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A Genetic Algorithm for  
Optimizing Hierarchical Menus 

Shouichi Matsui and Seiji Yamada 
Central Research Institute of Electric Power Industry & National Institute of Informatics 

Japan 

1. Introduction    

Hierarchical menus are one of the primary controls for issuing commands in GUIs. These 
menus have submenus as menu items and display submenus off to the side when they are 
selected. Cellular phones that have only small displays show submenus as new menus, as 
shown in Fig. 1. The performance of the menu, i.e., the average selection time of menu items, 
depends on many factors, including its structure, layout, and colours.  
There have been many studies on novel menus (e.g., Ahlström, 2005; Beck et al., 2006; 
Findlater & McGrenere, 2004), but there has been little work improving the performance of a 
menu by changing its structure (Amant et al., 2004; Francis, 2000; Francis & Rash, 2002; Liu 
et al., 2002; Quiroz et al., 2007). A very simple search method gave a fairly good 
improvement (Amant et al., 2004); therefore, we can expect further performance 
improvements by optimizing the structure. 
 

 

Fig. 1. Example of hierarchical menu for a cellular phone 

There have been many studies on menu design, menu layout from the standpoint of the user 
interface. Francis et al. were the first to optimize a multi-function display that was 
essentially the same as a hierarchical menu by using Simulated Annealing (SA) (Francis, 
2000; Francis & Rash, 2002). Quiroz et al. proposed an interactive evolution of a non-
hierarchical menu using an interactive evolutionary computation (IEC) approach (Quiroz et 
al., 2007).  O
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Liu et al. applied a visual search model of to menu design (Liu et al., 2002). They used the 
Guided Search (GS) model to develop menu designs. They defined a GS simulation model 
for a menu search task, and estimated the model parameters that would provide the best fit 
between model predictions and experimental data. Then they used an optimization 
algorithm to identify the menu design that minimized the predicted search times according 
to predefined search frequencies of different menu items, and they tested the design. Their 
results indicate that the GS model has the potential to be part of a system for predicting or 
automating the design of menus.  
Amant et al. showed the concepts to support the analysis of cellular phone menu hierarchies 
(Amant et al., 2004). They proposed a model-based evaluation of cellular phone menu 
interaction, gathered data and evaluated three models: Fitts’ law model, GOMS, and ACT-R. 
They concluded that the prediction by GOMS was the best among the three models. They 
also tried to improve menu selection time by using a simple best-first search algorithm and 
got over 30% savings in selection time.  
This chapter shows an algorithm based on the genetic algorithm (GA) for optimizing the 
performance of menus. The algorithm aims to minimize the average selection time of menu 
items by considering the user’s pointer movement and search/decision time (Matsui & 
Yamada, 2008a; Matsui & Yamada, 2008b).  We will show results on a static hierarchical 
menu of a cellular phone as an example for a device with a small screen and limited input 
capability. 

2. Formulation of the problem 

2.1 Overview 

The optimization problem of hierarchical menus can be considered as one dealing with 
placing menu items on the nodes of a tree. Let us assume a tree where the maximum depth 
is D, the maximum number of children that a node has is W, the root is the initial state, and 
menu items are on nodes. An example of a hierarchical menu in tree structure is shown in 
Fig. 2. As shown in the figure, some menu items have children; i.e. some menu items have 
submenus. The time to select the target item is the time to traverse from the root to the target 
node. The problem is to minimize the average traversal time with respect to the given search 
frequencies of menu items.  
We cannot arbitrarily arrange the menu purely for efficiency. We must respect the semantic 
relationships between the items. That is, “Ringer Volume” is under the “Settings” category 
rather than vice versa for good reason. To cope with the difficulties of representing and 
reasoning about menu item semantics, we introduce two metrics, functional similarity and 
menu granularity.  
Functional similarity is a metric that represents the similarity of two menu items in terms of 
their functions. We assume that the functional similarity takes a value between 0 and 1; 0 
means that the two items have no similarity, and 1 means that the two items have very high 
similarity. For example, it is very natural to assume that “Create New Mail” and “Favorite 
Web Site” have low similarity and that “Create New Mail” and “Inbox of Mail” have high 
similarity. We use this metric to avoid placing items with low similarity on the same 
submenu of a node. If items with low similarity are put on the same submenu, it becomes 
difficult for a user to remember the menu layout. The formal definition will be given later.  
Menu granularity is a metric that reflects the number of submenus a node has as its 
descendants. We introduce this metric to avoid placing an item that has many children and 
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an item that has no child as children of the same node. The formal definition will be given 
later.  
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Fig. 2. Tree structure of a hierarchical menu 

The problem of minimizing the average traversal time is a very difficult one because of the 
following constraints;  

• The traversal time from a node to its children is not constant; it varies depending on the 
starting and ending nodes.  

• Menu items usually belong to groups, and they have hierarchical constraints.  

• We should consider the functional similarity and the menu granularity of each item 
from the standpoint of usability. 

2.2 Formulation 
2.2.1 Notation 

Let l  be the level number, i  be the ordering number in siblings, and 
l

iv  be a node of a tree 

(Fig. 2). Moreover, let ( )= ,M V E  be a tree where { }= l

i
V v  denotes the nodes and 

{ }=
ij

E e  denotes the edges. We call the leaf nodes that correspond to generic functions 

“terminal nodes.”  
There are two kinds of menu item or node in M. One type is terminal nodes that correspond 
to generic functions, and the other is intermediate nodes. The terminal nodes cannot have 
children.  

Let iI  represent a menu item and the total number of items be N ; i.e., there are 

( 1 )= , ,A
i
I i N  menu items. Items that correspond to generic functions are less than N  and 

some items/nodes are intermediate items/nodes that have submenu(s) as a child or 

children. We assume that a menu item iI  is assigned to a node
l

iv ; therefore, we use iI  and 
l

iv  interchangeably.  We also assume that the selection probability of the terminal 

node/generic function is represented by iPr .  

2.2.2 Selection time 

The selection time 
l

it  of a menu item/node 
l

iv  on the hierarchical level l  can be expressed 

using the search/decision time 
sd

it  and the pointing time 
p

it  as follows (Cockburn et al. 

2007):  

 = + .l sd p

i i i
t t t   (1) 
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We also consider the time to reach level l ; therefore, the whole selection time iT  of a node 
l

iv  on level l  can be expressed as follows:  

 

1

0

−

=

= + .∑
j

l
j l

i i i

j

T t t   (2) 

Thus, the average selection time avgT  is defined as follows:  

 
1=

= .∑
N

avg i i

i

T PrT   (3) 

2.2.3 Pointing time 

As Silfverberg et al. (Silfverberg et al., 2000) and Cockburn (Cockburn et al., 2007) reported, 

the pointing time 
p

it  can be expressed by using the Fitts’ law as follows:  

 
2

log ( 1)= + / + ,p

i i i
t a b A W  (4) 

where the coefficients a  and b  are determined empirically by regressing the observed 

pointing time, iA  is the distance moved, and iW  is the width of the target.  
Fitts’ law describes the time taken to acquire, or point to, a visual target. It is based on the 
amount of information that a person must transmit through his/her motor system to move 
to an item – small, distant targets demand more information than large close ones, and 

consequently they take longer to acquire. Therefore the term 
2

log ( 1)/ +
i i
A W  is called the 

index of difficulty (ID),  

2.2.4 Search/decision time 

We assume that the search/decision time 
sd

it  can be expressed as follows (Cockburn et al., 

2007).  

• For an inexperienced user, the time required for a linear search is as follows:  

 = + ,sd sd l sd

i
t b n a  (5) 

where 
ln  is the number of items that a level l  node has, and the coefficients 

sda  and 
sdb  

are determined empirically by regressing the observed search time.  

• For an expert, we can assume that the time 
sd

it  obeys Hick-Hyman’s law.  

 = + ,sd sd sd

i i
t b H a  (6) 

 
2

log (1 )= / ,l

i i
H Pr  (7) 

where the coefficients 
sda  and 

sdb  are determined empirically by regressing the observed 

search time.  If we can assume that all items are equally probable, the following equation holds. 

 
2

log ( ) iff 1=     ∀ = / .l l l

i
H n Pr n  (8) 

www.intechopen.com



A Genetic Algorithm for Optimizing Hierarchical Menus  

 

49 

2.2.5 Functional similarity 

Toms et al. reported the result of generating a menu hierarchy from functional descriptions 

using cluster analysis (Toms et al., 2001). However, this approach is time consuming; 

therefore, we choose to use another one.  

We represent the functional similarity of item 
x
I  and 

y
I  by using a function ( ),

x y
s I I  

which takes a value between 0 and 1. Let us assume that generic function of each item iI  

can be specified by some words 0 1{ }= , ,Aiwl w w , and let =WL ∪ i

i

wl  be the whole 

words. Let us also assume that an intermediate node can be characterized by the words by 

which the children are specified. Let x  be a vector in which element ix  represents the 

frequency of the i -th word in its specification, and let y  be a vector of node y . Then, the 

functional similarity ( )x ys I I,  is defined as follows:  

 ( )
⋅

, =
| || |

x y

x y
x y

s I I  (9) 

Let us consider a node 
l

iv  that has m  children. The penalty of functional similarity 
l

i

s

v
P  of 

node 
l

iv  is defined as follows:  

 
1 1

0 0

(1 ( ))
− −

= =

= − , .∑ ∑l

i

m m

s

i jv

i j

P s I I  (10) 

And the total penalty 
sP  is defined as follows:  

 
0

0
∈

= .∑ l

i
l

i

s s

v

v {V v }

P P
T

 (11) 

2.2.6 Menu granularity 

The menu granularity 
l

i
v
g  of a node 

l

i
v  is defined as the total number of descendants. If 

node 
l

iv  is a terminal node, then 0=
l

i
v
g . Moreover, if node 

l

i
v  has m  children 

(
1

0 1
+ , = , , −Al

j
v j m ) whose menu granularities are

1
( 0 1)+ , = , , −A

l

j
v
g j m , then 

l

i
v
g  is 

defined as follows:  

 
1

1

0

+

−

=

= .∑l l

i j

m

v v

j

g g  (12) 

The penalty of menu granularity 
l

i

g

v
P  of node 

l

iv  is defined as follows:  

 
1 1

0 0

− −

= =

= | − | .∑ ∑l l l

i i j

m m

g

v v v

i j

P g g  (13) 
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And the total penalty 
gP  is defined as follows:  

 
0

0
∈

= .∑ l

i
l

i

g g

v

v {V v }

P P
T

  (14) 

2.2.7 Objective function 

The problem is to minimize the following objective function:  

 α β= + + ,s g

avg
f T P P   (15) 

where α  and β  are the constants that control the preference of functional similarity and 

menu granularity.  

2.3 Local/partial optimization 
2.3.1 Placing Items as children of a node 

Let us consider a node 
l

iv  on level l  that has ≤n W  children 
1
( 0 1)

+ = , , −Al

j
v j n  and 

represent the traversal time from 
l

iv  to 
1l

jv
+

, i.e., the pointing time for 
1l

jv
+

, by 
l

jt . When 

we want to place ( 0 1), = , , −A
j
I j n  menu items whose selection probabilities are 

represented by 
j

Pr  as the children of the
l

iv , the average pointing time
l

i
v
T , 

 
1

0

−

=

= ,∑l

i

n

l

j jv

j

T Pr t   (16) 

is minimized as follows:  

1. Sort 
i
I  using 

i
Pr  as the sort key in descending order, and let the result be 

( 0 1)= , , −′ Ai i nI ,  

2. Sort 
1+l

i
v  using 

l

i
t  as the sort key in ascending order, and let the results be 

 ( 1)
( 0 1)

′ + = , , −Al

i
v i n   

3. Placing ′iI  on the node 
( 1)′ +l

i
v  gives the minimum average pointing time from node

l

i
v .  

2.3.2 Optimization problem 

When menu items that are placed as the children of a node V  are given, the placement that 

minimizes the average pointing time is straightforward. Therefore, the problem is to find the 

best assignment of menu items to nodes of a tree that minimizes Equation (15), where nodes 

have a fixed capacity of W  items. There should be at least = /⎡ ⎤⎢ ⎥L N W  nodes in the tree, 

and N  items placed on some node. The first node has W  items chosen from N  items, and 

the second node has W  items chosen from −N W  items, and so on, so the search space of 

the problem is roughly ( )
− −

× × × = ! / !A L

N W N W W N LW W
C C C N W ; therefore, the problem is a 

difficult combinatorial optimization problem. For instance, consider the case of 200=N , 

10=W . The search space is roughly
20 243

200 ((10 ) ) 10! / ! ∼ .  
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3. Genetic algorithm 

3.1 Basic strategy 

Previous studies showed that breadth was preferable to depth (Kiger, 1984; Larson & 
Czerwinski, 1998; Schultz & Curran, 1986; Zaphiris, 2000; Zaphiris et al. 2003). Schultz and 
Curran reported that menu breadth was preferable to depth (Schultz & Curran, 1986). 
Larson and Czerwinski reported the results of depth and breadth tradeoff issues in the 
design of GUIs (Larson & Czerwinski, 1998). Their results showed that, while increased 
depth did harm search performance on the web, a medium condition of depth and breadth 
outperformed the broadest shallow web structure overall.  
Zaphiris studied the effect of depth and breadth in the arrangement of web link hierarchies 
on user preference, response time, and errors (Zaphiris, 2000). He showed that previous 
menu depth/breath tradeoff procedures applied to the web link domain. He also showed 
that task completion time increased as the depth of the web site structure increased.  
Zaphiris et al. also showed the results of the study investigating age-related differences as 
they relate to the depth versus breadth tradeoff in hierarchical online information systems 
(Zaphiris et al. 2003). They showed that shallow hierarchies were preferred to deep 
hierarchies, and seniors were slower but did not make more errors than their younger 
counterparts when browsing web pages.  
Because the previous studies showed that breadth was preferable to depth, we use a kind of 
breadth-first search algorithm (shown later), as the core of the proposed GA.  

3.2 Chromosome and mapping from genotype to phenotype  

A simple way to represent a solution of the problem is a tree. But there is a problem that 

genetic operators such as crossover or mutation may generate an infeasible solution; i.e., the 

tree does not contain all the generic functions. There are two ways to cope with this 

problem. The first way is to convert an infeasible solution into a feasible one and modify the 

chromosome. The other way is to use a chromosome representation that does not generate 

infeasible solutions. We base the proposed algorithm on the latter approach.  

Since breadth is preferable to depth, an algorithm that places menu items iI  one by one on 

a usable node that has the smallest node number can find a good solution. We number each 

node from root to bottom and from left to right. We use an algorithm that assigns iI  to a 

node as follows:  

1. A chromosome of the GA is a sequence of iI ; i.e., a chromosome can be represented as a 

permutation of numbers.  

2. According to the permutation, assign menu items iI  one by one to vacant positions of 

the node that has the smallest node number.  
3. If a generic function is assigned to a node, then the number of children that the node 

can have is decreased by 1.  
If we have a sufficient number of intermediate nodes, we can search enough space to find 
the optimal solution.  

Two examples of assignment according to permutation are depicted in Fig.3, where W  is 4. 

In the figure, numbers with underline (1, 2, 3) represent the intermediate nodes. Let us 

consider “Permutation 1”. In this case, we can assign “10”, “5”, and “11” to the root node. 

But we cannot assign “7” to the root node, because the root node cannot have any children if 

we did. Therefore, we should assign “7” to the next level node, and the remaining position 
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of the root node should be an intermediate node. Because there is an intermediate node in 

the root node, we can assign “1” to the root node.  

In the case of “Permutation 2”, the mapping is straightforward. The first number “1” is an 
intermediate node, so we assign it to the root node, and the number of vacant positions in 
the tree is incremented by 4. The next number “10” can be assigned to the root node, and “3” 
and “5” can be assigned to the root node. The remaining numbers are assigned to the 
children of the root nodes.  
 

 
 

Fig. 3. Mapping a permutation to a tree structure 

3.3 Local search 

We use a local search method to improve the performance of GA. The method finds an 

unused node
l

iv , i.e., finds an intermediate node that has no child, and swaps 
l

iv  with a 

node that is the sibling’s child
1l

jv
+

. Figure 4 shows an example of this procedure. In the left 

tree, the intermediate node “int2” has no child, so it is swapped with “func3”, and the result 

is the right part.  

root

func1

func2

int1

int2

func3

func4

func5

func6

root

func1

func2

func3

int1

func4

func5

func6  
                         left: before local search                              right: after local search  

Fig. 4. Local search 

3.4 Crossover and mutation 

We use a crossover operator that does not generate an invalid chromosome. As described 
above, a chromosome is a permutation of numbers; therefore, we use crossover operators 
that are developed for the representation. Based on the results of preliminary experiments, 
we chose CX (Cycle Crossover) for the crossover operator. 

We use the swap mutation as the mutation operator. Randomly chosen genes at position p  

and q  are swapped.  
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The crossover and mutation operators do not generate invalid chromosomes; i.e., offspring 
are always valid permutations.  

3.5 Other GA parameters 

The selection of the GA is tournament selection of size 2. The initial population is generated 
by random initialization, i.e., a chromosome is a random permutation of numbers. We use a 
steady state GA, for which the population size is 100, and the mutation rate is one swap per 
chromosome.  

4. Numerical experiments 

We conducted numerical experiments to confirm the effectiveness of the proposed 
algorithm. The target was a cellular phone that is used by one of the authors. The phone 
(KDDI, 2006) has 24 keys as shown in Fig. 5.  
The target phone has hardware keys for “E-mail”, “EZweb”, “Phone book”, and 
“Application”. And there is a “Shortcut”key (cursor down). The root menu thus has the four 
submenus corresponding to the hardware keys.  
 

 

Fig. 5. Key Layout of the Target Cellular Phone. 

4.1 Experimental data 
4.1.1 Pointing time and decision time 

The index of difficulty for 24×24 key pairs was calculated as follows. We measured the 
relative coordinates of the center (x,y) of each key and measured the width and height of 
each key. We calculated the index of difficulty to an accuracy of one digit after the decimal 
point. This gave us 28 groups of indexes of difficulty as shown in Table 1. We named each 
key, from top to bottom and left to right, as follows: “App”, “Up”, “Phone book”, “Left”, 
“Center”, “Right”, “Mail”, “Down”, “Web”, “Call”, “Clear”, “Power”, “1”, thru “9”, “*”, 
“0”, and “#”.  
We measured the pointing time of one-handed thumb users for the above 28 groups by 
recording the tone produced by each key press (Amant et al., 2004). There are two ways to 
measure the pointing time. Silfverberg et al. measured the time by counting the number of 
characters generated by key presses in 10 seconds (Silfverberg et al., 2000). Amant et al. 
measured the time by recording the tone produced by each key press (Amant et al., 2004). 
Because the target has keys that do not generate any character, such as cursor keys, we 
measured the time by recording the tone.  
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Unpaid volunteers participated in the experiment. We prepared 28 tasks corresponding to 
the 28 groups. The “Read Email Message” function of the phone was used during the tasks, 
except for the one task (ID=1.4, “2” to “Clear”). For the exceptional case, the “write memo” 
function (with number mode selected) was used. The participants repeated the task of 
pressing the “From” key and the “To” key 10 times for each task. The pointing time was 
calculated by subtracting the starting time of the tone of “From” from the starting time of 
tone of “To.”  
We got the following equation for predicting the pointing time, and the equation is very 
similar to the one reported by Silfverberg et al.(Silfverberg et al., 2000)1  

 
2

192 63log ( 1)(ms)= + / + .p

i i i
t A W  (17) 

Although the target phone has the ability to select a menu item by pressing a key that is 
prefixed to item title, we assumed that all selections were done by cursor movements.  
The target of this experiment was an expert; therefore, we used the following equation for 
the search/decision time (Cockburn et al. 2007)2:  

 
2

80 log ( ) 240(ms)= + .sd l

i
t n  (18) 

 
 

Example of pairs Example of pairs group 
# 

ID 
from to 

# of 
pairs 

group
# 

ID 
from to 

# of 
pairs 

1 3.7 * Up 2 15 2.3 1 3 33 

2 3.6 0 Up 3 16 2.2 2 Center 20 

3 3.5 9 Up 6 17 2.1 1 8 25 

4 3.4 8 Up 8 18 2.0 2 Call 17 

5 3.3 8 Right 17 19 1.9 1 7 21 

6 3.2 9 Down 22 20 1.8 Mail Call 7 

7 3.1 8 Down 25 21 1.7 1 5 50 

8 3.0 6 Right 28 22 1.6 1 2 16 

9 2.9 1 Up 29 23 1.4 2 Clear 9 

10 2.8 8 Center 29 24 1.3 Right Up 12 

11 2.7 1 * 33 25 1.2 1 4 21 

12 2.6 2 Right 29 26 1.1 Center Down 4 

13 2.5 1 9 29 27 0.8 Right Center 4 

14 2.4 1 0 53 28 0.0 1 1 24 

Table 1. Index of Difficulty for the Target Phone (24 keys) 

                                                 

1 
2

176 64 log ( 1)= + / +p

i i i
t A W  (ms). 

2The equation is derived from experiments conducted for a computer display, and is not for 
a cellular phone. 
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4.1.2 Usage frequency data 

We gathered usage frequency data as follows. The first author recorded the daily usage of 

each function for two months, and we generated the usage frequency data from the record. 

There were 129 terminal nodes in the data.  

4.1.3 Similarity 

We assigned three to five words to each generic function according to the users’ manual of 

the target phone (KDDI, 2006).  

4.2 Results 

We conducted the following experiments.  

• Case 1: Typical Usage: This experiment was conducted to assess the typical 
improvement by the GA. The maximum width W was 16.  

• Case 2: Limited Breadth: Although breadth is preferable to depth, pressing a far key or 
pressing a “Down” key many times is sometimes tedious. This experiment was 
conducted to see the effects of limiting the breadth. In this case, we set W to 12, 9, and 6.  

Because GA is a stochastic algorithm, we conducted 50 runs for every test case, and the 

results shown in Table 2 and Table 3 are averages over 50 runs. The two parameters for 

weights were set to 10 0α = .  and 1 0β = . . The maximum number of fitness evaluations was 

100,000.  

 
 

Case aveT (ms) (%) sP gP
Original  3331 0.0 454 793 

Local Move 2812 15.5 454 793 

Case 1 (W =16)  2036 38.9 727 1259

Case 2 (W =12)  1998 40.0 541 856 

Case 2 (W =9)  1959 41.2 402 291 

Case 2 (W =6)  2237 32.8 279 173 

 

Table 2. Improvement in average selection time 

In Table 2, “Local Move” shows the results of a local modification that places menu items 

according to their frequency, i.e., the most frequently used item is placed as the top item, 

and so on. As the table shows, the proposed algorithm can generate menu with shorter 

average selection time. Moreover, limiting the breadth gives better menus. This is partly 

because the search/decision time is proportional to log2 (n), where n is the number of items. 

As the number of items increases, the search/decision time increases; therefore, the average 

selection time increases. Limiting the breadth to 6 gave a longer selection time and smaller 

penalties.  

The original menu (Tave=3331 (ms)) and the best menu of Case 2 (9 keys) (Tave =1913 (ms)) are 

shown in Fig. 7. In the two figures, items and intermediate nodes are shown in boxes and 

the vertical ordering shows the placement in a single level menu. The box is omitted for low 

usage frequency items/intermediate nodes for the sake of saving space.  
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In Fig. 7, items with high usage frequency are placed on a smaller level and on an upper 

position. For example, the most frequently used “Inbox folder 2” which is placed under the 

“Inbox” menu in the original menu, is placed as a child of “E-Mail” in the optimized menu. 

Note also that “Shortcut” is not used in the original menu, but it is fully utilized in the 

optimized menu; frequently used URLs are placed in “Shortcut”.  

4.3 Effects of weights 

We introduced two weights for the penalties of functional similarity and of menu 

granularity. Table 3 shows the results of different weights settings for the case 9=W . The 

average selection time increased as we increasedα . The table also shows that the difference 

in average selection time was larger than that of the penalty factor of
s
P . Setting them to 

zero gave a shorter selection time, but the penalties were larger.  
There is a tradeoff among the average selection time, functional similarity, and menu 

granularity; therefore, a multi-objective approach might be a more natural formulation.  

 

α β  aveT (ms) (%) sP gP  

0.0 0.0 1837 44.9 584 448 

5.0 1.0 1935 41.9 405 278 

10.0 1.0 1959 41.2 402 291 

20.0 1.0 1990 40.3 396 300 

40.0 1.0 2066 38.0 395 309 

20.0 5.0 2011 39.6 397 274 

20.0 10.0 2028 39.1 405 260 

Table 3. Effect of weights 

4.4 Convergence speed 

Figure 6 shows fitness, average selection time, and two penalty terms in the best case 

( 9=W ). GA found a fairly good solution within 50,000 fitness evaluations. The penalty 

term of “Functional Similarity” decreased almost monotonically, but the term of “Menu 

Granularity” oscillated in the early stage. The average selection time initially decreased 

rapidly, but sometimes increased in the middle of iteration because of the penalty terms. 

5. Discussion and future work 

The experiments show that the proposed algorithm can generate better menu hierarchies for 

the target phone. Because our targets of are not limited to cellular phones, and the 

preliminary results are promising, we will apply the algorithm to wider varieties of targets 

such as Web browser bookmarks.  

In this paper, we focused on a static menu as the target; adaptive/dynamic menu (e.g., 
Ahlström, 2005; Beck et al. 2006; Findlater & McGrenere, 2004) that changes menu contents 
depending on usage will be a future target.  
The data used in the experiments, especially selection frequency data, were limited. 

Therefore, we should gather a wider variety of usage data and use that to confirm the 

effectiveness of the proposed method. 
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Left: Original menu                                          Right: Generated Menu 

Fig. 7. Original menu and best menu (W=9) 

6. Conclusion 

We proposed a GA-based algorithm for minimizing the average selection time of menu 
items that considers the user’s pointer movement time and the decision time. The 
preliminary results showed that the algorithm can generate a better menu structure. The 
target of the proposed algorithm is not limited to cellular phones. 
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