
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Rapid application development for wireless sensor networks 103

Rapid application development for wireless sensor networks

Mohammad Mostaizur Rahman Mozumdar, Luciano Lavagno and Laura Vanzago

x

 Rapid application development
for wireless sensor networks

Mohammad Mostafizur Rahman Mozumdar

and Luciano Lavagno
 Politecnico di Torino, Torino

Italy
Laura Vanzago

 STMicroelectronics, Milano
Italy

1. Introduction

In the last decade, the landscape of wireless sensor network (WSN) applications has been
extending rapidly in many fields such as factory and building automation, environmental
monitoring, security systems and in a wide variety of commercial and military areas.
Advancements in microelectro-mechanical systems and wireless communication have
motivated the development of small and low power sensors and radio equipped modules
which are now replacing traditional wired sensor systems. These tiny modules usually
called “motes” can communicate with each other by radio and act like as neurons to collect
information from the environment. Platforms for WSNs, including processors, sensors,
radios, power supplies, operating systems and protocol stacks, are almost as diverse as the
application areas, with only a few standards (e.g. TinyOS (Levis et al., 2004) and the ZigBee
(2006) protocol), which are still far from being universally recognized and truly
interoperable.
Application development for WSNs is quite challenging, because in principle it would
require both detailed knowledge of the application area and of the available hardware and
software platforms. Moreover, design aids, in the form of both functional simulation, power
and performance analysis and on-target debugging are still very rudimentary. Many
hardware and software platforms include only LEDs as a debugging aid.
The available functional analysis packages, such as TOSSIM (Levis et al., 2003) for
debugging of TinyOS application, OmNet (1992) and NS-2 (2001), fall into two main
categories. One is very platform- and OS-specific (such as TOSSIM), and provides
essentially a binary API to model the OS and the motes, with limited facilities for re-using
existing channel models, tracing, collecting statistics and so on. The other are generic
network simulators (such as OmNet, NS, etc.), sometimes enhanced with models tailored to
the radios and channels used by WSNs. Both have significant drawbacks when it comes to
complex application development. The first group makes it virtually impossible to port an
application to a different platform (e.g. from TinyOS to MANTIS (Bhatti et al., 2005) or to a

5

www.intechopen.com

Factory Automation104

ZigBee compliant platform or vice versa). The second group still leaves a lot of detailed
platform-dependent code to be developed and debugged. Integrated use of a network
simulator followed by a platform simulator is the most commonly used path, but still
requires one to port code between a number of environments. Moreover, in case a bug is
found at the end, one has to resort to led-based debugging, which is extremely time
consuming.
In order to solve these problems, we wanted to be able to model the application using high
level abstractions, and simulate it using configurable and realistic topologies for the network
itself. Then we wanted to be able to automatically generate code for several target operating
systems. In this chapter, we present a framework (Mozumdar et al., 2008a) for modeling,
simulation and automatic code generation of sensor network applications based on
MathWorks (1984) tools. In our framework, applications can be modeled using Stateflow
state charts (SF. 2009) (and Simulink block diagrams, even though StateCharts were the best
tool for the application we considered as case study). Then the application developer can
configure the connectivity of the sensor network nodes and can perform behavioral
simulation and functional verification of the application. After modeling and simulation,
this framework can generate the complete application code for several target operating
systems from the simulated model.

Fig. 1. A complete view of the framework

The application developer can thus use the broad variety of debugging and analysis tools
provided by MathWorks, such as animated state chart displays, scopes, plots, as well as
exploit a large number of available pre-designed Simulink blocks. To the best of our
knowledge, this is the first time that a framework of this sort has been developed and tested.
A complete view of the whole framework is depicted in figure 1.
While working on code generation for the various kinds of target platforms, we also
identified a coding style for functions written in ANSI C that maximizes the ease of porting
the code, especially if coupled with the basic platform abstraction API that we developed.
In this chapter, we use as example target platforms TinyOS, MANTIS and the Ember
implementation of the standard ZigBee, since they provide very different programming

models and abstractions (e.g. non-preemptive scheduler with split-phase coding versus
multi-threaded kernel). Hence they are maximally different representatives of the
programming platforms used by WSN developers.
In (Cheong et al., 2005), a graphical development and simulation environment for TinyOS-
based applications called Viptos is described. Viptos provides graphical development and
interrupt-level simulation of actual TinyOS programs, with packet-level simulation of the
network. It also allows the developer to use other models of computation available in
Ptolemy II (Eker et al, 2003) for modeling various parts of the system. To model an
algorithm using Viptos, the users are bound to code it for TinyOS, which implies that the
user should have sufficient knowledge of TinyOS. In our framework, the users can model
the application by using Stateflow and need not have any knowledge of TinyOS, MANTIS
or ZigBee. In short, our framework provides more freedom by decoupling the application
from the platform and also supports several platforms for code generation.
In (Vieira et al.2005), the authors describe a visual development framework for multi-
platform wireless sensor networks, which is capable of generating application code for
TinyOS and Yet Another Tiny Operating System (Yatos) (Almeida et al. 2003). This tool
supports only code generation of the developed model for the WISDOM (Vieira et al. 2005)
framework and it does not support functional verification of the designed model. Here also
the model development is biased to TinyOS and Yatos, since these two target platforms
share the same component based programming style.
The idea of generating WSN application code from a single higher level abstraction has also
been demonstrated in (Abdelzaher et al., 2004, Gummadi et al., 2005, Newton & Welsh 2004,
Bakshi et al., 2005) using functional and macro-programming. All these approaches
introduce new programming languages, while in our case we advocate either to use a
specific programming style in C, or to use an existing well-known graphical language
(Stateflow). Although the approaches listed above introduce higher level abstractions, they
did not propose a methodology to generate application code for multiple software platforms
(all of these approaches generate application code only for TinyOS). In this chapter, we
identified a single programming style (Mozumdar et al, 2008b) that is compatible with most
kinds of WSN software platforms (e.g. MANTIS, TinyOS and Zigbee).

2. Methodology

The complete framework for modeling, simulation and automatic code generation is
depicted in figure 2. The WSN algorithm (application, middleware or device drivers) will be
at first modeled by using Simulink and Stateflow blocks. We have designed blocks that
specifically help WSN modeling such as the sensor node and communication medium described
later. These blocks are completely parameterized and can be used for model development
like usual Simulink blocks. Sensor node blocks are connected to the communication medium
block which provides a mechanism for the application developer to define the connectivity
between the nodes in sensor network.

www.intechopen.com

Rapid application development for wireless sensor networks 105

ZigBee compliant platform or vice versa). The second group still leaves a lot of detailed
platform-dependent code to be developed and debugged. Integrated use of a network
simulator followed by a platform simulator is the most commonly used path, but still
requires one to port code between a number of environments. Moreover, in case a bug is
found at the end, one has to resort to led-based debugging, which is extremely time
consuming.
In order to solve these problems, we wanted to be able to model the application using high
level abstractions, and simulate it using configurable and realistic topologies for the network
itself. Then we wanted to be able to automatically generate code for several target operating
systems. In this chapter, we present a framework (Mozumdar et al., 2008a) for modeling,
simulation and automatic code generation of sensor network applications based on
MathWorks (1984) tools. In our framework, applications can be modeled using Stateflow
state charts (SF. 2009) (and Simulink block diagrams, even though StateCharts were the best
tool for the application we considered as case study). Then the application developer can
configure the connectivity of the sensor network nodes and can perform behavioral
simulation and functional verification of the application. After modeling and simulation,
this framework can generate the complete application code for several target operating
systems from the simulated model.

Fig. 1. A complete view of the framework

The application developer can thus use the broad variety of debugging and analysis tools
provided by MathWorks, such as animated state chart displays, scopes, plots, as well as
exploit a large number of available pre-designed Simulink blocks. To the best of our
knowledge, this is the first time that a framework of this sort has been developed and tested.
A complete view of the whole framework is depicted in figure 1.
While working on code generation for the various kinds of target platforms, we also
identified a coding style for functions written in ANSI C that maximizes the ease of porting
the code, especially if coupled with the basic platform abstraction API that we developed.
In this chapter, we use as example target platforms TinyOS, MANTIS and the Ember
implementation of the standard ZigBee, since they provide very different programming

models and abstractions (e.g. non-preemptive scheduler with split-phase coding versus
multi-threaded kernel). Hence they are maximally different representatives of the
programming platforms used by WSN developers.
In (Cheong et al., 2005), a graphical development and simulation environment for TinyOS-
based applications called Viptos is described. Viptos provides graphical development and
interrupt-level simulation of actual TinyOS programs, with packet-level simulation of the
network. It also allows the developer to use other models of computation available in
Ptolemy II (Eker et al, 2003) for modeling various parts of the system. To model an
algorithm using Viptos, the users are bound to code it for TinyOS, which implies that the
user should have sufficient knowledge of TinyOS. In our framework, the users can model
the application by using Stateflow and need not have any knowledge of TinyOS, MANTIS
or ZigBee. In short, our framework provides more freedom by decoupling the application
from the platform and also supports several platforms for code generation.
In (Vieira et al.2005), the authors describe a visual development framework for multi-
platform wireless sensor networks, which is capable of generating application code for
TinyOS and Yet Another Tiny Operating System (Yatos) (Almeida et al. 2003). This tool
supports only code generation of the developed model for the WISDOM (Vieira et al. 2005)
framework and it does not support functional verification of the designed model. Here also
the model development is biased to TinyOS and Yatos, since these two target platforms
share the same component based programming style.
The idea of generating WSN application code from a single higher level abstraction has also
been demonstrated in (Abdelzaher et al., 2004, Gummadi et al., 2005, Newton & Welsh 2004,
Bakshi et al., 2005) using functional and macro-programming. All these approaches
introduce new programming languages, while in our case we advocate either to use a
specific programming style in C, or to use an existing well-known graphical language
(Stateflow). Although the approaches listed above introduce higher level abstractions, they
did not propose a methodology to generate application code for multiple software platforms
(all of these approaches generate application code only for TinyOS). In this chapter, we
identified a single programming style (Mozumdar et al, 2008b) that is compatible with most
kinds of WSN software platforms (e.g. MANTIS, TinyOS and Zigbee).

2. Methodology

The complete framework for modeling, simulation and automatic code generation is
depicted in figure 2. The WSN algorithm (application, middleware or device drivers) will be
at first modeled by using Simulink and Stateflow blocks. We have designed blocks that
specifically help WSN modeling such as the sensor node and communication medium described
later. These blocks are completely parameterized and can be used for model development
like usual Simulink blocks. Sensor node blocks are connected to the communication medium
block which provides a mechanism for the application developer to define the connectivity
between the nodes in sensor network.

www.intechopen.com

Factory Automation106

Fig. 2. Framework for modeling, simulation and code generation of WSN application

The communication medium block is implemented in C, so it can be modified to reuse any
existing channel and connectivity models. The sensor node contains mainly a timing
generator, a random number generator, and a parameterized Stateflow block which actually
implements the application running inside each single node (shown in figure 3). The
application block is a library object and each sensor node contains an instance of it. Therefore,
every node of the framework is running an independent copy of same algorithm. It is of
course also possible to model sensor networks having different algorithms running in
different nodes. In that case, one needs to create a small Stateflow library and instantiate
objects from it as needed. To model a new sensor network application based on this
framework, the application developer only needs to modify the template algorithm
implementation and set the connectivity of the nodes in the communication medium block.
Then simulation can be started and statistical data can be collected using animated state
charts, scopes and displays to perform functional analysis of the algorithm. The algorithm

implementation can be refined if the analysis of the results suggest to do so. Eventually the
developer will get a refined model which represents the desired behavior.

 Fig. 3. A simple simulation framework

The next step will be to generate code automatically for TinyOS, MANTIS or ZigBee from
the Stateflow representation of the algorithm, using a customization of Stateflow Coder (SF.
2009) which can generate ANSI C code for Stateflow blocks. In order to adapt the generated
ANSI C code to the target operating system, Target Language Compiler (TLC) (RTW. 2009)
scripts are used. TLC provides mechanisms by which one can generate platform specific
code by taking sections (such as includes, defines, functions, etc) from ANSI C code and also
by adding custom code for the target platform. In order to ease platform independent
development, we provide a set of generic library functions which can be used from
Stateflow to access platform specific operating system functionalities (such as led_toggle,
led_on, led_off, sendPacket, receivePacket). From the Stateflow implementation perspective, the
application developer does not have to think about the actual implementation of these
generic functions in TinyOS, MANTIS or in ZigBee, since they have been implemented in
the TLC library and can be targeted to any of the supported operating system and hardware
nodes. By using TLC scripts (which are also called System Target Files), the developer now
can generate automatically a TinyOS application (composed of .nc, .h and makefiles) or a
MANTIS application (composed of .c, .h and makefiles) or a ZigBee end device application
(also composed of .c, .h and configuration files), and then can compile and execute them for
the target platform without any modification.

www.intechopen.com

Rapid application development for wireless sensor networks 107

Fig. 2. Framework for modeling, simulation and code generation of WSN application

The communication medium block is implemented in C, so it can be modified to reuse any
existing channel and connectivity models. The sensor node contains mainly a timing
generator, a random number generator, and a parameterized Stateflow block which actually
implements the application running inside each single node (shown in figure 3). The
application block is a library object and each sensor node contains an instance of it. Therefore,
every node of the framework is running an independent copy of same algorithm. It is of
course also possible to model sensor networks having different algorithms running in
different nodes. In that case, one needs to create a small Stateflow library and instantiate
objects from it as needed. To model a new sensor network application based on this
framework, the application developer only needs to modify the template algorithm
implementation and set the connectivity of the nodes in the communication medium block.
Then simulation can be started and statistical data can be collected using animated state
charts, scopes and displays to perform functional analysis of the algorithm. The algorithm

implementation can be refined if the analysis of the results suggest to do so. Eventually the
developer will get a refined model which represents the desired behavior.

 Fig. 3. A simple simulation framework

The next step will be to generate code automatically for TinyOS, MANTIS or ZigBee from
the Stateflow representation of the algorithm, using a customization of Stateflow Coder (SF.
2009) which can generate ANSI C code for Stateflow blocks. In order to adapt the generated
ANSI C code to the target operating system, Target Language Compiler (TLC) (RTW. 2009)
scripts are used. TLC provides mechanisms by which one can generate platform specific
code by taking sections (such as includes, defines, functions, etc) from ANSI C code and also
by adding custom code for the target platform. In order to ease platform independent
development, we provide a set of generic library functions which can be used from
Stateflow to access platform specific operating system functionalities (such as led_toggle,
led_on, led_off, sendPacket, receivePacket). From the Stateflow implementation perspective, the
application developer does not have to think about the actual implementation of these
generic functions in TinyOS, MANTIS or in ZigBee, since they have been implemented in
the TLC library and can be targeted to any of the supported operating system and hardware
nodes. By using TLC scripts (which are also called System Target Files), the developer now
can generate automatically a TinyOS application (composed of .nc, .h and makefiles) or a
MANTIS application (composed of .c, .h and makefiles) or a ZigBee end device application
(also composed of .c, .h and configuration files), and then can compile and execute them for
the target platform without any modification.

www.intechopen.com

Factory Automation108

3. A Simple Simulation Framework

We will now demonstrate a simple sensor network model (shown in figure 3) that has been
designed based on our framework components (sensor node, communication medium). In this
model, we consider sixteen sensor nodes, all connected to the communication medium block
to form a sensor network. At the top level, the model has two major components:-

3.1 Communication Medium Model
This block contains the medium logic and also models the connectivity between nodes. The
logic of the communication medium block is implemented by a C based S-Function
(MathWorks. 1984), which contains a (parameterized) 16x16 matrix to define the
connectivity of the nodes in the sensor network (shown in the figure 4). In a synergistic
research effort, we are also working on a library of radio channel and protocol stack
modules at different levels of abstraction (bit, packet). For example in figure 4, node 1 (row
1) is connected to nodes 3, 10, 12 and 15. Packets are the inputs and outputs of the
communication medium block, where incoming packets from the nodes will be at first
processed by the medium logic and then fed to the appropriate nodes based on the
connectivity setup of the sensor network. In this chapter, we consider a very abstract model
describing a simple medium logic which at any point of time computes the input (packet) of
a node as the summation of outputs (packets) of nodes connected to it.

Fig. 4. Connectivity matrix for the 16 nodes sensor network

3.2 Node Block
This block contains sixteen nodes as shown in figure 3. The individual node model is fully
parameterized and contains mainly a timer generator, a random number generator and a
Stateflow application block. The timer is used for generating CLK events for the algorithm
running inside the Stateflow block. Incoming and outgoing packets of nodes consist of data
and signal information.
The data field contains the payload of the packet and signal (which triggers the Stateflow
block) generates a packet arrival event which is processed by the Stateflow algorithm inside.
The application developer now can perform functional analysis of the algorithm and modify
it based on execution data provided by Simulink and Stateflow. In this example, we have

shown a framework of sixteen nodes but the user can easily design a network with a larger
number of nodes by slightly modifying the sensor node and communication medium
blocks.

4. Multi-Platform Code Generation

After functional analysis of the algorithm, the next step is to generate application code
automatically for the target operating systems. For WSN application development one
currently has two options, either with a research WSN operating systems solution (such as
TinyOS, MANTIS, Contiki (Dunkels et al. 2004), FreeRTOS (Barry, 2003), etc.) or with the
ZigBee industry standard. Most of the operating systems are built on a very lightweight
event based mechanism (such as TinyOS, Contiki, etc.), however some use a more
traditional thread based model (such as MANTIS). On the other hand, ZigBee only defines
some layers of the WSN protocol stack and it does not cover the operating system and its
libraries. Application development is done on the top of software platforms where user code
calls non-standard APIs to interact with the platform. Such heterogeneity of software
platforms seriously hinders application porting, and motivated us to consider look for
different software platforms used in the sensor network domain and to look for possibilities
to port code between them. In this context, we have chosen three software platforms that
cover a broad range of programming styles. The candidates are TinyOS (event based),
MANTIS (thread based) and ZigBee (an event-based industrial standard).
Our approach is to model sensor network application independent of the platform by using
Stateflow, and then automatically generate platform specific application code from that
abstraction. We will illustrate the flow by taking a simple WSN application and modeling it
in Stateflow (as explained in the next section). For this goal, we designed generic functions
that are used to bridge between the model-generated code and the underlying platform
(TinyOS, MANTIS and ZigBee).
When developing an application on a platform like those described above, one must
consider the services that it provides, in particular:

 the tasking and synchronization models,
 the libraries implementing frequently used functions.

If we consider the first aspect, TinyOS and ZigBee are reasonably similar, because they do
not provide a preemptive task abstraction. Hence lengthy library calls cannot be
implemented synchronously (by calling and waiting), but must be implemented
asynchronously, by splitting them into a request and a response. This splitting allows one to
write extremely efficient code, since context swapping can be implemented simply by the
interrupt handling hardware. However, writing code in this style is more tedious, since it
forces one to save and restore “permanent” state information by hand. MANTIS on the
other hand offers a more traditional multi-tasking (to be more precise, multi-threading)
environment, which is more familiar and friendly to programmers.
In order to write portable code with these different tasking models, we had to resort to a
“reentrant state machine” programming paradigm, where the user code for an application is
written as a single procedure, which can be called and return as part of a single “reaction” to
external events. Fortunately this programming paradigm is supported by code generation
tools for synchronous reactive models (Halbwachs, 1993), (e.g. including the StateChart model
supported by Stateflow) which:

www.intechopen.com

Rapid application development for wireless sensor networks 109

3. A Simple Simulation Framework

We will now demonstrate a simple sensor network model (shown in figure 3) that has been
designed based on our framework components (sensor node, communication medium). In this
model, we consider sixteen sensor nodes, all connected to the communication medium block
to form a sensor network. At the top level, the model has two major components:-

3.1 Communication Medium Model
This block contains the medium logic and also models the connectivity between nodes. The
logic of the communication medium block is implemented by a C based S-Function
(MathWorks. 1984), which contains a (parameterized) 16x16 matrix to define the
connectivity of the nodes in the sensor network (shown in the figure 4). In a synergistic
research effort, we are also working on a library of radio channel and protocol stack
modules at different levels of abstraction (bit, packet). For example in figure 4, node 1 (row
1) is connected to nodes 3, 10, 12 and 15. Packets are the inputs and outputs of the
communication medium block, where incoming packets from the nodes will be at first
processed by the medium logic and then fed to the appropriate nodes based on the
connectivity setup of the sensor network. In this chapter, we consider a very abstract model
describing a simple medium logic which at any point of time computes the input (packet) of
a node as the summation of outputs (packets) of nodes connected to it.

Fig. 4. Connectivity matrix for the 16 nodes sensor network

3.2 Node Block
This block contains sixteen nodes as shown in figure 3. The individual node model is fully
parameterized and contains mainly a timer generator, a random number generator and a
Stateflow application block. The timer is used for generating CLK events for the algorithm
running inside the Stateflow block. Incoming and outgoing packets of nodes consist of data
and signal information.
The data field contains the payload of the packet and signal (which triggers the Stateflow
block) generates a packet arrival event which is processed by the Stateflow algorithm inside.
The application developer now can perform functional analysis of the algorithm and modify
it based on execution data provided by Simulink and Stateflow. In this example, we have

shown a framework of sixteen nodes but the user can easily design a network with a larger
number of nodes by slightly modifying the sensor node and communication medium
blocks.

4. Multi-Platform Code Generation

After functional analysis of the algorithm, the next step is to generate application code
automatically for the target operating systems. For WSN application development one
currently has two options, either with a research WSN operating systems solution (such as
TinyOS, MANTIS, Contiki (Dunkels et al. 2004), FreeRTOS (Barry, 2003), etc.) or with the
ZigBee industry standard. Most of the operating systems are built on a very lightweight
event based mechanism (such as TinyOS, Contiki, etc.), however some use a more
traditional thread based model (such as MANTIS). On the other hand, ZigBee only defines
some layers of the WSN protocol stack and it does not cover the operating system and its
libraries. Application development is done on the top of software platforms where user code
calls non-standard APIs to interact with the platform. Such heterogeneity of software
platforms seriously hinders application porting, and motivated us to consider look for
different software platforms used in the sensor network domain and to look for possibilities
to port code between them. In this context, we have chosen three software platforms that
cover a broad range of programming styles. The candidates are TinyOS (event based),
MANTIS (thread based) and ZigBee (an event-based industrial standard).
Our approach is to model sensor network application independent of the platform by using
Stateflow, and then automatically generate platform specific application code from that
abstraction. We will illustrate the flow by taking a simple WSN application and modeling it
in Stateflow (as explained in the next section). For this goal, we designed generic functions
that are used to bridge between the model-generated code and the underlying platform
(TinyOS, MANTIS and ZigBee).
When developing an application on a platform like those described above, one must
consider the services that it provides, in particular:

 the tasking and synchronization models,
 the libraries implementing frequently used functions.

If we consider the first aspect, TinyOS and ZigBee are reasonably similar, because they do
not provide a preemptive task abstraction. Hence lengthy library calls cannot be
implemented synchronously (by calling and waiting), but must be implemented
asynchronously, by splitting them into a request and a response. This splitting allows one to
write extremely efficient code, since context swapping can be implemented simply by the
interrupt handling hardware. However, writing code in this style is more tedious, since it
forces one to save and restore “permanent” state information by hand. MANTIS on the
other hand offers a more traditional multi-tasking (to be more precise, multi-threading)
environment, which is more familiar and friendly to programmers.
In order to write portable code with these different tasking models, we had to resort to a
“reentrant state machine” programming paradigm, where the user code for an application is
written as a single procedure, which can be called and return as part of a single “reaction” to
external events. Fortunately this programming paradigm is supported by code generation
tools for synchronous reactive models (Halbwachs, 1993), (e.g. including the StateChart model
supported by Stateflow) which:

www.intechopen.com

Factory Automation110

 Provide the programmer with a procedural abstraction giving the illusion of
several concurrent threads of code, all running synchronously with respect to each
other and hence all fully deterministic,

 Generate a reentrant state machine code that can be run in a non-preemptive
environment.

This programming style is perhaps less efficient than the “native” split-phase programming
mode of TinyOS and ZigBee, because it requires one to save the FSM state. But it makes
control much more explicit and easy to follow than code in which the “state” is implicitly
kept by the signaling between cooperating software and hardware components.
In the next section we introduce a simple WSN application that will be used as an example
for porting code between WSN platforms. Sections 6, 7 and 8 describe techniques to port the
application in MANTIS, TinyOS and ZigBee respectively. In these sections, we also provide
a short description of the platform itself. The code writing approaches that we will explain
in the following sections can also be automated by scripts in a model-based design context
(for example by TLC scripts). The application code of MANTIS, TinyOS and ZigBee is very
different from each others, so the script performs the following tasks to generate platform
specific code:

 Copy into the target files the platform specific application independent base code
including a type conversion header file that will convert all C types to platform
specific types and platform specific implementations of the library functions.

 Generate platform specific application files by taking different sections (such as
includes, defines, functions, etc) from the C code generated from Stateflow.

 Generate make or configuration files for each platform.

5. A Simple WSN Example

 Fig. 5. Stateflow of the simple WSN application

In this section, we will describe a simple WSN application to illustrate application
development in MANTIS, TinyOS and ZigBee. This simple application contains most typical
ingredients of sensor network applications such as transmitting, receiving, processing of
packets and sleeping. In this application example, we do not include a sensing task, but the
corresponding development problems are covered by other functionalities, such as
incoming events and processing data (which are included in our simple application).
The application transmits and receives packets randomly until it receives six packets, then it
stops communications and turns on all LEDs of the node. We also performed more
extensive application modelling in this style, but for simplicity we use this very simple
application. The Stateflow model of the application is shown in Figure 5.
PKT and CLK are external inputs of the algorithm. The PKT event is generated after
receiving a packet and the CLK event is generated when the periodic timer expires. Here, the
periodic timer is set to generate a CLK event every 10ms. The application starts by
initializing the next receiving (tNextRX) and transmitting (tNextTX) timestamps. To set these
timestamps, it calls a library function getRandTimeStamp which returns a random number.
Then it sets the number of received packets to zero. At the next CLK event, the application
moves to the Sleep state from the Init state. In the Sleep state, the receiving and transmitting
timestamps will be decremented by one at every occurrence of the CLK event. At the
expiration of the transmit timestamp, the algorithm will make a transition to the
Transmit_Pkt state and toggle led 1. In this state, it sets the first byte of the payload to 1 and
sends the packet by calling library function sendPacket. After transmitting the packet, the
application makes a transition to the Sleep state, sets the next transmission time-stamp and
toggles led 1. In the same way, when the receiving time-stamp expires, the algorithm makes
a transition from the Sleep state to Receive_Pkt state and it calls the receivePacket function to
configure the radio in receiving mode for a specified duration (in this case 30ms). In the
Receive_Pkt state, the algorithm waits for the PKT and CLK events. After receiving a PKT
event, it calls library function getPktData, which copies the packet data field into a local
variable (payload). Now the algorithm calls a local function processData where it checks the
first byte of the packet data and if it is equal to 1, then it increases the received packet
counter and toggles led 2 to give us a visual indication of successful reception of a packet.
After expiration of the receiving time slot, the algorithm makes a transition to the Sleep state
from the Receive_Pkt state. While making the transition, it sets the next receiving timestamp
and toggles led 0.
In this manner, the algorithm makes transitions between the Sleep, Transmit_Pkt, and
Receive_Pkt states until in the Sleep state it notices that the number of received packets is
greater than five. Then it makes the final transition to the Done state where it turns on all
three LEDs and stops all communications to the external world.
This simple application, just like many protocol components and WSN applications, can be
conveniently modeled as a state machine, either written directly in C/C++ or generated (by
Real Time Workshop) from the Stateflow model as shown in Example 1. Interactions of the
state machine with the rest of the platform (HW and protocol stack) are dependent on the
underlying software architecture. In this case, the incoming events are CLK and PKT and the
outgoing actions are sending a packet (sendPacket), setting the radio in listening mode for
certain amount of time (receivePacket) and switching the leds on the board (led_toggle, led_on).
Handling these incoming events and outgoing actions depend on the underlying software
platform while the rest of the implementation of the state machine remains mostly the same.

www.intechopen.com

Rapid application development for wireless sensor networks 111

 Provide the programmer with a procedural abstraction giving the illusion of
several concurrent threads of code, all running synchronously with respect to each
other and hence all fully deterministic,

 Generate a reentrant state machine code that can be run in a non-preemptive
environment.

This programming style is perhaps less efficient than the “native” split-phase programming
mode of TinyOS and ZigBee, because it requires one to save the FSM state. But it makes
control much more explicit and easy to follow than code in which the “state” is implicitly
kept by the signaling between cooperating software and hardware components.
In the next section we introduce a simple WSN application that will be used as an example
for porting code between WSN platforms. Sections 6, 7 and 8 describe techniques to port the
application in MANTIS, TinyOS and ZigBee respectively. In these sections, we also provide
a short description of the platform itself. The code writing approaches that we will explain
in the following sections can also be automated by scripts in a model-based design context
(for example by TLC scripts). The application code of MANTIS, TinyOS and ZigBee is very
different from each others, so the script performs the following tasks to generate platform
specific code:

 Copy into the target files the platform specific application independent base code
including a type conversion header file that will convert all C types to platform
specific types and platform specific implementations of the library functions.

 Generate platform specific application files by taking different sections (such as
includes, defines, functions, etc) from the C code generated from Stateflow.

 Generate make or configuration files for each platform.

5. A Simple WSN Example

 Fig. 5. Stateflow of the simple WSN application

In this section, we will describe a simple WSN application to illustrate application
development in MANTIS, TinyOS and ZigBee. This simple application contains most typical
ingredients of sensor network applications such as transmitting, receiving, processing of
packets and sleeping. In this application example, we do not include a sensing task, but the
corresponding development problems are covered by other functionalities, such as
incoming events and processing data (which are included in our simple application).
The application transmits and receives packets randomly until it receives six packets, then it
stops communications and turns on all LEDs of the node. We also performed more
extensive application modelling in this style, but for simplicity we use this very simple
application. The Stateflow model of the application is shown in Figure 5.
PKT and CLK are external inputs of the algorithm. The PKT event is generated after
receiving a packet and the CLK event is generated when the periodic timer expires. Here, the
periodic timer is set to generate a CLK event every 10ms. The application starts by
initializing the next receiving (tNextRX) and transmitting (tNextTX) timestamps. To set these
timestamps, it calls a library function getRandTimeStamp which returns a random number.
Then it sets the number of received packets to zero. At the next CLK event, the application
moves to the Sleep state from the Init state. In the Sleep state, the receiving and transmitting
timestamps will be decremented by one at every occurrence of the CLK event. At the
expiration of the transmit timestamp, the algorithm will make a transition to the
Transmit_Pkt state and toggle led 1. In this state, it sets the first byte of the payload to 1 and
sends the packet by calling library function sendPacket. After transmitting the packet, the
application makes a transition to the Sleep state, sets the next transmission time-stamp and
toggles led 1. In the same way, when the receiving time-stamp expires, the algorithm makes
a transition from the Sleep state to Receive_Pkt state and it calls the receivePacket function to
configure the radio in receiving mode for a specified duration (in this case 30ms). In the
Receive_Pkt state, the algorithm waits for the PKT and CLK events. After receiving a PKT
event, it calls library function getPktData, which copies the packet data field into a local
variable (payload). Now the algorithm calls a local function processData where it checks the
first byte of the packet data and if it is equal to 1, then it increases the received packet
counter and toggles led 2 to give us a visual indication of successful reception of a packet.
After expiration of the receiving time slot, the algorithm makes a transition to the Sleep state
from the Receive_Pkt state. While making the transition, it sets the next receiving timestamp
and toggles led 0.
In this manner, the algorithm makes transitions between the Sleep, Transmit_Pkt, and
Receive_Pkt states until in the Sleep state it notices that the number of received packets is
greater than five. Then it makes the final transition to the Done state where it turns on all
three LEDs and stops all communications to the external world.
This simple application, just like many protocol components and WSN applications, can be
conveniently modeled as a state machine, either written directly in C/C++ or generated (by
Real Time Workshop) from the Stateflow model as shown in Example 1. Interactions of the
state machine with the rest of the platform (HW and protocol stack) are dependent on the
underlying software architecture. In this case, the incoming events are CLK and PKT and the
outgoing actions are sending a packet (sendPacket), setting the radio in listening mode for
certain amount of time (receivePacket) and switching the leds on the board (led_toggle, led_on).
Handling these incoming events and outgoing actions depend on the underlying software
platform while the rest of the implementation of the state machine remains mostly the same.

www.intechopen.com

Factory Automation112

In the next sections, we will show how to port this C implementation of the state machine in
MANTIS, TinyOS and ZigBee respectively.

6. MANTIS

MANTIS is a light-weight multi-threaded operating system that is capable of multi-tasking
on energy constrained distributed sensor networks. The scheduler of MANTIS supports
thread preemption which allows the operating system to switch between active threads
without waiting. So the responsiveness of the operating system to critical events can be
faster than in TinyOS which is non-preemptive. The scheduler of MANTIS is priority-based
with round robin. The kernel ensures that all low priority threads execute after the higher
priority threads. When there is no thread scheduled for execution, the system moves to sleep
mode by executing the idle-thread. Kernel and APIs of MANTIS are written in standard C.

void state_machine(void)
{If (for_the_first_time) {
 current_state = IN_Init; // Storing the current state
 tNextRX = getRandNumber(); // Generic function to get random number
 tNextTX = getRandNumber();
 packetCount = 0;
}else{
 switch(current_state) {
 case IN_Init:
 if(incoming_event== event_CLK) // Handling CLK event
 current_state = IN_Sleep; break;
 case IN_Sleep:
 if((incoming_event== event_CLK) && ((tNextTX > 0) && (tNextRX > 0))){
 tNextTX--;tNextRX--; current_state = IN_Sleep;
 }else if (tNextRX == 0) {
 led_toggle(0); temp=0; // Generic function to toggle led
 receivePacket(30); // Generic function to receive packets
 current_state = IN_Receive_pkt;
 }else if(packetCount > 5) {
 current_state = IN_done; led_on(0);led_on(1);led_on(2);
 }else if (tNextTX == 0)){
 led_toggle(1); current_state = IN_Transmit_pkt; payload[0] = 1;
 sendPacket(payload); // Generic function to send packet
 }
 break;
 case IN_Receive_pkt:
 if(temp == 3){
 tNextRX = getRandNumber(); led_toggle(0); current_state = IN_Sleep;
 }else {
 if(incoming_event== event_PKT) { // Handling PKT event
 getPktData(payload); // Generic function to get packet content
 process_data();}

 if(incoming_event== event_CLK) // Handling CLK event
 temp++;
 }
 break;
 case IN_Transmit_pkt:
 tNextTX = getRandNumber(); led_toggle(1); current_state= IN_Sleep; break;
 case IN_done:
 break;
 default:
 current_state = IN_NO_ACTIVE_CHILD; break;
 }
 }
}

Example 1. C code generated by RTW for the state machine of figure 1

6.1 Application porting in MANTIS
MANTIS provides a convenient environment to develop WSN applications. All applications
begin with a start which is similar to main in C programming. One can spawn new threads
by calling mos_thread_new. MANTIS supports a comprehensive set of APIs for sensor
network application development (MOS. 2003), most frequently used APIs are listed below
for simple application development based on categories.

 Scheduler : mos_thread_new, mos_thread_sleep
 Networking : com_send, com_recv, com_recv_timed, com_ioct, com_mode
 Visual Feedback (Leds) : mos_led_on, mos_led_off, mos_led_toggle
 On board sensors (ADC) : dev_write, dev_read

Fig. 6. Flow diagram of the FSM code integrated in MANTIS.

www.intechopen.com

Rapid application development for wireless sensor networks 113

In the next sections, we will show how to port this C implementation of the state machine in
MANTIS, TinyOS and ZigBee respectively.

6. MANTIS

MANTIS is a light-weight multi-threaded operating system that is capable of multi-tasking
on energy constrained distributed sensor networks. The scheduler of MANTIS supports
thread preemption which allows the operating system to switch between active threads
without waiting. So the responsiveness of the operating system to critical events can be
faster than in TinyOS which is non-preemptive. The scheduler of MANTIS is priority-based
with round robin. The kernel ensures that all low priority threads execute after the higher
priority threads. When there is no thread scheduled for execution, the system moves to sleep
mode by executing the idle-thread. Kernel and APIs of MANTIS are written in standard C.

void state_machine(void)
{If (for_the_first_time) {
 current_state = IN_Init; // Storing the current state
 tNextRX = getRandNumber(); // Generic function to get random number
 tNextTX = getRandNumber();
 packetCount = 0;
}else{
 switch(current_state) {
 case IN_Init:
 if(incoming_event== event_CLK) // Handling CLK event
 current_state = IN_Sleep; break;
 case IN_Sleep:
 if((incoming_event== event_CLK) && ((tNextTX > 0) && (tNextRX > 0))){
 tNextTX--;tNextRX--; current_state = IN_Sleep;
 }else if (tNextRX == 0) {
 led_toggle(0); temp=0; // Generic function to toggle led
 receivePacket(30); // Generic function to receive packets
 current_state = IN_Receive_pkt;
 }else if(packetCount > 5) {
 current_state = IN_done; led_on(0);led_on(1);led_on(2);
 }else if (tNextTX == 0)){
 led_toggle(1); current_state = IN_Transmit_pkt; payload[0] = 1;
 sendPacket(payload); // Generic function to send packet
 }
 break;
 case IN_Receive_pkt:
 if(temp == 3){
 tNextRX = getRandNumber(); led_toggle(0); current_state = IN_Sleep;
 }else {
 if(incoming_event== event_PKT) { // Handling PKT event
 getPktData(payload); // Generic function to get packet content
 process_data();}

 if(incoming_event== event_CLK) // Handling CLK event
 temp++;
 }
 break;
 case IN_Transmit_pkt:
 tNextTX = getRandNumber(); led_toggle(1); current_state= IN_Sleep; break;
 case IN_done:
 break;
 default:
 current_state = IN_NO_ACTIVE_CHILD; break;
 }
 }
}

Example 1. C code generated by RTW for the state machine of figure 1

6.1 Application porting in MANTIS
MANTIS provides a convenient environment to develop WSN applications. All applications
begin with a start which is similar to main in C programming. One can spawn new threads
by calling mos_thread_new. MANTIS supports a comprehensive set of APIs for sensor
network application development (MOS. 2003), most frequently used APIs are listed below
for simple application development based on categories.

 Scheduler : mos_thread_new, mos_thread_sleep
 Networking : com_send, com_recv, com_recv_timed, com_ioct, com_mode
 Visual Feedback (Leds) : mos_led_on, mos_led_off, mos_led_toggle
 On board sensors (ADC) : dev_write, dev_read

Fig. 6. Flow diagram of the FSM code integrated in MANTIS.

www.intechopen.com

Factory Automation114

We can port easily the automatically generated code of the state machine in MANTIS. For
this, a new thread is spawned from the start procedure. In the newly created thread, the
state machine is called in every 10 milliseconds, as required in the algorithm. Here the CLK
is virtually implemented by calling mos_thread_sleep(10) . Figure 6 shows the skeleton of the
simple application implementation in MANTIS. For receiving packets, the user can use
com_recv which waits until a successful reception of a packet by blocking the thread. But for
implementing our simple application, the program needs to be in the receiving state for
certain amount of time. This can be done by another API which is com_recv_timed. It turns on
the radio in receiving mode for a certain amount of time. When it receives a packet, it calls
the state machine with the incoming packet event (PKT event of the state machine).
Implementation of other outgoing actions such as to sending a packet and switching the leds
is also easy, by calling com_send, mos_led_toggle and led_on APIs.

7. TinyOS

The programming model of TinyOS is based on components. In TinyOS, a conceptual entity
is represented by two types of components, Module and Configuration. A component
implements interfaces. The interface declares signature of the commands and events which
must be implemented by the provider and user of the interface respectively. Events are the
software abstractions of hardware events such as reception of packet, completion of sensor
sampling etc. On the other hand, commands are used to trigger an operation such as to start
sensor reading or to start the radio for receiving or transmitting etc. TinyOS uses a split-
phase mechanism, meaning that when a component calls a command, it returns
immediately, and the other component issues a callback event when it completes. This
approach is called split-phase because it splits invocation and completion into two separate
phases of execution. The scheduler of TinyOS is based on an event-driven paradigm where
events have the highest priority, run to completion (i.e. interrupts cannot be nested) and can
preempt and schedule tasks. Tasks contain the main computation of an application. TinyOS
applications are written in nesC which is an extension of the C language.

7.1 Application porting in TinyOS
In TinyOS, application coding uses several interfaces. The skeleton of the simple application
implementation is shown in figure 7. Module simpleAppM uses interfaces Boot, Timer and
others. When an application module uses an interface then it can issue the commands
provided by that interface and it should also implement all the events that could be
generated from the interface. For example, the Boot.booted event of the Boot interface is
implemented in the module simpleAppM. Among the several interfaces available in the
library of TinyOS, we listed those most frequently used for constructing simple applications.

 Initialization: Init, Boot, Timer
 Networking: Send, Receive, AMSend, SplitControl, Packet, AMPacket
 Visual Feedback (Leds): Leds

Details of the TinyOS operating system can be found in (TOS. 2000). To implement the
simple application, at first a periodic timer (CLKtimer.startPeriodic) is initialized from the
Boot.booted event handler. The period of the timer is set to 10 milliseconds as required in the
algorithm. After initialization has been done, a timer event is generated (CLKtimer.fired).

Inside this event handler, the state machine is called as a task (implementing the CLK event
of the state machine). The algorithm needs to be in receiving mode for specific amount of
time (30 milliseconds). Hence in the receivePacket method, we set a one shot timer (for 30
milliseconds) and at the same time start the radio. After expiration of this timer the radio
needs to be stopped (done in the event handler of RXwindowTimer.fired). When TinyOS
receives a packet it generates an event (Receive.receive). Inside this event we post the task of
the state machine with the incoming packet event (implementing the PKT event of the state
machine). We used the LowPowerListening interface to control the radio explicitly in
receiving or transmitting mode. For handling outgoing actions from the state machine, such
as to send a packet, the state machine calls the sendPacket method. Inside this method, we at
first set the radio in transmit mode and then start it. When the radio is started (it generates
Radio.StartDone event), the method checks whether the radio is turned on for sending a
packet or not. If so, we use the AMSend.send command of the AMSend interface to send the
packet.

Fig. 7. Flow diagram of the FSM code integrated in TinyOS

www.intechopen.com

Rapid application development for wireless sensor networks 115

We can port easily the automatically generated code of the state machine in MANTIS. For
this, a new thread is spawned from the start procedure. In the newly created thread, the
state machine is called in every 10 milliseconds, as required in the algorithm. Here the CLK
is virtually implemented by calling mos_thread_sleep(10) . Figure 6 shows the skeleton of the
simple application implementation in MANTIS. For receiving packets, the user can use
com_recv which waits until a successful reception of a packet by blocking the thread. But for
implementing our simple application, the program needs to be in the receiving state for
certain amount of time. This can be done by another API which is com_recv_timed. It turns on
the radio in receiving mode for a certain amount of time. When it receives a packet, it calls
the state machine with the incoming packet event (PKT event of the state machine).
Implementation of other outgoing actions such as to sending a packet and switching the leds
is also easy, by calling com_send, mos_led_toggle and led_on APIs.

7. TinyOS

The programming model of TinyOS is based on components. In TinyOS, a conceptual entity
is represented by two types of components, Module and Configuration. A component
implements interfaces. The interface declares signature of the commands and events which
must be implemented by the provider and user of the interface respectively. Events are the
software abstractions of hardware events such as reception of packet, completion of sensor
sampling etc. On the other hand, commands are used to trigger an operation such as to start
sensor reading or to start the radio for receiving or transmitting etc. TinyOS uses a split-
phase mechanism, meaning that when a component calls a command, it returns
immediately, and the other component issues a callback event when it completes. This
approach is called split-phase because it splits invocation and completion into two separate
phases of execution. The scheduler of TinyOS is based on an event-driven paradigm where
events have the highest priority, run to completion (i.e. interrupts cannot be nested) and can
preempt and schedule tasks. Tasks contain the main computation of an application. TinyOS
applications are written in nesC which is an extension of the C language.

7.1 Application porting in TinyOS
In TinyOS, application coding uses several interfaces. The skeleton of the simple application
implementation is shown in figure 7. Module simpleAppM uses interfaces Boot, Timer and
others. When an application module uses an interface then it can issue the commands
provided by that interface and it should also implement all the events that could be
generated from the interface. For example, the Boot.booted event of the Boot interface is
implemented in the module simpleAppM. Among the several interfaces available in the
library of TinyOS, we listed those most frequently used for constructing simple applications.

 Initialization: Init, Boot, Timer
 Networking: Send, Receive, AMSend, SplitControl, Packet, AMPacket
 Visual Feedback (Leds): Leds

Details of the TinyOS operating system can be found in (TOS. 2000). To implement the
simple application, at first a periodic timer (CLKtimer.startPeriodic) is initialized from the
Boot.booted event handler. The period of the timer is set to 10 milliseconds as required in the
algorithm. After initialization has been done, a timer event is generated (CLKtimer.fired).

Inside this event handler, the state machine is called as a task (implementing the CLK event
of the state machine). The algorithm needs to be in receiving mode for specific amount of
time (30 milliseconds). Hence in the receivePacket method, we set a one shot timer (for 30
milliseconds) and at the same time start the radio. After expiration of this timer the radio
needs to be stopped (done in the event handler of RXwindowTimer.fired). When TinyOS
receives a packet it generates an event (Receive.receive). Inside this event we post the task of
the state machine with the incoming packet event (implementing the PKT event of the state
machine). We used the LowPowerListening interface to control the radio explicitly in
receiving or transmitting mode. For handling outgoing actions from the state machine, such
as to send a packet, the state machine calls the sendPacket method. Inside this method, we at
first set the radio in transmit mode and then start it. When the radio is started (it generates
Radio.StartDone event), the method checks whether the radio is turned on for sending a
packet or not. If so, we use the AMSend.send command of the AMSend interface to send the
packet.

Fig. 7. Flow diagram of the FSM code integrated in TinyOS

www.intechopen.com

Factory Automation116

When the packet is sent then TinyOS generates a call back event AMSend.sendDone which
provides the status of the sending processing. Inside this event handler, we stop the radio.
There are some commands in TinyOS which are qualified as async and do not generate
callback events. We used async commands for switching the leds from the state machine.

8. ZigBee

ZigBee is a specification that enables reliable, cost effective, low power, wireless networked,
monitoring and control products based on an open global standard. ZigBee is targeted at the
WSN domain because it supports low data rate, long battery life and secure networking. At
the physical and MAC layers, ZigBee adopted the IEEE 802.15.4 standard. It includes
mechanisms for forming and joining a network, a CSMA mechanism for devices to listen for
a clear channel, as well as retries and acknowledgment of messages for reliable
communication between adjacent devices. These underlying mechanisms are used by the
ZigBee network layer to provide reliable end to end communications in the network. The
802.15.4 standard is available from (IEEE. 2003).
At the network layer, ZigBee supports different kinds of network topologies such as Star,
Tree and Mesh. The ZigBee specification supports networks with one coordinator, multiple
routers, and multiple end devices within a single network. A ZigBee coordinator is
responsible for forming the network. Router devices provide routing services to network
devices, and can also serve as end devices. End devices communicate only with their parent
nodes and, unlike router devices, cannot relay messages intended for other nodes. Details of
the ZigBee specification can be found at (ZigBee. 2006).

Fig. 8. Main Loop of the Ember ZigBee application

8.1 Application porting in ZigBee
Several implementations of the ZigBee stack are available on the market (such as from Texas
Instruments, Ember Corporation, Freescale etc). We will describe our simple application
implementation by using the Ember implementation (EMBER. 2008). The main source file of
a ZigBee application must begin by defining some parameters involving endpoints, callbacks
and global variables. Endpoints are required to send and receive messages, so any device
(except a basic network relay device) will need at least one of these. Just like C, an
application starts from main. The initialization and event loop phases (shown in figure 8) of
a ZigBee application are shortly described below.
Among the initialization tasks, serial ports (SPI, UART, debug or virtual) need to be
initialized. It is also important to call emberInit() which initializes the radio and the ZigBee
stack. Prior to calling emberInit(), it needs to initialize the Hardware Abstraction Layer
(HAL) and also to turn on interrupts. After calling emberInit(), the device rejoins the network
if previously it had been connected, sets the security key, initializes the application state and
also sets any status or state indicators to the initial state.

Fig. 9. Flow diagram of the FSM code integrated in ZigBee

The network state is checked once during each cycle of the event loop. If the state indicates
joined (in case of router and end device) or formed (for the coordinator) network, then the
applicationTick function is executed. Inside this function the developer will put the
application code. If the network is not joined or formed, then the node will try to join or
form the network. State indicators are simply LEDs but could be an alphanumeric display or
some other state indicator. The function emberTick is a periodic tick routine that should be

www.intechopen.com

Rapid application development for wireless sensor networks 117

When the packet is sent then TinyOS generates a call back event AMSend.sendDone which
provides the status of the sending processing. Inside this event handler, we stop the radio.
There are some commands in TinyOS which are qualified as async and do not generate
callback events. We used async commands for switching the leds from the state machine.

8. ZigBee

ZigBee is a specification that enables reliable, cost effective, low power, wireless networked,
monitoring and control products based on an open global standard. ZigBee is targeted at the
WSN domain because it supports low data rate, long battery life and secure networking. At
the physical and MAC layers, ZigBee adopted the IEEE 802.15.4 standard. It includes
mechanisms for forming and joining a network, a CSMA mechanism for devices to listen for
a clear channel, as well as retries and acknowledgment of messages for reliable
communication between adjacent devices. These underlying mechanisms are used by the
ZigBee network layer to provide reliable end to end communications in the network. The
802.15.4 standard is available from (IEEE. 2003).
At the network layer, ZigBee supports different kinds of network topologies such as Star,
Tree and Mesh. The ZigBee specification supports networks with one coordinator, multiple
routers, and multiple end devices within a single network. A ZigBee coordinator is
responsible for forming the network. Router devices provide routing services to network
devices, and can also serve as end devices. End devices communicate only with their parent
nodes and, unlike router devices, cannot relay messages intended for other nodes. Details of
the ZigBee specification can be found at (ZigBee. 2006).

Fig. 8. Main Loop of the Ember ZigBee application

8.1 Application porting in ZigBee
Several implementations of the ZigBee stack are available on the market (such as from Texas
Instruments, Ember Corporation, Freescale etc). We will describe our simple application
implementation by using the Ember implementation (EMBER. 2008). The main source file of
a ZigBee application must begin by defining some parameters involving endpoints, callbacks
and global variables. Endpoints are required to send and receive messages, so any device
(except a basic network relay device) will need at least one of these. Just like C, an
application starts from main. The initialization and event loop phases (shown in figure 8) of
a ZigBee application are shortly described below.
Among the initialization tasks, serial ports (SPI, UART, debug or virtual) need to be
initialized. It is also important to call emberInit() which initializes the radio and the ZigBee
stack. Prior to calling emberInit(), it needs to initialize the Hardware Abstraction Layer
(HAL) and also to turn on interrupts. After calling emberInit(), the device rejoins the network
if previously it had been connected, sets the security key, initializes the application state and
also sets any status or state indicators to the initial state.

Fig. 9. Flow diagram of the FSM code integrated in ZigBee

The network state is checked once during each cycle of the event loop. If the state indicates
joined (in case of router and end device) or formed (for the coordinator) network, then the
applicationTick function is executed. Inside this function the developer will put the
application code. If the network is not joined or formed, then the node will try to join or
form the network. State indicators are simply LEDs but could be an alphanumeric display or
some other state indicator. The function emberTick is a periodic tick routine that should be

www.intechopen.com

Factory Automation118

called in the application's main event loop after emberInit. The watchdog timer should also
be reset once per event loop by calling halResetWatchdog.
The skeleton of the simple application implementation in ZigBee is shown in figure 9. Here,
the state machine is called from applicationTick. The state machine is called at 10 millisecond
intervals, which implements the CLK of the state machine. When the receivePacket method is
called from the state machine, we start the radio by calling the emberStackPowerUp API and
then schedule an event (RXwindowTimer) which will generate a callback event after
expiration of receiving timer (30ms). When this callback event (RXwindowTimerHandler)
occurs, we stop the radio. In this time frame, if a packet is received by the ZigBee stack, it
calls an incoming message handler function emberIncomingMessageHandler. Inside this
function, the state machine is called with the incoming packet event (PKT event of the state
machine). When the sendPacket method is called from the state machine, again we start the
radio and send the packet by calling the emberSendUnicast API which afterward calls back
the emberMessageSentHandler function. Inside this event handler, we stop the radio.
Implementations of led_toggle and led_on methods are simple like in MANTIS and TinyOS.

9. Conclusion

We described an extensible framework for modeling, simulation and multi-platform code
generation of sensor network algorithms based on MathWorks tools. We developed
parameterized blocks for the sensor node and communication medium to ease the modeling and
simulation of WSN applications. Portability of application between multiple platforms is an
open problem, especially in the WSN domain because of the lack of a single platform
standard. We presented application porting in MANTIS, TinyOS and ZigBee using a simple
application. We identified a single code writing style, namely state machine-like, that can be
ported easily across different platforms by just creating an API abstraction layer for sensors,
actuators and non-blocking OS calls. This FSM-like code can be written by or generated
from different StateChart-like or Synchronous Language models, which also makes the
generation of the adaptation layer to each platform easier. The reason for choosing the
MathWorks tools over, for example, TOSSIM, NS, OmNet, is that they are well known and
already provide rich libraries for digital signal processing and control algorithm behavior
simulation.

10. References

Abdelzaher, T. ; Blum, B. ; Cao, Q. ; Evans, D.; George, J.; George, S. ; He, T. ; Luo, L. ;
Son, S. ; Stoleru, R.; Stankovic, J. & Wood, A. (2004). Envirotrack: Towards an
environmental computing paradigm for distributed sensor networks. In the
Proceedings of the IEEE International Conference on Distributed Computing Systems,
Tokyo, Japan

Almeida, V.; Vieira, L.; Vitorino, B.; Vieira, M. ; Fernandes, A.; Silva, D. & Coelho, C. (2003)
Microkernel for Nodes of Wireless Sensor Networks, In the poster session of the 3rd
Student Forum SBCCI, Chip in Sampa, Brasil.

Barry, R. 2003. FreeRTOS, A FREE open source RTOS for small embedded real time systems.
http://www.freertos.org/PC/.

Bakshi, A.; Prasanna, V. K.; Reich, J. & Larner, D. (2005). The abstract task graph: a
methodology for architecture-independent programming of networked sensor
systems. In the Proceedings of End-to-end, sense-and-respond systems, applications and
services, pages 19–24.

Bhatti, S.; Carlson, J.; Dai, H.; Deng, J. ; Rose, J. ; Sheth, A. ; Shucker, B. ; Gruenwald, C. ;
Torgerson. A. & Han., R. (2005). MANTIS OS: An Embedded Multithreaded
Operating System for Wireless Micro Sensor Platforms. In the journal of MONET,
pages 563-579

Cheong, E.; Lee, E. & Zhao, Y. (2005). Viptos: A graphical development and simulation
environment for TinyOS-based wireless sensor networks. In the Proceedings of 3rd
International Conference on Embedded Networked Sensor Systems, SenSys, page 302

Dunkels, A.; Gronvall, B. & Voigt, T.(2004). Contiki - A Lightweight and Flexible Operating
System for Tiny Networked Sensors, Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks, ISBN 0-7695-2260-2, pages
455--462, USA

Eker, J.; Janneck, J.; Lee, E. A. ; Liu, J. ; Liu, X. ; Ludvig, J. ; Sachs, S. & Xiong Y. (2003)
Taming heterogeneity - the Ptolemy approach, Proceedings of the IEEE, volume
99(1), pages: 127-144

EMBER. (2001). Zigbee Wireless Semiconductor Solutions by Ember. www.ember.com.
Gay, D.; Levis, P.; Behren, J. R.; Welsh, M.; Brewer, E. A. & Culler, D. E. (2003) The nesC

language: A holistic approach to networked embedded systems. In the Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI, pages 1-11,

Gummadi, R. ; Gnawali, O. & Govindan, R. (2005). Macro-programming wireless sensor
networks using kairos. In the Proceedings of the 1st International Conference on
Distributed Computing on Sensor Systems, pages 126-140

Halbwachs, N. (1993). Synchronous Programming of Reactive Systems, Kluwer Academic
Publishers

Levis, P.; Lee, N.; Welsh, M. & Culler, D.E. (2003) TOSSIM: accurate and scalable simulation
of entire tinyOS applications. In the Proceedings of 1st International Conference on
Embedded Networked Sensor Systems, SenSys, pages 126-137

Levis, P.; Madden, S.; Gay, D.; Polastre, J.; Szewczyk, R.; Woo, A.; Brewer, E. A. & Culler, D.
E. (2004) The Emergence of Networking Abstractions and Techniques in TinyOS.
In the Proceedings of 1st Symposium on Networked Systems Design and Implementation,
NSDI, pages 1-14, 2004

Necchi, L. ; Bonivento, A. ; Lavagno, L. ; Vanzago, L. & Sangiovanni-Vincentelli, A. (2007)
EERINA: an Energy Efficient and Reliable In-Network Aggregation for Clustered
Wireless Sensor Networks. In the Proceedings of Wireless Communications and
Networking Conference, WCNC, pages 3364-3369

Newton, R. & Welsh, M. (2004). Region streams: functional macroprogramming for sensor
networks. In the Proceedings of the 1st International Workshop on Data Management for
Sensor Networks, pages 78-87

MathWorks. (1984). MATLAB and Simulink for Technical Computing.
www.mathworks.com/

MOS. (2003). MANTIS, MultimodAl NeTwork of In-situ Sensors.
http://mantis.cs.colorado.edu/index.php/tiki-index.php

www.intechopen.com

Rapid application development for wireless sensor networks 119

called in the application's main event loop after emberInit. The watchdog timer should also
be reset once per event loop by calling halResetWatchdog.
The skeleton of the simple application implementation in ZigBee is shown in figure 9. Here,
the state machine is called from applicationTick. The state machine is called at 10 millisecond
intervals, which implements the CLK of the state machine. When the receivePacket method is
called from the state machine, we start the radio by calling the emberStackPowerUp API and
then schedule an event (RXwindowTimer) which will generate a callback event after
expiration of receiving timer (30ms). When this callback event (RXwindowTimerHandler)
occurs, we stop the radio. In this time frame, if a packet is received by the ZigBee stack, it
calls an incoming message handler function emberIncomingMessageHandler. Inside this
function, the state machine is called with the incoming packet event (PKT event of the state
machine). When the sendPacket method is called from the state machine, again we start the
radio and send the packet by calling the emberSendUnicast API which afterward calls back
the emberMessageSentHandler function. Inside this event handler, we stop the radio.
Implementations of led_toggle and led_on methods are simple like in MANTIS and TinyOS.

9. Conclusion

We described an extensible framework for modeling, simulation and multi-platform code
generation of sensor network algorithms based on MathWorks tools. We developed
parameterized blocks for the sensor node and communication medium to ease the modeling and
simulation of WSN applications. Portability of application between multiple platforms is an
open problem, especially in the WSN domain because of the lack of a single platform
standard. We presented application porting in MANTIS, TinyOS and ZigBee using a simple
application. We identified a single code writing style, namely state machine-like, that can be
ported easily across different platforms by just creating an API abstraction layer for sensors,
actuators and non-blocking OS calls. This FSM-like code can be written by or generated
from different StateChart-like or Synchronous Language models, which also makes the
generation of the adaptation layer to each platform easier. The reason for choosing the
MathWorks tools over, for example, TOSSIM, NS, OmNet, is that they are well known and
already provide rich libraries for digital signal processing and control algorithm behavior
simulation.

10. References

Abdelzaher, T. ; Blum, B. ; Cao, Q. ; Evans, D.; George, J.; George, S. ; He, T. ; Luo, L. ;
Son, S. ; Stoleru, R.; Stankovic, J. & Wood, A. (2004). Envirotrack: Towards an
environmental computing paradigm for distributed sensor networks. In the
Proceedings of the IEEE International Conference on Distributed Computing Systems,
Tokyo, Japan

Almeida, V.; Vieira, L.; Vitorino, B.; Vieira, M. ; Fernandes, A.; Silva, D. & Coelho, C. (2003)
Microkernel for Nodes of Wireless Sensor Networks, In the poster session of the 3rd
Student Forum SBCCI, Chip in Sampa, Brasil.

Barry, R. 2003. FreeRTOS, A FREE open source RTOS for small embedded real time systems.
http://www.freertos.org/PC/.

Bakshi, A.; Prasanna, V. K.; Reich, J. & Larner, D. (2005). The abstract task graph: a
methodology for architecture-independent programming of networked sensor
systems. In the Proceedings of End-to-end, sense-and-respond systems, applications and
services, pages 19–24.

Bhatti, S.; Carlson, J.; Dai, H.; Deng, J. ; Rose, J. ; Sheth, A. ; Shucker, B. ; Gruenwald, C. ;
Torgerson. A. & Han., R. (2005). MANTIS OS: An Embedded Multithreaded
Operating System for Wireless Micro Sensor Platforms. In the journal of MONET,
pages 563-579

Cheong, E.; Lee, E. & Zhao, Y. (2005). Viptos: A graphical development and simulation
environment for TinyOS-based wireless sensor networks. In the Proceedings of 3rd
International Conference on Embedded Networked Sensor Systems, SenSys, page 302

Dunkels, A.; Gronvall, B. & Voigt, T.(2004). Contiki - A Lightweight and Flexible Operating
System for Tiny Networked Sensors, Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks, ISBN 0-7695-2260-2, pages
455--462, USA

Eker, J.; Janneck, J.; Lee, E. A. ; Liu, J. ; Liu, X. ; Ludvig, J. ; Sachs, S. & Xiong Y. (2003)
Taming heterogeneity - the Ptolemy approach, Proceedings of the IEEE, volume
99(1), pages: 127-144

EMBER. (2001). Zigbee Wireless Semiconductor Solutions by Ember. www.ember.com.
Gay, D.; Levis, P.; Behren, J. R.; Welsh, M.; Brewer, E. A. & Culler, D. E. (2003) The nesC

language: A holistic approach to networked embedded systems. In the Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI, pages 1-11,

Gummadi, R. ; Gnawali, O. & Govindan, R. (2005). Macro-programming wireless sensor
networks using kairos. In the Proceedings of the 1st International Conference on
Distributed Computing on Sensor Systems, pages 126-140

Halbwachs, N. (1993). Synchronous Programming of Reactive Systems, Kluwer Academic
Publishers

Levis, P.; Lee, N.; Welsh, M. & Culler, D.E. (2003) TOSSIM: accurate and scalable simulation
of entire tinyOS applications. In the Proceedings of 1st International Conference on
Embedded Networked Sensor Systems, SenSys, pages 126-137

Levis, P.; Madden, S.; Gay, D.; Polastre, J.; Szewczyk, R.; Woo, A.; Brewer, E. A. & Culler, D.
E. (2004) The Emergence of Networking Abstractions and Techniques in TinyOS.
In the Proceedings of 1st Symposium on Networked Systems Design and Implementation,
NSDI, pages 1-14, 2004

Necchi, L. ; Bonivento, A. ; Lavagno, L. ; Vanzago, L. & Sangiovanni-Vincentelli, A. (2007)
EERINA: an Energy Efficient and Reliable In-Network Aggregation for Clustered
Wireless Sensor Networks. In the Proceedings of Wireless Communications and
Networking Conference, WCNC, pages 3364-3369

Newton, R. & Welsh, M. (2004). Region streams: functional macroprogramming for sensor
networks. In the Proceedings of the 1st International Workshop on Data Management for
Sensor Networks, pages 78-87

MathWorks. (1984). MATLAB and Simulink for Technical Computing.
www.mathworks.com/

MOS. (2003). MANTIS, MultimodAl NeTwork of In-situ Sensors.
http://mantis.cs.colorado.edu/index.php/tiki-index.php

www.intechopen.com

Factory Automation120

Mozumdar, M.M.R. ; Gregoretti, F. ; Lavagno, L.; Vanzago, L. & Olivieri, S. (2008a). A
framework for modeling, simulation and automatic code generation of sensor
network application, In the Proceedings of 5th Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks,
pages 515--522.

Mozumdar, M.M.R. ; Gregoretti, F. ; Lavagno, L. & Vanzago, L. (2008b). Porting application
between wireless sensor network software platforms: TinyOS, MANTIS and
ZigBee, In the Proceedings of IEEE International Conference on Emerging
Technologies and Factory Automation, pages 1145-1148.

NS-2. 2001. The Network Simulator. 2001. http://www.isi.edu/nsnam/ns
OMNeT. (1992). Community Site. http://www.omnetpp.org/
Vieira, L. F. M. ; Vitorino, B. A. D.; Vieira, M. A. M.; Silva, D. C. & Loureiro, A. O. (2005).

WISDOM: A Visual Development Framework for Multi-platform Wireless Sensor
Networks. In the Proceedings of 10th IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA, Catania, Italy.

RTW. (2009). Real-Time Workshop - Generate C code from Simulink models and MATLAB
code. http://www.mathworks.com/products/rtw/

SF. (2009). Stateflow-Design and simulate state machines and control logic.
http://www.mathworks.com/products/stateflow/

TOS. (2000). TinyOS Community Forum, An open-source OS for the networked sensor
regime. http://www.tinyos.net/

ZigBee. (2006). ZigBee Alliance. http://www.zigbee.org/.

www.intechopen.com

Factory Automation

Edited by Javier Silvestre-Blanes

ISBN 978-953-307-024-7

Hard cover, 602 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Factory automation has evolved significantly in the last few decades, and is today a complex, interdisciplinary,

scientific area. In this book a selection of papers on topics related to factory automation is presented, covering

a broad spectrum, so that the reader may become familiar with the various fields, and also study them in more

depth where required. Within various chapters in this book, special attention is given to distributed applications

and their use of networks, since it is one of the most relevant subjects in the evolution of factory automation.

Different Medium Access Control and networks are analyzed, while Ethernet and Wireless networks are looked

at in more detail, since they are among the hottest topics in recent research. Another important subject is

everything concerning the increase in the complexity of factory automation, and the need for flexibility and

interoperability. Finally the use of multi-agent systems, advanced control, formal methods, or the application in

this field of RFID, are additional examples of the ideas and disciplines that experts around the world have

analyzed in their work.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mohammad Mostafizur Rahman Mozumdar and Luciano Lavagno (2010). Rapid Application Development for

Wireless Sensor Networks, Factory Automation, Javier Silvestre-Blanes (Ed.), ISBN: 978-953-307-024-7,

InTech, Available from: http://www.intechopen.com/books/factory-automation/rapid-application-development-

for-wireless-sensor-networks

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

