
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

8

Evolutionary Computation
in Coded Communications:

An Implementation of Viterbi Algorithm

Jamal S. Rahhal, Dia I. Abu-Al-Nadi and Mohammed Hawa
Electrical Engineering Dept.

The University of Jordan
Amman
 Jordan

1. Introduction

Quantum Computing hopefully is the future of computing systems. It still on its first steps.
The development of some quantum algorithms gives the quantum computing a boost on its
importance. These algorithms (such as Shor’s and Grover’s algorithms) proved to have
superior performance over classical algorithms [1-4]. The recent findings, that quantum
error correction can be used, showed that the decoherence problem can be solved and hence
the quantum computers can be realized [5-7]. The quantum algorithms are based on the use
of special gates applied on one, two or more qubits (quantum bits). The classical computer
uses different gates (NOT, AND, NAND, OR and XOR). Quantum gates are in many aspects
different from classical gates where all gates must be reversible. This makes the quantum

gates act as 2nx2n transformation operators, where we have n input qubits and n output qubits.
To understand the quantum bits and gates we describe the group of amplitudes that

describes the state of a quantum register as a vector. A qubit with state 0 , which is

guaranteed to read logic 0 when measured, is represented by the vector ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0

1
, and a qubit

with state 1 which is guaranteed to read logic 1 when measured is represented by the

vector ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1

0
. An arbitrary qubit state is then represented by the vector ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β
α

 as:

 10 βαϕ += (1)

where α and β are complex numbers and 1
22 =+ βα .

One important quantum gate is the Hadamard gate given by:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
=

2

1

2

1
2

1

2

1

H (2)

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
ch

w
eb

.o
rg

Source: Evolutionary Computation, Book edited by: Wellington Pinheiro dos Santos,
 ISBN 978-953-307-008-7, pp. 572, October 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Evolutionary Computation

140

When the input is 0 , Hadamard gate changes the state of the qubit to:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
=

2

1

2

1

0

1

2

1

2

1
2

1

2

1

ϕ (3)

that is, 1
2

1
0

2

1
+=ϕ . So when reading the qubit at the end, we have exactly 50%

chance of seeing a 0, and an equal chance of seeing a 1. Generalizing the above example, if

an n-qubits register originally contains the value n0 , it can be transformed using the

Hadamard gate to the superpositional state:

 ∑
−

=

12

02

1
n

x
n

x (4)

where we would see each of the 2n binary numbers x with equal probability when we
observe the register. Other gates operate similar to Hadmard gate with different matrices,
where Pauli gates are given by:

 ⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
=

10

01

0

0

01

10
Z

j

j
YX (5)

and phase gates:

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= θje0

01

j0

01
US (6)

The quantum computers use quantum gates to produce results in a faster and more efficient
way than the classical computers. Implementation of quantum computers is still in its very
beginning state, therefore, in this chapter, we need not to worry about the implementation
issues. In addition to entanglement, the strength of quantum computing comes from the
parallelism feature of the quantum computers and the fact that the quantum state is a

superposition state. Using classical bits an n bit vector can represent one of 2n symbols, but

in quantum bits an n qubits vector can represent the 2n symbols simultaneously.
Quantum Algorithms are usually organized in the following three steps:
Step 1. Initialize the quantum states.
Step 2. Apply the oracle quantum core as many times as needed.
Step 3. Measure the output states (results).
In many classical algorithms especially those used for searching mechanisms, speed and
complexity are the main limiting factors in their implementation. Viterbi decoding
algorithm is an important algorithm that is used to decode the received data when using
Convolutional or Turbo codes at the transmitter. These codes are superior in their
performance over many other types of codes. In the following we devise a quantum
algorithm to implement the Viterbi algorithm (VA) [8-15].

www.intechopen.com

Evolutionary Computation in Coded Communications: An Implementation of Viterbi Algorithm

141

2. Coded communication and quantum computation

Coded communication uses one type of channel coding that introduces a redundancy in the
transmitted data. At the receiver different techniques are used to detect the transmitted
information by correcting errors if occurred. All these techniques can be replaced by
exhaustive search for the maximum likely data that is assumed to be the correct one.
Several quantum algorithms have been designed to perform classical algorithms with
remarkable speedups. In adiabatic algorithms, the solution of the problem is encoded to the
problem Hamiltonian. Since the mechanics of the Oracle remains unknown, the encoding
process of the Hamiltonian in the adiabatic algorithm is unclear. Instead, just like Grover’s
algorithm did, the adiabatic search algorithm forms the Hamiltonian directly from the
solution state, which means we have to know the state in prior and then perform an
algorithm to show it.
Like many quantum computer algorithms, Grover's algorithm is probabilistic in the sense
that it gives the correct answer with high probability. The probability of failure can be
decreased by repeating the algorithm. Grover's algorithm can be used for estimating the
mean and median of a set of numbers. In addition, it can be used to solve NP-complete
problems by performing exhaustive searches over the set of possible solutions. This, while
requiring prohibitive space for large input, would result in a considerable speed-up over
classical algorithms.

3. The classical Viterbi algorithm

In classical communication systems a channel error correcting codes is used to detect
and/or correct errors introduced to the data while travelling in a noisy channel. One
important class of these codes is the Convolutional Code, where the data is convolved with
the code generating polynomials prior to transmitting such data to the receiver. At the
receiver, a decoding mechanism is used to recover the transmitted data, and detect/correct
errors if they happen. An optimal decoding algorithm was used for this class of codes
introduced by Viterbi [10,11]. This algorithm solves the searching problem in the trellis to
obtain the maximum likelihood path that best represents the transmitted data. This search
grows rapidly with the size of the tree and the length of the data frame. Faster search
algorithms will speed up the overall speed of the decoding algorithm. Quantum search
algorithm introduced by Grover suggested an optimal searching method that can be used in
Viterbi algorithm to speed its execution.
Viterbi decoder uses a tree search procedure to optimally detect the received sequence of

data. It performs maximum likelihood (ML) decoding. It calculates a measure of similarity

between the received signal and all the trellis paths entering each state at time. Remove all

the candidates that are not possible based on the maximum likelihood choice. When two

paths enter the same state, the one with the best path metrics (the sum of the distance of all

branches) along the path is chosen. This path is called the surviving path. This selection of

surviving paths is done for all the states and makes decisions to eliminate some of the least

likely paths in early calculation stages to reduce the decoding complexity.

The Viterbi algorithm (VA) calculates the branch metrics at each signalling interval and
searches for the minimum branch metric. It searches for the maximum possible correct
branch out of all possible branches. The total number of searches for each path (for L
signalling intervals) is given by [8,9]:

www.intechopen.com

 Evolutionary Computation

142

Fig. 1. Trellis Diagram Showing the Survivor Path.

mk

T LN += 2 (7)

where 2k is the number of possible branches from each state and 2m is the number of trellis

states. Note that, these searchs must be conducted even in the fastest classical

implementation to VA. It is worth mentioning here that the larger the number of states the

better the performance of the code (i.e. less Bit Error Rate (BER)) [10, 11]. For large number

of states and longer signalling intervals the processing delay become a limiting factor in the

implementation of such codes, especially the Turbo-Codes where more computations and

searching is required [12]. Hence the use of Quantum search algorithm might be the solution

for higher dimensionality codes as it promises in the Encryption field.

We will use an example to explain the Viterbi search technique. In this example, we transmit

a sequence of L data bits (say: 1011000) over a noisy channel. Some bits will be corrupted

during transmission, just like when you misinterpret a few words when listening to a lousy

phone connection or a noisy radio transmission. In such case, instead of receiving the above

L-sequence of bits (called hidden states), the receiver might obtain a new erroneous

sequence (called the observed sequence).

To overcome such a problem, the transmitter (called convolutional encoder) operates in a

state machine pattern, in which it can exist in a finite number of states, and instead of

transmitting the above sequence of bits, the transmitter uses that bit sequence to drive it

through the state machine. The encoder tells the receiver (the decoder) about its movement

through the state machine by transmitting a codeword (a new bit sequence) that is a result

of the state machine transitions.

The Viterbi Algorithm at the decoder side operates on that state machine assumption, and

even though the transmitted codeword (representing how the encoder went though the

different states) might be corrupted, the Viterbi Algorithm examines all possible sequences

of states (called paths) to find the one that is the most likely transmitted sequence. In VA

terminology, this is called the survivor path.

Let us consider the (rate 1/2, m = 3) convolutional code, the state machine of which is shown

in Figure 2. The notation (rate n/k, m) is widely used for convolutional codes, where the

parameter k represents the number of input bits that control movement in the state machine,

the parameter n represents the number of output bits resulting from each state machine

transition, and finally the parameter k(m – 1) (called the constraint length of the code) is

related to the number of states S in the state machine, where S = 2m. In our example code, we

have S = 23 = 8 different states.

One signaling Interval

Survivor

path

www.intechopen.com

Evolutionary Computation in Coded Communications: An Implementation of Viterbi Algorithm

143

Fig. 2. The state diagram for (rate 1/2, m = 3) convolutional code.

As illustrated in Figure 2, the transmitter can exist in only one state at any given time. The
transmitter always starts from state 000. To transmit one bit from the input data sequence,
the transmitter looks up the only two possible transitions available from the current state.
For example, if the transmitter is currently in state 100, and the input data bit is 1, the
transmitter follows the solid-line transition to state 110 and sends the codeword 00 on the
output channel. However, if the input bit is 0, the transmitter follows the dotted-line
transition to state 010 and sends the codeword 11 to the decoder.
The transmitter remains in the new state until it is time to transmit the next bit in the input
data sequence. The output codeword for any transition is decided by the numbers on the
state diagram which are predetermined by certain generating polynomials. The ones we use
in Figure 2 are G1 = [1 1 0 1] and G2 = [1 1 1 0]. Notice that one transition occurs in the state
machine for each input bit (k = 1), which results in two bits being transmitted by the encoder
over the channel (n = 2), resulting in the code rate of k/n = 1/2. If we use the input data
sequence of 1011000 in the above state machine, we get the transmitted codeword of
11111010101110.
One might think that implementing the above state machine using hardware is a complex
task, but it is actually very simple since it can be implemented using a shift register of size
(K)(k) bits and an n group of XOR gates (to give the n output bits). The shift register and the
XOR gates are connected based on the desired generating polynomials. A total of k input
bits are shifted into the register each time tick to force the state machine into another state.
Since the transmitted codeword is based on a pattern (transitions in the state machine), the
receiver can predict the movement in that machine even if some of the transmitted bits are
corrupted by noise in the channel. To do that, the receiver uses the help of a trellis diagram as
shown in Figure 3.
Figure 3 illustartes how the reciver decodes two incoming bits each time tick to decide
which of the two possible transitions (the solid-line or the dotted-line) to be undertaken.
Figure 4 shows the trasnitions that occur in the trellis for the transmitted codeword of
11111010101110, which corresponds to the input data sequcen of 1011000.

www.intechopen.com

 Evolutionary Computation

144

Fig. 3. Decoder trellis diagram for the convolutional code (rate 1/2, m = 3).

Fig. 4. Decoder trellis diagram showing the path for the input codeword of 11111010101110.

If no errors occurs while transmitting the encoder-generated codeword, the decoder will
traverse the trellis without any problems and will be able to read the original data sequence
of 1011000. However, due to errors in the channel, the receiver might read a different bit
sequence. Since the input data sequence (1011000) is composed of 7 bits, the challenge the
decoder faces is to know which of the 27 possibilities did the transmitter intend to send.
The idea is that because each 7 bit code will generate a unique trasnmitted codeword, the

decoder will search through all the 27 possible codewords that can be generated by the state

machine to see which one is closest to the received sequence. This is called the brute-force

www.intechopen.com

Evolutionary Computation in Coded Communications: An Implementation of Viterbi Algorithm

145

search method, which is computationally expensive. For example, imagine the case of 256-

bit data bit sequence, which will force the receiver to comapre the received codeword

againsts 2256 ≈ 1.2 × 1077 possibilities.

A more efficient method compared to the brute-force search is the Viterbi algorithm. In such

method, and using the trellis shown in Figure 3, we narrow the investigated codewords

(called paths) systematically each signalling interval. The algorithm goes like this: As the

decoder examines an entire received codeword of a given length, the decoder computes a

metric for each possible path in the trellis. The metric is cumulative across the whole path.

All paths are followed until two paths converge at a trellis state. Then the path with the

higher metric is kept (called the survivor path) and the one with the lower metric is

discarded. Since the path with the highest metric is kept, the decoder is classified as a

maximum-likelihood receiver.

There are different metrics that can be used to compare the received codeword with

different valid codewords, the smiplest of which is the Hamming distance, which is the dot

product between the received codeword and the original codeword (i.e., the bit agreements

between the two bit sequences). The table below shows some exmaples of how to calculate

the Hamming distance.

Data Bit
Sequence

Corresponding
Codeword

Received Sequence
(due to errors)

Bit Agreement
(Hamming

metric)

0101111 00 11 11 10 10 01 11 10 11 10 10 10 11 10 10/14

0101100 00 11 11 10 10 10 11 10 11 10 10 10 11 10 10/14

1011000 11 11 10 10 10 11 10 10 11 10 10 10 11 10 13/14

1010110 11 11 10 01 10 10 10 10 11 10 10 10 11 10 10/14

1011011 11 11 10 10 10 00 10 10 11 10 10 10 11 10 11/14

To illustrate the idea of Viterbi search, we show in Figure 5 the case of decoding the
codeword 11111010101110 corresponding to the data bit sequcen 1011000. An error occurs in
the second bit, thus leading to the received bit sequence of 10111010101110.
The decoder starts at state 000, just like the encoder. From this point it has two possible

paths available, which should be decided by the incoming bits. Unfortunately, the two

incoming bits are 01, which do not match 00 or 11. Hence, the decoder computes the path

metric (Hamming distance) for both transitions and continues along both of these paths. The

metric for both paths is now equal to 1, which means that only one of the two bits was

matched with the incoming 01 sequence.

As the algorithm progresses while traversing multiple paths, we notice that certain paths
start to converge at different states of the trellis (see the fourth, fifth, sixth, … signalling
intervals). The metrics are shown in Figure 5. Since maximum likelihood is employed, the
decoder discards the path with the lower metric because it is least likely. This discarding of
paths at each trellis state helps to reduce the number of paths that have to be examined and
gives the Viterbi method its efficiency. The survivor paths are shown in darker color in
Figure 5.
Once the whole codeword is traversed through the trellis, the path with the highest metric is

chosen as the final path, which is 11111010101110 in our example corresponding to the input

data sequence of 1011000.

www.intechopen.com

 Evolutionary Computation

146

Fig. 5. Decoder trellis diagram showing the path for the input codeword of 10111010101110.

It is worth mentioning that building the receiver hardware is much more difficult compared
to the transmitter hardware. This is because we need to save path history for the algorithm
to work. The length of the trellis diagram decides the memory storage requirements for the
decoder, which is (in classical hardware) usually reduced by a truncation process.
Truncation also reduces latency since decoding need not be delayed until the end of the
transmitted codeword. Such truncation can be avoided if a parallel search is done through
multiple paths at the same time.

4. The quantum Grover’s algorithm

Grover’s search algorithm in quantum computing gives an optimal, quadratic speedup in
the search for a single object in a large unsorted database [1-4]. It can be generalized in a
Hilbert-space framework for both continuous and discrete time cases. As shown in Figure 6,
Grover’s algorithm initializes the search space by creating an equal superposition of n qubits

n

1ϕ (the superscript denotes n qubits) by applying the Hadmard Transform H. Then it

applies the function f(x) (The Oracle) that is equivalent to a gate operator called the C gate.
This function is given by:

⎩
⎨
⎧

=
≠

=
r

r

x

x
xf

1

1

1

0
)(

ϕ
ϕ

 (8)

where
rx is the required search result. The C operator will reverse the sign of the state

(rotate by π)
1ϕ that most represents the required search result (this argument will be used

www.intechopen.com

Evolutionary Computation in Coded Communications: An Implementation of Viterbi Algorithm

147

later in defining the oracle function used in our proposed implementation) and leave all other states
unchanged.

Fig. 6. Block Diagram of One Stage Basic Grover’s Algorithm.

After applying C the result is flipped around the mean by the H and P operators. H is the

Hadamard gate and P is the controlled phase shift operator gate, which for arbitrary 1φ and

2φ is given by:

 ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

j

j

e0

0e
φ

φ

P (9)

Then in matrix form we can see that:

1ϕN

out Ux = (10)

Where:

NNNNN CHPHU = (11)

The superscript N denotes that it is an NxN operator. Applying the Grover’s gate (G) r times

to find the final search result, where:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=
−

−

paths

paths

N

N
r

1
sin2

1
cos

1

1

 (12)

we see that as ∞→pathsN the searching order)(pathsNOr → . Next we discuss the use

of Grover’s algorithm for implementing Viterbi algorithm.

G

f(x)

Oracle

n0

1 H

H H HP

Flip around the mean

outx

n

1ϕ

GA Or represented as

www.intechopen.com

 Evolutionary Computation

148

5. Implementation of VA using Grover’s Search Algorithm

Viterbi decoder searches all possible branches at each signalling interval in the code tree.

This requires storage of all paths including the survivor path, computation of each branch

metric and a decision making to select the survivor path. In quantum theory the

components are somehow different, we have a register containing a certain number of

qubits, an arbitrary transformation applied on these qubits and a measuring mechanism that

measures the state of each particular qubit.

The quantum VA can be viewed as a global search in all the possible paths in the decoding

trellis. This means that for a classical Convolutional Code with (n,k,m) parameters, L

signalling symbols and the number of trellis states is 2m, from equation (7) we see that the

total number of possible paths is km

T LN += 2 when using the VA. We propose a single

search quantum viterbi algorithm (SSQVA) and a multi search quantum viterbi algorithm

(MSQVA).

6. Single Search Quantum Viterbi Algorithm (SSQVA)

In this algorithm all the NT paths are searched at once for the closest state to the received

signal qubits producing a search order of)(TNO . Then the total number of searches is

given by:

 22

km

TSSQVA LNN

+

== (13)

This requires large storage (especially for huge number of signalling intervals and number

of trellis states). Figure 7 shows the block diagram of the SSQVA.

Fig. 7. Block Diagram of Single Search Quantum Viterbi Algorithm (SSQVA).

The SSQVA can be summarized as:

1. Convert the received classical data bits into qubits
n

r
x .

2. Initialize the Grover’s search engine.
3. Apply the search on all possible paths.
4. Measure the output and map it back to classical bits.
Following the nature of the classical VA, where multi-stages are implemented, we devise the

Multi Search version (MSQVA) as follows:

outx

n0

1
H

H H H

NSSQVA Stages

f(x)

Oracle

P

Flip around the
n

1ϕ

 Classical

Bits
Map to

qubits

n

rx

www.intechopen.com

Evolutionary Computation in Coded Communications: An Implementation of Viterbi Algorithm

149

Fig. 8. Block Diagram of Multi Search Quantum Viterbi Algorithm.

7. Multi Search Quantum Viterbi Algorithm (MSQVA)

The NT paths can be searched for the closest state to the received signal qubits in distributed

fashion (Multi Search). For each stage we search only the corresponding tree branches and

then combine the searches to the survivor path. This will produce a search order of

)(MSQVANO . Where the total number of searches is given by:

 22

km

MSQVA LN

+

= (14)

This requires less storage but as we can see larger number of searches. Figure 8 shows the

block diagram of the MSQVA.

The MSQVA can also be implemented iteratively using the same one stage (the repeated

stage shown in Figure 8).

The MSQVA can be summarized as:

1. Convert the received classical k data bits into groups of k qubits
k

r
x .

2. Initialize the Grover’s search engine.
3. Apply the search on all possible paths.
4. Measure the output and map it back to classical bits.
5. Go to step 1.
The MSQVA version is implementing the VA iteratively as its classical nature; therefore, it

has higher searching order. The advantage of the MSQVA is that the same hardware setup

is used every iteration.

In both SSQVA and MSQVA the function f(x) is the black box of the algorithm. It differs
according to the application of the VA. For example if VA is used as a Convolutional Code
Decoder the function f(x) will decide in favour of the state that is closest to the received
state. This means that the equality might not hold for all the received qubits. Then the
function becomes:

www.intechopen.com

 Evolutionary Computation

150

⎩
⎨
⎧

≅
≠

=
r

r

x

x
xf

1

1

1

0
)(

ϕ
ϕ

 (15)

Then, the flipping around the mean transformation will amplify the most probable state and

hence the result will be the maximum likelihood decision. Note that, f(x) still has the same

implementation as in Grover’s algorithm, since Grover’s algorithm produces the most

probable search result.

The implementation of quantum algorithms is in its first steps; therefore, only theoretical

performance evaluation is possible. Figure 9 shows a comparison of the classical VA and

the two devised algorithms at different frame lengths and number of states.

Fig. 9. Search Order as a function of Frame Length (L) for the Classical VA, MSQVA and
SSQVA for m=4 and k=4.

8. Results and conclosions

In this chapter we discussed the use of quantum search algorithm introduced by Grover to

speed the execution of Viterbi’s algorithm. Two methods were discussed to implement VA

using quantum search algorithm: The first is the SSQVA where the search domain contains

all possible paths in the code tree. The number of paths depends on the signalling length

(received data frame length). This domain becomes very large when long frames are used.

The SSQVA is optimal in the global sense, because it uses all possible solutions and obtains

the best one that has the minimum number of differences. The second method is the

MSQVA where the search is divided into multiple stages just like in the classical algorithm.

This method produces a sub optimal solution from speed point of view, since it uses the

search algorithm partially at each signalling interval.

www.intechopen.com

Evolutionary Computation in Coded Communications: An Implementation of Viterbi Algorithm

151

9. References

[1] L. K. Grover. “A fast quantum mechanical algorithm for database search.” In the
Proceedings of the 28th Annual ACM Symposium on the Theory of Computing. pp:212–
219, May 1996.

[2] L. K. Grover. “Quantum mechanics helps in searching for a needle in a haystack.” Phys.
Rev. Lett. 79(2):325–328, July 1997.

[3] L. K. Grover. “Quantum computers can search rapidly by using almost any
transformation.” Phys. Rev. Lett. 80(19):4329–4332, 1998.

[4] P. W. Shor. "Quantum Computing." Documenta Mathematica, Extra Volume ICM 1998 I,
pp. 467-480.

[5] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge ; New York : Cambridge University Press, 2000.

[6] J. Gruska, Quantum Computing. McGraw Hill, 1999.
[7] Isaac L Chuang, Neil Gershenfeld and Mark Kubinec. “Experimental Implementation of

Fast Quantum Searching,” Phys. Rev. Lett. 80(15):3408–3411, April 1998.
[8] John G. Proakis & Massoud Salehi, “Digital Communications,” 5th Edition, McGraw Hill

Higher Education, 2008.
[9] Bernard Sklar, “Digital Communications : Fundamentals and Applications”, 2nd

Edition, Prentice Hall PTR, 2001.
[10] Shu Lin and Daniel J. Costello, Jr. Error Control Coding, Fundamentals and Applications.

Prentice Hall, 1982.
[10] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm,” IEEE Transactions on Information Theory, vol. IT-13, pp. 260–
269, April 1967.

[11] G. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61, pp. 268–278, March
1973.

[12] L. Hanzo, T.H. Liew, B.L. Yeap, Turbo Coding, Turbo Equalisation and Space-Time Coding,
John wiley, 2002.

[13] Elton Ballhysa, “A Generalization of the Deutsch-Jozsa Algorithm and the Development
of a Quantum Programming Infrastructure.” M.S. Thesis, Boğaziçi University, 2004.

[14] Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, Daniel
A. Spielman. “Exponential algorithmic speedup by a quantum walk.” STOC’03, 59-
68. 2003.

[15] A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi. “Classical and Quantum Computation.”
American Mathematical Society, 2002.

www.intechopen.com

 Evolutionary Computation

152

Bibliography

Jamal Rahhal received the B.S. degree from the University of Jordan in 1989, the M.S. and
Ph.D. from Illinois Institute of Technology, Chicago IL, in 1993, 1996 respectively. He is
currently an assistant professor at the University of Jordan. His current research areas
including; CDMA\OFDMA cellular communication systems, array processing, quantum
computing and optimization.

D. I. Abu-Al-Nadi received BS from Yarmouk University- Jordan, MS from Oklahoma State
University-USA, and PhD from the University of Bremen-Germany all in Electrical
Engineering, in 1987, 1991, and 1999, respectively. He is currently an associate professor at
the University of Jordan. His current research areas are array processing, quantum
computing, pattern recognition, and applications of Neural Networks and Fuzzy Systems.

Mohammed Hawa received his B.S. degree from the University of Jordan in 1997, the M.S.
from University College London in 1999 and Ph.D. from University of Kansas, USA in 2003.
He is currently an Assistant Professor at the University of Jordan. His current research areas
include: communication networks, quantum computing and Quality-of-Service.

www.intechopen.com

Evolutionary Computation

Edited by Wellington Pinheiro dos Santos

ISBN 978-953-307-008-7

Hard cover, 572 pages

Publisher InTech

Published online 01, October, 2009

Published in print edition October, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book presents several recent advances on Evolutionary Computation, specially evolution-based

optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern

recognition and bioinformatics. This book also presents new algorithms based on several analogies and

metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In

this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to

discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on

the field of evolutionary computation and applied sciences. The intended audience is graduate,

undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this

field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jamal S. Rahhal, Dia I. Abu-Al-Nadi and Mohammed Hawa (2009). Evolutionary Computation in Coded

Communications: an Implementation of Viterbi Algorithm, Evolutionary Computation, Wellington Pinheiro dos

Santos (Ed.), ISBN: 978-953-307-008-7, InTech, Available from:

http://www.intechopen.com/books/evolutionary-computation/evolutionary-computation-in-coded-

communications-an-implementation-of-viterbi-algorithm

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

