
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1 

Kalman Filter Applications  
for Traffic Management 

Constantinos Antoniou1, Moshe Ben-Akiva2 and Haris N. Koutsopoulos3 
1National Technical University of Athens,  

2Massachusetts Institute of Technology, 
3Royal Institute of Technology,  

1Greece  
2U.S.A. 

3Sweden 

1. Introduction     

Traffic congestion is a major problem in urban areas that has a significant adverse economic 

impact through deterioration of mobility, safety and air quality. As a result, the importance 

of better management of the road network to efficiently utilize existing capacity is 

increasing. To that end, many urban areas build and operate modern Traffic Management 

Centers (TMCs), which perform several functions, including collection and warehousing of 

real-time traffic data, as well as utilization of this data for various dynamic traffic control 

and route guidance applications. In order to be effective, these applications —which include 

Advanced Traveler Information Systems (ATIS) and Advanced Traffic Management 

Systems (ATMS)— require traffic models that provide, in real-time, estimation and 

prediction of traffic conditions.  

The complexity of transportation systems often dictates the use of detailed simulation-based 

Dynamic Traffic Assignment (DTA) models (Ben-Akiva et al., 1991, 2002, Mahmassani, 2001) 

for this purpose. Dynamic Traffic Assignment (DTA) systems support both planning and 

real–time applications. Planning applications may include the off–line evaluation of incident 

management strategies, the evaluation of alternative traffic signal and ramp meter operation 

strategies and the generation of evacuation and rescue plans for emergencies (e.g. natural 

disasters) that could affect the traffic network. Real–time applications make use of the traffic 

prediction capabilities of DTA systems and may include on–line evaluation of guidance and 

control strategies, real–time incident management and control, support of real–time 

emergency response efforts and optimization of the operation of TMCs through the 

provision of real–time predictions.  

Real–time DTA systems typically comprise two main functions: traffic state estimation, and 
traffic prediction (Ben-Akiva et al., 2002). An overview of the state-of-the-art Dynamic 
Traffic Assignment framework is shown in Fig. 1. DTA functionality is supported by two 
main modules: a demand simulator and a supply simulator. The demand simulator fuses 
surveillance information with historical information for the estimation and prediction of the 
evolving demand patterns. This is achieved through a combination of aggregate predictive 
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models and disaggregate behavioral models (Antoniou et al., 1997). The supply simulator is 
usually based on high–level (mesoscopic or macroscopic) models that represent traffic 
dynamics using speed-density relationships, kinematic representation of traffic elements of 
queueing theory, etc. A detailed treatment of the demand-supply interactions within a state-
of-the-art DTA system can be found in Ben-Akiva et al. (2002).  
 

 

Fig. 1. Dynamic traffic assignment framework overview 

In the current DTA framework, only the OD flows are calibrated on-line: one of the key 
components of dynamic traffic assignment is the Origin-Destination (OD) estimation and 
prediction process (Ashok & Ben-Akiva, 1993, Ashok, 1996, Ashok & Ben-Akiva, 2000, 2002). 
OD estimation combines historical and real-time information to obtain dynamic demand 
matrices. However, a number of other parameters are used by models in the demand 
simulator and the supply simulator. On the supply side parameters include speed–density 
relationship parameters and output capacities of network links and intersections. On the 
demand side, additional parameters (besides the OD flows) include behavioral model 
parameters.  
In most cases, the approach to the problem of calibration of these parameters has been to 
perform off–line calibration of the simulation models using a database of historic 
information. The calibrated parameter values are then used in the on–line simulations. The 
calibrated model parameters therefore represent average conditions over the period 
represented in the data. Models that were calibrated this way may produce satisfactory 
results in off–line evaluation studies, which are concerned with the expected performance of 
various traffic management strategies.  
However, this may not be the case in real-time applications, which are concerned with the 
system performance on the given day. If the model calibrated off-line is used without 
adjustment, the system is not sensitive to the variability of the traffic conditions between days, 
which are the result of variations in the parameters of the system, such as weather and surface 
conditions. Such variations may cause traffic conditions to differ significantly from the average 
values. Thus, the predictive power of the simulation model may be significantly reduced.  
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Speed–density relationships may depend on location–specific parameters, such as type of 
facility, number of lanes, lane width, slope, surroundings, as well as exhibit temporal 
variations, i.e. they may vary by season, day of the week, or even time of day, reflecting 
different driving behaviors (e.g. experienced drivers during commute periods). Off-line 
calibration could, in principle, deal with these situations, through the generation of a 
historical database of different speed-density relationships, categorized by the conditions. 
Based on the prevailing conditions, the “appropriate" relationship could then be retrieved 
and used. However, traffic dynamics also depend on factors that cannot always be 
anticipated or observed, such as weather conditions, incidents, unscheduled maintenance 
work, traffic mix. Even when these factors can be predicted, it would be impractical to 
calibrate traffic dynamics models for each possible scenario. Minor incidents (such as a car 
slowing down in the break–down lane) that are not reported or captured otherwise in the 
system may also impact the traffic dynamics.  
The output capacity of the network links and intersections is another example. Average 
values could in general be obtained during an off-line calibration phase. However, 
capacities are affected by several phenomena (including weather and lighting conditions, 
traffic composition, etc.) and may therefore change as prevailing conditions change.  
To overcome this problem, real-time data can be used to re-calibrate and adjust the model 
parameters on-line, so that prevailing traffic conditions can be captured more accurately. 
The wealth of information included in the off-line values can be incorporated into this 
process by using them as a priori estimates.  
The remainder of this chapter is organized as follows. Section 2 presents a review of relevant 
literature, Section 3 presents a formulation of the on–line calibration problem as a state–
space model, and Section 4 presents applicable solution approaches. Section 5 presents an 
application of the methodology to a network in Southampton, U.K., and Section 6 concludes 
the chapter with a summary and directions for further research.  

2. Literature review 

The topic of on-line calibration of traffic simulation models has received only limited 
attention in the literature. This section presents a review of prior on–line calibration 
research. System–level approaches are presented first, followed by research focused on 
individual components.  

2.1 System–level approaches 

Doan et al. (1999) outline a framework for periodic adjustments to a traffic management 
simulation model in order to maintain an internal representation of the traffic network 
consistent with that of the actual network. The authors categorize the error sources as 
demand estimation, path estimation, traffic propagation, internal traffic model structure, 
and on–line data observation and propose a system of on–line and off–line adjustment 
modules. A similar approach is proposed in Peeta and Bulusu (1999), where consistency is 
sought in terms of minimizing the deviations of the predicted time–dependent path flows 
from the corresponding actual flows. He et al. (1999) develop a combined off–line and on–
line calibration process to adjust the analytical dynamic traffic model’s output to be 
consistent with real–world traffic conditions by periodically detecting inconsistencies 
between model outputs andreal–world data, and actuating the correction model to correct 
the errors.  
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2.2 Supply parameters 

van Arem and van der Vlist (1992) developed an on–line procedure for the estimation of 
current capacity at a motorway cross–section. The procedure is based on the combination of 
an on–line estimation of a “current” fundamental diagram with a maximum occupancy that 
may be achieved under free–flow conditions. The capacity is estimated by substituting the 
current maximum occupancy into the current fundamental diagram.  
Tavana and Mahmassani (2000) use transfer function methods (bivariate time series models) 
to estimate dynamic speed–density relations from typical detector data. The parameters are 
estimated using the past history of speed–density data; no predetermined parameters or 
shape for the model are assumed. The method is based on time series analysis, using density 
as a leading indicator. Hyunh et al. (2000) extend the work of Tavana and Mahmassani 
(2000) by incorporating the transfer function model into a DTA simulation–based 
framework. Furthermore, the estimation of speeds using the transfer function model is 
implemented as an adaptive process, where the model parameters are updated on–line 
based on the prevailing traffic conditions. Qin and Mahmassani (2004) evaluate the same 
model with actual sensor data from several links of the Irvine, CA, network. In this chapter, 
determination of system input and output is derived from the higher–order continuum 
model. From the numerical results, the performance and the robustness of the transfer 
function model is in general found to be superior to the static model.  
Van Lint et al. (2002) develop a state-space formulation of the travel time prediction problem 
and use it to derive a recurrent state-space neural network (SSNN) topology that captures 
the highly non-linear characteristics of the freeway travel time prediction problem. Van Lint 
et al. (2005) extend the model with preprocessing strategies based on imputation in order to 
achieve accuracy and robustness with respect to missing or corrupt data. Liu et al. (2006) 
present two distinct ways of using Extended Kalman Filters to address the problem of short-
term urban arterial travel time prediction. Van Lint (2006) proposes a delayed EKF method 
for the online incremental training of a data driven travel time prediction model (a state-
space neural network) for the prediction of travel times.  
Antoniou et al. (2005) formulate the problem of on-line calibration of the speed-density 
relationship as a flexible state-space model and present applicable solution approaches. 
Three of the solution approaches [Extended Kalman Filter (EKF), Iterated EKF, and 
Unscented Kalman Filter (UKF)] are implemented and an application of the methodology 
with freeway sensor data from two networks in Europe and the U.S. is presented. The EKF 
provides the most straightforward solution to this problem, and indeed achieves 
considerable improvements in estimation and prediction accuracy. The benefits obtained 
from the —more computationally expensive— Iterated EKF algorithm are shown. An 
innovative solution technique (the UKF) is also presented.  
Wang and Papageorgiou (2005) present a general approach to the real-time estimation of the 
complete traffic state in freeway stretches. They use a stochastic macroscopic traffic flow 
model, and formulate it as a state-space model, which they solve using an Extended Kalman 
Filter. The formulation allows dynamic tracking of time-varying model parameters by 
including them as state variables to be estimated. A random walk is used as the transition 
equations for the model parameters. A detailed case study of this methodology is presented 
in Wang et al. (2007).  
Boel and Mihaylova (2006) present a stochastic model of freeway traffic suitable for on-line 
estimation. The model is estimated using a recursive filter based on Monte Carlo techniques 
(called also particle filters). Ben Aissa et al. (2006) use sequential Monte-Carlo or particle 
filter methods for the estimation and prediction of travel time.  
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2.3 Behavioral parameters 

Peeta and Yu (2006) propose a behavior–based consistency–seeking modeling approach to 
bridge the functional gaps between route choice models and dynamic traffic assignment 
models vis–a–vis predicting the time-dependent network traffic flow patterns. The approach 
consistently addresses day–to–day learning and within–day dynamics using a single hybrid 
probabilistic–possibilistic behavioral model (Peeta & Yu, 2004, 2005) through intuitive if–
then rules that are based on the findings of past studies in the literature. The approach 
avoids rigid assumptions on driver behavioral tendencies and a priori knowledge of driver 
behavior class fractions, and enables the classification of information characteristics and the 
consistent modeling of information effects. The proposed approach uses currently available 
data and achieves computational tractability by obviating a search procedure to predict the 
dynamically evolving traffic flow pattern.  

2.4 Demand parameters 

Ashok and Ben-Akiva (Ashok & Ben-Akiva, 1993, Ashok, 1996, Ashok & Ben-Akiva 2000, 
2002) formulate the real–time OD estimation and prediction problem as a state–space model 
and solve it using a Kalman Filtering algorithm. One interesting characteristic of this 
approach is the use of deviations of OD flows (instead of the OD flows themselves) as 
variables. The use of deviations incorporates the wealth of structural information about 
spatial and temporal relationships between OD flows contained in the historical estimates 
into the OD estimation framework. The real–time OD estimation and prediction framework 
has been implemented in the DynaMIT DTA system (Antoniou et al., 1997, Ben-Akiva et al., 
2002). An efficient solution algorithm for the OD estimation problem has been presented by 
Bierlaire and Crittin (2004).  
Zhou and Mahmassani (2004) develop a similar Kalman-filter based adaptive OD estimation 
and prediction procedure using a polynomial trend filter to recursively capture demand 
deviations from a priori demand estimates.  

2.5 Conclusion 

The problem of on–line calibration of DTA systems has received some attention in the 

literature. Most existing methodologies, however, impose serious constraints and make 

restrictive assumptions. In particular, the components of a DTA system are considered in a 

sequential approach and iterative/heuristic approaches are proposed to estimate the 

appropriate parameters on–line.  

Individual approaches for the on–line calibration of subsets of the parameters have also 

been developed. Such approaches update only a subset of the parameters in a DTA system. 

Therefore, all error or uncertainty is attributed to one source, which is unrealistic. Instead, 

an approach is needed that jointly estimates demand and supply parameters simultaneously 

and captures the complex demand and supply interactions (Ben-Akiva et al., 2002), thus 

ensuring consistency between the estimated parameters.  

3. State–space formulation 

A classical technique for dealing with dynamic systems is state–space modeling. In this 
section, the on–line calibration problem is formulated as a state–space model, comprising:  

• Transition equations that capture the evolution of the state vector over time, and  
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• Measurement equations that capture the mapping of the state vector on the 
measurements.  

Given that state–space models have been extensively studied and efficient algorithms have 
been developed to solve them, this formulation will lead us naturally to Section 4 where 
solution approaches are discussed.  
The first step in developing a state–space model is to define the state vector. In this context, 
the parameters and inputs that need to be calibrated define the state. Measurement and 
transition equations are developed next, followed by a reformulation of the problem in 
terms of deviations.  

3.1 State vector 

The concept of the state (or state vector) is fundamental in the description of a state–space 
model. The state vector xh is defined as the minimal set of data that is sufficient to uniquely 
describe the dynamic behavior of the system at time interval h (the assumption of a discrete, 

stochastic, dynamic system is made). The state vector includes the parameters πh that need 
to be calibrated during time interval h. The main parameters for the on–line calibration 
problem for a DTA system include:  

• OD flows,  

• Behavioral model parameters, such as route, departure and mode choice model 
parameters,  

• Speed–density relationship parameters, and  

• Segment capacities.  
It should be noted, however, that the approach is general and can easily incorporate a 
different set of parameters.  

3.2 Measurement equations 

Available information is associated with the unknown parameter values through 

measurement equations. A priori values of the model parameters provide direct 

measurements of the unknown parameters. Surveillance information, on the other hand, can 

be used to formulate indirect measurement equations, where the output of the simulator 

model S (when the unknown set of parameter values is used as input) would match the 

surveillance information.  

By definition, a direct measurement provides a preliminary estimate of a parameter. Within 
the context of on–line calibration, preliminary estimates of the parameters are provided by 

the off–line calibration. Therefore, the vector of off–line calibrated parameter values πh
α can 

be used as an a priori estimate of the true parameter vector πh. The a priori values of the 
input parameters can be expressed as a function of the “true” parameters:  

 
a

hh hπ π= + ′v  (1) 

where v’h is a vector of random error terms.  
Direct measurements of some OD flows could also be available from advanced surveillance 
technologies, such as Automated Vehicle Identification (AVI) systems or probe vehicles. 
Such technologies allow the tracking of equipped vehicles as they move through the 
network, thus obtaining detailed surveillance information (based on a sample of the 
population). When the vehicles can be detected close to their origin and their destination, it 
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is possible to infer direct measurements of OD flows (Antoniou et al., 2004). Such 
information could easily be incorporated as additional direct measurements.  
Practically any type of available traffic measurements can be used as indirect measurement 
equations, linking the observed traffic measurements with their simulated counterparts 
when a particular set of parameters is used as input. In the general case, modeled trips last 
longer than one interval. Therefore, simulated trajectories of vehicles are impacted by the 
traffic conditions during previous intervals (and consequently by the model parameters 
used during these intervals). The simulated traffic measurements during time interval h can 
therefore be represented as:  

 
1( ) ( )s

h h h h p hS … Sπ π π− −= , , , = ΠM  (2) 

where S is a mapping of the input parameters onto the measurements (representing the 
simulation model), p is the number of intervals required for the longest trip in the network, 

and Πh=πh, πh-1,…, πh-p is an augmented vector of parameters.  
The relationship between the observed and the simulated measurements can then be written 
as follows:  

 o s
hh h υ= + ′M M  (3) 

where υ’h=υhf+υhs+υhm  is a compound observation error comprising three error sources:  

• υhf captures structural errors (due to the inexactness of the simulation models),  

• υhs captures simulation errors (e.g. sampling and numerical errors), and  

• υhm captures measurement errors.  
As it is not possible to distinguish between these three error components, however, they will 

be treated together. Furthermore, it is assumed that υ’h is independent from the error vector 
v’h introduced in Equation 1.  

3.3 Transition equations 

Transition equations capture the evolution of the state vector over time. A typical formulation 
for the transition equation relates the state during a given interval to a series of states from 
previous intervals. A general formulation of such a transition equation would be:  

 
1 1( )h h h h p h
T …π π π π η+ − − ′= , , , +  (4) 

where T is a function capturing the dependence of the parameter vector πh+1 during interval 
h+1 on the values of the parameter vector during the past several intervals, p is the number 

of past parameter vectors that are considered, and η’h is a vector of random error terms.  
A common approach to the representation of transition equations is the use of 
autoregressive processes. Expressed as an autoregressive function, the transition equation 
can be written in matrix form as follows:  

 1

1

h
h

h q q h

q h p

Fπ π η+
+

= −

′′= +∑  (5) 

The three components of the state vector (OD flows, speed–density relationship parameters, 
capacities) represent distinct aspects of the transportation problem and have different 
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characteristics. Therefore, each of these may evolve over time according to a distinct 
autoregressive process. This can easily be handled by writing a separate transition equation 
like the one presented in Equation 5 for each such autoregressive process.  

3.4 The idea of deviations 

Suppose that the model parameters and inputs have been estimated from historical data for 
several previous days or months. These already estimated (demand and supply) parameters 
embody a wealth of information about the relationships that affect trip making and traffic 
dynamics, as well as their temporal and spatial evolution. It is desirable to incorporate as 
much historical information into the formulation as possible. The most straightforward way 
to achieve this is to use deviations of the model parameters from best available estimates 
instead of the actual parameters themselves as state variables. Thus, the model formulation 
would indirectly take into account all the available a priori structural information. The use 
of deviations has been proposed by Ashok and Ben-Akiva (1993) for the OD estimation and 
prediction problem.  
Using deviations also has other benefits. Traffic flow variables have skewed distributions 
(unlike the normal distribution which is symmetric). On the other hand, the corresponding 
deviations of these variables from available estimates would have symmetric distributions 
and hence are more amenable to approximation by a normal distribution. A normal 
distribution for the model variables is a useful property for the available statistical tools 
such as the Kalman Filter extensions used in this research.  
The state vector can therefore be expressed as deviations from best historical values:  

Δπh=πh-πhH. The transition equation can easily be reformulated with respect to the new state 
vector as:  

1

1 1 ( )
h

H h H

h h q q q h

q h p

Fπ π π π η+
+ +

= −

− = − + ⇒∑
 

1

1

h
h

h q q h

q h p

Fπ π η+
+

= −

Δ = ⋅Δ +∑
 

(6) 

Similarly, the direct measurement equation can be written in deviations’ form as:  

a H H

h h h h hπ π π π− = − + ⇒v
 

a

h h hπ πΔ = Δ + v
 

(7) 

It should be noted that πh
α and πhH capture essentially the same thing: an available estimate 

of the state vector. However, there are subtle differences and —in the interest of 
generality— a distinction is made. For example, the a priori parameters πh

α may correspond 
to the parameters obtained from the off–line calibration, while the historical parameters πhH 
may refer to the latest available estimates (e.g. values obtained from the same interval the 
previous day).  
Finally, the indirect measurement equation can be rewritten as:  

( )H H

h h h h hS π υ− = − + ⇒M M M
 

( )H H

h h h h hS π π υΔ = + Δ − +M M
 

(8) 
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where the historical traffic measurement vector MhH can be obtained from an evaluation of 

the historical parameters πh:  

 ( )H

h hS π=M  (9) 

3.5 The model at a glance 

The on–line calibration algorithm has been expressed in deviations’ form (where Equation 6 

is the transition equation and Equations 7 and 8 are the measurement equations). The 

complete state–space model is shown below for clarity:  
 

1

1

h
h

h q q h

q h p

Fπ π η+
+

= −

Δ = ⋅Δ +∑
 

 a

h h hπ πΔ = Δ + v  (10) 

( )H H

h h h h hS π π υΔ = + Δ − +M M
 

Before moving to the presentation of applicable solution approaches (Section 4), it is useful 

to express the model in the following form:  

 
1 ( )h h h+ = +x f x w  (11) 

 ( )h h h= +y h x u  (12) 

where Equation 11 is the transition equation and Equation 12 is the measurement equation.  

This form is obtained directly from Equations 10 if we denote  

h hπ= Δx
 

a

h

h

h

π⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Δ
=
Δ

y
M

 

1( )
h

h

h q q

q h p

F +

= −

= ∑f x x

 

( )
( )

h

h H H
h h h

S

π
π π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Δ
=

+Δ −
h x

M
 

h

h

h
υ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=
v

u

 

Furthermore, the following assumptions are made on the error vectors wh and uh:  

1. E[wh ]=0  
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2. E[wh w’m]=Qhδhm where δhm is the Kronecker delta, i.e. δhm=1 if h=m and 0 otherwise 

∀h,m, and Qh is a variance–covariance matrix.  
3. E[uh ]=0  

4. E[uh u’m]=Rhδhm where δhm is the Kronecker delta, i.e. δhm=1 if h=m and 0 otherwise ∀h,m, 
and Rh is a variance–covariance matrix.  

5. E[uh w’m]=0 ∀h,m, i.e. the errors of the transition and measurement equations are 
uncorrelated.  

These assumptions allow for the derivation of the Kalman Filter–based solution approaches. 
The assumption of no serial correlation for the transition equation can be defended because the 

unobserved factors that could be correlated over time are captured by the historical matrix παh 

(or πHh). In some situations (e.g. incidents), however, this assumption might break down. A 
violation of this assumption, however, can be easily taken care of by using a variant of the 
estimation algorithm. (An algorithm to handle correlated errors in the transition or 
measurement equations can be found, for example, in Chui and Chen, 1999). The assumption 
of no serial correlation for the measurement equation can be defended using a similar 
argument. However, this assumption might also break down if, for example, a specific 
detector consistently under–estimates or over–estimates a link volume on a particular day. 
Again, it is easy to relax this assumption and use a variant of the estimation algorithm.  

3.6 An alternative formulation 

The on-line calibration problem can be formulated as a minimization problem where the 
objective function aims to jointly minimize the following components:  

• εoh: deviation of simulated traffic conditions Msh from the respective observed 
measurements Moh, and  

• εαh: deviation of a set of parameters and inputs πh (over which the optimization is 

performed) from their a priori values παh .  
The objective function could then be expressed as:  

 
1 2min[ ( ) ( )]o a

h h hN Nπ ε ε+  (13) 

where Ni(.) are appropriate functions measuring the magnitude of the errors. For example, 
Ni(.) may be the Euclidian norm.  
Substituting the expressions for the error terms from Equations 1 and 3, the objective 
function can be restated as:  

 
1 2min[ ( ) ( )]o s a

h h h h hN Nπ π π− + −M M  (14) 

The above formulation can be made operational in a number of different ways, depending 
on the assumptions regarding the nature of the various error terms and the functional forms 
of Ni(.). The various formulations may lead to different solution approaches with different 

convergence and computational properties. For example, if εα and εo are assumed to be 
normally distributed the formulation reduces to the following generalized least squares 
(GLS) problem:  

1min[( ) ( )o s o s

h h h h hπ −′− − +M M W M M
 

1( ) ( )]a a

h h h hπ π π π−′+ − −V
 

(15) 
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where W and V are the variance–covariance matrices of the measurements and a priori 
values, respectively. The solution π*h to this optimization problem can then be obtained 
from:  

1argmin[( ) ( )o s o s

h h h h h hπ π∗ −′= − − +M M W M M
 

1( ) ( )]a a

h h h hπ π π π−′+ − −V
 

(16) 

In an on–line application, however, this formulation would be impractical since the problem 
needs to be solved at every time interval, with all the information on previous time intervals 
(because of the temporal correlations between the errors). Stating this problem as a state–
space model, which can then be solved efficiently using recursive methods such as Kalman 
Filtering techniques, overcomes this difficulty.  
The on–line calibration approach can also be solved using other algorithms for non–linear 
systems of equations. A particularly suitable algorithm has been recently developed (Crittin, 
2003, Crittin & Bierlaire, 2003) as a generalization of secant methods. The proposed class of 
methods calibrates a linear model based on several previous iterates. The difference with 
existing approaches is that the linear model to interpolate the function is not imposed. 
Instead, the linear model, which is as close as possible to the nonlinear function (in the least–
squares sense), is identified.  

4. Solution approaches 

The Kalman Filter is the optimal minimum mean square error (MMSE) estimator for linear 
state–space models (Kalman, 1960). However, the on–line calibration approach is non–linear 
(due to the indirect measurement equation). Since many other interesting problems are non–
linear, solutions for non–linear models have been sought, leading to the development of 
modified Kalman Filter methodologies. The most straightforward extension is the Extended 
Kalman Filter (EKF), in which optimal quantities are approximated via first order Taylor 
series expansion (linearization) of the appropriate equations (Kalman, 1960, Gelb, 1974). A 
special case of the EKF with very favorable computational properties is the Limiting 
Extended Kalman Filter (LimEKF; Limiting Kalman Filters are discussed e.g. in Chui & 
Chen, 1999). The Unscented Kalman Filter (UKF) (Julier et al., 1995; Julier & Uhlmann, 1997; 
Wan et al., 2000; Wan & van der Merwe, 2000; van der Merwe et al., 2000) is an alternative 
filter. The main difference between the EKF and UKF lies in the representation of the 
random variables for propagation through the system dynamics.  

4.1 Extended Kalman filter 
The Extended Kalman Filter employs a linearization of the non–linear relationship to 
approximate the measurement equation with a first–order Taylor expansion:  

 

1

( )

hh

h

ϑ
ϑ ∗

| −

∗

∗
=

=
x X

h x
H

x
 (17) 

In words, the Extended Kalman Filter main steps are as follows. Suppose that a starting 
estimate of the state X0  is available (Equation 18), along with an estimate of the initial state 
variance–covariance matrix P0 (Equation 19). A time update phase makes a prediction of the 
state (Equation 20) and its covariance matrix (Equation 21) for the next time interval.  
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The measurement update phase incorporates the new information about the measurement 

vector Yh and uses it to correct the prediction of the state made during the time update. The 

measurement matrix Hh is obtained through an intermediate linearization step 

(Equation 22). Instrumental in this process is the Kalman gain Gh, which is computed as per 

Equation 23. The state can then be updated (corrected) using Equation 24. Similarly, the 

state covariance is updated using Equation 25.  

 
Algorithm 1. Extended Kalman Filter 
Initialization  

 
0 0 0| =X X  (18) 

 
0 0 0| =P P  (19) 

for h=1 to N do 
Time update  

 
1 1 1 1h h h h h| − − − | −=X F X  (20) 

 
1 1 1 1 1

T

h h h h h h h| − − − | − −= +P F P F Q  (21) 

Linearization  

 

1

( )

h h

h

ϑ
ϑ ∗

| −

∗

∗
=

=
x X

h x
H

x
 (22) 

Measurement update  

 
1

1 1

T T

h h h h h h h h h

−⎛ ⎞
⎜ ⎟| − | −⎝ ⎠

= +G P H H P H R  (23) 

 
1 1h h h h h h h h

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟| | − | −⎝ ⎠⎣ ⎦

= + −X X G Y h X  (24) 

 
1 1h h h h h h h h| | − | −= −P P G H P  (25) 

end for 
 

Further information on the Extended Kalman Filter can be found in many texts, including 
for example Sorenson (1985) and Chui and Chen (1999).  
The on–line calibration approach presented in previous sections does not —in general— 

have an analytical representation. Therefore, in order to perform the linearization step 

(Equation 22) it is necessary to use numerical derivatives. Assuming the use of central 

derivatives, it is necessary to evaluate the function 2n times, where n is the dimension of the 

state vector. (If forward derivatives are used, then this number drops to n+1 evaluations.) 

Each such evaluation implies one run of the simulator. Therefore, it becomes apparent that 

this process of linearization dominates the computational complexity of the algorithm.  
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4.2 Limiting extended Kalman filter 

In this section, a special case of the Extended Kalman Filter is presented that significantly 
improves the computational performance of the algorithm. As mentioned in Section 4.1, the 
most computationally intensive step in the EKF algorithm is the linearization of the 
measurement equation (Equation 22), as it requires the use of numerical derivatives. 
Another costly operation is the inversion required for the computation of the Kalman gain 
(Equation 23). In real–time applications, it may be possible to replace the Kalman Gain 
matrix Gh by a constant gain matrix considerably decreasing the computation time. The 
limiting Kalman Filter will be defined by replacing Gh with its “limit” G, called the limiting 
(or stable) Kalman gain matrix (Chui & Chen, 1999). The main steps of the Limiting 
Extended Kalman Filter (LimEKF) algorithm are presented in Algorithm 2. The differences 
from the EKF algorithm are limited to the computation of the numerical derivative (which is 
not computed on–line in the LimEKF) and the use of the limiting Kalman gain G for every 
iteration (Equations 30 and 31).  
The limiting Kalman gain matrix can be computed off–line. The simplest way would be to 
express the limiting Kalman gain matrix as the average of a number of available Kalman 
gain matrices:  

 1 mm M

M

= :=∑ G
G  (32) 

where Gm is the Kalman gain obtained from EKF during interval m and M is the total 
number of available Kalman gain matrices. Several strategies can be developed to improve 
the quality of the limiting Kalman gain. For example, the EKF could be run off–line, with 
each run producing a new Kalman gain matrix. These Kalman gain matrices could then be 
used to update the limiting Kalman gain matrix. Another strategy would be to consider only 
the last few Kalman gain matrices, i.e. use a type of moving average. Weighted averages 
(e.g. using lower weights for “older” gain matrices) can also be considered.  
 

Algorithm 2. Limiting Extended Kalman Filter 
Generation of limiting Kalman gain matrix G and H  
Initialization  

 
0 0 0| =X X  (26) 

 
0 0 0| =P P  (27) 

for h=1 to N do 
Time update  

 
1 1 1 1h h h h h| − − − | −=X F X  (28) 

 
1 1 1 1 1

T

h h h h h h h| − − − | − −= +P F P F Q  (29) 

Measurement update  

 
1 1h h h h h h h

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟| | − | −⎝ ⎠⎣ ⎦

= + −X X G Y h X  (30) 
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1 1h h h h h h| | − | −= −P P GHP  (31) 

end for 
 

The main component of the Kalman gain matrix is the derivative Hh of the measurement 
equation. This is directly required in Equation 31. Using the same principle as above, it is 
possible to replace the time–dependent matrix Hh with the average H of a number of 
available matrices:  

 1 mm M

M

= :=∑ H
H  (33) 

where Hm is the matrix obtained from EKF during interval m and M is the total number of 
available matrices. The resulting matrix H can be then used to update the state covariance in 
Equation 31.  

4.3 Unscented Kalman filter 

The Unscented Kalman Filter (UKF) (Julier et al., 1995; Julier and Uhlmann, 1997; Wan et al., 
2000; Wan and van der Merwe, 2000; van der Merwe et al., 2000) is an alternative filter for 
dynamic state–space models. The UKF uses a deterministic sampling approach (Unscented 
Transformation, UT) to represent a random variable using a number of deterministically 
selected sample points (often called sigma points). These points capture the mean and 
covariance of the random variable and, when propagated through the true nonlinear system, 
capture the posterior mean and covariance accurately to the second order (Taylor series 
expansion).  
The Unscented Transformation is based on the intuitive expectation that “with a fixed 
number of parameters it should be easier to approximate a Gaussian distribution than it is to 
approximate an arbitrary nonlinear function/transformation” (Julier & Uhlmann, 1996). 
Following this intuition, one would seek to find a parameterization that would capture the 
mean and covariance information while at the same time permitting the direct propagation 
of the information through an arbitrary set of nonlinear equations. This can be accomplished 
by generating a discrete distribution having the same first and second (and possibly higher) 
moments, where each point in the discrete approximation can be directly transformed. The 
mean and covariance of the transformed ensemble can then be computed as the estimate of 
the nonlinear transformation of the original distribution.  
Given an n–dimensional distribution with covariance P, it is possible to generate O(n) points 

with the same sample covariance from the columns (or rows) of the matrices n± P  (the 

positive and negative roots). This set of points has a zero mean. However, simply adding the 
mean X of the original distribution to each of the points yields a symmetric set of 2n points 
with the desired mean and covariance. Because the set is symmetric its odd central moments 
are zero, so its first three moments match the original Gaussian distribution.  
The main steps of the Unscented Transformation (UT) for calculating the statistics of a 
random variable that undergoes a nonlinear transformation (e.g. ( )f=

h h
y x ) are presented 

in Algorithm 3 (Julier & Uhlmann, 1997). Let the n-dimensional random variable xh with 
covariance matrix Px,h denote the state for time interval h. Since this algorithm also considers 
the covariance of the measurement vector Py,h during interval h and the covariance of the 
state and measurement vectors Pxy,h, the covariance of the state vector will be denoted  
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Px,h= Ph  in order to avoid confusion.  
To calculate the statistics of y, a matrix X is generated using 2n+1 weighted sigma points.  

κ∈R is a scaling parameter and ( ) x h
i

n κ⎛ ⎞
⎜ ⎟⎜ ⎟,⎝ ⎠

+ P  is the ith row or column of the matrix square 

root of (n+κ) Px,h. A Cholesky decomposition (Golub & van Loan, 1996) can be used for this 

step. The value of the scaling parameter κ has a direct effect on the scaling of the points and 

is an input to the algorithm. The constant α determines the spread of the sigma points 

around x  and is usually set to 0.0001≤α≤1. b is used to incorporate prior knowledge of the 
distribution of X (for Gaussian distributions, b=2 is optimal). The weights are not time–
dependent and do not need to be recomputed for every time interval.  
 

Algorithm 3. Unscented Transformation 
Generation of sigma points  

 
0 hX , =

h
x  (34)  

for i=1 to n do 

 ( )i h x h
i

X n κ⎛ ⎞
⎜ ⎟⎜ ⎟, ,⎝ ⎠

= + +hx P  (35) 

end for 
for i=n+1 to 2n do 

 ( )i h x h
i

X n κ⎛ ⎞
⎜ ⎟⎜ ⎟, ,⎝ ⎠

= − +
h
x P  (36) 

end for 
Generation of weights  

 
0 ( )mW nκ κ= / +  (37) 

 2

0 ( ) (1 )cW n a bκ κ= / + + − +  (38) 

for i=1 to 2n do 

 [ ]1 2( )m c

i iW W n κ= = / +  (39) 

end for 
 

The main steps of the UKF are presented in Algorithm 4 (van der Merwe et al., 2000). The 
initialization step uses the Unscented Transformation (Algorithm 3) to generate the 2n+1 
sigma points and appropriate weights for the mean and covariance computations. A time and 
measurement update step is repeated for each run of the algorithm.  
The first step in the time update phase is the propagation of the sigma points through the 
transition equation (Equation 40). The prior estimate of the state vector is computed as a 
weighted sum of the propagated sigma points (Equation 41). A similar approach is used for 
the prior estimate of the state covariance (Equation 42). The true measurement equation is 
used to transform the sigma points into a vector of respective measurements (Equation 43). 
The measurement vector is computed as a weighted sum of the generated measurements 
(Equation 44).  
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The computation of the Kalman gain (and consequently the “correction” phase of the 
filtering) is based on the covariance of the measurement vector (Equation 45) and the 
covariance of the state and measurement vectors (Equation 46). These are computed using 
the weights (that were obtained from the Unscented Transformation during the 
initialization step) and the deviations of the sigma points from their means.  
The Kalman gain is then computed from these covariance matrices (Equation 47). 
Equation 48 introduces the measurement vector yh and uses the Kalman gain to correct the 
state estimate xh. The state covariance is updated using Equation 49.  
 
Algorithm 4. Unscented Kalman Filter 
for h=1 to N do 
Generate sigma points and weights using the Unscented Transformation (Algorithm 3)  
Time update  

 
1 1( )h h hX X| − −= f  (40) 

 
2

1 1

0

n
m

h h i i h h

i

W X| − , | −
=

=∑x  (41) 

 
2

1 1 1

0

n
c

x h h i i h h h h

i

W X⎛ ⎞
⎜ ⎟, | − , | − | −⎝ ⎠

=

= − ×∑P x  (42) 

1 1

T

i h h h h hX⎛ ⎞
⎜ ⎟, | − | −⎝ ⎠
× − +x Q  

 
1 1i h h i h hY X⎛ ⎞

⎜ ⎟, | − , | −⎝ ⎠
= h  (43) 

 
2

1 1

0

n
m

h h i i h h

i

W Y| − , | −
=

=∑y  (44) 

Measurement update 

 
2

1 1

0

( )
n

c

y h i i h h h h

i

W Y, , | − | −
=

= − ×∑P y  (45)  

1 1( )Ti h h h h hY , | − | −× − +y R  

 
2

1 1

0

( )
n

c

xy h i i h h h h

i

W X, , | − | −
=

= − ×∑P x  (46) 

1 1( )Ti h h h hY , | − | −× − y  

 1

h xy h y h

−
, ,=G P P  (47) 
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1 1h h h h h h h

⎛ ⎞
⎜ ⎟| − | −⎝ ⎠

= + −x x G y y  (48) 

 
1

T

x h x h h h y h h, , | − ,= −P P G P G  (49) 

end for 

5. Application 

The objective of this application is to demonstrate the performance of the joint on–line 

estimation of demand and supply parameters for a DTA system. The situation when only 

the demand parameters are calibrated on–line is used as the base. Since this reference 

problem is the usual OD estimation problem, GLS or Kalman Filter algorithms can be 

applied. When both the demand and supply parameters are jointly updated on–line, 

however, the problem cannot be represented analytically and the algorithms presented in 

Section 4 can be used. The on–line calibration has been implemented and demonstrated as it 

applies to the DynaMIT–R DTA system. Three algorithms have been implemented (EKF, 

LimEKF and UKF) and their performance for a freeway network in Southampton, UK, is 

presented.  

DynaMIT–R is a state–of–the–art DTA system. The high–level framework of DynaMIT–R 
has been presented in Fig. 1. The key to the functionality of DynaMIT–R is its detailed 
network representation, coupled with models of traveler behavior. Through an effective 
integration of historical databases with real-time inputs, DynaMIT–R is designed to 
efficiently achieve:  

• Real time estimation of network conditions.  

• Rolling horizon predictions of network conditions in response to alternative traffic 
control measures and information dissemination strategies.  

• Generation of traffic information and route guidance to steer drivers towards optimal 
decisions.  

To sustain users’ acceptance and achieve reliable predictions and credible guidance, 

DynaMIT–R incorporates unbiasedness and consistency into its core operations. 

Unbiasedness guarantees that the information provided to travelers is based on the best 

available knowledge of current and anticipated network conditions. Consistency ensures 

that DynaMIT–R’s predictions of expected network conditions match what drivers would 

experience on the network. DynaMIT–R has the ability to trade-off level of detail (or 

resolution) and computational practicability, without compromising the integrity of its 

output. A more detailed description of DynaMIT-R can be found in Ben-Akiva et al. (2002).  

The network includes a 35km long part of freeway (M27) from Southampton, U.K. The 

network starts to the west of the city of Southampton, then goes around it, and continues 

eastbound towards Portsmouth. The network also includes seven off–ramps and eight on–

ramps. A schematic representation is shown in Fig. 2, which indicates the ten sensors, which 

provide traffic information (counts, speeds and occupancies). Traffic is loaded onto the 

network via twenty origin-destination pairs. The peak period for this direction is the 

afternoon/evening. Weekday data (speeds and densities) from the first two weeks of 

September 2001 have been used. Fig. 3 shows the speed and density distribution at a 

mainline sensor for these days.  
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 Fig. 2. Schematic of the study network 

 
Fig. 3. Speeds/densities (days with dry weather conditions) 

5.1 Methodology 

Since an off–line calibration was not available for this network, the first step in this case 
study was to perform an off–line calibration. Data from five weekdays (without adverse 
weather or incidents) during the first two weeks of September 2001 were used and a 
sequential off–line calibration approach was followed. Supply parameters were first 
calibrated. Speed–density relationship parameters were obtained by fitting speed and 
density data to the appropriate functional form. Speed–density relationship parameters 
were obtained by using non–linear regression to fit speed and density data to the speed–
density relationship used by DynaMIT–R:  

 
max(0 )

1 min
f

jam

K K
u u

K

αβ⎡ ⎤⎛ ⎞, −⎢ ⎥= − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (50) 

where u denotes the speed, uf is the free flow speed, K is the density, Kmin is the minimum 

density, Kjam is the jam density and α and β are model parameters. The 45 segments of the 

network were split into three groups with homogeneous characteristics. The mainline 

segments were classified into two types, while the ramp segments were grouped together.  

Segment capacities were estimated using Highway Capacity Manual guidelines (HCM, 
2000). Capacity computations are usually based on appropriate guidelines (e.g. the Highway 
Capacity Manual, HCM, 2000, for the United States). Although the study network is in the 
United Kingdom, no equivalent national guidelines are available for the United Kingdom 
and therefore the Highway Capacity Manual guidelines were used. Analysis and 
comparison of the estimated capacities against observed counts were performed, to ensure 
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that the capacity values did not result in counterintuitive results (such as observed sensor 
counts exceeding the segment capacity).  
Then, using the calibrated parameters as inputs, time–dependent OD flows were estimated. 
A sequential OD estimation approach (Balakrishna, 2002) was applied on five weekdays. A 
static seed matrix was used to initialize the process. For the first day, the estimated OD 
flows from each interval were used as historical estimates for the next interval. The 
estimated flows for each day were then used as historical flows for the next day. An 
ordinary least squares (OLS) approach was used for the first two days. At the end of the 
second day, measurement error covariances were estimates from the residuals of the fitted 
sensor counts and OD flows from their observed or historical values. This allowed for the 
use of a generalized least squares (GLS) approach for the remaining days. Estimated OD 
flows across time intervals were used to estimate autoregressive factors for the transition 
equation. The planning version of the DynaMIT system (DynaMIT–P) was used in this 
process. The Normalized Root Mean Square error (RMSN) statistic for the fit-to-counts was 
equal to 0.1232. The total fit of the speeds, as quantified by the Normalized Root Mean 
Square error (RMSN) statistic, was equal to 0.1102. The RMSN statistic was computed using 
the following formula (Ashok & Ben-Akiva, 2000, 2002):  

2ˆ( )
N

N

N y y
RMSN

y

−
=

∑
∑

 

where N is the number of observations, y denotes an observation and ŷ  is the 

corresponding estimated (predicted) value.  
One of the main outputs of DTA systems is traffic information and guidance, usually in the 
form of travel times. Speeds are the closest surveillance measurement and there are ways to 
compute travel times from speeds. Furthermore, given a properly calibrated traffic 
estimation and prediction system it is possible to obtain (simulated) travel times directly. On 
the other hand, the most ubiquitous traffic measurement is traffic counts. Therefore, the two 
first measures of effectiveness are based on fit of estimated (predicted) speeds and counts 
with observed values, quantified using the normalized root mean square error (RMSN).  
The computational performance of the algorithms is another important consideration. In 
particular, given the on–line nature of the application, it is important to understand the 
computational complexity of each algorithm. Given a simulation–based DTA system, the 
function evaluations (required by the solution approaches) are by far the most 
computational intensive task, since each evaluation implies one run of the simulator. In the 
subsequent discussion, the number of function evaluations are used as a measure of 
effectiveness for each algorithm.  
The state vector for the on–line calibration consists of OD flows, segment capacities and 

speed–density relationship parameters. (Route choice parameters are not included due to 

the nature of the network used for the case study.) The total dimension is 80, broken down 

in:  

• 20 OD flows  

• 45 segment capacities  

• 15 speed–density relationship parameters: a speed–density relationship (and therefore 5 

parameters: free flow speed, minimum and jam density and exponents α and β) has 
been defined for each of the three segment types.  
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The duration of the estimation and prediction intervals was set to fifteen minutes. OD 

estimation requires that the count measurements are aggregated to the duration of the 

interval (i.e. fifteen minutes in this case study). To maintain consistency between the various 

algorithms, this level of aggregation has been maintained for the counts in the on–line 

calibration approach. Furthermore, minute–by–minute speed and density surveillance 

information was used.  

Therefore, the measurement vector for each fifteen–minute interval consisted of 390 

elements:  

• 15–minute count measurements: 10 count measurements in total  

• Minute–by–minute speed measurements: 150 speed measurements  

• Minute–by–minute density measurements: 150 density measurements  

• A priori state vector: 80 elements comprising 20 OD flows, 45 capacities, and 15 speed–
density relationship parameters (3 groups of 5 parameters each).  

The transition fractions that were estimated during the off–line calibration were used for the 

OD flows. The degree of the autoregressive process for the OD flows was found to be equal 

to two. For the supply parameters, a degree of one was used for the autoregressive process. 

Furthermore, variance/covariance matrices were estimated based on the output of the off–

line calibration (Ashok, 1996, Balakrishna et al., 2005).  

The period of analysis comprises six intervals of fifteen minutes (i.e. from 16:15 to 17:45). A 

warm–up period of 75 minutes (from 15:00 to 16:15) is used to ensure that the network is 

adequately loaded.  

5.2 Results 

Tables 1 and 2 summarize the obtained fit for estimated and predicted speeds and counts. 

The base row provides the performance when only demand parameters are estimated on–

line. The next three rows show the results obtained when demand and supply parameters 

are jointly estimated (each row corresponds to one of the considered algorithms). RMSN 

values are provided, as well as percent improvement over the base case; in particular, the 

results for the cases where demand and supply parameters are estimated jointly are shown 

as percent improvement over the base case (i.e. when only demand parameters are estimated 

on–line).  
 

 Estimated One-step pred. Two-step pred. Three-step pred. 

Algorithm RMSN (%) RMSN (%) RMSN (%) RMSN (%) 

Base 0.1286 --- 0.1540 --- 0.1666 --- 0.1905 --- 

EKF 0.1039 (19.2%) 0.1318 (14.4%) 0.1550 (7.0%) 0.2008 (-5.4%) 

LimEKF 0.1091 (15.1%) 0.1321 (14.2%) 0.1702 (-2.2%) 0.2036 (-6.9%) 

UKF 0.1293 (-0.6%) 0.1505 (2.3%) 0.1756 (-5.4%) 0.2221 (-16.6%) 

Table 1. Case study results (counts) 

These results indicate that the joint calibration of demand and supply parameters can 

improve the ability of the system to accurately estimate and predict the traffic conditions. 

The EKF algorithm exhibits the best performance with considerable improvements in 

estimation and prediction accuracy (except for three–step predicted counts).  
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 Estimated One-step pred. Two-step pred. Three-step pred. 

Algorithm RMSN (%) RMSN (%) RMSN (%) RMSN (%) 

Base 0.1266 --- 0.1494 --- 0.1448 --- 0.1494 --- 

EKF 0.1107 (12.6%) 0.1209 (19.1%) 0.1303 (10.0%) 0.1331 (10.9%) 

LimEKF 0.1121 (11.5%) 0.1249 (16.4%) 0.1346 (7.0%) 0.1362 (8.8%) 

UKF 0.1156 (8.7%) 0.1249 (16.4%) 0.1315 (9.2%) 0.1346 (9.9%) 

Table 2. Case study results (speeds) 

A small decrease in performance (compared to the EKF) —but still an improvement— is 

obtained when the LimEKF algorithm is used. It is interesting to note that while the LimEKF 

algorithm has order(s) of magnitude lower computational complexity (than the EKF or UKF 

algorithms), it still provides a significant improvement over the base case. Improvements of 

more than 10% are obtained in estimated and one–step predicted speeds and counts. 

Furthermore, the LimEKF algorithm provides a 7% improvement in two–step predicted 

speeds and close to a 9% improvement in three–step predicted speeds. However, there is a 

small deterioration (-2.2%) in the two–step predicted counts and almost a 7% deterioration 

in three–step predicted counts.  

The UKF algorithm seems to have the least desirable performance in this application. While 
in general this algorithm provides improvement over the base case, its two–step and three–
step predicted counts deteriorate (-5.4% and -16.6). Furthermore, (with the exception of two–
step and three–step predicted speeds) this algorithm is generally outperformed by the 
LimEKF, which has vastly better computation properties.  
One observation that is applicable to all algorithms is that the approach shows a superior 

performance in prediction of speeds over prediction of counts. The source of this 

phenomenon may be traced to the surveillance data that have been used for this case study. 

In particular, sensor counts have been aggregated in 15-minute intervals, while minute–by–

minute speeds and densities have been used (resulting in a larger number of observations 

and hence a larger "weight" on these measurements). Counts have been aggregated to 15–

minute intervals in order to be as compatible and comparable as possible with the base case 

where only OD flows are estimated on–line. For more details on the OD estimation 

procedure used in DynaMIT, cf. Antoniou et al. (1997).  

The third measure of effectiveness (besides the fit of speed and counts) is the computational 

complexity of each algorithm. As discussed above, the computational performance of the 

on–line calibration approach for a simulation–based DTA system is determined largely by 

the number of function evaluations required. The EKF and the UKF algorithms require 2n 

and 2n+1 function evaluations (and thus runs of the simulator) respectively (where n is the 

dimension of the state vector). Therefore, the two algorithms have similar computational 

requirements (converging as the dimension of the problem increases).  

The LimEKF algorithm, on the other hand, requires a single function evaluation irrespective 
of the dimension of the problem. Therefore, the computational performance of this 
algorithm is vastly superior to that of the other two algorithms (EKF and UKF). The constant 
computational requirements of the LimEKF algorithm (i.e. the fact that a single function 
evaluation is required irrespective of the application) makes it easy to obtain some further 
insight into the scalability of the approach to larger networks.  
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For example, assuming that an estimation interval of fifteen minutes is used, this approach 
can be used for any application (i.e. combination of DTA system and network) that allows 
for one function evaluation (for the on–line calibration) and another run of the simulator (for 
the prediction of the state using the on–line calibrated parameters within that time–frame). 
A related observation is that using the LimEKF and the on–line calibration approach to 
jointly estimate all inputs and model parameters is computationally equivalent to the base 
case (i.e. only using OD estimation to calibrate OD flows on–line).  
 

 

Fig. 4. Estimated capacities (EKF) 

The impact of the on–line calibration on the parameters is discussed next, using the results 
from the EKF algorithm. Fig. 4 shows the estimated capacities for all segments over time. 
The capacity in several mainline segments has been increased (from the original 2200 
vehicles per hour per lane), sometimes close to 2400 vehicles per hour per lane. A capacity of 
2400 veh/hr/lane for a motorway such as M27 is reasonable. The capacity for a few 
mainline segments, which include weaving and/or merging, is reduced to less than 1800 
vehicles per hour per lane. The location of these four segments with reduced on–line 
calibrated capacity is indicated in Fig. 5. The distribution of the other segment capacities is 
fairly uniform around the off–line calibrated mean capacity (obtained through the general 
guidelines of the HCM, which could not capture the subtle –geometrical or other– variations 
among the segments). On–line calibration, on the other hand, is able to estimate individual 
capacities for each segment, based on the traffic dynamics of these segments, thus capturing 
these variations. Ramp capacity is generally stable, with the exception of three (out of 
sixteen in total) ramp segments, in which small decreases (of less than 125 vehicles per hour 
per lane) are observed.  
 

 

Fig. 5. Mainline segments with lower capacities (due to weaving and merging) 
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Fig. 6 and 7 show the evolution of the on–line calibrated speed–density relationships over 
time for mainline segments and ramp segments respectively. Each curve in these figures 
corresponds to a time interval, for which the on–line calibration was performed. One 
general observation is that on the day, for which the on–line calibration took place, the 
observed speeds and densities were higher than those observed during the off-line 
calibration (as indicated by the off–line calibrated speed–density relationship, also shown in 
these figures). The on–line calibrated speed–density relationships have changed in a way 
that captures this behavioral shift, indicating that the on–line calibration performs as 
intended. This shift is clearer for ramp segments (Fig. 7) and the second mainline segment 
group (Fig. 6(b)), while smaller changes (still in the right direction) are obtained for the 
other group of mainline segments (Fig. 6(a)).  
 

  
(a) Group A (b) Group B 

Fig. 6. On–line calibrated speed–density relationships (Mainline segments – EKF) 

 
Fig. 7. On–line calibrated speed–density relationships (Ramp segments – EKF) 
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6. Conclusion 

An on–line calibration approach for dynamic traffic assignment systems has been 
developed. The approach is general and flexible and makes no assumptions on the type of 
the DTA system, the models or the data that it can handle. Therefore, it is applicable to a 
wide variety of tools including simulation–based and analytical, as well as microscopic and 
macroscopic models.  
The objective of the on–line calibration approach is to introduce a systematic procedure that 
will use the available data to steer the model parameters to values closer to the realized ones. 
The output of the on–line calibration is therefore a set of parameter values that —when used 
as input for traffic estimation and prediction— minimizes the discrepancy between the 
simulated (estimated and predicted) and the observed traffic conditions. The scope of the 
on–line calibration is neither to duplicate nor to substitute for the off–line calibration 
process. Instead, the two processes are complementary and synergistic in nature.  
The on–line calibration problem is formulated as a state–space model. State–space models 
have been extensively studied and efficient algorithms have been developed, such as the 
Kalman Filter for linear models. Because of the non–linear nature of the on–line calibration 
formulation, modified Kalman Filter methodologies have been presented. The most 
straightforward extension is the Extended Kalman Filter (EKF), in which optimal quantities 
are approximated via first order Taylor series expansion (linearization) of the appropriate 
equations. The Limiting EKF is a variation of the EKF that eliminates the need to perform 
the most computationally intensive steps of the algorithm on–line. The use of the Limiting 
EKF provides dramatic improvements in terms of computational performance. The 
Unscented Kalman Filter (UKF) is an alternative filter that uses a deterministic sampling 
approach. The computational complexity of the UKF is of the same order as that of the EKF.  
Empirical results suggest that joint on–line calibration of demand and supply parameters 
can improve estimation and prediction accuracy of a DTA system. While the results 
obtained from this real network application are promising, they should be validated in 
further empirical studies. In particular, the scalability of the approach to larger, more 
complex networks needs to be investigated.  
The results also suggest that —in this application— the EKF has more desirable properties 
than the UKF (which may be expected to have superior performance over the EKF), while 
the UKF seems to perform better in terms of speeds than in terms of counts. Other 
researchers have also encountered situations where the UKF does not outperform the EKF, 
e.g. LaViola, J. J., Jr. (2003) and van Rhijn et al. (2005).  
The Limiting EKF provides accuracy comparable to that of the best algorithm (EKF), while 
providing order(s) of magnitude improvement in computational performance. Furthermore, 
the LimEKF algorithm is that it requires a single function evaluation irrespective of the 
dimension of the state vector (while the computational complexity of the EKF and UKF 
algorithms increases proportionally with the state dimension). This property makes this an 
attractive algorithm for large–scale applications.  
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