Greedy algorithm which considers the solutions at the 
search area delimited by orthogonal axes of the multidimensional space. To increase the 
pressure pushing the Pareto surface towards to the maximally attainable solution point is 
the main problem and relaxation of the orthogonality with a systematic approach is needed. 
By such a method next to non-dominated solutions also some dominated solutions are 
considered at each generation. Such dominated solutions can be potentially favourable 
solutions in the present generation, so that they can give birth to non-dominated solution in 
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the following generation. Although, some relaxation of the dominance is addressed in 
literature (Branke et al., 2000, Deb et al., 2006), in a multidimensional space, to identify the 
size of relaxation corresponding to a volume is not explicitly determined. In such a volume 
next to non-dominated solutions, dominated but potentially favourable solutions, as 
described above, lie. To determine this volume optimally as to the circumstantial conditions 
of the search process is a major and a challenging task. The solution for this task is 
essentially due to the mathematical treatment of the problem where the volume in question 
is identified adaptively during the search that it yields a measured pressure to the Pareto 
front toward to the desired direction, at each generation. In the adaptive process reported in 
this work, the volume is determined by genetic search for each member of the population. 
The process is adaptive, because the Pareto front is converged progressively in the course of 
consecutive generations, where the rate of convergence is determined with volume size, 
which is subject to appropriate change at each generation. In non-adaptive case, the Pareto 
front is also converged progressively; however the rate of convergence, in contrast to the 
adaptive case, is monotonically exhausted. The adaptation is explained shortly afterwards 
below via contour lines in the objective-functions space. Here the volume with dominated 
solutions is termed as relaxed dominance region and this novel concept is preliminarily 
introduced before (Ciftcioglu & Bittermann, 2008) for a non-adaptive case.  
Some important features of the latest generation MOEAs address the selection of the 
potential solutions during the optimization process, and diversity-preserving strategies in 
objective space. Next to the principles of GA optimization, in MO algorithms, in many cases 
the use of Pareto ranking is a fundamental selection method. Its effectiveness is 
demonstrated for a moderate number of objectives, which are subject to optimization 
simultaneously. With respect to the conflicting objectives in a MO optimization, one has to 
deal with the criteria as measures of the conflicts. The increased satisfaction of one criterion 
implies loss with respect to satisfaction of another criterion. Regarding to this, the formation 
of the Pareto front is based on some newly defined objective functions of the weighted N 
objectives f1, f2,…, fN which are of the form 

 
1,

( ) ( ) ( ), 1, 2,...,
j N

i i ji j

j j i

F f a f i N
=

= ≠

= + =∑x x x  (1) 

where Fi(x) are the new objective functions; aji is the designated amount of gain in the j-th 
objective function for a loss of one unit in the i-th objective function. Therefore the sign of aji 
is always negative. The above set of equations requires fixing the matrix a. This matrix has 
all ones in its diagonal elements. To find the Pareto front of a maximization problem we 
assume that a solution parameter vector x1 dominates another solution x2 if F(x1)≥F(x2) for all 
objectives. At the same time a contingent equality is not valid for at least one objective. Fi(x) 
functions define the contour lines, which form a convex hull with the coordinate axes. This 
is illustrated in figure 1. In the case aji becomes zero then the contour lines are horizontal 
and vertical and Fi(x)=fi(x). Explicitly, figure 1 shows the contour lines corresponding to two 
linear functions for a two-objective MO case. In this case the objectives are in particular 
subject to maximization. From the figure it is important to note that the point P is ultimately 
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(a)                                                                   (b) 

Fig. 1. Contour lines defining the dominated region via a reference point P (a); domains of 
relaxation that are hatched (b) 

subject to identification as an ideal solution. The point P can be sought by means of 
appropriate methodologies one of which is the method of genetic algorithm applied in this 
approach. For the search process itself, different strategies can be followed. Below, two 
strategies are described for the sake of providing insight into the search process of the multi 
objective optimization approach applied in this work. 
In one strategy the point P denotes the explicit ultimately attainable goal defined by the 
boundaries of the objective functions. The premise of the strategy is that beyond this point 
the solution is not acceptable or meaningless due to the limits of the objective functions. 
The algorithm using the orthogonal lines is called greedy MO algorithm. The modification of 
the contour lines departing from horizontal and vertical ones defines a modified solution 
space. This is shown in figure 1b by hatched areas. These areas are termed as domain of 
relaxation in this work. Solutions found in these areas are not valid Pareto solutions, 
although they seemingly are solutions. For this modified solution space the area of non-
existent solutions in the convex hull is diminished. This is at the expense of deviating from 
the strict non-dominated solution condition as shown in figure 1a. From figure 1b it should 
be noted that in case the strict non-domination condition is relaxed the Pareto front is 
smaller compared to the case of greedy search in figure 1a. However, this might be 
compensated by moving the Pareto surface forward more with pressure, so that the front 
comes closer to the point P.  This strategy in the parameter space allows selection of the 
parameters in such a way that the relaxation domains in the objective functions space come 
to existence. 
Figure 1b and its reference point serve as a conceptual explanation of the Pareto-optimality 
in order to point-out the ‘trade-off’ inherent to the relaxed dominance compared to the 
greedy dominance concept. Namely, with reference to the point P, by making the angle θ 
larger than 90 degrees the area of non-existent solutions is reduced compared to the greedy 
case. Therefore the Pareto front is allowed to establish closer to the reference point P, while 
at the same time the front is expected to be more diverse. In figure 1b it is seen how the 
greedy front comes closer to the point P through the widening of the angle θ. This is 
indicated by means of arrows. In the relaxed approach, the avoidance of aggregation to 
some extend is due to the distortion of the objective space, where the space becomes larger, 
and thus the density of solutions per unit length along the front is expected to become lower. 
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In a second strategy a hypothetical point designated as P’ denotes the explicit predefined 
sub-attainable goal. This goal is positioned somewhere in the convex hull defined via P, and 
is hopefully not far from the point P. This is shown in figure 2. It is to note that, since the 
point P is not explicitly known, the position assessment of the point P’ is a problematic 
issue. In any case P’ is a sub-optimal point implying some form of relaxation in the search 
process. In this case, the premise of the strategy is that the increased size of the area of non-
existent solutions for orthogonal search domains is compensated with the increase of the 
size of the Pareto front in the relaxed case. At the same time the area of non-existent 
solutions is reduced for relaxed search domains. This is seen from the figure 2, where Pareto 
fronts having orthogonal and non-orthogonal contour lines are shown together. Domains of 
relaxations are also indicated in figure 2b. The latter strategy in the parameter space allows 
selecting the parameters in such a way that the relaxation domains in the objective functions 
space of figure 1b do not come to existence. However, P’ may come reasonably close to P, 
while this may not happen too. In the latter case still a Pareto front can be obtained. 
However the front remains to be poor. Due to this very reason, it is noteworthy to point out 
that in effective multi-objective optimization to obtain a Pareto surface is only half of the 
task to be accomplished. The other half is to obtain an effective front at the same time. The 
second strategy may not allow the parameters to explore the whole solution space due to the 
non-convex region defined by orthogonal and non-orthogonal axes in figure 2a. From the 
figure we note that as the degree of relaxation increases, the diversity of solutions along the 
Pareto surface increases, too. This is at the expense of reduced effectiveness of the multi 
objective optimization. Therefore, for effective optimization, the degree of relaxation in the 
search process should be kept to minimum being independent of the method of search. 
Although the Pareto front concept is well defined, the formation of this front is dependent 
on the implementation of the MO algorithm. Also it depends on the nature of the 
application. One interesting application is the cone domination approach (Branke et al., 2000), 
where the aij coefficients in (1) are determined in advance, so that the optimality search is 
carried out in the F-space in place of f-space. However, the necessity of adaptive 
modification of the coefficients during the search makes the approach rather impractical in 
the higher dimensions. 
 

 
                     (a)                                                                   (b) 

Fig. 2. Contour lines defining the dominated regions in orthogonal versus relaxed search 
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For the greedy application of the MO algorithm, one uses the orthogonal contour lines at the 
point P as shown in figure 2b. In this figure the point P denotes one of the individuals 
among the population in the context of genetic algorithm based evolutionary search. In the 
greedy search many potential favourable solutions are prematurely excluded from the search 
process. This is because during the search each solution of the population is represented by 
the point P, and the dominance is measured in relation to the number of solutions falling 
into the search domain within the angle θ=π/2. This constant angle is the clear manifestation 
of the non-adaptivity of the conventional EMO algorithms. 
Based on the strategy depicted in figure 2b the search process can be relaxed in a controlled 
way concerning the trade-off between solution diversity and effective multi-objective 
optimisation. That is the mechanism pushing the Pareto front forward is well balanced. This 
is a novel approach and it is explained below. 

 
2.1 Relaxed Pareto ranking 
To avoid premature elimination of potential solutions, a relaxed dominance concept is 
implemented, where the angle θ can be considered as the angle of tolerance provided θ>π/2; 
the wider the angle beyond π/2, the more tolerant the search process, and vice versa. For 
θ<π/2, the search becomes commensurately more greedy, and θ represents the angle of 
greediness in this case. In figure 2 the trade-offs between the greedy dominance and relaxed 
dominance methods are seen. In the earlier case the solutions are expectedly more effective 
due to their non-dominance, but diverse solutions are quickly exhausted due to non-
adaptivity, and therefore the solutions are aggregated. In the latter case, the solutions are 
more diversified but preliminarily less effective. However, in the long run, the diverse 
solutions can develop to more effective solutions compared to those obtained from the 
greedy dominance approach. The implementation of the relaxed dominance approach may 
be simple in two-dimensional objective space as the hatched relaxation domain is easy to 
deal with as seen in figure 2b. However, in multi-dimensional objective space, the same 
domain goes even beyond a simple imagination. To be able to deal with the relaxed domain 
a mathematical method is developed in this work which is described below. 
Let (1) be expressed by 
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n n
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In matrix equation form, (3) becomes 
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 (4) 

where a11, a22, …, ann are equal to unity. For the sake of simplicity in the description below 
only two objectives are considered while the results are valid for any dimension. The 
objective functions for this case are given by 
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 1 1 21 2

2 12 1 2

F f a f

F a f f

= +
= +

 (5) 

In a two-dimensional coordinate system the contour lines in figures 1a, 1b and 2b are 
orthogonal and non-orthogonal respectively. The search area in the latter case includes also 
the domains of relaxation. These are added to the search area of the orthogonal system, as 
illustrated in figure 2b. 
In the non-orthogonal system the search area for the favourable solutions is wider. At the 
same time some of the solutions are not dominating the solution at the point P seen in figure 
2b. However, as a trade-off it provides more diversity at the final Pareto front, while the 
front is not entirely non-dominated. The solutions at the front are more probably non-
dominated in the middle part of the front. This is where f1 and f2 are close to each other. 
Conversely, the solutions may be more dominated at the regions close to edges of the front 
(Deb et al., 2003). This is a property of the cone dominance approach. This situation occurs 
since in the cone domination approach a greedy algorithm is applied using a non-
orthogonal system taking a reference point P as origin. By doing so, the search algorithm 
remains the same but it uses the coordinates of the new non-orthogonal system. However, 
this cone dominance approach does not address the problem of aggregation. This becomes 
especially problematic in higher multi-dimensional optimization. This means, the Pareto 
front is potentially wider in the F-space. However, without resolving the aggregation 
phenomenon the potentially wider Pareto front remains ineffective. In contrast to the cone 
dominance approach, in this work each member of the population is considered to be 
represented by point P seen in figure 2b, and the solutions falling into the relaxation 
domains are included to the non-dominated solutions, thereby accruing some dominated 
solutions to the non-dominated ones to form the next-generation solutions. This means, the 
orthogonal system is not replaced by the non-orthogonal system but the greedy non-
dominated orthogonal search space is relaxed. The relaxed domains simply contribute to the 
greedy search domain with some additional, potentially lucrative solutions. 
Interestingly, this situation is similar to the classical gradient-based optimization method 
where each iteration the step-length towards the global maxima or minima determined by a 
step-size parameter (Farhang-Boroujeny, 1998), also called convergence coefficient. The step-
size parameter should be small enough to ensure the stability of the convergence (Bazaraa et 
al., 1993, Kuester, 1973). If the step-size parameter is zero, the approach to minima or 
maxima does not occur. If it is too big, convergence does not occur, due to instability. For 
similar reasons, in the evolutionary computation the angle φ defining the relaxation domain 
should be kept small. In this way the stability of the algorithm is maintained and the 
effectiveness is enhanced. It should be noted that, although the angle φ is small it plays role 
for each population member at each generation. This makes the net effect of the relaxation 
highly significant. In the adaptive Pareto front formation cos(φ) plays the role of 
convergence coefficient defined in the gradient-based optimization. If cos(φ) is maximum, 
i.e. cos(φ)=1, greedy search in orthogonal system occurs, leading to aggregation. This can be 
considered as a kind of instability in this case. From the other side, if cos(φ) is minimal, i.e. 
cos(φ)=-1 , convergence does not occur, because the evolutionary search process becomes 
trivial in this case. This situation already occurs for φ<-3π/4, which corresponds to  
cos(φ)=–.707. This is illustrated in figure 3b. 
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                                     (a)                                                        (b) 

Fig. 3. Direction cosines in a coordinate transformation in 2-dimensional case (a); schematic 
representation of relaxation domains covering the total parameter search space as an 
extreme situation (b) 

In (4) the small-enough designation of the parameters aji is crucial for the performance of the 
evolutionary computation. They characterize the cosines of the angle between the respective 
coordinate axes. In general the angle φ is application dependent. The normalization of these 
cosines yields the directive cosines, which determine the transformation from orthogonal to 
the non-orthogonal, i.e., relaxed coordinate system. If we denote the direction cosines as qij, 
the transformation matrix becomes 
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, (6) 

which transforms the non-orthogonal system to the orthogonal system and vice versa via 

 'xQx =  (7) 

 xQx
1' −=  (8) 

where x’ denotes the non-orthogonal system  x’=[x1’,x2’, … ,xn’]T. The directive cosine row 
vectors of (4) are given by 
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.. [ .... ]
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d d d d a a a

a
=

= =

∑
 (9) 

which corresponds to column vectors in (6), so that 

www.intechopen.com



Adaptive Formation of Pareto Frontin Evolutionary Multi-objective Optimization  

 

425 

 

11 21 1

12 22 2

1 2

[ ..... ]

[ ..... ]

.............

[ ..... ]

n

n T

n n nn

d d d

d d d
D Q

d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (10) 

and 
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n
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q j n
=

= =∑  (11) 

In a two-dimensional case the directive cosines are shown in figure 3a and in relation to the 
set of transformation equations in (3), the directive cosine row vectors are given by 
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 (12) 

The coordinate transformation of point P in figure 2b is given by 
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f q q F d d F

q q d dF Ff
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 (13) 

and 
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It is interesting to note that since the cosine directive q11 in (13) given by q11=cos(φ1) is equal 
to d11 in (12), so that 

2

11 1 21cos( ) 1/ 1q aφ= = +
 

and using the relationship 

 2cos( ) 1/ 1 tan( )z z= +  (15) 

we obtain 

 
21 1tan( )a φ= ∓   (16) 

which yields (5) in terms of the transformation angles in the form 
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In a general form, (17) is given by 
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The importance of the coordinate transformation becomes dramatic especially in higher 
dimensions. In such cases the spatial distribution of domains of relaxation becomes complex 
and thereby difficult to implement. Namely, in multidimensional space the volume of a 
relaxation domain is difficult to imagine. And more importantly it is difficult to identify the 
population in such domains. Therefore one needs a systematic approach for identification 
by computation and not by inspection or anything else. This systematic approach is based 
on the coordinate transformation as follows. Basically for each solution point, designated in 
general as P in figure 2b is temporarily considered to be a reference point as origin and all 
the other solution points in the orthogonal coordinate system are converted to the non-
orthogonal system coordinate by (8). For instance for four objectives, we write 
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, (19) 

where the aij parameters determine the relaxation angles and consequently the cosine 
directives that are computed from the relaxation angle, that is modified during the search 
adaptively. The relaxation of the dominance with the adaptive process guarantees the 
prevention of aggregation. As a numerical example, for a relaxation angle of φ=ϕ=ψ=θ=7o 
and symmetry similar to that seen in figure 3 of two-dimensional case, one obtains 
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⎢ ⎥ ⎢ ⎥⎢ ⎥− − −⎣ ⎦⎣ ⎦ ⎣ ⎦

 (20) 

so that, in view of (7) the cosine direction matrix and the corresponding weighted objectives 
F1 and F2 are given by 
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 (21) 

And in view of (8) the inverse of (21) becomes 
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 (22) 

After conversion, all points which have positive coordinates in the non-orthogonal system 
correspond to potential solutions contributing to the next generation in the evolutionary 
computation. If any point possesses a negative component in the new coordinate system, the 
respective solution does not dominate P and therefore is not counted. This is because 
otherwise such a solution may lead the search in a direction away from P. In general, the 
relaxation of the dominance in higher dimensions is extremely complex and therefore many 
different methods for effective Pareto front formation in the literature (Hughes, 2005, 
Jaszkiewicz, 2004) are reported. However (8) provides a decisive and easy technique 
revealed in this work for the same goal. 

3. Adaptive formation of Pareto front in a design application 

In this section adaptive formation of Pareto front with multi-objectivity is considered. The 
formation of Pareto front is explained by means of a design example where multi-objectivity 
is subjected to a Pareto front based solution. For the multi-objective optimization a genetic 
algorithm approach with a relaxed Pareto-ranking is used. The relaxation angle is computed 
adaptively for every chromosome, and at every generation. This is implemented by having 
the angle be a part of the chromosome of every solution. The fitness of a chromosome is 
obtained by considering two properties of the solution at the same time. One is the degree of 
dominance in terms of the amount of solutions dominating an individual, the second is the 
relaxation angle used to measure this amount. This is given by 

 1

( )
fit

R
N nθ

=
+

 (23) 

 

( )
4

( )
1 /

N θ
θ θ

=
+

 (24) 

In (23) and (24) the purpose is to reward a chromosome for affording a wide relaxation 

angle θ, relative to the average angle of the population θ , and still having a low dominance 
count, denoted by n. The wide angle provides more diversity in the population for the next 
generation. However, when relaxation angle would be excessively big, the population for 
the next generation can be crowded with trivial solutions. To prevent that, in (23) the 
number of non-dominated solutions with respect to the particular solution considered 
denoted by n, is summed up with the function of the angle N(θ). This means that between 
two solutions with the same amount of non-dominated solutions, the one with the wider 
angle is preferred. This is done for every solution in the population. This implies that the 

average angle θ is changing for every generation adaptively. It is noted that the N(θ) 
appearing in (24) is, used to adjust the relative importance of relaxation angle versus count 
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n. Figure 4 shows the mean relaxation angle during the adaptive Pareto front formation by 
the genetic algorithm. The angle converges to a fixed angle of 7º as seen from the figure. This 
is a clear indication of the stochastic adaptive process. 
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Fig. 4. Variation of mean relaxation angle during the adaptive Pareto front formation by the 
GA 

Since design is an intelligent activity it is composed of several considerations which are soft 
in nature. For this reason, to invoke methods of soft computing is most appropriate. In this 
respect fuzzy-neural tree is considered as a knowledge model in this work as it is explained 
below. The application concerns the design of a building. The building consists of a number 
of spatial units, referred to as design objects, where every unit is designated to a particular 
purpose in the building. The task is to locate the objects optimally with respect to three 
objectives.  The objects are seen from figure 5. 
Object O1 is a hotel unit, O3 is a conference space, O4 and O5 are office wings, and O2 is a 
lobby with a restaurant. In order to let the computer generate a building from these parts, 
i.e. for the solution to be feasible, it is necessary to ensure that all solutions have some basic 
properties. These are that spaces should not overlap, and objects should be adjacent to the 
other objects around. This is realized in the present application by inserting the objects in a 
particular sequential manner into the site. This is illustrated in figure 5. One by one the 
objects are moved into the site starting from a point marked by a cross in the figures, then 
moving in west direction (lower part of the figures) until they reach an obstacle, that may be 
the site boundary or another object previously inserted. When they touch an object they 
change their movement direction from western to the northern direction, moving north until 
they again reach the site boundary or another object. As a third and final movement step the 
object will attempt to move once more in western direction, although often this is may not 
happen since often there is an adjacent object in the western direction blocking the way. An 
example of this third step is shown in figure 5c. The third step is to avoid that gaps between 
objects are reduced to some extend. This way of packing objects is known as bottom-left 
method in literature, and it is used mainly for packing problems. After the final object has 
been placed in this way the design is ready for evaluation. It is noted that the decision from 
which side to insert the objects, and which location to use for the insertion point is a matter 
of judgement, and it will strongly influence the solutions obtained. The insertion used in this 
application is due to the preference of the architect is to have the objects line up along the 
street, which is in western boundary of the site. 

www.intechopen.com



Adaptive Formation of Pareto Frontin Evolutionary Multi-objective Optimization  

 

429 

    
                                      (a)                                                                              (b) 

    
                                      (c)                                                                              (d) 

 
(e) 

Fig. 5. Generation process of a solution through sequential insertion of the design objects 
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Fig. 6. The structure of a neural tree 

The multi objective optimization is accomplished using a multi-objective genetic algorithm 
with a relaxed Pareto ranking. It is used to determine the optimal sequence of insertion, so 
that three objectives are maximally fulfilled. Objects are numbered, and every chromosome 
contains the information for every object, at which rank in the insertion sequence it is to be 
inserted. 
The objectives are functionality of the building, certain energy performance aspects, and 
some form related preferences. The design performance is obtained from these three 
objectives. Due to the linguistic nature of these objectives a special model is formed and 
used to assess satisfaction of the objectives. This model is a fuzzy neural tree model. In this 
model the ultimate goal is to have a good design, what we term as a design with a high 
design performance. That is, if all three objectives are highly fulfilled then the design has a 
high performance. The relation of the concept of design performance with the physical 
properties of possible solutions, which form the model inputs, is captured in the model 
through a hierarchical structure of logic operations. The method used is fuzzy neural tree. 

 
3.1 Fuzzy-neural tree modeling domain knowledge 
For human-like information processing the methods of soft computing are presumably the 
most convenient. The salient soft computing methods are in the paradigms of neural nets 
and fuzzy logic (Mitra et al., 2002). In this work a neural tree is considered to assess the 
suitability of a solution in a human-like manner. A neural tree is composed of terminal 
nodes, non-terminal nodes, and weights of connection links between two nodes. The non-
terminal nodes represent neural units and the neuron type is an attribute introducing a non- 
linearity simulating a neuronal activity. In the present case, this attribute is established by 
means of a Gaussian function which has several desirable features for the intended goals; 
namely, it is a radial basis function ensuring a solution and the smoothness. At the same 
time it plays the role of a fuzzy membership function in the tree structure, which is 
considered to be a fuzzy logic system as its outcome is based on fuzzy logic operations and 
thereby associated reasoning. An instance of a neural tree is shown in figure 6. 
Detailed structures of a neural tree are shown in figure 7. Figure 7a shows a terminal node 
connected to an inner node, and figure 8b and 8c show the connections among inner nodes. 
Each terminal node, also called leaf, is labelled with an element from the terminal set T={x1, 
x2, …,xn}, where xi is the i-th component of the external input vector x. Each link (i,j) 
represents a directed connection from node i to node j. A value wij is associated with each 
link as seen from figure 7. In a neural tree, the root node is an output unit and the leaf 
nodes, or terminal nodes, are input units. The node outputs are computed in the same way 
as computed in a feed-forward neural network. In this way, neural trees can represent a 
broad class of feed-forward networks that have irregular connectivity and non-strictly 
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layered structures. In particular, in the present work the nodes are similar to those used in a 
radial basis functions network with the Gaussian basis functions. 
 

 
                                            (a)                              (b)                                 (c) 

Fig. 7. Detailed structures of a neural tree with respect to different type of node connections 
 

 
                                         (a)                                                                      (b) 

Fig. 8. Fuzzification for two inputs (a), fuzzification where μ= μ1= μ2 (b) 

In the neural tree considered in this work the output of i-th node is denoted xi and it is 
introduced to another node j. A non-terminal node consists of a Gaussian radial basis 
function. 

 )||(||)( 2
cXwXf −φ=  (25) 

where φ(.) is the Gaussian basis function, c is the center of the basis function. The Gaussian is 
of particular interest and used in this research due to its relevance to fuzzy-logic. The width 
of the basis function σj at node j is used to measure the uncertainty associated with the 
inputs to this node, designated as external input Xj. Xj is related to the output of node i 
denoted as μi by relation 

 
j i ijX wμ=  (26) 

where wij is the weight connecting node i to node j. The centers of the basis functions are the 
same as the input weights of that node. 
The output of node j is given by 
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which reduces to  
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We can express (28) in the following form 
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This implies that the width of the Gaussian is scaled by the input weight wij. In other words, 
as to the width, the shape of Gaussian fuzzy membership function is dependent on the input 
weights wij determined by the domain knowledge. It should be noted that this is a novel 
type of computation at each node which is quite different than conventional radial basis 
function (RBF) type computation, where the centers are determined by other means, 
clustering for instance. However, a non-terminal node itself can be seen as an RBF having 
different width for each dimension. For such a node, there should be at least two inputs 
with appropriate connection weights. The connection weights of a node should be 
normalized, so that the sum of the weights becomes equal to 1. 
In figure 8 only two inputs are considered without loss of generality. The variables w13 and 
w23 are input weights determining the width of the Gaussian membership functions. It is 
noted that in the figure w13<w23. This is clear from (29). For two inputs, two distinct 
standard deviations are defined. In particular, the inputs can be equal, i.e., μ1= μ2. This 
particular case occurs when the outputs of the two nodes delivering the inputs to the node 
we are considering are equal. This case is illustrated in figure 9b. In figure 9a it is clear that, 
if w1 and w2 are equal then the AND operation is expressed by means of a single Gaussian 
denoted by g3. 

 
                                        (a)                                                                        (b) 

Fig. 9. And operation (a); linear approximation to Gaussian function (b) 
Since σj is a free parameter, by giving an appropriate width via (29), the result of the AND 
operation is given by 

 
1 2

1 2 1 2

1 2

( ) ( ) ( )

j

f f f g g

O g g

μ μ μ
μ μ μ
= =

= = = =
= ⋅

 (30) 

This is illustrated in figure 9b where the left part of the Gaussian is approximated by a 
straight line. In figure 9b, optimizing the σj parameter, we obtain 
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Fig. 10. Neural tree used to obtain fitness regarding three objectives 

 
jO μ≅  (31) 

for the values μ and Oj that can take between zero and one. In any case, for a node in the 
neural tree, (31) is satisfied for μ=Oj=0 (approximately) and for μ=Oj=1 (exact) inherently, 
while g1 and g2 are increasing function of μ1 and μ2. Therefore a linear relationship between 
Oj and μ in the range between 0 and 1 is a first choice from the fuzzy logic viewpoint; 
namely, as to the AND operation at the respective node, if inputs are equal, that is μ=μ1=μ2 
then the output of the node of μ1 AND μ2 is determined by the respective triangular 
membership functions in the antecedent space. Triangular fuzzy membership functions are the 
most prominent type of membership functions in fuzzy logic applications. For five inputs to 
a neural tree node, these membership functions are represented by the data sets given by 
Table 1 and Table 2 
 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

Table 1. Data-set at neural tree node input 
 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

Table 2. Data-set at neural tree node input 

In general, the data sets given in Table 1 and Table 2 are named in this work as ‘consistency 
conditions’. They are used to calibrate the membership function parameter σ. This is 
accomplished by optimization. 
At this point a few observations are due, as follows. If a weight wij is zero, this means the 
significance of the input is zero, consequently the associated input has no effect on the node 
output and thus also the system output. Conversely, if a wij is close to unity, this means the 
significance of the input is highest among the competitive weights directed to the same 
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node. This means the value of the associated input is extremely important and a small 
change about this value has big impact on the node output Oj. If a weight wij is somewhere 
between zero and one, then the associated input value has some possible effect on the node 
output determined by the respective AND operation via (29). In this way, the domain 
knowledge is integrated into the logic operations. 
The general properties of the present neural tree structure are as follows. 
If an input of a node is small (i.e., close to zero) and the weight wij is high, then, the output 
of the node is also small complying with the AND operation. 
If a weight wij is low the associated input cannot have significant effect on the node output. 
This means, quite naturally, such inputs can be ignored. 
If all input values coming to a node are high (i.e., close to unity), the output of the node is 
also high complying with the AND operation. 
If a weight wij is high the associated input xi can have significant effect on the node output. 
It might be of value to point out that, the AND operation in a neural-tree node is executed in 
fuzzy logic terms and the associated connection weights play an important role on the 
effectiveness of this operation.  
The neural tree employed in this work is shown in figure 10. The root node describes the 
ultimate goal subject to maximization, namely the design performance and the tree branches 
form the objectives constituting this goal. The connections among the nodes have a weight 
associated with them, as seen from the figure. The weight is given by a designer, as an 
expression of knowledge, and it specifies the relative significance a node has for the node 
one level closer to the root node. It is noted that in the multi-objective optimization case the 
weights connecting the nodes on the penultimate level of the weight tells how strongly the 
output of the lower node influences the output of the upper tree to the root node are not 
specified a-priori, but they are subject to identification after the optimization process is 
accomplished. 
During evaluation of a design alternative the tree is provided with inputs at its leaf nodes 
and the fuzzification processes are carried out. The fuzzification yields the satisfaction of an 
elemental requirement at the terminal nodes of the neural tree. These requirements are some 
desirable features expressed by means of fuzzy membership functions at the terminal nodes 
of the tree. Three examples are shown in figure 11. 
Figure 11a expresses the requirement x1 in figure 10. It demands that the conference space 
should be located close to the building services, which is an aspect of functionality, i.e. 
distance from service facilities should be low for convenient access of services. The 
requirement is fully satisfied, i.e. the membership degree μ becomes unity, when the 
distance among the objects is less than about 10m. Since distances are measured from 
geometric centres of both objects, this distance belongs to the case that both objects are 
adjacent. Distances beyond 30m mean that the conference room is not considered as being 
nearby services, so that this requirement is not fulfilled, i.e. μ becomes zero. 
Figure 11b expresses the requirement x3. It demands that the conference space should be far 
from the hotel, to avoid acoustic disturbance and to keep people flows separate. From the 
figure we see that distances beyond 40m are considered to fully satisfy this demand. From 
figure 10 we note that, comparatively the requirement in figure 11a is considered 1.5 times 
more important than figure 11b regarding the functionality of the building. 
Figure 11c expresses the requirement x19 in figure 10. It demands that the building should 
have an elongated shape. What is meant is that the shape of the floor plan should not be a 
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square, but that the shape should clearly have a longer extend in north-south direction, 
termed length, than in east-west direction, termed width. This is an aspect of form 
preferences. To express this demand the input values to this membership function are the 
proportion length/width, being unit less. From the membership function we note that a 
square proportion yields a low membership degree μ, i.e. low satisfaction of this 
requirement. The particular proportion known as golden section yields approximately a 
satisfaction degree of μ=0.5 and proportion values beyond 2.5 are considered fully satisfying 
the requirement. 
 

  
                              (a)                                                  (b)                                              (c) 

Fig. 11. Some membership functions at the terminal nodes of the neural tree in figure 10 
 

 
                                       (a)                                                              (b) 

Fig. 12. Constant performance surface (a); analysis of three Pareto fronts (b) 

In the same way other properties of the design are measured and converted into 
satisfactions using specific membership functions at the terminals. The fuzzified information 
is then processed by the inner nodes of the tree. These nodes perform the AND operations 
using Gaussian membership functions as described above. Finally this sequence of logic 
operations starting from the model input yield, the performance at the penultimate node 
outputs of the model. This means the more satisfied the elemental requirements at the 
terminal level are, the higher the outputs will be at the nodes above, finally increasing the 
design performance at the root node of the tree. Next to the evaluation of the design 
performance score, due to the fuzzy logic operations at the inner nodes of the tree, the 
performance of any sub-aspect is obtained as well. This is a desirable feature in design, 
which is referred to as transparency. 
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Having established the performance evaluation model, it is used for the evolutionary search 
process aiming to identify designs with maximal design performance. In the present case we 
are interested in a variety of alternative solutions that are equivalent in Pareto sense. The 
design is therefore treated as a multi-objective optimization as opposed to a single-objective 
optimization. In single-objective case exclusively the design performance, i.e. the output at 
the root node of the neural tree, would be subject to maximization. In the latter case, the 
solution would be the outcome of a mere convergence and any cognition aspect would not 
be exercised. In the multi-objective implementation the outputs of the nodes functionality, 
energy, and form preferences, which are the penultimate nodes, are subject to maximization. 
Their values are used in the fitness determination procedure of the genetic algorithm. 
Employing the fuzzy neural tree in this way the genetic search is equipped with some 
human-like reasoning capabilities during the search. The part of the tree beyond the 
penultimate nodes is for the defuzzification process, which models cognition, so that 
ultimately the design performance is obtained at the root node. 

 
3.2 Design performance and the Pareto front 
It is noted that generally multi-objective optimization involves no information on the 
relative importance among the objectives. Therefore, generally, Pareto optimal solutions 
cannot be distinguished without bringing into play other, i.e. higher-order criteria than the 
objectives used in the search. However, it is noted that the Pareto solutions may be 
distinguished as follows. From figure 10, at the root node, the performance score is 
computed by the defuzzification process given by 

 
1 1 2 2 3 3w f w f w f p+ + =  (32) 

where f1 is the output of the node functionality; f2 of node energy; f3 of node form preferences. 
That is, they denote the performance values for these aspects of the design, which are 
subject to maximization. The variable p denotes the design performance which is also 
requested to be maximized. In (32) w1 , w2 , and w3 denote the weights associated to the 
connections from functionality, energy, and form preferences.  It is noted that w1+w2+w3=1.  
In this design exercise, the cognitive design viewpoint plays important role. This means it is 
initially uncertain what values w1,…w3 should have. Namely, the node outputs f1, …, f3 can be 
considered as the design feature vector, and the reflection of these features can be best 
performed if the weights w1 ; …; w3 define the same direction as that of the feature vector. 
Hence the components of the unit vector along the feature vector are computed as 

 1 2
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1 2 1 2 1 2
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Normalising the components and equating them to the weights yields 

 31 2
1 2 3

1 2 3 1 2 3 1 2 3

; ;
ff f

w w w
f f f f f f f f f

= = =
+ + + + + +

 (34) 

In general, if there are n objectives at the penultimate layer of the neural tree, we can write 
that 
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Above computation implies that, the performance p for each genetic solution is given by 
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1 2

1 2
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f f f
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f f f

+ + +
=

+ + +
 (36) 

Therefore, (36) is computed for all the design solutions on the Pareto front. Then the solution 
with maximal performance is selected among the Pareto solutions. This way the particular 
design is identified as a solution candidate with the corresponding w1, w2, …., wn weights. 
These weights form a priority vector w*. In the present application (36) becomes 

 
2 2 2

1 2 3

1 2 3

f f f
p

f f f

+ +
=

+ +
 (37) 

where fn n-th output on the penultimate level of the neural tree. If for any reason this 
candidate solution is not appealing, the next candidate is searched among the available 
design solutions with a desired design feature vector and the relational attributes, i.e., w1, 
w2, …., wn . One should note that, although performance does not play role in the genetic 
optimization, Pareto front offers a number of design options with fair performance leaving 
the final choice dependent on other environmental preferences. Using (36), second-order 
preferences are identified that are most promising for the task at hand, where ultimately 
maximal design performance is pursued.   
To this end, to make the analysis explicit we consider a two-dimensional objective space. In 
this case, (36) becomes 

 
2 2

1 2

1 2

f f
p

f f

+
=

+
 (38) 

which can be put into the form 

 2 2

1 2 1 2 0f f pf pf+ − + =  (39) 

that defines a circle along which the performance is constant. To obtain the circle parameters 
in terms of performance, we write 

 2 2 2 2 2

1 2 1 2 1 1
( ) ( )f f pf pf x x y y R+ − + ≡ − + − −  (40) 

From (40) we obtain the center coordinates x1 ,y1 and the radius R of the circle in terms of 
performance as 

 1

1

/ 2

/ 2

/ 2

x p

y p

R p

=
=

=

 (41) 

The performance circle with the presence of three progressive Pareto fronts are 
schematically shown in figure 12. From this figure, it is seen that the maximum performance 

www.intechopen.com



 Evolutionary Computation 

 

438 

is at the locations where the either objective is maximal at the Pareto front. If both objectives 
are equal, the maximal performance takes its lowest value and the degree of departing from 
the equality means a better performance in Pareto sense. This result is very significant since 
it reveals that, a design can have a better performance if some measured extremity in one 
way or other is exercised. It is meant that, if a better performance is obtained, then most 
presumably extremity will be observed in this design. 
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Fig. 13. Maximum design performance obtained during the multi-objective evolutionary 
search 

 
3.3 Application results 
The results from the design with multi-objective optimization are presented in figures 13, 
and 14-17. Figure 13 shows the maximum design performance p obtained using (39). From 
figure 13 it is seen that the average maximal performance is smoothly converging to its final 
value, whereas in the case a fixed angle is used, the performance is not increasing beyond a 
certain level after a few generations. The former result is a manifestation of the stochastic 
adaptive process. It indicates the superiority of the adaptive relaxation approach proposed 
with respect to non-adaptive relaxation.  
To exemplify the solutions on the Pareto front, four resulting Pareto-optimal designs D1-D4 
are shown in figures 14-17, respectively. The left part of the figure shows the instantiation of 
the solutions in decision space. The right part of the figure shows the same solution in 
objective space together with the other Pareto optimal solutions obtained. It is noted that in 
objective space a solution is represented by a sphere. The size of the sphere indicates the 
maximal performance value of the corresponding solution. That is, a large sphere indicates a 
high maximal design performance, and conversely a small sphere indicates a low 
performance. 
Design D1 is the design among the Pareto solutions having the highest maximal design 
performance, as obtained by (37), namely p=.77. It has a high form and functional 
performance, namely .80, and .91 respectively, while its energy performance is moderate, 
being only .42. The high performance as to form is partially due to the elongated shape of the 
building body. The low energy performance is mainly due to the large surface of the 
building, and that offices O4 are exposed to the west side (lower part of the figure). These 
properties of the solution violate the energy requirements modelled in the fuzzy neural tree 
in figure 10. 
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Design D2 has a high energy performance (.83), while form and functionality are moderate 
(.54 and .41). Its maximal design performance is p=.65. The high energy performance is due 
to the more compact shape, and the fact that offices are not exposed in western direction, as 
required. 
 

  
Fig. 14. Design D1 having maximal design performance 

  
Fig. 15. Design D2 having a high energy performance 

  
Fig. 16. Design D3 having a high form performance 
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Fig. 17. Design D4 having a high functionality performance 

Design D3 has a high form related performance (.81), while functionality is low (.26) and 
energy performance moderate (.68). Its maximal design performance is p=.67. The form 
related performance is high, because the building body is rather long and its façade to the 
west side consists of an office and the hotel building, which is fulfilling the form related 
preferences in this task. Functionality is low, for instance because the lobby O2 is located far 
from the street in the west, which is undesirable according to the requirements. 
Design D4 has a high functionality (.79), while the form related performance is low (.19) and 
energy performance is moderate (.66). It design performance is p=.67. The high functionality 
is due to proximity among several objects, while hotel O1 and conference O3 are still quite 
distant from each other, as required. The low performance as to form is due to the square-
like shape of the building. 
From the results we note that all four Pareto solutions investigated, although being located 
at different extremities of the front, have shared properties. Namely the hotel object O1 is 
always located at the street corner. This means that this feature is desirable for any optimal 
solution, revealing a principle applicable to this design task. This discovery is referred to as 
innovization principle in the literature (Deb & Srinivasan, 2006). 
From the results we note that design D1 has a maximal performance that is higher than the 
other Pareto optimal designs described by factor 1.15. That is, D1 clearly outperforms the 
others regarding their respective maximal performance. This means that when there is no a- 
priori bias for any of the three objectives, it is more proficient to be less concerned with 
energy, but to aim for maximal functionality and form qualities instead in the particular 
design task at hand. That is, in absence of second-order preferences, design D1 should be 
built, rather than the other designs. 

4. Conclusions 

A novel adaptive approach for formation of the Pareto front in multi-objective optimization 
is presented. The approach is an adaptive stochastic search, where a relaxed dominance 
concept is introduced, and the relaxation angle is adapted during the search. This approach 
is a dual counterpart of gradient-based stochastic adaptive algorithms. In this duality the 
fitnessfunction is the dual of stochastic gradient, and the degree of relaxation is the dual of 
the step-size parameter. The adaptation is found to be significantly favorable for 
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convergence and diversity in the multi-objective optimization. This is demonstrated in an 
application from architectural design, where a building consisting of several volumes is 
obtained. In this design the location of the volumes relative to each other is subject to 
optimization. This is accomplished by identifying an optimal sequence of arranging the 
volumes, so that three objectives pertaining to the building are satisfied. These objectives are 
functionality, energy aspects, and form related aspects. The linguistic nature of these 
requirements is treated by using a fuzzy neural tree approach, that is able to handle the 
imprecision and complexity inherent to the concepts, forming a model. This model plays the 
role of fitness function in the adaptive MOEA, so that the search is endowed with some 
human like reasoning during the search. The designs obtained are diverse, and have a high 
design performance. This performance is the maximum suitability one can attribute to a 
solution without preference for any objectives. The location where this maximal 
performance is constant in objective space constitutes a circle for two objectives, and a 
sphere for three or more objectives etc. Using this location information and associating it 
with the Pareto front, it is shown that a solution satisfying each objective approximately 
equally yields a minimal performance among the Pareto solutions. A Pareto solution 
deviating from this equality is preferred. This situation in two dimensional cases can 
metaphorically be referred to the preference for the golden section concept in design, in 
comparison to square shape. Namely a square is considered to be visually less appealing, 
whereas the golden section is more interesting having some directionality in it. In general 
this means that designs can have a better performance if some measured extremity in one 
way or other is exercised, provided there is no preference. The results from the application 
show that in the particular task at hand one should look for designs with outstanding 
functionality, rather than a design with outstanding energy performance. This is due to the 
shape of the Pareto front. The results have shown that the goal of adaptive formation of the 
Pareto front is satisfactorily achieved, and this is demonstrated. 

Appendix - Coordinate Transform 

Let us consider the elements of an n-dimensional numerical vector x=[x1,x2, … ,xn] whose 
components represent the directions of the n basic mutually orthogonal unit vectors 

 ]1,....,0,0[,.....],0..,0,0,1[1 == nii  (I) 

which lie along the axes of reference rectangular coordinates x1, x2, …., xn in n-dimensional 
space. The numerical vector x can be expressed by 

 ∑
=
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n

k

kkn ixxxxx
1

21 ],....,,[  (II) 

Let a new coordinate system in n-dimensional space is choisen whose geometrical unit 
vectors i1’, i2’, … ,in’ in the directions of axes of the new coordinates x1’, x2’, …., xn’ are 
linearly independent and are related to the original unit vectors by the equations 
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which can be expressed as a matrix equation 

 

'
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From (III), one can write   the set of equation in the following form. 
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The geometrical vector determined by the components of the numerical vector x can be 
expressed by the components of the numerical vector x’ as follows 
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Substitution of (IV) into (V) yields 
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Comparison of (II) and (VII) yields 

 ∑
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The matrix equation form of (VIII) is given by 

 '
xQx =  (IX) 

where Q is the transformation matrix which is 
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One should note that, Q is the transpose of the coefficient matrix of the equations in (IV). In 
order that the new unit vectors be linearly independent, and hence span n-dimensional 
space, the matrix Q must be non-singular. In this case from (IX) we can write 

 xQx
1' −=  (XI) 

It may be interesting to note that, if the new unit vectors are mutually orthogonal, we obtain 

 1−== QQorIQQ
TT  (XII) 

This result implies that Q is an orthogonal matrix. 
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