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1. Introduction 

In this chapter, the receding horizon Kalman filter is applied to underwater navigation 
systems. The ocean covers about two-thirds of the earth and has a great effect on human 
beings. However, the ocean is overlooked while we focus our attention on land and 
atmospheric issues; we have not been able to explore the full depths of the ocean, its 
abundant livings and non-living resources. For example, only recently we have discovered, 
by using manned submersibles, that a large amount of methane and carbon dioxide comes 
from the seafloor and extraordinary groups of organisms live in hydrothermal vent areas. 
However, a number of complex issues due to the unstructured and hazardous undersea 
environment make it difficult to survey in the ocean even though today’s technologies have 
allowed humans to land on the moon and robots to travel to Mars. 
Unmanned underwater vehicles (UUVs) can help us better understand marine and other 

environmental issues, protect the ocean resources of the earth from pollution, and efficiently 

utilize them for human welfare. The UUV is a platform for a variety of sensors: acoustic, 

magnetic, gravimetric and chemical ones. Most commercial UUVs are tethered and remotely 

operated, referred to as remotely operated vehicles (ROVs). Extensive use of manned 

submersibles and ROVs are currently limited to a few applications because of very high 

operational costs, operator fatigue and safety issues. The demand for advanced underwater 

vehicle technologies is growing and will eventually lead to fully autonomous and reliable 

underwater vehicles. Autonomous underwater vehicles (AUVs) were initially developed to 

perform missions that were not easy for ROVs and manned underwater vehicles. Since the 

autonomy allows AUVs to be used for risky missions such as a mine countermeasure 

(MCM) or under-ice operations, AUVs are replacing ROVs towed vehicles as well as 

manned underwater vehicles (Whitcomb, 2000). For detailed ocean surveys, an AUV acts as 

a more stable platform for precision sensors than ROVs or towed vehicles because an AUV 

is not subject to physical disturbances transmitted along the cable to the surface vessel. This 

absence of physical attachment also allows AUVs to measure ocean characteristics at specific 

depths and perform bottom-following missions as owing to its autonomy. In short, An AUV 

provides marine researchers with a new form of access to deeper ocean. 

For an AUV to successfully complete a typical survey mission, it must follow a path 
specified by the operator as closely as possible and arrive at a precise location for collecting 
data. When an AUV is not able to follow the path accurately during the mission, critical 
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features may not be recorded and the position of any features during the mission will be 
uncertain. When the final position of an AUV is not accurate, the AUV may even be 
unrecoverable. Since AUVs normally carry out missions in wide, unstructured and highly 
dynamic environments, an accurate and ‘reliable’ navigation system is required. Thus the 
most important part of an AUV is the navigation system. 
There are many navigation systems for underwater vehicles. Global positioning system 
(GPS) based navigation systems offer good navigation solutions due to the absolute 
positioning capability (Farrell & Barth, 1999). However, the drawback of the GPS based 
navigation systems is that the AUVs need to rise to shallow water depths in order to 
communicate with satellites, which is a time and energy consuming task (Marco & Healey, 
2001). An alternative to the GPS based devices is an acoustic based positioning system 
(Larsen, 2000, Lee et al., 2004). An acoustic system uses external sound emitting beacons in 
order to triangulate its position. While precise, navigation based on this type of device 
incurs a high cost and limits the mission space to the area covered by the beacons. Dead 
reckoning systems, such as the inertial navigation system (INS) or the Doppler velocity log 
(DVL), estimate the position of an AUV with respect to the initial position by measuring 
linear and angular velocities and/or accelerations. Using this type of sensor offers a 
practical and inexpensive navigation method. Nevertheless, these sensors accumulate drifts 
over time because position errors tend to increase with any new measurement. 
Unlike ground and aerial vehicles, an AUV presents a uniquely challenging navigational 
problem because it operates autonomously in a highly unstructured environment where 
satellite based navigations such as the GPS are not directly available. In this respect, many 
AUVs basically navigate with the help of underwater navigation systems which are 
comprised of optimal filters and sensors such as an inertial measurement unit (IMU), a DVL, 
a current meter and a magnetic compass. 
The primary challenge of navigation systems for AUVs is maintaining the accuracy of the 
position of the AUVs over the course of a long mission. An initially accurate position may 
quickly become uncertain through variations in the motion of the AUVs. While this effect 
can be reduced by using accurate acceleration, heading and velocity sensors, but these 
sensors cannot be made as accurate as required. During long missions, these inaccuracies 
become significant. Temporal and strong currents or other underwater disturbances that 
affect the motion of the AUV cannot be precisely modelled in advance and these may 
deteriorate the accuracy further. If the position of an AUV is not externally referenced, the 
position accuracy will inevitably degrade over the course of the mission. The absence of an 
easily observable, external reference makes the navigation of AUVs very difficult. External 
references must be used for any AUV navigation systems that yield to an accurate 
navigation over long missions. 
As stated above, the navigation system may employ multiple measuring devices to enhance 
the accuracy and reliability of the system. This practice becomes important because existing 
systems can be upgraded by supplementing more accurate and economic navigation 
devices. This implies the necessity of finding a new way of sharing and merging data 
obtained from the various devices. Since the data collected by each device represent only 
partial information of the phenomenon under survey, a process of ‘sensor data fusion’ is 
required in order to acquire complete information. With measurement fusion, some 
measured data for both steady and unsteady systems are passed directly to the fusion centre 
for centralized Kalman filter. Because of its relatively lower state estimation errors, the 
measurement fusion is a widely used method (Titterton & Weston, 1997). 
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However, it is well known that an AUV often experiences position errors caused by 
environmental disturbances as mentioned above. This is particularly the case for an inertial 
navigation system with velocity measurement and when the standard Kalman filter is 
influenced by the action of temporary currents (Jo et al., 2006). This is the reason why robust 
filters for navigation systems have been studied (Yu et al., 2004, Seo et al., 2006). This article 
focuses on the receding horizon Kalman filter (RHKF), which is a kind of robust filter. 
The estimation of the state of a dynamic system by using the measurement obtained from 
the most recent time is defined in various ways, including fixed memory, receding horizon 
or sliding window estimation (Bierman, 1975). These estimation methods were originally 
reported in the work of Jazwinski (1968). Since then, the estimation method has been widely 
used in many application areas, where measurement uncertainties hinder the proper use of 
the Kalman filter. 
Finite impulse response (FIR) filters utilize finite measurements over the most recent time 
interval. FIR structured filters have actually become a standard filter commonly used 
because they are more robust against numerical errors and temporary uncertainties than 
infinite impulse response (IIR) structured filters, which utilize all measurements on the 
infinite interval. 
Kwon et al. (1989) and Kwon et al. (1999) suggested the use of optimal FIR filters and the 
receding horizon Kalman FIR filter for discrete linear time invariant systems for state 
estimation. When using these filters, error covariance is minimized in discrete-time 
stochastic state-space models. The optimal FIR filter has several advantages over existing 
optimal filters such as the cerebrated Kalman filter, which is a kind of an optimal IIR filter. 
Since the optimal FIR filter utilizes finite measurement over the most recent time interval, it 
is robust against temporary modelling and measurement uncertainties that may cause a 
divergence of the estimated state. Divergence was a problem for the optimal IIR structured 
filter. An optimal FIR filter can be effectively derived by modifying the Kalman filter 
because the Kalman filter is easy to use and widely applied in many engineering problems. 
In this article, the standard Kalman filter is combined with the receding horizon strategy 
which has already been adopted in many optimal control and estimation methods. We 
denote it as the RHKF for time-varying systems. 
The velocity-aided inertial navigation system is relatively underdeveloped for underwater 
applications, although it has been proven to be a good method for land applications (Marco 
& Healey, 2001). The DVL is a kind of measuring device used for velocity information. 
However, the DVL can give reliable velocity information to AUVs only when the AUVs 
cruise close to the bottom or the surface. Current meters are used more often for an AUV 
than the DVL devices because current meters measure the relative speed between the AUV 
and the surrounding fluid. The devices have no limit of relative distances to surface or 
bottom. The disadvantage of current meters is that their accuracy may be deteriorated by 
ocean current. In general, the ocean current often occurs temporarily and its magnitude can 
exceed the speed of the vehicle. In this case, the velocity-aided navigation system with the 
Kalman filter is deteriorated by temporary disturbances. In the worst case, the position error 
of the system may even ‘blow up’. However, as it will be shown, the underwater navigation 
system based on the RHKF is robust against temporary disturbances. Therefore the current 
meters can be used for an accurate the velocity-aided navigation system for AUVs with help 
of the RHKF. 
The statistical process and measurement noises are often unknown a priori in most practical 
situations. In such a situation, the Kalman filter may fail to accurately estimate state 
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variables or may even cause system failure due to divergence (Fitzgerald, 1971, Sangsuk-
Iam & Bullock, 1990). With these uncertainties, it is difficult to develop an accurate 
navigation system with the Kalman filter. The difficulty can be overcome by using a number 
of estimation methods of noise covariance and some have been proposed. The problem is 
also important to make the navigation systems accurate. But it must be kept in mind that it 
remains herein. More information can be found in Mehra (1970), Belanger (1974), Um et al. 
(2000) and Jo et al. (submitted). 
This chapter contains the following information: In section II, the error equations for a 
velocity-aided underwater navigation system are introduced. In section III, the RHKF for 
time-varying systems is derived in an iterative form. In section IV, simulations for a linear 
time-varying system and the navigation system are explained. Finally, a short summary is 
given. 

2. Dynamic model for navigation errors 

2.1 Coordinate systems 

Coordinate systems used in this chapter are the inertial frame (i-frame), the Earth-fixed 
frame (e-frame), the navigational frame (n-frame) and the body frame (b-frame). The i-frame 
is fixed with the centre of the Earth as the origin. The e-frame coincides with the i-frame at 
the origin but rotates with the Earth rate. The n-frame is a local level frame in which the 
vertical axis is parallel with the gravity vector. Fig. 1 shows the reference frames. 
In the strapdown inertial navigation system (SDINS), the determination of the 
transformation matrix from the b-frame to the n-frame is very important and error 
generated during the computation of the transformation matrix becomes one of the main 
error sources of the system. 
Various mathematical representations are used to define the attitude of a body with respect 
to a coordinate reference frame. In three-dimensional space, spatial rotations can be 
pararmeterized using both Euler angles and unit quaternions. The parameters associated 
with each method may be stored in computer and updated as the vehicle rotates, using the 
measurements of turn rate by the SDINS. Theorems derived from the Euler angles state that 
any given sequence of rotations can be represented as a single rotation about a single fixed 
axis. In the Euler angle representation, the attitude is defined by roll (Φ), pitch (θ) and yaw 
(ψ) angles, which constitute a direction cosine matrix (DCM) (Siouris, 1993). The yaw angle 
is equivalent to the heading angle while the roll and pitch angles represent the levelling 
angles. 
However, among the popular methods of attitude computations, quaternions are known to 
be the most effective one due to their simplicity and easy normalization procedure, in 
modern navigation systems (Siouris, 1993). The representation of rotation as a quaternion is 
more compact than the representation of the DCM or the Euler angles. Furthermore, for a 
given axis and angle, one can easily construct the corresponding quaternion and, 
conversely, for a given quaternion one can easily read off the axis and the angle. When 
composing several rotations on a computer, round off errors inevitably accumulate. A 
quaternion that is slightly off still represents a rotation after being normalised. The 
quaternion also avoids the phenomenon called gimbal lock which can result when, for 
example in the Euler angle represensation, the pitch angle is rotated by 90° up or down, so 
that yaw and roll correspond to the same motion, and a degree of freedom of roation is lost. 
In the SDINS, for instance, this could lead to a disastrous result if the vehicle is in a steep 
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dive or ascent. For more rigorous and mathematical analysis, refer to Altmann (1986). In this 
chapter, the dynamic equation for attitude is mainly described by quaternions. 
 

 
Fig. 1. Reference frames 

2.2 Error model for SDINS 

The SDINS error model plays an important role in implementing an optimal filter for 
alignment or for velocity-aided navigation algorithms. The quaternion error model with the 
attitude and the velocity error state for SDINS was first developed in the i-frame by 
Friedland (1978), and later in the n-frame by Shibata (1986). The axes of the n-frame point in 
the directions of north, east and downward in that order. In the n-frame, the rate vector is 
represented as follows: 
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the Earth rate, ωn
en  is the rate of the n-frame relative to the e-frame, L  denotes the latitude, l  

represents the longitude and Ω is the magnitude of the Earth rate. The superscripts n  and 

b  denote the n-frame and the b-frame, respectively. 
The dynamic equations of the position, velocity and attitude of SDINS in the n-frame are 
given as follows (Titterton & Weston, 1997): 
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with  = − + 2
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0 (1 sin )tR R e L , where 0R  is the radius of the Earth 

at the equator, e  denotes the major eccentricity of the Earth, h  is the height, ng  is the 

gravitational force represented in the n-frame, ( )= [ ]b T
x y zf f f f  denotes the specific force 

measured at the accelerometer, ( )= [ ]n T
N E Dv V V V  is the velocity of the vehicle 

represented in the n-frame, ( )ω ω ω ω= [ ]b T
nb x y z  is the rate of the b-frame relative to the n-

frame, and Ωz
xy  is the skew-symmetric matrix for the rate ω z

xy . 

The relationships among the quaternion, Euler angles and DCM are given by 
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The attitude equation by the quaternion is 

 ( )( )ω ω ω ω= = − +$ 0.5 * 0.5 *b b b n n
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where = + + +0 1 2 3
ˆˆ ˆq q iq jq kq  is a quaternion, ωb

ib  denotes the measurement of gyroscopes 

and * is the quaternion product which is defined as 
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The error model of SDINS can be obtained by the perturbation method under several 
assumptions (Titterton & Weston, 1997) 
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In (10) and (11), δ bf  is an accelerometer error vector and δωb
ib  is a gyro error vector. These 

errors of inertial sensors may be simply modelled as a sum of random constant and white 

Gaussian noise. 
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Herein, the biases of the accelerometers and gyros, ∇a  and ε g , are assumed to be random 

constant even though they generally vary very slowly. 

2.3 Error model of measurements 
Some auxiliary sensors should be used to compenstate for the navigation errors of the 
SDINS. A pressure sensor, current meters and the magnetic compass can be used as 
auxiliary sensor in the navigation system for AUVs. A surface navigation system has been 
successfully developed by integrating position fixing systems such as GPS. As stated above, 
introducing GPS to the navigation system for an AUV is limited to the case of shallow water 
vehicles repeatedly surfacing to update the position information. If available, long-base line 
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(LBL) and short-base line (SBL) systems can be generally used for positioning underwater 
vehicles. Furthermore, near surface navigation systems can be utilized when a vehicle 
operates near the water surface or intentionally approaches the surface. The navigation 
systems for long-range cruising-type AUVs are structured by dead-reckoning. However, the 
inevitable growth of errors within the navigation system motivates the need for on-line 
calibration methods such as GPS-aided or Loran-C-aided navigation. Larsen (2000) and Lee 
et al. (2004) proposed hybrid navigation systems based on the IMU combined with acoustic 
velocity sensors. 
We simply assumed such a situation for a numerical example. The modelled vehicle is 
assumed to be equipped with an IMU, a 3-axis magnetic-type current meter, a 3-axis 
magnetic compass and a pressure sensor to obtain depth information. They are also 
modeled to be the sum of random constant and white Gaussian noise. 
The equations of the sensors can be formulated by 

 δ δ− = + − + = −ˆ ( )INS m true true bias biash h h h h h h h  (17) 
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where ^ denotes the estimated value by SDINS and φ θ ψ[ ]T  denotes the roll, pitch and 

yaw angle of the vehicle, respectively. The subscript m, INS and bias denotes the measured 

value of the sensors, the estimated value of optimal filters and sensor bias. Optimal filters 

for the navigation system can be updated with these equations. 

Combining (1)-(19) with the differential equations for sensor errors yields the following 

error equation for the velocity-aided navigation system. 

 = +$( ) ( ) ( ) ( ), ~ (0, ( ))x t F t x t w t w N Q t  (20a) 

where 
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T T
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The time-varying system matrix ( )F t , which is a differential equation of SDINS can be used 

to estimate the position, velocity, attitude and the biases of the sensors (See Appendix for 
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details). The state variable ( )x t  has 22 error states: δP  denotes the position error in the 

latitude, longitude and altitude. δ nv  denotes the velocity errors in the n-frame, while ϕ  

denotes the vector of roll, pitch and yaw angles. 
The innovation (also called measurement residual) of the optimal filter is the difference 
between estimated values by SDINS and measurements of pressure, velocity and attitude. 

The innovation for a velocity-aided underwater navigation system at kt  may be expressed 

in terms of the error state variables as follows: 
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where ν h , ν cur  and ν com are the measurement noise of the pressure sensor, current meters 

and compass, respectively. 
 

 

Fig. 2. Indirect feedback structure 

In general, while the inertial navigation system is nonlinear, the error of the system can be 

assumed to be linear. This is the reason why the indirect feedback method is used for the 

navigation system. Fig.2 shows the block diagram of the indirect feedback method. In the 

figure, it can be seen that the navigation system predicts the position, velocity, attitude and 

biases of the sensors with the output of the SDINS and then compensates the error states for 

the system by using an optimal filter. The navigation solutions are updated indirectly each 

time when the depth, velocity and attitude are measured by the sensors. In the indirect 

scheme, the navigation solutions are already given as the predetermined nominal points, 
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while the Kalman filter estimates the navigation solution. The word ‘indirect’ means that the 

filter estimates not the navigation solutions but the error of the solutions. Incorporated with 

the SDINS equations, the indirect method becomes efficient. If the navigation system uses 

indirect feedback states, the error system consists of a linearized system with compensated 

states. 

3. Receding horizon Kalman filter for underwater navigation systems 

In this section, the receding horizon Kalman filter is introduced for the underwater navigation 
system. Consider a linear discrete time-varying state space model with control input 

 
ν

+ = + +
= +

1k k k k k k

k k k k

x F x B u Gw

y H x
 (21) 

where ∈ℜn
kx  is the state vector and ∈ℜl

ku  and ∈ℜq
ky  are the input vector and the 

measured output vector, respectively. 

The initial state 
0kx  is assumed to be random with a certain mean 

0kx  and a certain 

covariance Σ
0k . The process and measurement noises are assumed to be zero-mean white 

Gaussian and are not correlated with each other. The covariances of kw  and ν k  are denoted 

by Q  and R , respectively. It is assumed that these noises are not correlated with the initial 

state 
0kx . 

The following Kalman filter for a time-varying system provides a state estimate ˆ
kx  called, 

the one-step predicted estimate of the system state kx , with control input 

 + = + − +1
ˆ ˆ ˆ( )k k k k k k k k kx F x K y H x B u  (22) 

 −= + 1( )T T
k k k k k k kK F P H R H P H  (23) 

 −
+ = + − + 1

1 ( )T T T T T
k k k k k k k k k k k k kP F P F GQG F P H H P H R H P F  (24) 

with =
0 0

ˆ
k kx x , where kP  is the error covariance of the estimate ˆ

kx  with the initial value 

= Σ
0 0k kP . 

In order to derive the RHKF for the stochastic systems, input and output information on the 

horizon −[ , ]k N k  are utilized together with information about the state at the starting point 

−k N . We write ≡ −Nk k N  for convenience. We refer to this state at kt  as the horizon initial 

state. It is logical to assume that the horizon initial state cannot be measured and thus is 
unknown. An information form of the Kalman filter is adopted as follows: 
At first, let us define the new variables 

− − −Ω ≡ Ω ≡ +1 1 1, T
k k k k k kP P H R H  

The estimation error covariance (24) can then be rewritten as 

 − − − − −
+Ω = + Ω Ω1 1 1

1 [ ]T T T
k k k k k k kI F F GQG F F  (25) 

with  −Ω = Σ
0 0

1
k k  
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The information form of filter (22) becomes 

 ( )− −
+ = Ω Ω + +1 1

1
ˆ ˆ T

k k k k k k k k kx F x H R y B u . (26) 

The information form (26) of the Kalman filter uses all measurements starting from the 

initial time 0k  to provide the one-step predicted state estimate at the present time. By 

introducing the receding horizon strategy to filter (26), the RHKF at the present time k  uses 

only the finite measurements on the horizon [ , ]Nk k  and discards the past measurements 

outside the horizon. We re-derived filter (26) on the horizon covering from the horizon 

initial time Nk  to the present time k . The filter at time +Nk i  on the horizon [ , ]Nk k  is 

denoted as +|
ˆ

Nk i kx  with ≤ <0 i N . In (24), the error covariance of the estimate ˆ
kx , system 

+Nk iF  and measurement equations +Nk iH  are not correlated with the measurements for linear 

time-varying systems. The horizon initial condition is denoted as Ω
Nk . Since the 

measurements and control inputs are not estimated variables, these can be written as 

+ +=|N Nk i k k iy y  and + +=|N Nk i k k iu u . 

The filter can now be re-written by 

 ( )− −
+ + + + + + + + + += Ω Ω + +1 1

1| |
ˆ ˆ

N N N N N N N N N

T
k i k k i k i k i k i k k i k i k i k ix F x H R y B u  (27) 

In (25), +Ω > 0
Nk i  for all ≥i n , if { , }k kF H  is uniformly observable (Kwon & Pearson, 1978). In 

the above equation, n  denotes the dimension of the system. This guarantees that a 

converged result is globally optimal to Kalman filter based FIR filters. Since it is difficult to 

know the horizon initial state |Nk kx , it is assumed to be unknown. The horizon initial state 

must have an arbitrary mean and infinite covariance as Ω = 0
Nk . 

Theorem 1 RHKF for time-varying systems (Jo & Choi, 2006) 

Assume that { , }k kF H  is uniformly observable and ≥N n . If the horizon initial state |Nk kx  is 

assumed to be unknown on the horizon [ , ]Nk k , the RHKF for the state kx  is given by 

 ( )− −
+ + + + + + + + + += Ω Ω + +1 1

1| |
ˆ ˆ

N N N N N N N N N

T
k i k k i k i k i k i k k i k i k i k ix F x H R y B u  (28) 

where 

 − − − − −
+ + + + + + + +Ω = + Ω Ω1 1 1

1 [ ]
N N N N N N N

T T T
k i k i k i k i k i k i k iI F F GQG F F  (29) 

▌ 
Jo & Choi (2006) proved that the derived filter (28) has two important properties – it is 

unbiased and deadbeat and that the RHKF becomes a deadbeat observer when the filter is 

applied to the following noise-free system: 

 + = +
=

1k k k k k

k k k

x F x B u

y H x
 (30) 

If (30) is contaminated by noises similar to (21), the RHKF optimally compensates for the 

noises. When the system has no noise, the RHKF can yield an exact estimate of the state. 

This deadbeat property indicates the finite convergence time and the fast tracking ability of 

the RHKF. Thus, we can expect that the suggested RHKF is appropriate for quick estimation 

and detection of AUV tracking even when occurrence of noises is not known. 
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4. Simulation 

In this section, the rate at which the RHKF converges against temporary unknown 
disturbances is determined and its robustness is illustrated. At first, the RHKF is applied to 
a linear time-varying system. The RHKF is then applied to the velocity-aided underwater 
navigation system. 
Consider the following linear system: 

 
ν

= +
= +

$( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t A t x t Gw t

y t H t x t t
 (31) 

with  

ω δ ω ω ω
ω ω ω ω δ

⎡ ⎤− + − + + −
= ⎢ ⎥− + − − + − +⎣ ⎦

2

2

( )sin ( ) ( )sin cos
( )

( )sin cos ( )cos ( )

a a b t t a b t t
A t

a b t t a a b t t
 

[ ]1 0 0.05 100 200
, 1 0 , ( )

0 1 0 otherwise

t
G H tδ

≤ <⎡ ⎤ ⎧
= = = ⎨⎢ ⎥
⎣ ⎦ ⎩

 

where ( )= 1 2[ ]Tx x x  is the state vector, ( )= 1 2[ ]Tw w w  denotes the process noise vector, 

y  is the output and ν  is the measurement noise. When = 0.003a , = 0.007b  and ω = 0.01  

are chosen, and the variance of the noises is assumed to be 0.05, the estimated error of 1x  is 

as shown in Fig. 3. The RHKF estimates the present state kx  with information on the 

prescribed horizon interval. The RHKF has some advantages (robustness against temporary 

disturbances and fast tracking ability), if the horizon interval is properly chosen. However, 

it takes a considerable amount of time to estimate the present state because the filter recedes 

from the horizon initial state each time. This is the reason why the RHKF takes more 

computing time (of about N  times) than the Kalman filter, which has an IIR structure. A 

proper horizon interval must be chosen carefully for a real-time system. 
In Fig. 3, as the horizon interval increases, the estimates obtained by the RHKF more closely 
approach those provided by the Kalman filter and it becomes less robust against the 
temporary disturbance. It can be also seen that, if the horizon interval is small, the estimates 
obtained by the RHKF fluctuate around the real value instead of converging to the real one. 
However, if the interval is large, it approaches closer to the estimate obtained from the 
Kalman filter. The horizon interval is important in the optimal estimation. Unfortunately, it 
is impossible to find an optimal horizon interval for general non-linear systems. Thus, a 
reasonable interval N must be chosen based on experience. The rule of thumb is to take it 
slightly larger than the limit of the index to converge to the covariance of the standard 
Kalman filter. 
Let us consider that an AUV is equipped with a low-degree IMU, a pressure sensor, a 3-axis 
current meter, and a 3-axis magnetic compass. The sampling rate of the IMU is 100 Hz and 
that of the pressure sensor, 3-axis current meter, and the 3-axis magnetic compass is all 1 Hz. 
The characteristics of the sensors are listed in Table 1. 
In this simulation, the following assumptions are made: The vehicle moves directly north at 
a rate of 2m/s and downward at a rate of 0.05m/s without any change in attitude for 1200 
seconds. It is known that SDINS has poor observability during straight forward running 
without any change in attitude because the attitude error model depends on the angular rate 
of the vehicle (Lee et al., 1993). 
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Fig. 3. Comparison of estimated error for the linear system 

 

 Bias (1σ) Noise (1σ) 

Acceleromters 9.8 mm/s2 0.49 mm/ s2 
IMU 

Gyros 1deg/hr 0.35 deg/hr 

Pressure sensor 0.1 m 0.1 m 

Current meter 0.01 m/s 0.01 m/s 

Compass 1 deg 2 deg 

Table 1. Characteristics of Sample Sensors 

Upwelling current of 0.5 m/s is introduced as a temporal disturbance. Fig. 4 shows the 

assumed velocity profile of the upwelling current in the NED coordinate. As shown in the 

figure, the upwelling current occurred temporarily during a time span between 385 sec and 

655 sec. Fig. 5 and Fig. 6 show the reference trajectory of the vehicle under the action of the 

disturbance and Fig. 7 shows the reference velocity profile of the vehicle. It was assumed 

that the vehicle reacted against the current in 5 sec when it encountered with the current as 

shown in Fig. 7. 

The trajectory and velocity of the vehicle under the upwelling current were estimated using 

the navigation filters, the standard Kalman filter and the RHKF. Figs. 8 shows the estimated 

velocity obtained by the Kalman filter. By comparing Fig. 7 with Fig. 8, it can be seen that 

the esimation error of the Kalman filter incearses after the vehicle encounters with the 

current. 
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The choice of the horizon interval N affects the convergence speed of the RHKF. It is very 

difficult, as stated above, to find the optimal horizon interval N for general nonlinear 

systems. However, if a system is uniformly observable, the horizon interval N can be chosen 

as larger than the dimension of the system, because +Ω >| 0
Nk i k  for all ≥i n , if + +| |{ , }

N Nk i k k i kF H  

is uniformly observable. Hereby n denotes the dimension of the system. It may be 

recommended with care that one may choose the interval to be larger than the dimension of 

the system, but less than 4 times. In this simulation, we chose = 30N . 

As stated above, the RHKF is robust against temporary modelling and measuring 

uncertainties because it utilizes only the finite measurements on the most recent horizon. 

The estimated velocity obtained by the RHKF is shown in Fig. 9. In Fig. 10, it is seen that the 

navigation system based on the RHKF does not lost its position but the vehicle that was 

navigated by the Kalman filter has lost its position after the current occurs. While the 

pressure sensor helps the navigation system to compensate altitude errors, the deviation of 

estimated altitude obtained by the Kalman filter is larger than that estimated by the RHKF 

as shown in Fig. 11. 

This simulation shows that, while the estimated navigation solution based on the RHKF 

may be somewhat noisy, the estimated errors do not blow up, which indicates the fast 

convergent rate and robustness of the RHKF under the temporary disturbances, as given in 

Fig. 4. Also, the estimation error of the RHKF is considerably smaller than that of the 

Kalman filter in the interval of measurement uncertainties. Therefore, it is concluded that 

the suggested RHKF for time-varying navigation systems is more robust than the standard 

Kalman filter when there are measuring uncertainties. 
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Fig. 4. Velocity profile of the upwelling current in the n-frame 
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Fig. 5. Reference trajectory of the vehicle in the n-frame 
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Fig. 6. Reference altitude of the vehicle in the n-frame 
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Fig. 7. Reference velocity of the vehicle in the n-frame 
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Fig. 8. Estimated velocity of the vehicle by the Kalman filter in the n-frame 
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Fig. 9. Estimated velocity of the vehicle by the RHKF in the n-frame 
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Fig. 10. Estimated trajectory of the vehicle by the Kalman filter in the n-frame 
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Fig. 11. Comparison of estimated altitudes in the n-frame 

6. Summary 

In this chapter, the RHKF and its application for a velocity-aided underwater navigation 
system are discussed. Firstly, the limitations of the standard Kalman filter in underwater 
navigation systems are described. And then it is shown how the RHKF can be replaced in 
order to improve the position accuracy of the navigation system when the vehicle is to be 
operated under uncertain environments. It is shown that the RHKF is robust against 
environmental uncertainties by tracking only the most recent finite measurement. When a 
navigation system is completely observable, the RHKF is exact for noise-free systems. This 
deadbeat property indicates the finite convergence time and fast tracking ability of the filter. 
Thus the filter is appropriate for fast estimation under temporary disturbances. Based on 
simulations for the velocity-aided navigation system, it is then demonstrated that the RHKF 
guides a better and faster transient performance of the underwater navigation system 
compared to the standard Kalman filter. 

7. Appendix 

The system matrix ( )F t  of the SDINS system error model equation is as follows: 
 

11 12 3 3 3 3 3 3 3 3

21 22 23 3 3 3 3

31 32 33 3 3 3 3

13 22

0 0 0 0

0 0

0 0

0

n
b

n
b

F F

F F F C
F

F F F C

× × × ×

× ×

× ×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦
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where 

ρ ρ ρ

ρ
ρ

⎡ ⎤
⎢ ⎥+ + +⎢ ⎥
⎢ ⎥⎛ ⎞

= − −⎢ ⎥⎜ ⎟+ +⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11

sec
sec tan 0

0 0 0

E mm E mm E

m m m

tt N
N

t t

R R

R h R h R h

R L
F L L

R h R h
 

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥= ⎢ ⎥+⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

12

1
0 0

sec
0 0

0 0 1

m

t

R h

L
F

R h
 

ρ ρ ρ ρρ

ρ ρ ρ ρ
ρ

ρ ρ ρ ρ

⎡ ⎤
− Ω + + + − +⎢ ⎥+ + + +⎢ ⎥

⎢ ⎥
= Ω + + + Ω + −⎢ ⎥

+ + + +⎢ ⎥
⎢ ⎥

− − Ω + − +⎢ ⎥
+ + + +⎢ ⎥⎣ ⎦

2

2
21

(2 sec ) 0
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chapters in this book review its recent applications. The editors hope the selected works will be useful to

readers, contributing to future developments and improvements of this filtering technique. The aim of this book

is to provide an overview of recent developments in Kalman filter theory and their applications in engineering

and science. The book is divided into 20 chapters corresponding to recent advances in the filed.
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