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1. Introduction 

Internet Coordinate Systems, shortly ICS, (e.g. [9] [8]) have been proposed to allow for 
distance (Round-Trip Time, shortly RTT) estimation between nodes, in order to reduce the 
measurement overhead of many applications and overlay networks. Indeed, by embedding 
the Internet delay space into a metric space – an operation that only requires each node in 
the system to measure delays to a small set of other nodes (its neighbors), nodes are 
attributed coordinates that can then be used to estimate the RTT between any two nodes, 
without further measurements, simply by applying the distance function associated with the 
chosen metric space to the nodes’ coordinates. 
Recent works have shown how coordinate-embedding services could be vulnerable to 
malicious attacks, providing a potentially attractive fertile ground for the disruption or 
collapse of the many applications and overlays that would use these services [2]. There are 
actually two obvious ways to disrupt the operation of a coordinate based system. First when 
requested to give its coordinate for a distance estimation at the application-level, a malicious 
node could simply and blatantly lie. Second, a malicious node, or even a colluding group, 
may aim at disrupting the embedding process itself. This latter strategy is very insidious 
and effective as it can result in important distortions of the coordinate space which then 
spoils the coordinate computations of many nodes (malicious and honest alike) [2]. This 
chapter focuses on developing and studying generic Kalman filter-based methods to secure 
the coordinate embedding process. More precisely, the embedding process, regardless of the 
actual coordinate-based positioning system, works on the premise that nodes adjust their 
coordinate based on some comparison between measured and estimated distances to some 
other nodes. Malicious nodes can interfere with this embedding process by, amongst other 
things, lying about their real coordinate and/or tampering with measurement probes, to 
create a discrepancy between measured and estimated latencies, so that unsuspecting nodes 
would wrongly adjust their own coordinate in a bid to reduce the difference [1]. Because the 
load on the network naturally varies in time, so does latency between pair of nodes, and as a 
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result, the embedding process must be run periodically by all nodes to track changes in 
network conditions. This “continuous” adjustment of nodes’ coordinates can not only result 
in a drift of the coordinate space [10] but also gives plenty of scope and opportunities for 
malicious activity. We therefore seek to equip (honest) nodes with a means to detect, with 
low overhead, malicious activities they may encounter during embedding. 
Noting that, in the absence of malicious nodes, a node’s coordinate depends on the 
combination of network conditions and the specificities of the embedding process itself (e.g. 
which coordinate protocol is in use, the chosen dimensionality of the geometric space, etc), 
we therefore introduce the concept of Surveyor nodes (or Surveyors in short). Surveyors form 
a group of trusted (honest) nodes, scattered across the network, which use each other 
exclusively to position themselves in the coordinate space. Of course, Surveyors do assist 
other nodes in their positioning (as prescribed by the embedding protocol), but we stress 
that Surveyors never rely on non-Surveyor nodes to compute their own coordinate. This 
strategy thus allows Surveyors to experience and learn the natural evolution of the 
coordinate space, as observed by the evolution of their own coordinate, in the absence of 
malicious activities. In essence, Surveyor nodes are thus vintage points guaranteed to be 
immune from malicious activities. The idea is that Surveyors can then share a 
“representation” of normal behavior in the system with other nodes to enable them to detect 
and filter out abnormal behavior. 
We postulate and verify that, in the absence of malicious activity, a node’s coordinate can be 
viewed as a stochastic process with linear dependencies whose evolution can be tracked by 
a Kalman filter [4]. Each Surveyor then computes and calibrates the parameters of a linear 
state space model and shares the parameters of this model with other nodes. These nodes 
can then use these parameters, to run locally and in a “standalone” fashion a Kalman filter 
tracking the coordinate adjustments. These nodes can then use the Kalman filter output (the 
innovation process), to compare their observed coordinate adjustments with the one 
predicted by the Kalman filter, and flag as “suspicious” embedding steps where the 
difference would be too high. 
In section 2, we present a general model of coordinate embedding, in the absence of 
malicious nodes, that naturally leads to the Kalman filter framework. In section 3, we 
validate the model, with both simulations and PlanetLab experiments, in the case of both 
Vivaldi [9] and NPS [8]. This section also studies the viability of the idea of using Surveyor 
nodes in secure coordinate embedding. We then describe and evaluate, in sections 4 and 5, 
how Surveyors can effectively be used for malicious node detection in the specific 
embedding process of Vivaldi and NPS. 

2. Coordinate embedding model 

The goal of embedding systems, regardless of the embedding method and geometric space 
used, is to assign a coordinate to every node in the system so that, at any time, the distance 
between any two points in the geometric space should provide a good estimate of the 
network distance, measured as an RTT (Round Trip Time), between the corresponding 
nodes. Obviously, because at any instant in time, the RTT that can be measured between 
two nodes depends on the state of the network (e.g. traffic load, state of queues in routers, 
etc) as well as the state of the operating system in nodes (e.g. scheduling state generating 
measurement noise, etc), the exact value of the RTT varies continuously. However, it has 
been shown that RTT values in the Internet exhibit some stability in a statistical sense [14], 
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with the statistical properties of RTTs exhibiting no significant change at timescales of 
several minutes. It is that property that embedding systems exploit to provide good distance 
estimates while only needing to have nodes adjust (recalculate) their coordinate on a 
periodic basis. Consequently, the coordinate of a node can be viewed as a discrete stochastic 
process, and we will use  to represent the coordinate of node i at “discrete time” n. 
Without loss of generality, consider that a node (called the embedding node) computes its 
coordinate through a series of embedding steps, where each embedding step represents a 
coordinate adjustment based on a one-to-one interaction with another node, called a peer 
node (e.g. peer nodes are called neighbors in Vivaldi, and landmarks or reference points in 
NPS). Note that when the embedding protocol requires that a node uses several peer nodes 
simultaneously for repositioning, for the purpose of our modelization, we simply consider 
that each peer node corresponds to a distinct embedding step, each taking place at 
“successive” discrete times. 
At every embedding step, the “fitness” (or “correctness”) of the embedding node coordinate 
is assessed by computing the deviation between the measured RTT towards the 
corresponding peer node and the one estimated in the coordinate system. More precisely, 
suppose that at its nth embedding step, embedding node i has current coordinate  and 
uses peer node j with current coordinate . Suppose that the RTT between these nodes, 

measured during this embedding step, is RTT . The fitness of the embedding node 

coordinate can then be computed as the measured relative error . The 

goal of any embedding system, regardless of the embedding method proposed and/or the 
geometric space structure, is to minimize a “cost” indicator (e.g. mean square error) that 
captures the measured relative error that could be observed between any node and any 
other node in the system, at any time. 
As the measured relative errors are fundamental performance indicators to all embedding 
systems, it seems natural to develop a model that captures their dynamic characteristics, 
although we note that relative errors often have complex behavior (and may thus not be a 
natural choice from a modeling perspective). 
Measured relative errors are subject to fluctuations of the RTT for the reasons mentioned 
above, namely transient network congestion and operating system scheduling issues. To 
isolate the impact of these RTT fluctuations on anomaly detection, we introduce Δn, the 
nominal relative error that our node under consideration would have obtained at its nth 

embedding step if the RTTs in the network had not fluctuated. An anomaly becomes simply 
a large deviation of measured relative error Dn from its nominal value defined by Δn. 
Because many sources contribute to the deviation of Dn from its nominal value (RTT 
measurement error, RTT fluctuations, errors in node coordinate), it is reasonable to suppose 
that they relate to each other as follows, 

 (1)

where Un is a Gaussian random variable with mean zero and variance vU. We now focus on 
the dynamics of the system in its nominal regime where RTTs do not fluctuate. In the 
absence of complete and accurate knowledge of the system, nodes keep on adapting the 
nominal relative error on a pairwise basis with their peer nodes, aiming to optimize the cost 
indicator. This adaptation is subject to an error caused by the other nodes in the system 
adapting their coordinate (and corresponding relative error) in a completely distributed 
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way. We thus define the system error Wn which represents the impact of other nodes on the 
positioning of a node at embedding step n. Since the system error at a node results from 
many contributing sources, it is also reasonable to assume that it is a white gaussian process 

(with mean w  and variance vW)1. 

Because of the nature of large-scale embedding processes, the nominal relative error Δn can 
be deemed to follow a stochastic process that converges to some stationary regime 
characterized by a positive average. As a first approximation, the process Δn could be 
modeled as a first order Auto Regressive (AR) model: 

 (2)

where β is a constant factor strictly less than one otherwise the relative error does not 
converge to a stationary regime independently of the initial condition. This equation 
captures the dynamic evolution of the nominal relative error of a node through successive 
embedding steps. 
Equations 2 and 1 define a linear state space model for the relative error of a node. Our goal 
is to devise a way to obtain relative error predictions from this model. Because of the linear 
properties of the model, a Kalman filter can be used to track the evolution of the nominal 

relative error and obtain a predicted relative error Δ̂ n|n−1 (see section 2.1). However, it is 
important to notice at this level that tracking relative errors using the Kaman filter would be 
relevant, only if we consider the embedding systems at their permanent regime. A 
permanent regime is typically reached when the average relative errors of nodes involved in 
the system stabilize enough, so that coordinates are considered to be usable by nodes. 
The idea behind the strategy we mention above, is that if the stochastic space model, and 
especially its associated Kalman filter, are calibrated within a clean embedding system, then 
a simple hypothesis test can be used to assess whether the deviation between the measured 
relative error and the predicted relative error, observed at a given embedding step, is 
normal or is the fruit of anomalous or malicious activity from the peer node. From this 
perspective, even if the state space model considered is crude, its quality should be 
evaluated based on the final outcome in terms of probability of detection and false positive 
rate. We will see in the evaluation section (section 5) that this model achieves very good 
performance. 

2.1 Kalman filter equations 
The Kalman filter is used here to estimate Δn given the set of previously measured relative 
errors  = {D0, . . . ,Dn}. Under the hypothesis of a gaussian noise process in the underlying 

state space model, the Kalman filter gives the Least Mean Squared estimates of Δn, Δ̂ n. 
Moreover, it gives the quality of these estimates through an evaluation of the mean squared 

error i.e., E[( Δ̂ n − Δn)2]. This last value could be used to detect anomalies through large 
deviations of the measured relative error from its mean. 
We will assume here that all the parameters of the space model given in Eq. (1) and Eq. (2) 
are known and given. In the next section we will describe how to derive these parameters. 

Let us denote by Δ̂ i|i−1 the estimation of ¢i knowing the observations of network delay up to 

time i−1, and Δ̂ i|i the estimate after the measurement Di is done. Similarly, let Pi|i−1 be the 

                                                 
1 The value w accounts for the drift that has been observed in positioning systems [10]. 
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estimated a posteriori error variance at time i knowing the observations up to time i−1, and 
let Pi|i be the estimation of the a posteriori error variance after Di is known. The Kalman Filter 
is composed of two steps that are iterated. The first step is called the prediction step and the 
second one the update step. 

In the prediction step, the value of Δ̂ i|i−1 is calculated based on Δ̂ i−1|i−1 as: 

 

The a posteriori error variance of this estimate is: 

 

In the update step, Δ̂ i|i−1 is updated to integrate the observed measurement Di: 

 

where Ki denotes the updated gain and is obtained as: 

 

The a posteriori error variance of this estimate is : 

 

The value ǈi = Di − Δ̂ i|i−1 is called the innovation process and is the main process to observe 
for anomalous behavior detection (see section 4.1). The innovation process is a white 
(meaning that it is an independent process) gaussian process with a mean 0 and a variance 
equal to vǈ,i = vU + Pi|i−1. Abnormality simply amounts to a significant deviation from the 
nominal values of the innovation process characterized by the Kalman filter. 
To run the Kalman estimation, we need as initial values the system state value w0 and the a 
priori state variance P0|0 = p0. These two values are estimated during the parameters 
calibration step. 

2.2 Calibration of the Kalman filter 
Before running the estimation using the Kalman filter, the values of the filter parameters  

ǉ = (β, vW, vU, w0, p0) have to be computed. For this purpose we need to calibrate these 
parameters over coordinate measurements collected during a stationary and cheater-free 
period. The calibration can be done using a maximum likelihood criteria (choosing 
parameter values such that the likelihood of observing the measurements is maximized) by 
applying the Expectation Maximization (EM) method. We follow the approach presented in 
[15] for the EM derivation. 
In the following, we give a brief description of the maximum likelihood estimation criterion 
and the EM method, we are using in this section to calibrate our filter. 
The maximum likelihood estimation criterion Maximum likelihood estimation (MLE) is a 
statistical method used to make inferences about parameters of the underlying probability 
distribution from a given data set [16]. Basically, this method allows us to infer the 
parameters of a distribution given a sample of data X = X1, . . . ,Xn. Commonly, one assumes 
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the data are independent, identically distributed (i.i.d) drawn from a particular distribution 
with unknown parameters and uses the MLE technique to create estimators for these 
unknown parameters. 
Let us consider a family of distributions Pǉ  indexed by a parameter (which could be a vector 
of parameters) ǉ that belongs to a set Θ. Let f(X|ǉ) be either a probability function (in case of 
discrete distribution) or a probability density function (continuous case) of the distribution 
Pǉ. Given our i.i.d. sample X1, . . . ,Xn with unknown distribution Pǉ from this family, i.e. 
parameter ǉ is unknown. A likelihood function is defined by: 

 
If our distributions are discrete then the probability function f(x|ǉ) = Pǉ(X = x) is the 
probability to observe a point x. L(ǉ) = f(X1|ǉ) × . . . × f(Xn|ǉ) = Pǉ(X1) × . . . Pǉ(Xn) = Pǉ(X1, . . 
. ,Xn) is the probability to observe the sample X1, . . . ,Xn when the parameters of the 
distribution are equal to ǉ. 
Suppose that there exists a parameter θ̂  that maximizes the likelihood function L(ǉ) on the 
set of possible parameters, i.e. 

 

Then θ̂  is called the Maximum Likelihood Estimator (MLE) of ǉ. 
When finding the MLE, it is sometimes easier to maximize the log-likelihood function since 

 
maximizing L(ǉ) is equivalent maximizing log L(ǉ). Log-Likelihood function can be written 
as log  

To summarize, one needs to recall that the MLE criterion chooses the parameter θ̂  that 
maximizes the probability of seeing the observed data given that their distribution follows 
these parameters. The log of the likelihood is often used instead of true likelihood because it 
leads to easier formulas, but still attains its maximum at the same point as the likelihood. 
The Expectation maximization (EM) algorithm is a valuable approach for maximum 
likelihood parameter estimation. In the next paragraph, we use this method to calibrate our 
Kalman filter parameters, i.e . find the values for the filter parameters that maximize the 
probability of a sequence of observations. 
Calibration by EMmethod Let’s assume that  is the set of all measured prediction errors, 

 = {D0, . . . ,DN} and let Δ  = {Δ0, . . . ,ΔN} be the set of nominal relative errors. 

As all the noise processes are assumed to be gaussian,  and Δ   will jointly follow a 

gaussian distribution. The log-likelihood of  and Δ , based on equations 2 and 1, can 

therefore be written as follows: 
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In a Maximum likelihood setting, we wish to find the values for the parameters that will 

maximize the above log-likelihood assuming that the sequence  has been observed. 

However as the sequence of system state Δ  has not been observed, this maximization is 

not tractable directly and we have to apply the Expectation Maximization method [17]. This 

method transforms the maximization of the above likelihood function with unobserved 

system state sequence Δ  to an iteration of successive steps where the system state 

sequence is assumed to be known and the parameters can be obtained through 

maximization of the likelihood function. 

Each iteration of the EM method consists therefore of two steps. In the first step, we 

compute the expectation (over all values of the sequence of states Δ ) of the 

loglikelihood, given the observed values of Dn
 and assume that the parameter values are 

equal to ǉ(k). In a second step, the parameters ǉ(k+1) are chosen so as to maximize the 

previously obtained likelihood expectation. Next we explain these two operations with 

some further details. 

Let the superscript (k) indicate the value of any parameter at the kth step of the EM 

algorithm. As explained before, in the EM method, we need to estimate the value of the 

unobserved system states to be able to calculate the overall likelihood to maximize. The 

variables  are in fact those estimates at iteration k and  are the estimation 

error variances of this sequence of states: 

 
 

 
 

Expectation step The expected value of log-likelihood knowing the set of measured values 

 and the parameter ǉ(k) is given by: 
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By replacing ǉ by its value at the kth step of the EM algorithm, we obtain , , 

which gives the expected log-likelihood at the (k +1)th step. Next, we describe how to 

compute these values. 

Calculating the parameters  As explained in section 2.2, the sequence of 

system states Δ  is not observable. However, we need to give an estimate of this sequence 

to be able to obtain the likelihood. The sequence δ̂ i , i = 1 . . . ,N, is the sequence of system 

state estimates and π̂ i, and π̂ i,i−1 is the error variance of these estimates assuming that the 

sequence  has been observed. We resort to the solution in [15] for the calculation of these 

estimates using the overall measurements set. 

The value δ̂ i, π̂ i, and π̂ i,i−1 are estimated using a Kalman filter, assuming that the system 

parameters are set as in ǉ(k). However, there is a subtle difference with Kalman filter case 

described in section 2.1; here the estimates δ̂ i, π̂ i and π̂ i,i−1 do not depend only on 

observations up to time i, but on future observations up to time N ≥i. The solution to deal 

with this is to implement a forward-backward approach similar to Baum- Welch filter used 

for finite EM algorithm [20]. 

For each value of the parameter set ǉ(k), we first do a forward step following the relations 

given in section 2.1. The application of this forward step results in the values Δ̂ i|i, i = 1, . . . 

,N, Pi|i, i = 1, . . . ,N and Pi|i−1, i = 1, . . . ,N. 
To add the future measurements in the Kalman filter, a backward recursion step is also 
added. This step consists of the following equations: 

 
 

These equations give recursively the values δ̂ i and π̂ i. It still remains to obtain π̂ i,i−1. 

This last value could be obtained using the relation: 

 

where  can be obtained through the backward recursion 

 

that is initialized by setting 

 
 

Maximization step In this step, the parameter vector at step (k + 1) is chosen to maximize 
the expected log-likelihood. This is done by solving the equation 

 
 

This results in the following set of equations: 

www.intechopen.com



Tracking Relative Errors in Internet Coordinate Systems by a Kalman Filter  

 

191 

 

By solving this set of equations we can obtain the vector ǉ(k+1), then we iterate with the 
expectation calculation as described above. 
We note that the complexity of the approach lies in the linear state space modeling phase by 
EM algorithm that incurs a number of iterations over N dimensional vectors, which is well 
within the capability of modern computers. We will see later that this phase has to be run on 
a subset of nodes (the Surveyors). On the other hand, predicting relative errors using the 
Kalman filter(section 2.1), which occurs on every node, only implies a few simple scalar 
operations and is negligible in terms of required computing power. 
Finally, because we expect each of the innovation observation ǈn to be inside a confidence 
interval of  (where vǈ,n is the variance of the innovation process at time n) with a 

probability higher than 95%, when a Kalman filter yields 10 consecutive innovation 
observations outside such confidence interval, the filter is re-calibrated by re-applying the 
calibration procedure described in this section. Re-calibration is likely to occur following a 
significant change in the corresponding node’s coordinate, caused by changes in network 
conditions. 

3. Validation 

To validate our model, we conducted simulations and PlanetLab experiments for both 
Vivaldi [9] and NPS [8]. We consider Vivaldi as a prominent representative of purely peer-
to-peer-based (i.e. without infrastructure support) positioning systems, while NPS is typical 
of infrastructure-based systems, where a hierarchy of landmarks and reference points 
govern the positioning of nodes. 
As the goal of this section is to assess the fitness of the proposed model to represent the 
normal behavior of the embedding processes, all results presented were acquired in a clean 
environment with no malicious node. While the goal of the simulation studies is to assess 
our results for large scale coordinate-based systems, the PlanetLab experiments aim to show 
their applicability in real-world conditions. The PlanetLab experiments were conducted over 
a set of 280 PlanetLab nodes spread world-wide. We discuss a representative set of 
experimental results conducted over several days in December 2006. The simulations were 
driven by a matrix of inter-host Internet RTTs (the “King” dataset) to model latencies based 
on real world measurements. This dataset contains the pair-wise RTTs between 1740 
Internet DNS servers collected using the King method [13] and was used to generate a 
topology with 1740 overlay nodes. 
In the case of Vivaldi, each node had 64 neighbors (i.e. was attached to 64 springs), 32 of 
which being chosen to be closer than 50 ms. The constant fraction Cc for the adaptive 
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timestep is set to 0.25, as proposed in [9]. A 2-dimensional coordinate space augmented with 
a height vector was used. 
For NPS, we considered an 8-dimensional Euclidean space for the embedding. We used an 

NPS positioning hierarchy with 4 layers. The top layer had a set of 20 well separated 

permanent landmarks. Each subsequent layer then had 20% of nodes randomly chosen as 

reference points. The security mechanism already proposed in NPS, shown to be too 

primitive in [2], was turned on and its sensitivity constant C was set to 4, as advised by 

authors in [8]. 

When needed, Surveyor nodes were chosen at random2. Again, because we seek to validate 

the kalman filter model, during the permanent regime of the embedding systems, all our 

experiments were are performed when nodes coordinates are stabilized enough, i.e. the 

relative errors vary at most by 0.02. 

3.1 Assumption validation 
In section 2, the assumption that the system error Wn follows a gaussian distribution was 

made. This is fundamental to the applicability of the Kalman filter framework. For the 

purpose of validation, every node calibrated its own Kalman filter based on the observation 

of its own embedding, and we checked this assumption by applying the Lilliefors test [18], a 

robust version of the well known kolmogoroff-Smirnov goodnessof- fit test, to whitened 

filter inputs. We observed that the Lilliefors test leads to only 14 gaussian fitting rejections in 

simulations (over 1720 samples) and 5 rejections in PlanetLab (over 260 samples). This test 

allows us to conclude that the hypothesis we took for the Kalmanmodel is valid. In addition, 

we plot in figure 1 the Quantile-Quantile (QQ) plots of 2 innovation processes (for both 

Vivaldi and NPS) taken on PlanetLab nodes running their own Kalman filter. These plots, 

typical of observations on all nodes, show that each of these distributions indeed closely 

follows a Gaussian distribution. 
 

 

                                (a) Vivaldi Case                                                 (b) NPS case 

Fig. 1. Quantile-Quantile plot of 2 innovation processes. 

                                                 
2 Note that in NPS, all permanent landmarks also act as Surveyors. 

www.intechopen.com



Tracking Relative Errors in Internet Coordinate Systems by a Kalman Filter  

 

193 

3.2 Effective behavior representation 
From section 2, it is clear that the Kalman filter model attempts to represent the behavior of 
the embedding process by capturing the dynamics of the system through its convergence 
behavior (by tracking of relative errors over time). In this section, we therefore assess the 
representational power of this approach by having each node calibrate its own Kalman filter 
from the measurements it observed during the embedding of its own coordinate, in a cheat-
free regime. Then, once the model has converged at every node (i.e. the EM method has 
converged and the variations of all the ǉ components become smaller than 0.02), a new 
embedding process is started (i.e. the nodes forget their coordinates and rejoin the system). 
During this second embedding process, the prediction error, that is the absolute value 
between the error predicted by the node’s Kalman filter and the measured actual error, is 
computed. 
Figure 2 shows a typical evolution of actual (measured) relative errors and predicted errors 
for a node on PlanetLab (for Vivaldi, but similar behavior was observed for NPS). The two 
curves of the top graph of the figure are so similar that they are almost indistinguishable. 
The bottom graph of the figure represents the prediction error which is the difference 
between these two curves (note the different scale used for this graph). We see that the 
prediction errors are small which shows that a node’s calibrated Kalman filter can capture 
effectively the node’s behavior “in the wild”. 
 

 

Fig. 2. Prediction errors (PlanetLab node). 

Figure 3 shows the cumulative distribution function (CDF) of all the prediction errors 
observed across all nodes in the system. This confirms that the vast majority of predictions 
are indeed excellent. This demonstrates the power and generality of the model in capturing 
the dynamics of the system and its adaptability to current system conditions. 
However, there are a few “outlier” predictions with large errors. To better understand their 
nature, we show in table 1 the repartition of prediction errors in error intervals. The table 
shows the number of nodes with prediction errors in this interval, the number of 
occurrences of the smallest prediction error observed in the interval, and the number of 
occurrences of the largest prediction errors observed in the interval (e.g. Number of 
node(s)/number of observed min error/number of observed max error).We see that only a 
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few nodes contribute (sometimes very many) large prediction errors. Looking further, we 
identified 3 nodes, all located in India, who contributed consistently to the “tail” of the CDF 
in figure 3. It is interesting to note that these nodes exhibited large (> 0.75) average 
measured relative errors during embedding, and were clearly having trouble with the 
embedding process itself, due to adverse network conditions. 
 

 

Table 1. Prediction Error Histogram 

 

Fig. 3. CDF of prediction errors. 

3.3 Representativeness of surveyors 
If a subset of nodes in the system (called Surveyor nodes) are trusted and use each other 
exclusively to compute their own coordinates, they will be immune to the effects of 
malicious behavior during embedding. The premise of our work is that the “clean” (normal) 
system behavior thus learnt can then be shared with other nodes and used by these nodes to 
detect malicious behavior they may be subjected to by other nodes in the system. This 
obviously assumes that the behavior of the system as observed by Surveyors can 
approximate or represent well enough the normal behavior of the system as observed by 

www.intechopen.com



Tracking Relative Errors in Internet Coordinate Systems by a Kalman Filter  

 

195 

other nodes in the absence of malicious behavior. In the following validation of this 
assumption, Surveyors are chosen at random in the node population. 
Note that a random choice will give an upper bound on the number of Surveyors needed. 
Indeed, intuitively, Surveyors should be roughly uniformly distributed in the system to be 
representative of most other nodes. However, choosing nodes at random in the system does 
not yield a uniform distribution of Surveyors (i.e. “Surveyor clusters” appear due to the 
cluster structure of nodes themselves) and therefore not every new Surveyor increases 
representativeness. Consequently, more Surveyors must be chosen in order to achieve a 
good coverage of the system, than if they were placed more strategically. Nevertheless, the 
random choice method does provide general results, without the need to address the 
question of optimal Surveyor deployment strategy. 
One of the first questions to answer is how many Surveyors are needed to be representative 
of the rest of the population. Noting that our model is based on measured relative errors and 
that each node in the system observes a series (i.e. distribution) of such errors, we 
characterize the system-wide relative error behavior as the CDF of the 95th percentiles of the 
relative errors observed at each (normal) node (i.e. the distribution is made up of the 95th 

percentile value observed at every node). We then compare this CDF with those of the 95th 

percentiles of the relative errors observed across a varying population of Surveyors. The 
choice of the 95th percentile is so that outliers, as observed in section 3.2, do not skew the 
results, while preserving a high degree of generality. Figure 4, obtained by simulations of 
Vivaldi, indicates that a population of Surveyors of about 8% of the overall population is 
closely representative of this overall population (because the CDF for these populations in 
the figure are similar). 
 

 

Fig. 4. Impact of Surveyor population size on repretentativeness. 

To generalize this result, we then repeated the experiment, using both simulations and 
PlanetLab measurements, on a Vivaldi system with 8% of Surveyors. We again chose to 
represent the system by the distribution of the 95th percentile of the measured relative errors 
(figure 5). 
These experiments confirm that less than 10% of randomly chosen Surveyor nodes is 
enough to gain a good representation of the system behavior. Similar results were observed 
for NPS. We note that 8% to 10% of the overall node population is a very stringent 
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requirement for most practical purposes and can represent a huge number of nodes. 
However, as already pointed out above, random Surveyor deployment is not optimal and 
this value is an upper bound on the number of Surveyors needed. 
 

 

Fig. 5. Representativeness with 8% Surveyor nodes. 

To gain further insight into how conservative this upper bound may be, we tried a simple k-
means clustering algorithm for Surveyor deployment. Figure 4 shows that when taking 
cluster heads as Surveyors, good representativeness can be achieved with roughly 1% of 
Surveyors. Although this does not give much indication as to what the lower bound on the 
number of Surveyors needed is in the case of optimal Surveyor deployment, it nevertheless 
shows that simple deployment methods can reduce requirements considerably and that the 
upper bound yielded by random deployment is indeed very conservative. 
Having shown that a population of Surveyors can represent the overall system, the next 
question is how well the behavior of the system as captured by the Kalman filter calibrated 
by a Surveyor, can represent the behavior of a single (normal) node. To answer this 
question, we carried out an experiment where a population of nodes took part in a Vivaldi 
embedding on PlanetLab. Each node used the Kalman filter of every Surveyor and 
generated multiple prediction errors (one per Surveyor) at every embedding step. 
Figure 6 shows the maximum prediction error yielded by each Surveyor, for each normal 
node in the system, observed during this experiment. What we observe is that although each 
normal node can find at least one Surveyor node whose Kalman filter yields very low 
prediction errors, not every Surveyor is a good representative for any given normal node. 
The Surveyor chosen as a representative by a normal node is therefore important to achieve 
good prediction performance (and thus good malicious behavior detection). 
Figure 7 plots the prediction accuracy (measured as an average prediction error) against the 
distance (measured as an RTT) between a node and the corresponding Surveyor, as 
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observed during the PlanetLab experiment. It is clear that better locality between a node and 
its Surveyor yields more accurate predictions. This property seems intuitive, as a Surveyor 
closer in terms of RTT will also be closer in the geometric space, and will thus be more likely 
to experience dynamics of the coordinate system similar to that of the local area where the 
node resides. This is confirmed in figure 8 which shows the maximum prediction error, 
observed for Vivaldi on PlanetLab, when nodes use the closest Surveyor as their 
representative. Similar results were observed for PlanetLab experiments with NPS. 
 

 

Fig. 6. Maximum prediction errors with Surveyor filter parameters (PlanetLab). 

 

Fig. 7. Correlation between ’Node-Surveyor’ RTTs and estimation accuracy (PlanetLab). 
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Fig. 8. Maximum prediction errors with closest Surveyor. 

Finally, it is again important to note that all the results in this section were obtained with 
randomly deployed Surveyors. Strategically placing Surveyors to ensure a better coverage 
of the network and coordinate space, would simply improve the prediction accuracy, while 
reducing the number of Surveyors required. 

4. Malicious behavior detection 

The previous section has shown that normal node behavior can be modeled by a Kalman 
filter. More importantly, it has also been shown that this technique is powerful and robust 
enough that the normal behavior model captured on one node is readily and effectively 
applicable on other nearby nodes. This property leads to the idea of Surveyors. 
Surveyors are a set of nodes in the coordinate space that exclusively use each other to 
compute their own coordinates. In other words, in Vivaldi, Surveyors only use other 
Surveyors as neighbors, while in NPS, they only use other Surveyors as reference points 
(note that in NPS, all landmarks also act as Surveyors, although not all reference points will 
be Surveyors). Of course, Surveyors can, and will be chosen as neighbors or reference points 
by other (non-Surveyor) nodes in the system, but the point is that a Surveyor adjusts its 
coordinate solely in response to embedding steps (i.e. measurements) with other Surveyors. 
If Surveyors run a clean version of the coordinate embedding software and they are 
carefully kept clean of malicious software, such as viruses or worms, that could implement 
malicious modifications to the embedding, then they can be considered as clean, honest 
nodes. Because Surveyors only interact with each other during their own embedding, they 
are therefore immune to malicious or anomalous behavior in the system, and they therefore 
observe the behavior of the system in clean, normal conditions. The idea is then to use the 
thus obtained normal behavior model as a basis for anomalous behavior detection at other 
nodes of the system. To do so, nodes use the parameters of the Kalman filter calibrated at a 
nearby Surveyor. 
It is important to note that the proposed method is entirely distributed as each node has its 

own filter. Indeed, Surveyors calibrate and recalibrate their own filter as needed, depending 
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on varying network conditions, and share the resulting filter parameters with other nodes, 

but they take no further active part in anomalous behavior detection at other nodes. When a 

node’s filter needs re-calibrating (e.g. because it starts giving too many detection alarms), 

the node simply obtains fresh filter parameters from a Surveyor. 

4.1 Anomalous behavior detection method 
At each embedding step, a node computes a measured relative error Dn towards a peer 

node. Recall from section 2 that the Kalman filter at the node can provide Δ̂ n|n−1, the 

predicted relative error from the previously measured relative errors. The innovation 

process of the Kalman filter yields the deviation between the measured and predicted 

relative errors, ǈn = (Dn − Δ̂ n|n−1), which, in a system without malicious node, follows a zero-

mean gaussian distribution with variance vǈ,n = vU + Pn|n−1 (also yielded by the filter). 

This allows us to detect malicious behavior as a simple hypothesis test. Let H0 be the 

hypothesis that the peer node has a normal behavior (i.e. it is honest). The hypothesis testing 

simply consists of assessing whether the deviation between the measured and predicted 

relative errors is normal enough under expected system behavior. Given a “significance 

level” α, which determines the “aggressivity” or “strictness” of the test, the problem is to 

find the threshold value tn such that 

 (3)

But since, under hypothesis H0, (Dn − Δ̂ n|n−1) follows a zero-mean normal distribution with 
variance vǈ,n, we also have that 

 
(4)

where Q(x) = 1−Φ(x), with Φ(x) being the CDF of a zero-mean, unit-variance normal 
distribution. 
From equations 3 and 4, we therefore have 

 (5)

If the observed deviation exceeds the threshold given by equation 5, then the hypothesis is 

rejected, the peer node is flagged as suspicious, the embedding step is aborted and the 

measured relative error Dn is discarded (i.e. it is not used to update the state of the filter). 

Note that a suspicious node, as detected by this test, is not necessarily associated with 

malicious intent, but could be caused by changing network conditions. Honest nodes 

classified as suspicious represent false positives and have little impact on the system as long 

as their occurrence is low. The trade-off between aggressivity and strictness of the test is 

represented by the so called ROC (Receiver Operation Characteristic) curves [19]. These 

curves plot the true positive rate versus the false positive rate, i.e. the probability of correctly 

detecting a malicious node versus the probability of labelling an honest node as malicious. 

In practice trying to increase the true positive rate (the probability of malicious node 

detection) comes at the cost of increasing the false positive rate. 
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4.2 Generic detection protocol 
In general, on identifying a peer node as suspicious, a node will replace it, that is choose a 
new neighbor in Vivaldi or a new reference point in NPS. 
The only exception to this rule is when the node was embedding against the peer node for 
the very first time. In this particular case, the node uses its local error el 3 as an indicator of 
the confidence it has in its own coordinate, to carry out a second hypothesis test identical to 
that presented in the previous section, but this time with a confidence level of elα. If the test 
is accepted, then the peer node gets a reprieve and is not replaced, so that a second 
embedding against this peer node will be attempted at a later time. 
The main idea behind this potential reprieve for first-time peer nodes is that a node whose 
coordinate has already converged towards its true value can afford a few aborted 
embedding steps with very little impact on the accuracy of its coordinate. On the other 
hand, a new peer node which is in the process of joining the network may trigger the 
abortion of an embedding step, simply because its coordinate has not converged yet (as 
opposed to because it displays a malicious behavior). In this case, the reprieve simply gives 
time to the new (joining) peer node to converge before being identified as malicious. Of 
course an embedding node which is not confident in its coordinate must strive to reduce the 
number of aborted embedding steps so as not to compromise its convergence in the system, 
and will therefore grant fewer reprieves (because its el is higher) than a node that has 
already converged. 
Finally, we use a simple mechanism for the selection of the Surveyor from which a node 
obtains its calibrated Kalman filter. All Surveyor nodes register with an infrastructure server 
(e.g. the membership server in NPS can act as Surveyor registrar, while in Vivaldi such 
server must either be introduced or at least integrated inside an existing bootstrap 
infrastructure). On joining the coordinate system, a node interrogates this server to obtain 
the identity of several (randomly chosen) Surveyors. The node then measures its distance to 
these Surveyors and selects the closest one as representative. From there on, the node fully 
complies to the embedding protocol rules, except that it will use our detection method to 
accept or reject embedding steps. 
However, when the node has rejected half of its current peer nodes during a same 
embedding round, it will seek to acquire a new filter as the high rejection rate may indicate 
that the filter parameters in use may have become stale (i.e. the filter needs “recalibrating”). 
The node then gets from its current Surveyor (or, as a fallback, any other Surveyors it 
knows, or the infrastructure server) the list of all the Surveyors it knows. After acquiring the 
current coordinates of these Surveyors, the node selects the closest one (in term of estimated 
distance) and obtains its Kalman filter parameters. Note that in the experiments we have 
carried out, which are described below, we observed very few “recalibrations”, so this very 
simple Surveyor selection mechanism was appropriate. However, more sophisticated 
approaches can be considered if need be. 

5. Evaluation 

We evaluate the effectiveness of the simple anomalous/malicious behavior detection 
method in securing both Vivaldi and NPS. For each of these embedding protocols, we chose 

                                                 
3 el is the exponential moving weighted average of the measured relative errors of all 
previously completed embedding steps. 
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the most potent attack described in [2] and experimented with various populations of 
malicious nodes within the experimental set-up described in section 3. On PlanetLab, all 
these experiments were run concurrently so as to experience the same network conditions. 
In line with the results of section 3.3, the population of Surveyors was set to 8% of the 
overall population. Surveyors and malicious nodes were chosen at random. 

5.1 Performance metrics 
To characterize the performance of our detection test, we use the classical false/true 
positives/negatives indicators. Specifically, a negative is a normal embedding step which 
should therefore be accepted by the test and completed. A positive is a malicious embedding 
step (i.e. where either, or both, the distance estimation and distance measurement between 
the node and its peer node have been tampered with) which should therefore be rejected by 
the test and aborted. The number of negatives (resp. positives) in the population comprising 
all the embedding steps is N (resp. P ). 
A false negative is a malicious embedding step that has been wrongly classified by the test as 
negative, and has therefore been wrongly completed. A false positive is a normal embedding 
step that has been wrongly rejected by the test and therefore wrongly aborted. True positives 
(resp. true negatives) are positives (resp. negatives) that have been correctly reported by the 
test and therefore have been rightly aborted (resp. completed). The number of false 
negatives (resp. false positives, true negatives and true positives) reported by the test is FN 

(resp. FP , TN and TP ). 
We use the notion of false negative rate (FNR) which is the proportion of all the malicious 
embedding steps that have been wrongly reported as normal by the test, and  
FNR = FN/ P . The false positive rate (FPR) is the proportion of all the normal embedding 
steps that have been wrongly reported as positive by the test, so FPR = FP / N. Similarly, 
the true positive rate (TPR) is the proportion of malicious embedding steps that have been 
rightly reported as malicious by the test, and we have TPR = TP / P . 
The true positive test fraction (TPTF) is the proportion of positive tests that correctly identified 
malicious embedding steps (TPTF = TP /( TP + FP )). 

5.2 Securing Vivaldi 
We experimented with our detection scheme on a Vivaldi system subjected to a colluding 
isolation attack as described in [2]. In this scenario, malicious nodes are trying to isolate a 
target node, by repulsing all other nodes away from it. The malicious nodes agree on a large 
“exclusion” zone around the target node and randomly set their own coordinates outside 
this zone to try and attract honest nodes out of the exclusion zone. Note that an attacker 
always uses the same coordinate when lying to a given honest node. 
Detection Method Performance To evaluate the efficiency of the test, we first plot in figure 
9, ROC (Receiver Operation Characteristics) curves observed for different significance levels 

(α) and several intensities of attacks. These plots show, for each significance level4, the point 
corresponding to the false positive rate along the x-axis and to the true positive rate along 
the y-axis, with one curve per malicious group size (line x=y is plotted as a reference). 
Obviously, the closer to the upper left corner of the graph a curve is, the better, since such 
 

                                                 
4 Significance level values α always increase as a ROC curve is “followed” from the origin. 

In our experiments, we used values of 1%, 3%, 5% and 10% for α. 
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Fig. 9. ROC curves. Each tick on the plots corresponds to a different value of the test’s 

significance level (α ). 

points correspond to high true positive rates (i.e. a high proportion of positives being 

reported as such by the test) for low false positive rates (i.e. a small proportion of negatives 

incorrectly reported as positives). We observe that from this perspective, the detection 

method can be considered to be excellent for 20% of malicious nodes or less, and still 

performs well even under heavy attack of up to about 30% of malicious nodes, while the 

power of the detection method naturally decreases as the malicious population becomes 

more significant. Another interesting properties of ROC curves is that they show the optimal 

range for the significance level. Indeed, as the slope of the ROC curve flattens, the increase 

in true positive rate is proportionally smaller than the corresponding increase in false 

positives. In other words, a higher significance level, although it always increases the true 

positive rate of the test, is not always productive as it eventually does more bad than good 

through increased false positive rates (i.e. the proportion of normal embedding steps that 

are aborted increases). This means that the significance level of the test should be set to a 

value that yields a point in the “elbow” of the ROC curve. Based on figure 9, we can deduce 

that a significance level of 5% seems to be a good compromise. 

Figure 10 shows the true positive test fraction of the detection method for various test 

significance levels under various intensity of attacks. We see that the proportion of positive 

tests that are true positives is constantly high, regardless of the significance level chosen, for 

moderate to quite significant proportions of malicious nodes in the population (up to 20% of 

malicious nodes). However, thereafter the proportion of correct positive tests starts to 

decrease, although the rate of decrease is inversely proportional to the significance level 

used. This is because a higher significance level produces more positive tests, catching most 
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malicious embedding steps, and so many more false positives are needed to make up a 

significant proportion of these. In light of this, a significance level of 5% offers a good 

compromise. 

 

 

Fig. 10. True positive test fraction. 

Figures 11 and 12 show the false positive and negative rates respectively. As expected, a 

higher significance level results in a more aggressive test that incorrectly classifies a larger 

portion of normal embedding steps (figure 11) as malicious, while a more lenient test (lower 

significance level) wrongly reports a higher proportion of malicious embedding steps as 

normal (figure 12). 

 

 

Fig. 11. False Positive Rate. 
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Fig. 12. False negative rate. 

Incorrect test results do have a negative impact on the embedding system: false positives 
artificially reduce the size of available normal nodes that can be used for normal 
embedding; false negatives give malicious nodes opportunities to corrupt and distort the 
coordinate space, which can propagate through the system and result in a greater 
proportion of normal nodes being identified as malicious (false positives) because of mis-
positioning. This is exemplified in figure 11, where the false positive rate increases faster, as 
the population of malicious nodes increases, for lower values of the significance level of the 
test. Also, despite the fact that the false negative rate curves (figure 12) clearly exhibit 
negative slopes, one should note that these rates decrease much slower than the increase in 
malicious population. That is to say that as the number of malicious nodes in the system 
increases, the number of false negatives does increase, and more damage is incurred in the 
coordinate space. Although the accuracy of coordinate systems increases with the number of 
participating nodes, false negatives can therefore have a greater impact on the system than 
false positives and should therefore be thwarted in priority. As the false negative rates 
exhibited by tests with significance levels of 5% and 10% are roughly similar, while the more 
aggressive test yields proportionally a higher false positive rate, the significance level of 5% 
is a good compromise. 
Embedding System Performance From section 5.2, it should be clear that a significance 
level of 5% gives the overall best test performance. We therefore set the significance level to 
this value and assess the resistance of a Vivaldi system under various intensity of attacks. 
The cumulative distribution function of the measured relative errors, across all normal 
nodes, after convergence (in the sense of error convergence as defined in section 2) is shown 
in figure 13. We see that the detection mechanism renders the system practically immune to 
the attack, when the proportion of malicious nodes is 30%, or less, of the overall node 
population. Although the system does indeed show degraded performance for higher 
intensities of malicious attacks, the steeper slope of the CDF with detection, compared to the 
corresponding curve without (e.g. curves for 50% of malicious nodes), shows that the 
detection mechanism is not completely overwhelmed and still offers good protection by 
significantly reducing the impact of the attack. 
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Fig. 13. Distribution of measured relative errors. 

5.3 Securing NPS 
To test our proposed detection method in the context of the NPS coordinate system, we 
chose to study the effects of colluding isolation attack as described in [2]. The malicious 
nodes cooperate with each other and behave in a correct and honest way until enough of 
them become reference points at each layer. As soon as a minimum number of malicious 
reference points has been reached (in our experiments this number is set to 5) in a layer, 
these attackers identify a common set of victims (50% of the normal nodes they know from 
the layer directly below). When involved in the positioning of their victims, the malicious 
nodes agree to pretend they are all clustered into a remote (far away) part of the coordinate 
space and try and push the victims into a remote location at the ”opposite” of where the 
attackers pretend to be, in order to isolate the victims from the other nodes in the coordinate 
space. In order to evade detection, including the basic detection method proposed in NPS 
and which is always turned on in our experiments, the malicious nodes use the sophisticated 
anti-detection method proposed in [2] during their attacks. 
Detection Method Performance Figure 14 shows the ROC curves for the detection test in 
NPS. These curves show characteristics similar to those observed in the Vivaldi system (see 
section 5.2), albeit slightly better. In particular, these curves show that the detection method 
withstands heavier attacks better in NPS than in Vivaldi. 
There are several reasons for this. First, the basic detection method in NPS works in concert 
with our own, providing greater opportunities to identify malicious behavior. Also, by its 
very nature, the embedding method in NPS is less prone to mis-positioning error 
propagation amongst normal nodes, as nodes in the lower layer do not take part in the 
embedding of other nodes. And finally, by design, the attack considered in this section 
makes fewer victims than that studied in section 5.2 (i.e. 50% of normal nodes as victims vs 
100% in Vivaldi). 
The same observation is also true for the false positive and false negative rates (not shown) 
with again, overall, a significance level of 5% seemingly offering the best compromise 
between “catching” malicious embedding steps while not being overly cautious and over-
reacting to normal variations in network conditions. 

www.intechopen.com



 Kalman Filter 

 

206 

 
 

Fig. 14. ROC curves. 

The similarities between the test performance under NPS and Vivaldi, despite the different 

nature of the attacks under consideration and even differences in coordinate “structure” 

(two-dimensional with height for Vivaldi versus eight-dimensional for NPS), illustrates the 

generality of the proposed detection method. This is because our detection test is based on 

the modeling of a dimension-less quantity (the relative error) which is at the very core of any 

coordinates embedding system. 

Embedding System Performance We study the performance of the NPS embedding system 

when subject to increasing intensity of attacks, while being protected by our detection 

scheme. Note that in this section, “detection off” really means that our proposed detection 

mechanism is not used, but the basic NPS detection mechanism is still “on”. 

Figure 15 shows the cumulative distribution function of relative errors in the system. We 

note again similarities with the dynamic behavior of similar Vivaldi systems, except that the 

tail of the CDF for 50% malicious nodes with detection is heavier than the corresponding 

curve in the Vivaldi case. Keeping in mind that in NPS not all nodes are victims and that not 

all normal nodes will propagate mis-positioning errors, this indicates that the attack is still 

quite effective against its victims, albeit “dampened” by the detection mechanism. This 

effect is compounded by the fact that, with our simple detection protocol, malicious nodes 

that have found their way into the layer hierarchy of NPS and act as Reference Points, do 

stay in place throughout the experiment, despite numerous detections of their corrupt 

embedding steps. Nevertheless, the detection method proposed affords near immunity to 

the system up to rather severe attack conditions (e.g. about 30% of malicious nodes in the 

system). 
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Fig. 15. Distribution of measured relative errors. 

6. Conclusions 

We have presented a method for malicious behavior detection to secure the embedding 
phase of Internet coordinate systems. Our method does not rely on the geometric properties 
of the coordinate space, and is therefore unaffected by potential triangular inequality 
violations which often occur in the Internet [11, 12]. Instead, our detection test is based on 
the modeling of the dynamic relative errors observed in a clean system. The relative error is 
a dimension-less quantity which is at the very core of any embedding method, leading us to 
believe that our proposed detection test can effectively identify malicious behavior in very 
many embedding protocols and coordinate space structures that are under a potential very 
large range of attacks. The experiments presented in this chapter do show that the 
performance of the detection test is effectively the same in two different scenarios involving 
different embedding protocols and different attacks. As far as we know, this is the first such 
general detection test, capable of surviving sophisticated attacks. Also, we consider 
exclusively attacks aimed at distorting the coordinate space, carried out by nodes inside the 
embedding system. Our method thus succeeds where more obvious methods based on 
authentication would fail. 
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