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1. Introduction   

Perhaps the most important lesson to be drawn from the study of nonlinear dynamical 

systems over the past few decades is that even simple dynamical systems can give rise to 

complex behaviour which is statistically indistinguishable from that produced by a complex 

random process. Chaotic systems are nonlinear systems which exhibit such complex 

behaviour. In such systems, the state variables move in a bounded, aperiodic, random-like 

fashion. A distinct property of chaotic dynamics is its long-term unpredictability. In such 

systems, initial states which are very close to each other produce markedly different 

trajectories. When nearby points evolve to result in uncorrelated trajectories, while forming 

the same attractor, the dynamical system is said to possess sensitive dependence to initial 

conditions (Devaney, 1985). Due to these desirable properties, application of chaotic systems 

are explored for many engineering applications such as secure communications, data 

encryption, digital water marking, pseudo random number generation etc (Kennedy et. al., 

2000). In most of these applications, it is essential to synchronize the chaotic systems at two 

different locations. In this chapter, we explore the Kalman filter based chaotic 

synchronization.  

2. Synchronization of chaotic systems 

Related works of synchronization dates back to the research carried out by Fujisaka and 
Yamada in 1983 (Fujisaka & Yamada, 1983).  Pecora and Carroll suggested a drive-response 
system for synchronization of chaotic systems. They showed that if all the transversal 
Lyapunov exponents of the response system are negative, the systems synchronize 
asymptotically (Pecora & Carrol, 1990). Later a plethora of research work was reported on 
synchronization of chaotic systems (Nijmeijer & Mareels, 1997). One of the well researched 
approaches is the coupled synchronization, where a proper coupling is introduced between 
the transmitter and the receiver. The chaotic systems synchronize asymptotically when the 
coupling strength is above a certain threshold, which is determined by the local Lyapunov 
exponents (Suchichik et. al., 1997). 
Let the transmitter and the receiver states of the chaotic systems be given by 
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 1 ( , )k k μ+ =x f x  (1.a) 

 1
ˆ ˆ ˆ( , )
k k

μ+ =x f x  (1.b) 

where 1 , ,
Tn

k k kx x⎡ ⎤= …⎣ ⎦x  and 1ˆ ˆ ˆ, ,
Tn

k k kx x⎡ ⎤= …⎣ ⎦x  are the n-dimensional state vectors of the 

transmitter and the receiver systems, respectively.  μ  and μ̂  are the transmitter and the 

receiver system parameters and 1[ (.), , (.)]n Tf f= …f  is a smooth nonlinear vector valued 

function. Normally, we have a noisy observation at the receiver which is given by  

 ( )k k k= +y h x v  (2) 

where 
k
v is the channel noise and (.)h  is the measurement function. These two systems are 

said to be synchronized if 

 ˆlim 0.k k
k→∞

− =x x  (3) 

2.1 Coupled synchronization 

In coupled synchronization, a coupling is introduced between the transmitter and the 
receiver as:  

 −= + −1
ˆ ˆ ˆ( ) ( )k k k k kx f x K y y  (4) 

where kK  is the appropriate coupling coefficient matrix. In conventional coupled 

synchronization,  kK  is set to be a constant value  such that the global and local Lyapunov 

exponents (The Lyapunov exponents of a dynamic system are the quantities that 

characterize the rate of divergence/convergence of the trajectories generated by 

infinitesimally close initial conditions under the dynamics ) are negative. This makes the 

receiver to synchronize with the transmitter asymptotically.  The schematic of the coupled 

synchronization is shown in Fig. 1. This method of  synchronization can be treated as a 

predictor corrector filter approach. In general, a predictive filter predicts the subsequent 

states and corrects it with additional information available from the observation. Due to the 

measurement and the channel noises  in a communication  system, stochastic techniques 

have to be applied for synchronization. Instead of keeping  kK  as a constant value if it is 

determined adaptively, the coupled synchronization has a similarity with the predictive 

filtering techniques.  

3. Chaos synchronization: a stochastic estimation view point 

In stochastic state estimation methods, one would like to estimate the state variable 
k
x based 

on the set of all available (noisy) measurement 1: 1{ , , }k k= …y y y  with certain degree of 

confidence. This is done by constructing the conditional probability density function (pdf), 

1:( | )k kp x y  (i.e. the probability of kx given the observations, 1:ky ), known as the posterior 

probability.  It is assumed that 0 0( | )p x y  is available. In predictor corrector filtering 

methods, 1:( | )k kp x y  is obtained recursively by a prediction step which is estimated without 

the knowledge of current measurement, ky  followed by a correction step where the 

knowledge of ky  is used to make the correction to the predicted values. 
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Fig. 1. Schematic of the coupled synchronization scheme. 

In the recursive computation of 1:( | )k kp x y , it is assumed that at time, 1k − ,  1 1: 1( | )k kp − −x y  

is available. Using the Chapman-Kolmogorov equation (Arulampalam, et. al. 2001), the 

prediction is estimated as 

 1: 1 1 1 1: 1 1( | ) ( | ) ( | )k k k k k k kp p p d− − − − −= ∫x y x x x y x  (5) 

where the state transition is assumed to be a Markov process of order one and  

1 1: 1 1( | , ) ( | )k k k k kp p− − −=x x y x x . To make the correction, one needs to make use of the 

information available in the current observation,
k
y . Using Bayes' rule, 

 1: 1
1:

1: 1

( | ) ( | )
( | )

( | )
k k k k

k k

k k

p p
p

p
−

−

=
x y y x

x y
y y

 (6) 

where the normalizing constant 

 1: 1 1: 1( | ) ( | ) ( | )k k k k k k kp p p d− −= ∫y y y x x y x . (7) 

 

Though closed form solutions of the above equations exist for a linear system with Gaussian 

noise (e.g. Kalman filter), in general, for a nonlinear system, they are not available. 

However, one of the suboptimal filtering methods, the extended Kalman filter (EKF) is 

found to be useful in many nonlinear filtering applications. 

3.1 EKF for chaos synchronization 

The Kalman filter is an optimal recursive estimation algorithm for linear systems with 

Gaussian noise. A distinctive feature of this filter is that its mathematical formulation is 

described in terms of the state-space. The EKF is an extension of the Kalman filtering 

algorithm to nonlinear systems (Grewal & Andrews, 2001). The system is linearized using 

first order Taylor series approximation. To this approximated system, the Kalman filter is 

applied to obtain the state estimates. Consider a generic dynamic system governed by 

 1( , )k k k−=x f x w . (8.a) 

 ( , )k k k=y h x v  (8.b) 
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where the process noise,  kw , and observation (measurement) noise, kv , are zero mean 

Gaussian processes with covariance matrices kQ  and kR , respectively.  In minimum mean 

square estimation (MMSE), the receiver computes ˆ
k
x  which is an estimate of kx  from the 

available observations 1: 1{ , , }k k= …y y y such that the mean square error (MSE),  T
k k

⎡ ⎤⎣ ⎦e eE  

(where ˆ
k k k= −e x x ), is minimized. The EKF algorithm for the state estimation is given by,  

 | 1 1
ˆ ˆ( ,0),k k k− −=x f x  (9.a) 

 | 1 1 1 1
T T

k k k k k k k k− − − −= +P F P F W Q W  (9.b) 

In the above equations, the notation | 1k k − denotes an operation performed at time 

instant, k , using the information available till 1k − . At time instant k , | 1
ˆ

k k−x is the a priori 

estimate of the state vector kx , | 1k k−P  is the a priori error covariance matrix,  1k−F  is the 

Jacobian of (.)f  with respect to the state vector  1k−x  and  kW is the Jacobian of (.)f with 

respect to the noise vector 
k

w . The EKF update equations are: 

 { } 1

| 1 | 1
T T T

k k k k k k k k k k k

−

− −= +K P H H P H VR V  (10.a) 

 | 1
ˆ ˆ ˆ( )k k k k k k−= + −x x K y y  (10.b) 

 | 1( )k k k k k−= −P I K H P  (10.c) 

where kK is the Kalman gain, kH  is the Jacobian of (.)h  with respect to | 1
ˆ

k k−x , ˆ
kx is the a 

posteriori estimate of the state vector, kV is the Jacobian of (.)h  with respect to the noise 

vector kv , and kP  is the a posterior error covariance matrix. When EKF is used for 

synchronization of chaotic maps, kK acts as the coupling strength which is updated 

iteratively. Schematic of EKF based synchronization is shown in Fig. 2. 
 

K kDelay

f (x̂ k− 1 , 0)

x̂ k |k− 1

x̂ k

h(x̂ k |k− 1 , 0)

ŷk

yk

+

−

 

Fig. 2. Schematic of EKF based chaos synchronization 

3.2.1 Convergence analysis 

Convergence analysis of kK can be carried out by studying the convergence of | 1k k−P . At any 

time instant, k , according to the matrix fraction propagation of | 1k k−P , it can be shown that 

(Grewal & Andrews, 2001), 

 1
| 1k k k k

−
− =P A B , (11) 
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where kA  and  1
k
−B are factors of | 1k k−P . If kF is nonsingular (i.e. the map is invertible), then 

1k+A  and 1k+B are given by the recursive equation as 

 
1

1

1
1

T T T
k kk k k k k k k k

T T T
k kk k k k k

− − −
+

− − −
+

⎡ ⎤+⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

A AF W F H R H W F

B BF H R H F
. (12) 

From the above expression, it can be shown that, when there is no process noise (i.e. 

k =W 0 and kF is contractive (i.e. the magnitudes of its eigenvalues are less than one), 

| 1k k−P will converge in time. However, inside the chaotic attractor, the behaviour of | 1k k−P is 

aperiodic if kF  is time varying. This behaviour has dramatic influence on the convergence of 

Kalman filter based synchronization system (Kurian, 2006) for systems with hyperbolic 

tangencies (HTs). 

3.3 Unscented Kalman filter 

The approximation error introduced by the EKF together with the expansions of this error at 
the HTs makes the system unstable and diverging trajectories are generated at the receiver. 
One way to mitigate this problem is to use nonlinear filters with better approximation 
capabilities. Unscented Kalman filter (UKF) has shown to possess these capabilities (Julier & 
Uhlman, 2004). It is essentially an approximation method to solve Eq. (5). UKF works based 
on the principle of unscented transform (UT) (Julier & Uhlman, 1997). 
 

 

Fig. 3. Illustration of unscented transform (UT). 

In Fig. 3, the UT of a random variable, u , which undergoes a nonlinear transformation 

( ( )f u ) to result in another random variable, v  is shown. To calculate the statistics of v , the 

ideal solution is to get posterior density, ( )p v ,  analytically from the prior density ( )p u . The 

mean and covariance of v  can also be computed analytically.  However, this is highly 

impractical in most of the situations because of the nonlinearity. UT is a method for 
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approximating the statistics of a random variable which undergoes a nonlinear 

transformation. It uses carefully selected vectors ( iU ), known as sigma points, to 

approximate the statistics of the posterior density. Each sigma point is associated with a 

weight iW . The number of sigma points is 2 1n + where n is the dimension of the state 

vector. With the knowledge of the mean ( û ) and covariance ( uP ) of the prior density, these 

sigma points are constructed as 

 

( )

( ) ( )

( ) ( )

κ
κ

κ
κ

κ
κ

⎛ ⎞= =⎜ ⎟+⎝ ⎠
⎛ ⎞

= + + = …⎜ ⎟
+⎝ ⎠

⎛ ⎞
= − + = + …⎜ ⎟

+⎝ ⎠

0 0
ˆ, , ; 0

1
ˆ, ( ) , ; 1, ,

2( )

1
ˆ, ( ) , ; 1, ,2

2( )

i i
i

i i
i

W i
n

W n i n
n

W n i n n
n

u

u

u

u P

u P

U

U

U

 (13) 

where κ  is a scaling parameter and ( )( )
i

n κ+ uP  is the ith row or column of the  square 

root of the matrix, ( )n κ+ uP .  These sigma points are propagated through the nonlinearity 

(.)f  to obtain 

 ( ) for 0,1, ,2 .i i i n= = …fV U  (14) 

Using the set of iV , the mean ( v̂ ) and covariance ( vP ) of the posterior density is estimated as 

 
=

=∑
2

0

ˆ
n

i i
i

Wv V  (15.a) 

 ( )( )
=

= − −∑
2

0

ˆ ˆ .
n

T

i i i
i

WvP v vV V  (15.b) 

It is shown that the UKF based approximation is equivalent to a third order Taylor series 

approximation if the Gaussian prior is assumed (Julier & Uhlman, 2004). Another advantage 

of UT is that it does not require the calculation of the Jacobian or Hessian. 

3.3.1 Scaled unscented transform 

The scaled unscented transform (SUT) is a generalization of the UT. It is a method that 

scales an arbitrary set of sigma points yet capture the mean and covariance correctly. The 

new transform is given by 

 ( )0 0
' for 0, ,2i i i nα= + − = …U U U U  (16) 

where α  is a positive scaling parameter. By this the distribution of the sigma points can be 

controlled without affecting the positive definitive nature of the matrix, ( )n κ+ uP . A set of 

sigma points, [ ] [ ]{ }0 2 0 2, , , , ,n nW W= … = …U WU U , is first calculated using Eq.(13) and then 

transformed into scaled sigma points, { }' ' '
2

' '
0 2

'
0, , , , ,n nW W⎡ ⎤ ⎡ ⎤= … = …⎣ ⎦ ⎣ ⎦U WU U by 
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 ( )'
0 0 for 0,1, ,2i i i nα= + − = …U U U U  (17.a) 

 

0
2 2

2

'

1
(1 ) 0

0i

i

W
i

W
W

i

α α

α

⎧ + − =⎪⎪= ⎨
⎪ ≠
⎪⎩

. (17.b) 

The sigma point selection and scaling can be combined to a single step by setting  

 2( )n nλ α κ= + −  (18) 

and  

 ='
0 ûU  (19.a) 

 ( )0 ˆ ( ) 1, ,
i

i

n i nλ= + + = …
u

u PU  (19.b) 

 ( )λ= − + = + …' ˆ ( ) 1, ,2i
i

n i n nuu PU  (19.c) 

 ( )
0

mW
n

λ
λ

=
+

  (19.d) 

 ( ) 2
0 (1 )

( )
cW

n

λ α β
λ

= + − +
+

  (19.e) 

 ( ) ( ) 1
for 1,2, ,2 .

2( )
m c

i iW W i n
nλ

= = = …
+

  (19.f) 

Parameter β  above is another control parameter which affects the weighting of the zeroth 

sigma point for the calculation of the covariance. Using SUT, the mean and the covariance 

can be estimated as 

 
=

=∑
2

( ) '

0

ˆ
n

m
i i

i

Wv V  (20.a) 

 ( )( )
=

= − −∑
2

( ) ' '

0

ˆ ˆ
Tc

i
i

i

n

iWvP v vV V  (20.b) 

 

where ( )i i
′ ′= fV U . 

Selection of κ   is such that it should result in positive semi definiteness of the covariance 

matrix. 0κ ≥  guarantees this condition and a good choice is 0κ = . Choose 0 1α≤ ≤  and 

0β ≥ . For Gaussian prior density,  2β =  is an optimal choice. Since, α controls the spread 

of the sigma points, it is selected such that it should not capture the non-local effects when 

nonlinearities are strong. 
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3.3.2 Unscented Kalman filter 

UKF is an application of the SUT. It implements the minimum mean square estimates as 

follows. The objective is to estimate the states
k
x , given the observations, 1:ky .  For this, the 

state variable is redefined as the concatenation of the original state and noise variables (i.e.  
T

a T T T

k k k k
⎡ ⎤= ⎣ ⎦x x w v with dimension 

a
n ).  The steps involved in UKF are listed below. First, we 

initialize the parameters  

 =0 0
ˆ [ ]x xE  (21.a) 

 ( )( )⎡ ⎤= − −⎣ ⎦0 0 0 0 0
ˆ ˆ T

P x x x xE   (21.b) 

 ⎡ ⎤= ⎣ ⎦0 0
ˆ ˆ

Ta Tx x 0 0   (21.c) 

 
0

0
a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P 0 0

P 0 Q 0

0 0 R

  (21.d) 

For 1,2,k = …  calculate the sigma points: 

 λ− − − −
⎡ ⎤= ± +
⎣ ⎦1 1 1 1

ˆ ˆ ( )a a a a
k k k a knx x PX  (22) 

Time update: 

 ( )| 1 1 1,x w
k k k k− − −= fX X X  (23.a) 

 − −
=

=∑
2

( )
| 1 , | 1

0

ˆ
an

m x
k k i i k k

i

Wx X   (23.b) 

 − − − − −
=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑
2

( )
| 1 , | 1 | 1 , | 1 | 1

0

ˆ ˆ
an

Tc x x
k k i i k k k k i k k k k

i

WP x xX X   (23.c) 

 ( )| 1 | 1 | 1,x v
k k k k k k− − −= hY X X   (23.d) 

 − −
=

=∑
2

( )
| 1 , | 1

0

ˆ
an

m
k k i i k k

i

Wy Y   (23.e) 

Measurement update: 

 − − − −
=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑
2

( )
ˆ ˆ , | 1 | 1 , | 1 | 1

0

ˆ ˆ
a

k k

n
Tc

i i k k k k i k k k k
i

Wy yP y yY Y  (24.a) 

 − − − −
=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑
2

( )
ˆ ˆ , | 1 | 1 , | 1 | 1

0

ˆ ˆ
a

k k

n
Tc

i i k k k k i k k k k
i

Wx yP x xX Y   (24.b) 
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 −= 1
ˆ ˆ ˆ ˆk k k kk x y y yK P P   (24.c) 

 " " "( )| 1 | 1k k k k k k k− −= + −x x K y y   (24.d) 

 −= − ˆ ˆ| 1 k k

T
k k k k ky yP P K P K   (24.e) 

It is shown in (Julier & Uhlman, 2004) that the approximation introduced by the UKF has 
more number of Taylor series terms. The effect of the approximation errors is different for 
different nonlinear systems. In some cases, if the nonlinearity is quadratic, approximation 
error will not have any strong influence.  

4. Results and discussion  

To assess the performance of the EKF and UKF based synchronization schemes, simulation 
studies are carried out on three different chaotic systems/maps1: (i) Ikeda map (IM), (ii) 
Lorenz system, and (iii) Mackey-Glass (MG) system. The Lorenz system is a three 

dimensional vector field, 3 3( , , ) :x y z R Rφ → , representing the interrelation of temperature 

variation and convective motion. The set of coupled differential equations representing the 
Lorenz system is given by 

 ( ) ( ( ) ( ))x t y t x tσ= −$  (25.a) 

 = − + −$( ) ( ) ( ) ( ) ( )y t x t z t rx t y t   (25.b) 

 ( ) ( ) ( ) ( )z t x t y t cz t= −$   (25.c) 

where 10σ = , 28r =  and 8 / 3c = are used to obtain the Lorenz attractor. The three states 

( ,x y and z ) are randomly initialized and the system of differential equation is solved with 

the fourth order Runge-Kutta method. The Lorenz attractor is shown in Fig. 4.  
Ikeda map represent a discrete dynamic system of pumped laser beam around a lossy ring 
cavity and is defined as 

 
ωφ+

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + − −

⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦
1 2

exp 1
1

k k

k

z p Bz
z

  (26) 

where 
k
z is a complex-valued state variable with 1R I

k k k
z x x= + − . Here, R

k
x  is  { }

k
zℜ  and I

k
x  

is { }
k
zℑ . {.}ℜ and {.}ℑ give the real and imaginary parts of a complex variable, respectively. 

For the set of parameters = 0.92p , = 0.9B ,φ = 0.4 , and ω = 6 , the attractor of this map is 

shown in Fig.  5. 
The Mackey-Glass system was originally proposed as a first order nonlinear delay 
differential equation to describe physiological control systems. It is given by 
  

                                                 
1 Map is used to represent discrete dynamic systems. i.e. →:f X X  
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Fig. 4. Lorenz attractor. 

 
τ
τ

−
= − +

+ −
$

10

( )
( ) ( )

1 ( )

bx t
x t ax t

x t
 (27) 

This system is chaotic for values of = 0.1a  and τ ≥ 17 . Figure 6 shows the Mackey-Glass 

attractor with τ =17. 
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ℜ{z
k
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ℑ
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Fig. 5. Ikeda map attractor. 

These systems/maps have distinct dynamical properties and well suited for our analysis. 

Lorenz system is one of the archetypical chaotic systems commonly studied for chaotic 

www.intechopen.com



Variants of Kalman Filter for the Synchronization of Chaotic Systems 

 

219 

synchronization. Ikeda map, on the other hand, has higher order derivatives and is an 

appropriate candidate for studying the effect of high nonlinearity in filter based 

synchronization.  An interesting feature of Mackey-Glass system is that its complexity (i.e. 

the correlation dimension) increases as τ increases. 
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x
(t
−
τ
)

 

Fig. 6. Mackey-Glass Attractor. 

We consider a typical situation where one of the state variables, kx  (for continuous system, 

it is assumed that we discretize the state variable using appropriate techniques)  which is 

corrupted by channel noise is used for the synchronization. In all the computer simulations, 

the signal-to-noise ratio (SNR) which is defined as  

 
σ
==
∑ 2

1
2

1

SNR

N

k
k

w

x
N

 (28) 

where 2
wσ  is the variance of the noise and N is the total number of samples used for 

evaluation,  is varied from -5dB to 50dB for the Lorenz and MG systems and in the case of 

IM, it is varied from 35dB to 60dB.  We define two performance evaluation quantities: the 

normalized mean square error (NMSE) and the total normalized mean square error 

(TNMSE) as   

 

2

1

2

1

ˆ( )

NMSE

( )

N
i i
k k

i k
N

i
k

k

x x

x

=

=

−
=
∑

∑
, (29) 
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1

TNMSE NMSE
n

i

i=

=∑ , (30) 

respectively. While NMSE gives an idea about the recovery of observed state variable, 

TNMSE gives how faithfully, the attractor can be reconstructed.   

We run numerical simulations on all these three systems and the results are presented here.  

Figures 7 to 9 show the result of NMSE performances. We restricted the SNR from 35dB to 

60dB in the case of IM system due to the observed divergence when both EKF and UKF are 

used.  It is shown in (Kurian, 2006) that since the IM has non-hyperbolic chaotic attractors, 

this divergence is inevitable. For all other systems, we changed the SNR from -5dB to 50dB. 

We can see that for all the maps and systems we considered for the analysis, the NMSE is 

monotonically decreasing with the increase in SNR. The steady decrease in NMSE shows 

that there are no residual errors. Also, we can see that the UKF based synchronization gives 

very good NMSE performance due to the better approximation capabilities of the UKF.  In 

the case of MG system, we can see that the EKF nearly fails in synchronizing at all SNRs 

which is again due to higher approximation error. 

We computed the TNMSE values for the Lorenz system and Ikeda Map (Fig. 10 & 11). As 

mentioned before, the TNMSE values indirectly reflect how well the chaotic attractors could 

be reconstructed. The TNMSE values for Lorenz systems and Ikeda Map are always greater 

than the NMSE values at all the SNR values considered due to the error introduced by other 

state variables. We can see that this increase in error is comparable and behaves exactly like 

the NMSE: it gradually reduces with an increase in the SNR values. Similarly, the UKF 

shows better performance for all the SNR values considered.  
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Fig. 7. NMSE of UKF and EKF based synchronization schemes for Lorenz. 
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Fig. 8. NMSE of UKF and EKF based synchronization schemes for Ikeda map.  
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Fig. 9. NMSE of UKF and EKF based synchronization schemes for MG systems.  
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Fig. 10. TNMSE of UKF and EKF based synchronization schemes for Lorenz system.  
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Fig. 11. TNMSE of UKF and EKF based synchronization schemes for Ikeda map. 
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5. Conclusions  

Chaotic systems are simple dynamic systems which can display very complex behavior. One 
of the defining characteristics of such systems is the sensitive dependence on initial 
conditions and hence synchronization of such systems possesses certain amount of 
difficulties. This task will be even more formidable when the channels as well as the 
measurement noises are present in the system. Stochastic methods are applied to 
synchronize such chaotic systems. EKF is one of the most widely investigated stochastic 
filtering methods for chaotic synchronization. However, for highly nonlinear systems, EKF 
introduces approximation errors causing unacceptable degradation in the system 
performance. We consider UKF, which has better approximation error characteristics for 
chaos synchronization and show that it has better error characteristics. 
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