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1. Introduction 

Robotic systems need to be context-aware in order to adapt their tasks to the different states 
of their environment. This context-awareness does not only imply the detection of the 
objects which are near the robot but it also includes the tracking of people who collaborate 
with it. Thus, human-robot interaction tasks become more natural and unobtrusive because 
robots are able to change their behaviour depending on this context information. 
In industrial environments, these context-aware systems should also guarantee the safety of 
human operators who interact with industrial robots. Therefore, a precise localization of all 
the limbs of the body of the operator has to be determined. In this chapter, the use of an 
inertial motion capture system for tracking full-body movements of the operator is 
described. It is composed of 18 IMUs (Inertial Measurement Units) attached to the body of 
the operator which determine the rotation angle of each joint. It has several advantages over 
other motion capture technologies: easy installation, self-containment, occlusions-free and 
precise rotational measurements. However, it accumulates a small error (drift) in the 
estimation of the global translation of the human operator in the environment which 
becomes considerable after several movements of the operator. Therefore, an additional 
location system based on UWB (Ultra-Wide Band) signals has been added to correct this 
drift accumulation. 
The features of both tracking systems are complementary. The inertial motion capture 
system registers accurate joint rotation angles at a high rate while the UWB location system 
estimates global translation in the environment at a low rate. The combination of these 
systems will reduce the drawbacks of each one with the advantages of the other one. On one 
hand, the global translation measurements of the UWB system will correct the accumulated 
drift of the motion capture system. On the other hand, the high rate measurements of the 
motion capture system will complete the periods of time when there are not any 
measurements from the UWB system.  
Firstly, a simple fusion algorithm of both tracking systems is presented. This first fusion 
algorithm transforms measurements from the two systems in the same coordinate system by 
recalculating the transformation matrix each time a new measurement from the UWB 
system is received. This approach relies heavily on the accuracy of the measurements from 
the UWB system because the transformation matrix recalculation assumes that the last UWB 
measurement is completely correct. Thus, errors in UWB measurements are not considered 
and only the translational errors of the motion capture system are corrected. Furthermore, 
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when there is a considerable distance between the last measurement from the motion 
capture system and the last measurement from the UWB system, significant gaps appear in 
the final trajectory returned by the fusion algorithm. Another fusion algorithm which takes 
into account UWB errors has been developed in order to overcome these drawbacks and 
obtain more continuous trajectories. This second fusion algorithm is based on a Kalman 
filter.  
This chapter is organized as follows. First of all, the two tracking systems are described in 
detail in section 2. In section 3, the fusion algorithms developed to combine the 
measurements of these systems are explained and compared with previous research. In 
section 4, several experiments are presented in order to compare the accuracy of both fusion 
algorithms. The Kalman filter algorithm is applied in a human-robot interaction task. 
Finally, the conclusions of this chapter and future research are presented in section 5. 

2. Overview of the tracking systems 

2.1 Inertial motion capture system 
A system based on inertial sensors has been selected because it has several advantages over 
other motion capture sensor technologies (Welch &  Foxlin, 2002). It is comfortable for the 
user because it does not limit his/her movements like mechanical motion capture systems. 
Its measurements are not negatively influenced by magnetic distortions like magnetic 
systems. Finally, it does not suffer from occlusion problems like optical systems.  
The inertial motion capture system used in the present research (Animazoo, 2008) is 
composed of 18 small IMUs (Inertial Measurement Units) attached to a lycra suit (Fig. 1a) 
which is worn by a human operator. Each IMU (Fig. 1b) estimates the orientation (roll, pitch 
and yaw) of the operator’s limb to which it is attached by combining the measurements 
from three miniaturized gyroscopes, three accelerometers and three magnetometers  
 

 

Fig. 1. Components of the inertial motion capture system: (a) suit, (b) IMU, (c) MPU,  
(d) wireless modem, (e) controller PC and (f) skeleton structure. 
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(Foxlin et al., 1998). All the IMUs are connected to a MPU (Main Processing Unit, Fig. 1c) 

which recovers orientation measurements and sends them wirelessly to a controller PC (Fig. 

1d and Fig. 1e). This PC calculates the global translation of the user in the environment with 

a software algorithm with determines the length of the user’s steps. Limbs’ rotations 

registered by the IMUs are applied over a 3D skeleton (Fig. 1f) which represents the basic 

structure of the human operator. 

Orientation measurements returned by these IMUs have a resolution of 0.1º and an accuracy 

of 1º in yaw and 0.25º in roll and pitch. These rotational errors are small enough for most 

industrial applications. Nevertheless, the accuracy of the global translation measurements 

estimated by the footstep extrapolation algorithm is not specified by the manufacturer. A set 

of experiments has been developed in order to quantify the translational error of the system. 

In these experiments, a person who is wearing the motion capture suit walks along a linear 

path of different lengths (200, 300 and 400cm). The error values obtained by comparing 

translation measurements from the motion capture system and actual distances of the 

experiments are shown in Table 1. These errors are very high for industrial purposes and an 

additional localization system is needed in order to correct them. The following section 

describes the UWB location system which has been used in this chapter. 

 

Distance 

(cm) 

Minimum 

error 

Maximum 

error 
Mean error 

Standard 

Deviation 

200 16.70 66.04 40.10 17.92 

300 15.33 69.54 37.92 20.97 

400 35.43 64.23 51.09 10.67 

Table 1. Global translation error statistics (in cm) in the motion capture system. 

2.2 UWB location system 
A location system based on UWB pulses has been used because it has some advantages over 

other wireless indoor location systems (Liu et al., 2007). The small temporal duration of 

UWB pulses makes them less susceptible to multipath fading and interferences than other 

radio-frequency technologies. In addition, the infrastructure that has to be installed in the 

workspace is smaller than other technologies (e.g. ultrasound) because sensors have a bigger 

operating range. 

The UWB system used in this chapter (Ubisense, 2008) consists of two kinds of hardware 

devices: sensors (Fig. 2a and Fig. 2b) and tags (Fig. 2c). Sensors are situated at fixed positions 

in the localization area. Tags are small devices, of similar size to a credit card, which are 

carried by the user. The tag sends UWB pulses to the sensors, which use a combination of 

TDOA (Time-Difference of Arrival) and AOA (Angle of Arrival) techniques to estimate the 

3D location of the user who is carrying the tag (Ubisense, 2007). 

The UWB sensors are connected to an Ethernet switch (Fig. 2d) and send the location 

information to a controller PC (Fig. 2e) which estimates the global position of the tag in the 

coordinate system of the UWB system. Slave sensors are also connected to a master sensor 

for synchronization in the TDOA algorithm. 
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Fig. 2. Components of the UWB location system: (a) master sensor, (b) slave sensors, (c) tag, 
(d) Ethernet switch and (e) controller PC. 

3. Sensor fusion algorithms 

The experiments described in Table 1 have shown that translational measurements from the 
motion capture system have high error values (larger than 60cm in many cases). The UWB 
localization system obtains more accurate position measurements with errors smaller than 
15cm. Nevertheless, the sampling rate of the UWB system (5-9Hz) is not high enough to 
track quick human movements in industrial environments. On the other hand, the inertial 
motion capture system supplies high data rates (30-120Hz). 
Since both tracking systems have complementary features, their combination will make the 
most of their advantages. UWB measurements will be used to correct the accumulated drift 
in the position estimated by the motion capture system. Position measurements from the 
motion capture system which are obtained between each pair of UWB measurements will be 
used to reduce the latency of the UWB system. Thereby, the resulting system from the 
fusion of both trackers will have a higher sampling rate and a better accuracy than each 
system separately. Rotational measurements for each joint (obtained directly from the IMUs) 
will remain unchanged because they are accurate relative rotation transformations in the 
skeleton structure of the motion capture system. 
In the following sections, two algorithms for combining the measurements of both tracking 
systems are explained in detail. The first algorithm is a simple approach where the 
measurements of both systems are transformed to the same coordinate system and each 
UWB measurement is used to correct the following motion capture measurements. The 
second algorithm is based on a Kalman filter which has been modified in order to 
incorporate the measurements of the two tracking systems. 

3.1 Transformation recalculation algorithm 
The first step to combine global position measurements of both tracking systems is to 

represent them in the same coordinate system. The frame U of the UWB system is a fixed 

coordinate system in the workspace because it is established according to the static positions 
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where the UWB sensors are installed. However, the frame I of the inertial motion capture 

system is a dynamic coordinate system because it is established in the place where the user 

is standing every time the system is initialized. The frame U of the UWB system has been 

selected as the reference coordinate system because it is able to compare the position of the 

human operator with the position of static objects (like machinery) in the environment. 

XY planes of the U and I frames are parallel to the plane of the floor in the environment. 

Therefore, between the motion capture frame and the UWB frame there is only a translation 

and a rotation about the Z axis. Equation (1) is used to transform a point p from frame I to 

frame U: 

 ( ) ( ), , ,U U I U I
I x y zp T p Trans t t t Rot z pα= ⋅ = ⋅ ⋅   (1) 

The development of equation (1) results in the following equation: 

 

( ) ( )
( ) ( )

cos sin 0

sin cos 0

0 0 1

0 0 0 11 1

U I
x

U I
y

U I
z

tx x

ty y

tz z

α α
α α

⎡ ⎤ ⎡ ⎤⎡ − ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

  (2) 

The parameter α  is a known constant value which represents the angle between the Y axis 

of the frames U and I. Therefore, the only unknown of the transformation matrix UTI are the 

three coordinates of the translation vector between frame U and frame I. They can be 

calculated from equation (2) by substituting two corresponding measurements of both 

systems: 

 ( ) ( )cos sinU I I
xt x x yα α= − +  (3) 

 ( ) ( )sin cosU I I
yt y x yα α= − −   (4) 

 U I
zt z z= −  (5) 

After obtaining the transformation matrix UTI, all the translational measurements from the 

motion capture system will be transformed to the UWB frame by applying equation (1). 

However, if the transformation matrix UTI  is calculated only when the system is initialized 

(with the first two measurements), the motion capture system will accumulate translational 

errors through time. The measurements from the UWB system have to be used in order to 

correct these errors. Therefore, this transformation matrix is estimated each time a new 

UWB measurement is received ( U
uwbp ). The following measurements from the inertial motion 

capture system ( inertialp ) are transformed from the I frame ( I
inertialp ) to the U frame ( U

inertialp ) by 

applying this new transformation matrix. These transformed measurements are used as 

estimates of the global position of the operator in the environment. The transformation 

recalculation corrects the accumulated translation errors from the motion capture system 

while the high rate of its measurements is maintained. The complete fusion algorithm is 

summarized in Fig. 3. 
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Fig. 3. Diagram of the transformation recalculation fusion algorithm. 

3.2 Kalman filter algorithm 
3.2.1 Previous work on Kalman filtering sensor fusion 
Pose (position and orientation) estimation by inertial sensors is a well-studied field with 
applications in: vehicle navigation, virtual reality (VR), augmented reality (AR), robotics and 
human motion capture. Positions and orientations are calculated by integrating 
accelerations and angular rates respectively returned by accelerometers and gyroscopes. 
This dead reckoning process introduces a small error (drift) which is accumulated through 
time and becomes considerable in a few seconds. Location systems based on inertial sensors 
usually include additional sensors (e.g. GPS, ultrasound, magnetic, cameras, UWB and 
WiFi) which return absolute pose measurements in order to correct the inertial drift. In these 
hybrid location systems, Bayes filtering techniques (Fox et al., 2003) are generally used to 
estimate probabilistically the system’s pose (state) from the noisy measurements of the 
sensors (observations). Kalman filters are the most commonly used technique to implement 
Bayesian filters. Different adaptations of the Kalman filter (Simon, 2001) have been 
proposed in previous work in order to combine measurements from several sensors. The 
two adaptations more commonly used are: the complementary Kalman filter and the 
definition of several channels (measurement models) in the correction step of the filter. 
A complementary Kalman filter is an easy way to integrate several sensors measurements in 
a Kalman filter because the internal structure of the filter is not changed. Complementary 
Kalman filters estimate sensors errors instead of direct measurements. They receive as input 
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the differences between the sensors measurements. (Foxlin, 1996) develops an IMU based on 
a complementary Kalman filter for head-tracking in virtual environments. It is composed by 
three orthogonal angular rate gyroscopes, a two-axis inclinometer and a two-axis compass. 
This system estimates errors in orientation (from the inclinometer and the compass) and 
angular rate (from the gyros). The complementary Kalman filter has also been used by 
(Foxlin, 2005) in a navigation system which tracks the location of a pedestrian from two 
IMUs mounted on his/her shoes and a GPS receiver. (Roetenberg et al., 2007) presents a 
human motion capture system which uses the differences between an inertial tracking 
system and a magnetic tracker in position and orientation as the measurement updates for a 
complementary Kalman filter. 
(Caron et al., 2006) extends the definition of the Kalman filter to include measurements from 
multiple sensors (an IMU and a GPS receiver) in the correction step. This Kalman filter has 
one measurement model for each sensor type which is weighted according to fuzzy context 
variables. These fuzzy variables represent sensors data reliability and are used to reject bad 
measurements. (You &  Neumann, 2001) develops a similar solution where an extended 
Kalman filter with two independent correction channels combines position measurements 
from a camera and orientation measurements from three orthogonal rate gyroscopes. 

3.2.2 Description of the proposed algorithm 

The generic Kalman filter algorithm (Simon, 2001) has been adapted to incorporate sensor 

measurements from the two tracking systems. The state of the Kalman filter is modelled by 

two parameters at each step t: the state estimate ˆ
tp  and the error covariance matrix tP . The 

state tp  is composed by the coordinates ( ), ,t t t tp x y z=  of the global position of the human 

operator in the environment. These two parameters are calculated by the Kalman filter in 

two steps: prediction and correction. The prediction step uses a state evolution model where 

the a-priori estimate of the state ˆ
tp−  is obtained from the current measurement of the inertial 

motion capture system t
inertialp  plus a Gaussian noise t

inertialw : 

 ˆ t t
t inertial inertialp p w− = +  (6) 

This model is implemented in the Kalman filter prediction step using the following two 
equations: 

 ˆ t
t inertialp Ap− =   (7) 

 1
T

t tP AP A Q−
−= +  (8) 

The matrix A  represents the state transition model of (6) and thus it is a 3x3 identity matrix 
which uses the last measurement from the motion capture system as the current state estimate. 

In the correction step, measurements from the UWB system t
uwbp  are modelled from the last 

state estimate of the prediction step ˆ
tp−  plus a Gaussian noise t

uwbw : 

 ˆt t
uwb t uwbp p w−= +   (9) 

This measurement model is implemented in the Kalman filter correction step using the 
following three equations: 
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 ( ) 1T T
t t tK P H HP H R

−− −= +   (10) 

 ( )ˆ ˆ ˆt
t t t uwb tp p K p Hp− −= + −   (11) 

 ( )t t tP I K H P−= −   (12) 

Position measurements from the UWB system are used as observations t
uwbp  in this step in 

order to correct the predicted position ˆ
tp−  calculated from the motion capture system. The 

matrix H  represents the measurement model of (9) and it is a 3x3 identity matrix because 

UWB measurements have the same dimension as the state. 
Error covariance matrices (Q and R) of the Kalman filter are 3x3 diagonal matrices because 

error components are not correlated. The diagonal terms of both matrices represent the 

variance of error of each tracking system (motion capture and UWB, respectively) and have 

been adjusted experimentally in order to reduce the errors in the final state estimates. 

The implemented algorithm is depicted in Fig. 4. The prediction step (equations (7) and (8)) 

is executed when a measurement from the inertial motion capture system is received while 

the correction step (equations (10), (11) and (12)) is executed when UWB measurements are 

received. The main advantage of this algorithm over previous sensor fusion techniques  
 

 

Fig. 4. Diagram of the Kalman filter fusion algorithm. 
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based on Kalman filtering (see section 3.2.1) is that only one step of the algorithm 

(prediction or correction) is executed each time a measurement is obtained. Thereby, the 

execution time of the algorithm is smaller. In addition, the prediction step of the developed 

algorithm adjusts better to changes in the movements of the operator because it uses real 

position measurements from the inertial motion capture system. Previous Kalman filter 

algorithms implement theoretical kinematic models which suppose that the velocity (You &  

Neumann, 2001) or the acceleration (Caron et al., 2006; Roetenberg et al., 2007) of the 

operator can be represented as a constant value plus a Gaussian noise. 

Although this approach implies executing the correction step with a lower rate than the 

prediction step, this fact does not imply a dramatic reduction in the accuracy of the 

estimated states. The error accumulated by the motion capture system between each pair of 

UWB measurements is not significant and it is not accumulated for future motion capture 

measurements after a new UWB measurement is received. This is because the corrected state 

estimate obtained from the last UWB measurement is used to recalculate the transformation 

matrix U
IT  between the frames of both tracking systems. This new transformation matrix is 

applied to the subsequent measurements from the motion capture system and thus the error 

of the previous measurements is removed. 

4. Experimental results 

4.1 Comparison between the fusion algorithms 
Some experiments have been performed to compare the accuracy of the two fusion 

algorithms presented in the previous sections. A human operator wearing the motion 

capture suit and a UWB tag has walked along two different pre-established paths: a linear 

trajectory (3m) and a rectangular trajectory (8m). Each trajectory has been repeated fifteen 

times. These measurements are processed in two Matlab functions which implement the two 

fusion algorithms. 

In Fig. 5a, original measurements from the UWB system and the motion capture (MoCap) 

system in an experiment of the linear trajectory are represented in the same coordinate 

system. This plot shows the advantages and disadvantages of both tracking systems. On one 

hand, motion capture measurements have a higher sampling rate but they accumulate an 

error which increases through time. On the other hand, UWB measurements have a smaller 

sampling rate but do not accumulate errors through time.  

Fig. 5b and Fig. 5c depict the position estimates obtained from the fusion algorithms. The 

trajectories obtained by the Kalman filter algorithm (Fig. 5c) are more continuous than the 

trajectories from the transformation recalculation algorithm (Fig. 5b). In addition, the 

position estimates of the Kalman filter have smaller errors than those of the transformation 

recalculation algorithm (Fig. 5d).  

In Fig. 6a, Fig. 6b and Fig. 6c, an experiment of the rectangular trajectory is represented and 

similar results are obtained. The estimates obtained from the Kalman filter are more precise 

than those from the transformation recalculation algorithm (Fig. 6d). The higher accuracy of 

the Kalman filter estimates is due to the fact that this algorithm takes into account the errors 

of both tracking systems while the transformation recalculation algorithm only corrects the 

errors of the motion capture system. The transformation recalculation algorithm uses the 
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UWB measurements as correct positions in order to calculate the transformation matrix and 

thus correct the motion capture errors. However, the errors of the UWB system are not 

corrected and cause discontinuities in the trajectories (Fig. 5b and Fig. 6b). In conclusion, the 

Kalman filter fusion algorithm obtains more accurate position estimates and continuous 

trajectories and it will be used to implement human-robot interaction tasks where the 

human operator has to be localized precisely. 
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Fig. 5. Linear trajectory experiments: (a) original position measurements from both tracking 
systems in experiment no. 14; (b) position measurements obtained from the transformation 
recalculation algorithm in experiment no. 14; (c) position estimates obtained from the 
prediction and correction steps of the Kalman filter algorithm in experiment no. 14; (d) mean 
error and standard deviation of the position estimates from the two fusion algorithms in the 
15 linear path experiments. 
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Fig. 6. Rectangular trajectory experiments: (a) original position measurements from both 
tracking systems in experiment no. 3; (b) position measurements obtained from the 
transformation recalculation algorithm in experiment no. 3; (c) position estimates obtained 
from the prediction and correction steps of the Kalman filter algorithm in experiment no. 3; 
(d) mean error and standard deviation of the position estimates from the two fusion 
algorithms in the 15 rectangular path experiments. 

4.2 Application in a human-robot interaction task 
The global position measurements obtained from the Kalman filter fusion algorithm and the 
joint rotations registered by the motion capture system are applied to the skeleton model of 
the human operator in order to perform human-robot interaction tasks. In Fig. 7, a 
collaboration task between a robotic manipulator (Mitsubishi PA-10) and a human operator 
is shown. The main frames of the task are depicted with the corresponding models of the 
human operator and the robot. In this task, the robotic manipulator has to remove two 
connectors from a metallic structure in order to leave them in a storage box. However, the 
collaboration of a human operator is needed because the unscrewing of the connectors is a 
difficult action to be performed by one robot. 
Firstly, the operator unscrews the first connector (Fig. 7a and Fig. 7b). When the operator 
has finished the unscrewing process, the robotic manipulator begins to move towards the 
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structure by using a time-independent visual sevoing technique (Garcia et al., 2007) in order 
to grab the unscrewed connector (Fig. 7c). The end of the unscrewing process is determined 
by the tracking of the human operator. In particular, the robot does not begin its task until 
the distance between the end-effector of the robot and the operator is greater than a safety 
threshold (1m). While the robot is removing the first connector from the structure, the 
human operator unscrews the other connector (Fig. 7d). When the human operator has 
finished unscrewing the second connector, he leaves the robotic workspace (Fig. 7e). Finally, 
the manipulator places the first connector inside the storage box (Fig. 7f). The removing of 
the second connector has not been depicted in Fig.7 for the sake of clarity but it is very 
similar to the processing of the first connector. 
 

   

   

              (a)                                    (b)                                           (c) 

   

   

                  (d)                                       (e)                                             (f) 

Fig. 7. Sequence of 6 frames of a human-robot interaction task. The skeleton of the human 
obtained from the tracking systems by using the presented Kalman filter algorithm and the 
model of the robot are depicted below each frame. 

5. Conclusions 

In this chapter, two different algorithms have been developed to combine position 
measurements from two human tracking systems: an inertial motion capture system and a 
UWB location system. The first algorithm recalculates the transformation matrix between 
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the coordinate systems of both trackers each time a UWB measurement is received. The 
error accumulated by the inertial motion capture system is therefore removed because the 
following measurements are transformed to the UWB frame with this new transformation 
matrix. However, this approach considers the UWB measurements as completely correct 
data and ignores their errors. The errors of the UWB system are not corrected and they are 
transferred to the measurements obtained from the fusion algorithm.  
The second fusion algorithm is based on a Kalman filter and solves the drawbacks of the 
first algorithm. The Kalman filter algorithm models the errors of both tracking systems and 
takes them into account to estimate the position of the human operator. Several experiments 
have been developed to verify that this algorithm based on a Kalman filter obtains more 
accurate position estimates and more continuous trajectories than the first algorithm. In this 
algorithm, the prediction step of the Kalman filter is executed when measurements from the 
inertial motion capture system are received and the correction step is only executed when 
measurements from the UWB system are obtained. Thereby, this Kalman filter algorithm 
has a better computational cost than previous Kalman filter fusion algorithms which 
complete both steps of the filter (prediction and correction) each time a new measurement is 
received. 
Finally, the position estimates obtained from the Kalman filter algorithm and the rotations 
from the motion capture system have been applied to a human skeleton model in order to 
develop a real collaborative task between a human operator and a robotic manipulator. In 
this task, the real-time tracking of the human operator does not only guarantee the safety of 
the operator but also determines the behaviour of the robot. Thus, the robot does not start its 
trajectory until the human has finished the previous task and is at a safety distance from the 
robot. 
In future work, the movements of the skeleton should be interpreted in order to understand 
behaviours of the human operator and thus develop more complex collaboration tasks 
between robots and humans. 
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