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1. Introduction     
 

In the last decade, the landscape of wireless sensor network (WSN) applications has been 
extending rapidly in many fields such as factory and building automation, environmental 
monitoring, security systems and in a wide variety of commercial and military areas. 
Advancements in microelectro-mechanical systems and wireless communication have 
motivated the development of small and low power sensors and radio equipped modules 
which are now replacing traditional wired sensor systems. These tiny modules usually 
called “motes” can communicate with each other by radio and act like as neurons to collect 
information from the environment. Platforms for WSNs, including processors, sensors, 
radios, power supplies, operating systems and protocol stacks, are almost as diverse as the 
application areas, with only a few standards (e.g. TinyOS (Levis et al., 2004)  and the ZigBee 
(2006) protocol), which are still far from being universally recognized and truly 
interoperable. 
Application development for WSNs is quite challenging, because in principle it would 
require both detailed knowledge of the application area  and of the available hardware and 
software platforms. Moreover, design aids, in the form of both functional simulation, power 
and performance analysis and on-target debugging are still very rudimentary. Many 
hardware and software platforms include only LEDs as a debugging aid. 
The available functional analysis packages, such as TOSSIM (Levis et al., 2003) for 
debugging of TinyOS application, OmNet (1992) and NS-2 (2001), fall into two main 
categories. One is very platform- and OS-specific (such as TOSSIM), and provides 
essentially a binary API to model the OS and the motes, with limited facilities for re-using 
existing channel models, tracing, collecting statistics and so on. The other are generic 
network simulators (such as OmNet, NS, etc.), sometimes enhanced with models tailored to 
the radios and channels used by WSNs. Both have significant drawbacks when it comes to 
complex application development. The first group makes it virtually impossible to port an 
application to a different platform (e.g. from TinyOS to MANTIS (Bhatti et al., 2005) or to a 
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ZigBee compliant platform or vice versa). The second group still leaves a lot of detailed 
platform-dependent code to be developed and debugged. Integrated use of a network 
simulator followed by a platform simulator is the most commonly used path, but still 
requires one to port code between a number of environments. Moreover, in case a bug is 
found at the end, one has to resort to led-based debugging, which is extremely time 
consuming. 
In order to solve these problems, we wanted to be able to model the application using high 
level abstractions, and simulate it using configurable and realistic topologies for the network 
itself. Then we wanted to be able to automatically generate code for several target operating 
systems.  In this chapter, we present a framework (Mozumdar et al., 2008a) for modeling, 
simulation and automatic code generation of sensor network applications based on 
MathWorks (1984) tools. In our framework, applications can be modeled using Stateflow 
state charts (SF. 2009) (and Simulink block diagrams, even though StateCharts were the best 
tool for the application we considered as case study). Then the application developer can 
configure the connectivity of the sensor network nodes and can perform behavioral 
simulation and functional verification of the application. After modeling and simulation, 
this framework can generate the complete application code for several target operating 
systems from the simulated model.  
 

 
Fig. 1. A complete view of the framework 
 
The application developer can thus use the broad variety of debugging and analysis tools 
provided by MathWorks, such as animated state chart displays, scopes, plots, as well as 
exploit a large number of available pre-designed Simulink blocks. To the best of our 
knowledge, this is the first time that a framework of this sort has been developed and tested. 
A complete view of the whole framework is depicted in figure 1.  
While working on code generation for the various kinds of target platforms, we also 
identified a coding style for functions written in ANSI C that maximizes the ease of porting 
the code, especially if coupled with the basic platform abstraction API that we developed.  
In this chapter, we use as example target platforms TinyOS, MANTIS and the Ember 
implementation of the standard ZigBee, since they provide very different programming 

models and abstractions (e.g. non-preemptive scheduler with split-phase coding versus 
multi-threaded kernel). Hence they are maximally different representatives of the 
programming platforms used by WSN developers. 
In (Cheong et al., 2005), a graphical development and simulation environment for TinyOS-
based applications called Viptos is described. Viptos provides graphical development and 
interrupt-level simulation of actual TinyOS programs, with packet-level simulation of the 
network. It also allows the developer to use other models of computation available in 
Ptolemy II (Eker et al, 2003) for modeling various parts of the system. To model an 
algorithm using Viptos, the users are bound to code it for TinyOS, which implies that the 
user should have sufficient knowledge of TinyOS. In our framework, the users can model 
the application by using Stateflow and need not have any knowledge of TinyOS, MANTIS 
or ZigBee. In short, our framework provides more freedom by decoupling the application 
from the platform and also supports several platforms for code generation.  
In (Vieira et al.2005), the authors describe a visual development framework for multi-
platform wireless sensor networks, which is capable of generating application code for 
TinyOS and Yet Another Tiny Operating System (Yatos) (Almeida et al. 2003). This tool 
supports only code generation of the developed model for the WISDOM (Vieira et al. 2005) 
framework and it does not support functional verification of the designed model. Here also 
the model development is biased to TinyOS and Yatos, since these two target platforms 
share the same component based programming style.  
The idea of generating WSN application code from a single higher level abstraction has also 
been demonstrated in (Abdelzaher et al., 2004, Gummadi et al., 2005, Newton & Welsh 2004, 
Bakshi et al., 2005) using functional and macro-programming. All these approaches 
introduce new programming languages, while in our case we advocate either to use a 
specific programming style in C, or to use an existing well-known graphical language 
(Stateflow). Although the approaches listed above introduce higher level abstractions, they 
did not propose a methodology to generate application code for multiple software platforms 
(all of these approaches generate application code only for TinyOS).  In this chapter, we 
identified a single programming style (Mozumdar et al, 2008b) that is compatible with most 
kinds of WSN software platforms (e.g. MANTIS, TinyOS and Zigbee).  

 
2. Methodology 
 

The complete framework for modeling, simulation and automatic code generation is 
depicted in figure 2. The WSN algorithm (application, middleware or device drivers) will be 
at first modeled by using Simulink and Stateflow blocks. We have designed blocks that 
specifically help WSN modeling such as the sensor node and communication medium described 
later. These blocks are completely parameterized and can be used for model development 
like usual Simulink blocks. Sensor node blocks are connected to the communication medium 
block which provides a mechanism for the application developer to define the connectivity 
between the nodes in sensor network.  
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ZigBee compliant platform or vice versa). The second group still leaves a lot of detailed 
platform-dependent code to be developed and debugged. Integrated use of a network 
simulator followed by a platform simulator is the most commonly used path, but still 
requires one to port code between a number of environments. Moreover, in case a bug is 
found at the end, one has to resort to led-based debugging, which is extremely time 
consuming. 
In order to solve these problems, we wanted to be able to model the application using high 
level abstractions, and simulate it using configurable and realistic topologies for the network 
itself. Then we wanted to be able to automatically generate code for several target operating 
systems.  In this chapter, we present a framework (Mozumdar et al., 2008a) for modeling, 
simulation and automatic code generation of sensor network applications based on 
MathWorks (1984) tools. In our framework, applications can be modeled using Stateflow 
state charts (SF. 2009) (and Simulink block diagrams, even though StateCharts were the best 
tool for the application we considered as case study). Then the application developer can 
configure the connectivity of the sensor network nodes and can perform behavioral 
simulation and functional verification of the application. After modeling and simulation, 
this framework can generate the complete application code for several target operating 
systems from the simulated model.  
 

 
Fig. 1. A complete view of the framework 
 
The application developer can thus use the broad variety of debugging and analysis tools 
provided by MathWorks, such as animated state chart displays, scopes, plots, as well as 
exploit a large number of available pre-designed Simulink blocks. To the best of our 
knowledge, this is the first time that a framework of this sort has been developed and tested. 
A complete view of the whole framework is depicted in figure 1.  
While working on code generation for the various kinds of target platforms, we also 
identified a coding style for functions written in ANSI C that maximizes the ease of porting 
the code, especially if coupled with the basic platform abstraction API that we developed.  
In this chapter, we use as example target platforms TinyOS, MANTIS and the Ember 
implementation of the standard ZigBee, since they provide very different programming 

models and abstractions (e.g. non-preemptive scheduler with split-phase coding versus 
multi-threaded kernel). Hence they are maximally different representatives of the 
programming platforms used by WSN developers. 
In (Cheong et al., 2005), a graphical development and simulation environment for TinyOS-
based applications called Viptos is described. Viptos provides graphical development and 
interrupt-level simulation of actual TinyOS programs, with packet-level simulation of the 
network. It also allows the developer to use other models of computation available in 
Ptolemy II (Eker et al, 2003) for modeling various parts of the system. To model an 
algorithm using Viptos, the users are bound to code it for TinyOS, which implies that the 
user should have sufficient knowledge of TinyOS. In our framework, the users can model 
the application by using Stateflow and need not have any knowledge of TinyOS, MANTIS 
or ZigBee. In short, our framework provides more freedom by decoupling the application 
from the platform and also supports several platforms for code generation.  
In (Vieira et al.2005), the authors describe a visual development framework for multi-
platform wireless sensor networks, which is capable of generating application code for 
TinyOS and Yet Another Tiny Operating System (Yatos) (Almeida et al. 2003). This tool 
supports only code generation of the developed model for the WISDOM (Vieira et al. 2005) 
framework and it does not support functional verification of the designed model. Here also 
the model development is biased to TinyOS and Yatos, since these two target platforms 
share the same component based programming style.  
The idea of generating WSN application code from a single higher level abstraction has also 
been demonstrated in (Abdelzaher et al., 2004, Gummadi et al., 2005, Newton & Welsh 2004, 
Bakshi et al., 2005) using functional and macro-programming. All these approaches 
introduce new programming languages, while in our case we advocate either to use a 
specific programming style in C, or to use an existing well-known graphical language 
(Stateflow). Although the approaches listed above introduce higher level abstractions, they 
did not propose a methodology to generate application code for multiple software platforms 
(all of these approaches generate application code only for TinyOS).  In this chapter, we 
identified a single programming style (Mozumdar et al, 2008b) that is compatible with most 
kinds of WSN software platforms (e.g. MANTIS, TinyOS and Zigbee).  

 
2. Methodology 
 

The complete framework for modeling, simulation and automatic code generation is 
depicted in figure 2. The WSN algorithm (application, middleware or device drivers) will be 
at first modeled by using Simulink and Stateflow blocks. We have designed blocks that 
specifically help WSN modeling such as the sensor node and communication medium described 
later. These blocks are completely parameterized and can be used for model development 
like usual Simulink blocks. Sensor node blocks are connected to the communication medium 
block which provides a mechanism for the application developer to define the connectivity 
between the nodes in sensor network.  
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Fig. 2. Framework for modeling, simulation and code generation of WSN application 
 
The communication medium block is implemented in C, so it can be modified to reuse any 
existing channel and connectivity models. The sensor node contains mainly a timing 
generator, a random number generator, and a parameterized Stateflow block which actually 
implements the application running inside each single node (shown in figure 3). The 
application block is a library object and each sensor node contains an instance of it. Therefore, 
every node of the framework is running an independent copy of same algorithm. It is of 
course also possible to model sensor networks having different algorithms running in 
different nodes. In that case, one needs to create a small Stateflow library and instantiate 
objects from it as needed. To model a new sensor network application based on this 
framework, the application developer only needs to modify the template algorithm 
implementation and set the connectivity of the nodes in the communication medium block.  
Then simulation can be started and statistical data can be collected using animated state 
charts, scopes and displays to perform functional analysis of the algorithm. The algorithm 

implementation can be refined if the analysis of the results suggest to do so. Eventually the 
developer will get a refined model which represents the desired behavior.  
 

 
 Fig. 3. A simple simulation framework 
 
The next step will be to generate code automatically for TinyOS, MANTIS or ZigBee from 
the Stateflow representation of the algorithm, using a customization of Stateflow Coder (SF. 
2009) which can generate ANSI C code for Stateflow blocks. In order to adapt the generated 
ANSI C code to the target operating system, Target Language Compiler (TLC) (RTW. 2009) 
scripts are used. TLC provides mechanisms by which one can generate platform specific 
code by taking sections (such as includes, defines, functions, etc) from ANSI C code and also 
by adding custom code for the target platform. In order to ease platform independent 
development, we provide a set of generic library functions which can be used from 
Stateflow to access platform specific operating system functionalities (such as led_toggle, 
led_on, led_off, sendPacket, receivePacket). From the Stateflow implementation perspective, the 
application developer does not have to think about the actual implementation of these 
generic functions in TinyOS, MANTIS or in ZigBee, since they have been implemented in 
the TLC library and can be targeted to any of the supported operating system and hardware 
nodes. By using TLC scripts (which are also called System Target Files), the developer now 
can generate automatically a TinyOS application (composed of .nc, .h and makefiles) or a 
MANTIS application (composed of .c, .h and makefiles) or a ZigBee end device application 
(also composed of .c, .h and configuration files), and then can compile and execute them for 
the target platform without any modification. 
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Fig. 2. Framework for modeling, simulation and code generation of WSN application 
 
The communication medium block is implemented in C, so it can be modified to reuse any 
existing channel and connectivity models. The sensor node contains mainly a timing 
generator, a random number generator, and a parameterized Stateflow block which actually 
implements the application running inside each single node (shown in figure 3). The 
application block is a library object and each sensor node contains an instance of it. Therefore, 
every node of the framework is running an independent copy of same algorithm. It is of 
course also possible to model sensor networks having different algorithms running in 
different nodes. In that case, one needs to create a small Stateflow library and instantiate 
objects from it as needed. To model a new sensor network application based on this 
framework, the application developer only needs to modify the template algorithm 
implementation and set the connectivity of the nodes in the communication medium block.  
Then simulation can be started and statistical data can be collected using animated state 
charts, scopes and displays to perform functional analysis of the algorithm. The algorithm 

implementation can be refined if the analysis of the results suggest to do so. Eventually the 
developer will get a refined model which represents the desired behavior.  
 

 
 Fig. 3. A simple simulation framework 
 
The next step will be to generate code automatically for TinyOS, MANTIS or ZigBee from 
the Stateflow representation of the algorithm, using a customization of Stateflow Coder (SF. 
2009) which can generate ANSI C code for Stateflow blocks. In order to adapt the generated 
ANSI C code to the target operating system, Target Language Compiler (TLC) (RTW. 2009) 
scripts are used. TLC provides mechanisms by which one can generate platform specific 
code by taking sections (such as includes, defines, functions, etc) from ANSI C code and also 
by adding custom code for the target platform. In order to ease platform independent 
development, we provide a set of generic library functions which can be used from 
Stateflow to access platform specific operating system functionalities (such as led_toggle, 
led_on, led_off, sendPacket, receivePacket). From the Stateflow implementation perspective, the 
application developer does not have to think about the actual implementation of these 
generic functions in TinyOS, MANTIS or in ZigBee, since they have been implemented in 
the TLC library and can be targeted to any of the supported operating system and hardware 
nodes. By using TLC scripts (which are also called System Target Files), the developer now 
can generate automatically a TinyOS application (composed of .nc, .h and makefiles) or a 
MANTIS application (composed of .c, .h and makefiles) or a ZigBee end device application 
(also composed of .c, .h and configuration files), and then can compile and execute them for 
the target platform without any modification. 
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3. A Simple Simulation Framework 
 

We will now demonstrate a simple sensor network model (shown in figure 3) that has been 
designed based on our framework components (sensor node, communication medium). In this 
model, we consider sixteen sensor nodes, all connected to the communication medium block 
to form a sensor network. At the top level, the model has two major components:- 

 
3.1 Communication Medium Model 
This block contains the medium logic and also models the connectivity between nodes. The 
logic of the communication medium block is implemented by a C based S-Function 
(MathWorks. 1984), which contains a (parameterized) 16x16 matrix to define the 
connectivity of the nodes in the sensor network (shown in the figure 4). In a synergistic 
research effort, we are also working on a library of radio channel and protocol stack 
modules at different levels of abstraction (bit, packet). For example in figure 4, node 1 (row 
1) is connected to nodes 3, 10, 12 and 15. Packets are the inputs and outputs of the 
communication medium block, where incoming packets from the nodes will be at first 
processed by the medium logic and then fed to the appropriate nodes based on the 
connectivity setup of the sensor network. In this chapter, we consider a very abstract model 
describing a simple medium logic which at any point of time computes the input (packet) of 
a node as the summation of outputs (packets) of nodes connected to it.  
 

 
Fig. 4. Connectivity matrix for the 16 nodes sensor network 

 
3.2 Node Block 
This block contains sixteen nodes as shown in figure 3. The individual node model is fully 
parameterized and contains mainly a timer generator, a random number generator and a 
Stateflow application block. The timer is used for generating CLK events for the algorithm 
running inside the Stateflow block. Incoming and outgoing packets of nodes consist of data 
and signal information. 
The data field contains the payload of the packet and signal (which triggers the Stateflow 
block) generates a packet arrival event which is processed by the Stateflow algorithm inside. 
The application developer now can perform functional analysis of the algorithm and modify 
it based on execution data provided by Simulink and Stateflow. In this example, we have 

shown a framework of sixteen nodes but the user can easily design a network with a larger 
number of nodes by slightly modifying the sensor node and communication medium 
blocks. 

 
4. Multi-Platform Code Generation 
 

After functional analysis of the algorithm, the next step is to generate application code 
automatically for the target operating systems. For WSN application development one 
currently has two options, either with a research WSN operating systems solution (such as 
TinyOS, MANTIS, Contiki (Dunkels et al. 2004), FreeRTOS (Barry, 2003), etc.) or with the 
ZigBee industry standard. Most of the operating systems are built on a very lightweight 
event based mechanism (such as TinyOS, Contiki, etc.), however some use a more 
traditional thread based model (such as MANTIS). On the other hand, ZigBee only defines 
some layers of the WSN protocol stack and it does not cover the operating system and its 
libraries. Application development is done on the top of software platforms where user code 
calls non-standard APIs to interact with the platform. Such heterogeneity of software 
platforms seriously hinders application porting, and motivated us to consider look for 
different software platforms used in the sensor network domain and to look for possibilities 
to port code between them. In this context, we have chosen three software platforms that 
cover a broad range of programming styles.  The candidates are TinyOS (event based), 
MANTIS (thread based) and ZigBee (an event-based industrial standard).  
Our approach is to model sensor network application independent of the platform by using 
Stateflow, and then automatically generate platform specific application code from that 
abstraction. We will illustrate the flow by taking a simple WSN application and modeling it 
in Stateflow (as explained in the next section). For this goal, we designed generic functions 
that are used to bridge between the model-generated code and the underlying platform 
(TinyOS, MANTIS and ZigBee).  
When developing an application on a platform like those described above, one must 
consider the services that it provides, in particular: 

 the tasking and synchronization models, 
 the libraries implementing frequently used functions. 

If we consider the first aspect, TinyOS and ZigBee are reasonably similar, because they do 
not provide a preemptive task abstraction. Hence lengthy library calls cannot be 
implemented synchronously (by calling and waiting), but must be implemented 
asynchronously, by splitting them into a request and a response. This splitting allows one to 
write extremely efficient code, since context swapping can be implemented simply by the 
interrupt handling hardware. However, writing code in this style is more tedious, since it 
forces one to save and restore “permanent” state information by hand. MANTIS on the 
other hand offers a more traditional multi-tasking (to be more precise, multi-threading) 
environment, which is more familiar and friendly to programmers. 
In order to write portable code with these different tasking models, we had to resort to a 
“reentrant state machine” programming paradigm, where the user code for an application is 
written as a single procedure, which can be called and return as part of a single “reaction” to 
external events. Fortunately this programming paradigm is supported by code generation 
tools for synchronous reactive models (Halbwachs, 1993), (e.g. including the StateChart model 
supported by Stateflow) which: 
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3. A Simple Simulation Framework 
 

We will now demonstrate a simple sensor network model (shown in figure 3) that has been 
designed based on our framework components (sensor node, communication medium). In this 
model, we consider sixteen sensor nodes, all connected to the communication medium block 
to form a sensor network. At the top level, the model has two major components:- 

 
3.1 Communication Medium Model 
This block contains the medium logic and also models the connectivity between nodes. The 
logic of the communication medium block is implemented by a C based S-Function 
(MathWorks. 1984), which contains a (parameterized) 16x16 matrix to define the 
connectivity of the nodes in the sensor network (shown in the figure 4). In a synergistic 
research effort, we are also working on a library of radio channel and protocol stack 
modules at different levels of abstraction (bit, packet). For example in figure 4, node 1 (row 
1) is connected to nodes 3, 10, 12 and 15. Packets are the inputs and outputs of the 
communication medium block, where incoming packets from the nodes will be at first 
processed by the medium logic and then fed to the appropriate nodes based on the 
connectivity setup of the sensor network. In this chapter, we consider a very abstract model 
describing a simple medium logic which at any point of time computes the input (packet) of 
a node as the summation of outputs (packets) of nodes connected to it.  
 

 
Fig. 4. Connectivity matrix for the 16 nodes sensor network 

 
3.2 Node Block 
This block contains sixteen nodes as shown in figure 3. The individual node model is fully 
parameterized and contains mainly a timer generator, a random number generator and a 
Stateflow application block. The timer is used for generating CLK events for the algorithm 
running inside the Stateflow block. Incoming and outgoing packets of nodes consist of data 
and signal information. 
The data field contains the payload of the packet and signal (which triggers the Stateflow 
block) generates a packet arrival event which is processed by the Stateflow algorithm inside. 
The application developer now can perform functional analysis of the algorithm and modify 
it based on execution data provided by Simulink and Stateflow. In this example, we have 

shown a framework of sixteen nodes but the user can easily design a network with a larger 
number of nodes by slightly modifying the sensor node and communication medium 
blocks. 

 
4. Multi-Platform Code Generation 
 

After functional analysis of the algorithm, the next step is to generate application code 
automatically for the target operating systems. For WSN application development one 
currently has two options, either with a research WSN operating systems solution (such as 
TinyOS, MANTIS, Contiki (Dunkels et al. 2004), FreeRTOS (Barry, 2003), etc.) or with the 
ZigBee industry standard. Most of the operating systems are built on a very lightweight 
event based mechanism (such as TinyOS, Contiki, etc.), however some use a more 
traditional thread based model (such as MANTIS). On the other hand, ZigBee only defines 
some layers of the WSN protocol stack and it does not cover the operating system and its 
libraries. Application development is done on the top of software platforms where user code 
calls non-standard APIs to interact with the platform. Such heterogeneity of software 
platforms seriously hinders application porting, and motivated us to consider look for 
different software platforms used in the sensor network domain and to look for possibilities 
to port code between them. In this context, we have chosen three software platforms that 
cover a broad range of programming styles.  The candidates are TinyOS (event based), 
MANTIS (thread based) and ZigBee (an event-based industrial standard).  
Our approach is to model sensor network application independent of the platform by using 
Stateflow, and then automatically generate platform specific application code from that 
abstraction. We will illustrate the flow by taking a simple WSN application and modeling it 
in Stateflow (as explained in the next section). For this goal, we designed generic functions 
that are used to bridge between the model-generated code and the underlying platform 
(TinyOS, MANTIS and ZigBee).  
When developing an application on a platform like those described above, one must 
consider the services that it provides, in particular: 

 the tasking and synchronization models, 
 the libraries implementing frequently used functions. 

If we consider the first aspect, TinyOS and ZigBee are reasonably similar, because they do 
not provide a preemptive task abstraction. Hence lengthy library calls cannot be 
implemented synchronously (by calling and waiting), but must be implemented 
asynchronously, by splitting them into a request and a response. This splitting allows one to 
write extremely efficient code, since context swapping can be implemented simply by the 
interrupt handling hardware. However, writing code in this style is more tedious, since it 
forces one to save and restore “permanent” state information by hand. MANTIS on the 
other hand offers a more traditional multi-tasking (to be more precise, multi-threading) 
environment, which is more familiar and friendly to programmers. 
In order to write portable code with these different tasking models, we had to resort to a 
“reentrant state machine” programming paradigm, where the user code for an application is 
written as a single procedure, which can be called and return as part of a single “reaction” to 
external events. Fortunately this programming paradigm is supported by code generation 
tools for synchronous reactive models (Halbwachs, 1993), (e.g. including the StateChart model 
supported by Stateflow) which: 
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 Provide the programmer with a procedural abstraction giving the illusion of 
several concurrent threads of code, all running synchronously with respect to each 
other and hence all fully deterministic,  

 Generate a reentrant state machine code that can be run in a non-preemptive 
environment. 

This programming style is perhaps less efficient than the “native” split-phase programming 
mode of TinyOS and ZigBee, because it requires one to save the FSM state. But it makes 
control much more explicit and easy to follow than code in which the “state” is implicitly 
kept by the signaling between cooperating software and hardware components. 
In the next section we introduce a simple WSN application that will be used as an example 
for porting code between WSN platforms. Sections 6, 7 and 8 describe techniques to port the 
application in MANTIS, TinyOS and ZigBee respectively. In these sections, we also provide 
a short description of the platform itself.  The code writing approaches that we will explain 
in the following sections can also be automated by scripts in a model-based  design context 
(for example by TLC scripts). The application code of MANTIS, TinyOS and ZigBee is very 
different from each others, so the script performs the following tasks to generate platform 
specific code: 

 Copy into the target files the platform specific application independent base code 
including a type conversion header file that will convert all C types to platform 
specific types and platform specific implementations of the library functions. 

 Generate platform specific application files by taking different sections (such as 
includes, defines, functions, etc) from the C code generated from Stateflow. 

 Generate make or configuration files for each platform. 

 
5. A Simple WSN Example 
 

 
 Fig. 5. Stateflow of the simple WSN application 

In this section, we will describe a simple WSN application to illustrate application 
development in MANTIS, TinyOS and ZigBee. This simple application contains most typical 
ingredients of sensor network applications such as transmitting, receiving, processing of 
packets and sleeping. In this application example, we do not include a sensing task, but the 
corresponding development problems are covered by other functionalities, such as 
incoming events and processing data (which are included in our simple application).  
The application transmits and receives packets randomly until it receives six packets, then it 
stops communications and turns on all LEDs of the node. We also performed more 
extensive application modelling in this style, but for simplicity we use this very simple 
application. The Stateflow model of the application is shown in Figure 5. 
PKT and CLK are external inputs of the algorithm. The PKT event is generated after 
receiving a packet and the CLK event is generated when the periodic timer expires. Here, the 
periodic timer is set to generate a CLK event every 10ms. The application starts by 
initializing the next receiving (tNextRX) and transmitting (tNextTX) timestamps. To set these 
timestamps, it calls a library function getRandTimeStamp which returns a random number. 
Then it sets the number of received packets to zero. At the next CLK event, the application 
moves to the Sleep state from the Init state. In the Sleep state, the receiving and transmitting 
timestamps will be decremented by one at every occurrence of the CLK event. At the 
expiration of the transmit timestamp, the algorithm will make a transition to the 
Transmit_Pkt state and toggle led 1. In this state, it sets the first byte of the payload to 1 and 
sends the packet by calling library function sendPacket. After transmitting the packet, the 
application makes a transition to the Sleep state, sets the next transmission time-stamp and 
toggles led 1. In the same way, when the receiving time-stamp expires, the algorithm makes 
a transition from the Sleep state to Receive_Pkt state and it calls the receivePacket function to 
configure the radio in receiving mode for a specified duration (in this case 30ms). In the 
Receive_Pkt state, the algorithm waits for the PKT and CLK events. After receiving a PKT 
event, it calls library function getPktData, which copies the packet data field into a local 
variable (payload). Now the algorithm calls a local function processData where it checks the 
first byte of the packet data and if it is equal to 1, then it increases the received packet 
counter and toggles led 2 to give us a visual indication of successful reception of a packet. 
After expiration of the receiving time slot, the algorithm makes a transition to the Sleep state 
from the Receive_Pkt state. While making the transition, it sets the next receiving timestamp 
and toggles led 0. 
In this manner, the algorithm makes transitions between the Sleep, Transmit_Pkt, and 
Receive_Pkt states until in the Sleep state it notices that the number of received packets is 
greater than five. Then it makes the final transition to the Done state where it turns on all 
three LEDs and stops all communications to the external world.  
This simple application, just like many protocol components and WSN applications, can be 
conveniently modeled as a state machine, either written directly in C/C++ or generated (by 
Real Time Workshop) from the Stateflow model as shown in Example 1. Interactions of the 
state machine with the rest of the platform (HW and protocol stack) are dependent on the 
underlying software architecture. In this case, the incoming events are CLK and PKT and the 
outgoing actions are sending a packet (sendPacket), setting the radio in listening mode for 
certain amount of time (receivePacket) and switching the leds on the board (led_toggle, led_on). 
Handling these incoming events and outgoing actions depend on the underlying software 
platform while the rest of the implementation of the state machine remains mostly the same. 
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 Provide the programmer with a procedural abstraction giving the illusion of 
several concurrent threads of code, all running synchronously with respect to each 
other and hence all fully deterministic,  

 Generate a reentrant state machine code that can be run in a non-preemptive 
environment. 

This programming style is perhaps less efficient than the “native” split-phase programming 
mode of TinyOS and ZigBee, because it requires one to save the FSM state. But it makes 
control much more explicit and easy to follow than code in which the “state” is implicitly 
kept by the signaling between cooperating software and hardware components. 
In the next section we introduce a simple WSN application that will be used as an example 
for porting code between WSN platforms. Sections 6, 7 and 8 describe techniques to port the 
application in MANTIS, TinyOS and ZigBee respectively. In these sections, we also provide 
a short description of the platform itself.  The code writing approaches that we will explain 
in the following sections can also be automated by scripts in a model-based  design context 
(for example by TLC scripts). The application code of MANTIS, TinyOS and ZigBee is very 
different from each others, so the script performs the following tasks to generate platform 
specific code: 

 Copy into the target files the platform specific application independent base code 
including a type conversion header file that will convert all C types to platform 
specific types and platform specific implementations of the library functions. 

 Generate platform specific application files by taking different sections (such as 
includes, defines, functions, etc) from the C code generated from Stateflow. 

 Generate make or configuration files for each platform. 

 
5. A Simple WSN Example 
 

 
 Fig. 5. Stateflow of the simple WSN application 

In this section, we will describe a simple WSN application to illustrate application 
development in MANTIS, TinyOS and ZigBee. This simple application contains most typical 
ingredients of sensor network applications such as transmitting, receiving, processing of 
packets and sleeping. In this application example, we do not include a sensing task, but the 
corresponding development problems are covered by other functionalities, such as 
incoming events and processing data (which are included in our simple application).  
The application transmits and receives packets randomly until it receives six packets, then it 
stops communications and turns on all LEDs of the node. We also performed more 
extensive application modelling in this style, but for simplicity we use this very simple 
application. The Stateflow model of the application is shown in Figure 5. 
PKT and CLK are external inputs of the algorithm. The PKT event is generated after 
receiving a packet and the CLK event is generated when the periodic timer expires. Here, the 
periodic timer is set to generate a CLK event every 10ms. The application starts by 
initializing the next receiving (tNextRX) and transmitting (tNextTX) timestamps. To set these 
timestamps, it calls a library function getRandTimeStamp which returns a random number. 
Then it sets the number of received packets to zero. At the next CLK event, the application 
moves to the Sleep state from the Init state. In the Sleep state, the receiving and transmitting 
timestamps will be decremented by one at every occurrence of the CLK event. At the 
expiration of the transmit timestamp, the algorithm will make a transition to the 
Transmit_Pkt state and toggle led 1. In this state, it sets the first byte of the payload to 1 and 
sends the packet by calling library function sendPacket. After transmitting the packet, the 
application makes a transition to the Sleep state, sets the next transmission time-stamp and 
toggles led 1. In the same way, when the receiving time-stamp expires, the algorithm makes 
a transition from the Sleep state to Receive_Pkt state and it calls the receivePacket function to 
configure the radio in receiving mode for a specified duration (in this case 30ms). In the 
Receive_Pkt state, the algorithm waits for the PKT and CLK events. After receiving a PKT 
event, it calls library function getPktData, which copies the packet data field into a local 
variable (payload). Now the algorithm calls a local function processData where it checks the 
first byte of the packet data and if it is equal to 1, then it increases the received packet 
counter and toggles led 2 to give us a visual indication of successful reception of a packet. 
After expiration of the receiving time slot, the algorithm makes a transition to the Sleep state 
from the Receive_Pkt state. While making the transition, it sets the next receiving timestamp 
and toggles led 0. 
In this manner, the algorithm makes transitions between the Sleep, Transmit_Pkt, and 
Receive_Pkt states until in the Sleep state it notices that the number of received packets is 
greater than five. Then it makes the final transition to the Done state where it turns on all 
three LEDs and stops all communications to the external world.  
This simple application, just like many protocol components and WSN applications, can be 
conveniently modeled as a state machine, either written directly in C/C++ or generated (by 
Real Time Workshop) from the Stateflow model as shown in Example 1. Interactions of the 
state machine with the rest of the platform (HW and protocol stack) are dependent on the 
underlying software architecture. In this case, the incoming events are CLK and PKT and the 
outgoing actions are sending a packet (sendPacket), setting the radio in listening mode for 
certain amount of time (receivePacket) and switching the leds on the board (led_toggle, led_on). 
Handling these incoming events and outgoing actions depend on the underlying software 
platform while the rest of the implementation of the state machine remains mostly the same. 
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In the next sections, we will show how to port this C implementation of the state machine in 
MANTIS, TinyOS and ZigBee respectively. 

 
6. MANTIS 
 

MANTIS is a light-weight multi-threaded operating system that is capable of multi-tasking 
on energy constrained distributed sensor networks. The scheduler of MANTIS supports 
thread preemption which allows the operating system to switch between active threads 
without waiting. So the responsiveness of the operating system to critical events can be 
faster than in TinyOS which is non-preemptive. The scheduler of MANTIS is priority-based 
with round robin. The kernel ensures that all low priority threads execute after the higher 
priority threads. When there is no thread scheduled for execution, the system moves to sleep 
mode by executing the idle-thread. Kernel and APIs of MANTIS are written in standard C. 
 

void state_machine(void) 
{If (for_the_first_time) { 
  current_state = IN_Init;                     // Storing the current state   
  tNextRX = getRandNumber();        // Generic function to get random number   
  tNextTX = getRandNumber(); 
  packetCount = 0; 
}else{ 
  switch(current_state) { 
  case IN_Init: 
    if(incoming_event== event_CLK)  // Handling CLK event  
      current_state =  IN_Sleep; break; 
  case IN_Sleep: 
    if((incoming_event== event_CLK) && ((tNextTX > 0) && (tNextRX > 0))){ 
      tNextTX--;tNextRX--;  current_state = IN_Sleep; 
    }else if (tNextRX == 0) { 
      led_toggle(0); temp=0;                    // Generic function to toggle led    
      receivePacket(30);                           // Generic function to receive packets 
      current_state =  IN_Receive_pkt; 
    }else if(packetCount > 5) { 
      current_state = IN_done; led_on(0);led_on(1);led_on(2); 
    }else if (tNextTX == 0)){ 
      led_toggle(1); current_state = IN_Transmit_pkt;  payload[0] = 1;  
      sendPacket(payload);              // Generic function to send packet   
      }    
    break; 
  case IN_Receive_pkt: 
    if(temp == 3){ 
      tNextRX =  getRandNumber();  led_toggle(0); current_state =  IN_Sleep; 
    }else { 
      if(incoming_event== event_PKT) {  // Handling PKT event  
        getPktData(payload);            // Generic function to get packet content 
        process_data();} 

      if(incoming_event== event_CLK)    // Handling CLK event  
        temp++; 
    } 
    break; 
  case IN_Transmit_pkt: 
    tNextTX =  getRandNumber(); led_toggle(1); current_state=  IN_Sleep;    break; 
  case IN_done: 
    break; 
  default: 
    current_state =  IN_NO_ACTIVE_CHILD; break; 
  } 
 } 
} 

Example 1. C code generated by RTW for the state machine of figure 1 

 
6.1 Application porting in MANTIS 
MANTIS provides a convenient environment to develop WSN applications. All applications 
begin with a start which is similar to main in C programming. One can spawn new threads 
by calling mos_thread_new. MANTIS supports a comprehensive set of APIs for sensor  
network application development (MOS. 2003), most frequently used APIs are listed below 
for simple application development based on categories. 

 Scheduler :  mos_thread_new, mos_thread_sleep 
 Networking :  com_send, com_recv, com_recv_timed, com_ioct, com_mode 
 Visual Feedback (Leds) : mos_led_on, mos_led_off, mos_led_toggle 
 On board sensors (ADC) :  dev_write, dev_read 

 

 
Fig. 6. Flow diagram of the FSM code integrated in MANTIS. 
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In the next sections, we will show how to port this C implementation of the state machine in 
MANTIS, TinyOS and ZigBee respectively. 

 
6. MANTIS 
 

MANTIS is a light-weight multi-threaded operating system that is capable of multi-tasking 
on energy constrained distributed sensor networks. The scheduler of MANTIS supports 
thread preemption which allows the operating system to switch between active threads 
without waiting. So the responsiveness of the operating system to critical events can be 
faster than in TinyOS which is non-preemptive. The scheduler of MANTIS is priority-based 
with round robin. The kernel ensures that all low priority threads execute after the higher 
priority threads. When there is no thread scheduled for execution, the system moves to sleep 
mode by executing the idle-thread. Kernel and APIs of MANTIS are written in standard C. 
 

void state_machine(void) 
{If (for_the_first_time) { 
  current_state = IN_Init;                     // Storing the current state   
  tNextRX = getRandNumber();        // Generic function to get random number   
  tNextTX = getRandNumber(); 
  packetCount = 0; 
}else{ 
  switch(current_state) { 
  case IN_Init: 
    if(incoming_event== event_CLK)  // Handling CLK event  
      current_state =  IN_Sleep; break; 
  case IN_Sleep: 
    if((incoming_event== event_CLK) && ((tNextTX > 0) && (tNextRX > 0))){ 
      tNextTX--;tNextRX--;  current_state = IN_Sleep; 
    }else if (tNextRX == 0) { 
      led_toggle(0); temp=0;                    // Generic function to toggle led    
      receivePacket(30);                           // Generic function to receive packets 
      current_state =  IN_Receive_pkt; 
    }else if(packetCount > 5) { 
      current_state = IN_done; led_on(0);led_on(1);led_on(2); 
    }else if (tNextTX == 0)){ 
      led_toggle(1); current_state = IN_Transmit_pkt;  payload[0] = 1;  
      sendPacket(payload);              // Generic function to send packet   
      }    
    break; 
  case IN_Receive_pkt: 
    if(temp == 3){ 
      tNextRX =  getRandNumber();  led_toggle(0); current_state =  IN_Sleep; 
    }else { 
      if(incoming_event== event_PKT) {  // Handling PKT event  
        getPktData(payload);            // Generic function to get packet content 
        process_data();} 

      if(incoming_event== event_CLK)    // Handling CLK event  
        temp++; 
    } 
    break; 
  case IN_Transmit_pkt: 
    tNextTX =  getRandNumber(); led_toggle(1); current_state=  IN_Sleep;    break; 
  case IN_done: 
    break; 
  default: 
    current_state =  IN_NO_ACTIVE_CHILD; break; 
  } 
 } 
} 

Example 1. C code generated by RTW for the state machine of figure 1 

 
6.1 Application porting in MANTIS 
MANTIS provides a convenient environment to develop WSN applications. All applications 
begin with a start which is similar to main in C programming. One can spawn new threads 
by calling mos_thread_new. MANTIS supports a comprehensive set of APIs for sensor  
network application development (MOS. 2003), most frequently used APIs are listed below 
for simple application development based on categories. 

 Scheduler :  mos_thread_new, mos_thread_sleep 
 Networking :  com_send, com_recv, com_recv_timed, com_ioct, com_mode 
 Visual Feedback (Leds) : mos_led_on, mos_led_off, mos_led_toggle 
 On board sensors (ADC) :  dev_write, dev_read 

 

 
Fig. 6. Flow diagram of the FSM code integrated in MANTIS. 
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We can port easily the automatically generated code of the state machine in MANTIS. For 
this, a new thread is spawned from the start procedure. In the newly created thread, the 
state machine is called in every 10 milliseconds, as required in the algorithm. Here the CLK 
is virtually implemented by calling mos_thread_sleep(10) . Figure 6 shows the skeleton of the 
simple application implementation in MANTIS. For receiving packets, the user can use 
com_recv which waits until a successful reception of a packet by blocking the thread. But for 
implementing our simple application, the program needs to be in the receiving state for 
certain amount of time. This can be done by another API which is com_recv_timed. It turns on 
the radio in receiving mode for a certain amount of time. When it receives a packet, it calls 
the state machine with the incoming packet event (PKT event of the state machine). 
Implementation of other outgoing actions such as to sending a packet and switching the leds 
is also easy, by calling com_send, mos_led_toggle and led_on APIs.   

 
7. TinyOS 
 

The programming model of TinyOS is based on components. In TinyOS, a conceptual entity 
is represented by two types of components, Module and Configuration. A component 
implements interfaces. The interface declares signature of the commands and events which 
must be implemented by the provider and user of the interface respectively. Events are the 
software abstractions of hardware events such as reception of packet, completion of sensor 
sampling etc. On the other hand, commands are used to trigger an operation such as to start 
sensor reading or to start the radio for receiving or transmitting etc. TinyOS uses a split-
phase mechanism, meaning that when a component calls a command, it returns 
immediately, and the other component issues a callback event when it completes. This 
approach is called split-phase because it splits invocation and completion into two separate 
phases of execution. The scheduler of TinyOS is based on an event-driven paradigm where 
events have the highest priority, run to completion (i.e. interrupts cannot be nested) and can 
preempt and schedule  tasks. Tasks contain the main computation of an application. TinyOS 
applications are written in nesC which is an extension of the C language.  

 
7.1 Application porting in TinyOS 
In TinyOS, application coding uses several interfaces. The skeleton of the simple application 
implementation is shown in figure 7. Module simpleAppM uses interfaces Boot, Timer and 
others. When an application module uses an interface then it can issue the commands 
provided by that interface and it should also implement all the events that could be 
generated from the interface. For example, the Boot.booted event of the Boot interface is 
implemented in the module simpleAppM. Among the several interfaces available in the 
library of TinyOS, we listed those most frequently used for constructing simple applications. 

 Initialization: Init, Boot, Timer 
 Networking: Send, Receive, AMSend, SplitControl, Packet, AMPacket 
 Visual Feedback (Leds):  Leds 

Details of the TinyOS operating system can be found in (TOS. 2000). To implement the 
simple application, at first a periodic timer (CLKtimer.startPeriodic) is initialized from the  
Boot.booted event handler. The period of the timer is set to 10 milliseconds as required in the 
algorithm. After initialization has been done, a timer event is generated (CLKtimer.fired). 

Inside this event handler, the state machine is called as a task (implementing the CLK event 
of the state machine). The algorithm needs to be in receiving mode for specific amount of 
time (30 milliseconds). Hence in the receivePacket method, we set a one shot timer (for 30 
milliseconds) and at the same time start the radio. After expiration of this timer the radio 
needs to be stopped (done in the event handler of RXwindowTimer.fired). When TinyOS 
receives a packet it generates an event (Receive.receive). Inside this event we post the task of 
the state machine with the incoming packet event (implementing the PKT event of the state 
machine). We used the LowPowerListening interface to control the radio explicitly in 
receiving or transmitting mode. For handling outgoing actions from the state machine, such 
as to send a packet, the state machine calls the sendPacket method. Inside this method, we at 
first set the radio in transmit mode and then start it. When the radio is started (it generates 
Radio.StartDone event), the method checks whether the radio is turned on for sending a 
packet or not. If so, we use the AMSend.send command of the AMSend interface to send the 
packet.  
 

 
Fig. 7. Flow diagram of the FSM code integrated in TinyOS 
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We can port easily the automatically generated code of the state machine in MANTIS. For 
this, a new thread is spawned from the start procedure. In the newly created thread, the 
state machine is called in every 10 milliseconds, as required in the algorithm. Here the CLK 
is virtually implemented by calling mos_thread_sleep(10) . Figure 6 shows the skeleton of the 
simple application implementation in MANTIS. For receiving packets, the user can use 
com_recv which waits until a successful reception of a packet by blocking the thread. But for 
implementing our simple application, the program needs to be in the receiving state for 
certain amount of time. This can be done by another API which is com_recv_timed. It turns on 
the radio in receiving mode for a certain amount of time. When it receives a packet, it calls 
the state machine with the incoming packet event (PKT event of the state machine). 
Implementation of other outgoing actions such as to sending a packet and switching the leds 
is also easy, by calling com_send, mos_led_toggle and led_on APIs.   

 
7. TinyOS 
 

The programming model of TinyOS is based on components. In TinyOS, a conceptual entity 
is represented by two types of components, Module and Configuration. A component 
implements interfaces. The interface declares signature of the commands and events which 
must be implemented by the provider and user of the interface respectively. Events are the 
software abstractions of hardware events such as reception of packet, completion of sensor 
sampling etc. On the other hand, commands are used to trigger an operation such as to start 
sensor reading or to start the radio for receiving or transmitting etc. TinyOS uses a split-
phase mechanism, meaning that when a component calls a command, it returns 
immediately, and the other component issues a callback event when it completes. This 
approach is called split-phase because it splits invocation and completion into two separate 
phases of execution. The scheduler of TinyOS is based on an event-driven paradigm where 
events have the highest priority, run to completion (i.e. interrupts cannot be nested) and can 
preempt and schedule  tasks. Tasks contain the main computation of an application. TinyOS 
applications are written in nesC which is an extension of the C language.  

 
7.1 Application porting in TinyOS 
In TinyOS, application coding uses several interfaces. The skeleton of the simple application 
implementation is shown in figure 7. Module simpleAppM uses interfaces Boot, Timer and 
others. When an application module uses an interface then it can issue the commands 
provided by that interface and it should also implement all the events that could be 
generated from the interface. For example, the Boot.booted event of the Boot interface is 
implemented in the module simpleAppM. Among the several interfaces available in the 
library of TinyOS, we listed those most frequently used for constructing simple applications. 

 Initialization: Init, Boot, Timer 
 Networking: Send, Receive, AMSend, SplitControl, Packet, AMPacket 
 Visual Feedback (Leds):  Leds 

Details of the TinyOS operating system can be found in (TOS. 2000). To implement the 
simple application, at first a periodic timer (CLKtimer.startPeriodic) is initialized from the  
Boot.booted event handler. The period of the timer is set to 10 milliseconds as required in the 
algorithm. After initialization has been done, a timer event is generated (CLKtimer.fired). 

Inside this event handler, the state machine is called as a task (implementing the CLK event 
of the state machine). The algorithm needs to be in receiving mode for specific amount of 
time (30 milliseconds). Hence in the receivePacket method, we set a one shot timer (for 30 
milliseconds) and at the same time start the radio. After expiration of this timer the radio 
needs to be stopped (done in the event handler of RXwindowTimer.fired). When TinyOS 
receives a packet it generates an event (Receive.receive). Inside this event we post the task of 
the state machine with the incoming packet event (implementing the PKT event of the state 
machine). We used the LowPowerListening interface to control the radio explicitly in 
receiving or transmitting mode. For handling outgoing actions from the state machine, such 
as to send a packet, the state machine calls the sendPacket method. Inside this method, we at 
first set the radio in transmit mode and then start it. When the radio is started (it generates 
Radio.StartDone event), the method checks whether the radio is turned on for sending a 
packet or not. If so, we use the AMSend.send command of the AMSend interface to send the 
packet.  
 

 
Fig. 7. Flow diagram of the FSM code integrated in TinyOS 
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When the packet is sent then TinyOS generates a call back event AMSend.sendDone which 
provides the status of the sending processing. Inside this event handler, we stop the radio. 
There are some commands in TinyOS which are qualified as async and do not generate 
callback events. We used async commands for switching the leds from the state machine. 

 
8. ZigBee 
 

ZigBee is a specification that enables reliable, cost effective, low power, wireless networked, 
monitoring and control products based on an open global standard. ZigBee is targeted at the 
WSN domain because it supports low data rate, long battery life and secure networking. At 
the physical and MAC layers, ZigBee adopted the IEEE 802.15.4 standard. It includes 
mechanisms for forming and joining a network, a CSMA mechanism for devices to listen for 
a clear channel, as well as retries and acknowledgment of messages for reliable 
communication between adjacent devices. These underlying mechanisms are used by the 
ZigBee network layer to provide reliable end to end communications in the network. The 
802.15.4 standard is available from (IEEE. 2003). 
At the network layer, ZigBee supports different kinds of network topologies such as Star, 
Tree and Mesh. The ZigBee specification supports networks with one coordinator, multiple 
routers, and multiple end devices within a single network. A ZigBee coordinator is 
responsible for forming the network. Router devices provide routing services to network 
devices, and can also serve as end devices. End devices communicate only with their parent 
nodes and, unlike router devices, cannot relay messages intended for other nodes. Details of 
the ZigBee specification can be found at (ZigBee. 2006). 
 

 
Fig. 8. Main Loop of the Ember ZigBee application 

8.1 Application porting in ZigBee 
Several implementations of the ZigBee stack are available on the market (such as from Texas 
Instruments, Ember Corporation, Freescale etc). We will describe our simple application 
implementation by using the Ember implementation (EMBER. 2008). The main source file of 
a ZigBee application must begin by defining some parameters involving endpoints, callbacks 
and global variables. Endpoints are required to send and receive messages, so any device 
(except a basic network relay device) will need at least one of these. Just like C, an 
application starts from main.  The initialization and event loop phases (shown in figure 8) of 
a ZigBee application are shortly described below.     
Among the initialization tasks, serial ports (SPI, UART, debug or virtual) need to be 
initialized. It is also important to call emberInit() which initializes the radio and the ZigBee 
stack. Prior to calling emberInit(), it needs to initialize the Hardware Abstraction Layer 
(HAL) and also to turn on interrupts. After calling emberInit(), the device rejoins the network 
if previously it had been connected, sets the security key, initializes the application state and 
also sets any status or state indicators to the initial state. 
  

 
Fig. 9. Flow diagram of the FSM code integrated in ZigBee 
 
The network state is checked once during each cycle of the event loop. If the state indicates 
joined (in case of router and end device) or formed (for the coordinator) network, then the 
applicationTick function is executed. Inside this function the developer will put the 
application code. If the network is not joined or formed, then the node will try to join or 
form the network. State indicators are simply LEDs but could be an alphanumeric display or 
some other state indicator. The function emberTick is a periodic tick routine that should be 
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When the packet is sent then TinyOS generates a call back event AMSend.sendDone which 
provides the status of the sending processing. Inside this event handler, we stop the radio. 
There are some commands in TinyOS which are qualified as async and do not generate 
callback events. We used async commands for switching the leds from the state machine. 

 
8. ZigBee 
 

ZigBee is a specification that enables reliable, cost effective, low power, wireless networked, 
monitoring and control products based on an open global standard. ZigBee is targeted at the 
WSN domain because it supports low data rate, long battery life and secure networking. At 
the physical and MAC layers, ZigBee adopted the IEEE 802.15.4 standard. It includes 
mechanisms for forming and joining a network, a CSMA mechanism for devices to listen for 
a clear channel, as well as retries and acknowledgment of messages for reliable 
communication between adjacent devices. These underlying mechanisms are used by the 
ZigBee network layer to provide reliable end to end communications in the network. The 
802.15.4 standard is available from (IEEE. 2003). 
At the network layer, ZigBee supports different kinds of network topologies such as Star, 
Tree and Mesh. The ZigBee specification supports networks with one coordinator, multiple 
routers, and multiple end devices within a single network. A ZigBee coordinator is 
responsible for forming the network. Router devices provide routing services to network 
devices, and can also serve as end devices. End devices communicate only with their parent 
nodes and, unlike router devices, cannot relay messages intended for other nodes. Details of 
the ZigBee specification can be found at (ZigBee. 2006). 
 

 
Fig. 8. Main Loop of the Ember ZigBee application 

8.1 Application porting in ZigBee 
Several implementations of the ZigBee stack are available on the market (such as from Texas 
Instruments, Ember Corporation, Freescale etc). We will describe our simple application 
implementation by using the Ember implementation (EMBER. 2008). The main source file of 
a ZigBee application must begin by defining some parameters involving endpoints, callbacks 
and global variables. Endpoints are required to send and receive messages, so any device 
(except a basic network relay device) will need at least one of these. Just like C, an 
application starts from main.  The initialization and event loop phases (shown in figure 8) of 
a ZigBee application are shortly described below.     
Among the initialization tasks, serial ports (SPI, UART, debug or virtual) need to be 
initialized. It is also important to call emberInit() which initializes the radio and the ZigBee 
stack. Prior to calling emberInit(), it needs to initialize the Hardware Abstraction Layer 
(HAL) and also to turn on interrupts. After calling emberInit(), the device rejoins the network 
if previously it had been connected, sets the security key, initializes the application state and 
also sets any status or state indicators to the initial state. 
  

 
Fig. 9. Flow diagram of the FSM code integrated in ZigBee 
 
The network state is checked once during each cycle of the event loop. If the state indicates 
joined (in case of router and end device) or formed (for the coordinator) network, then the 
applicationTick function is executed. Inside this function the developer will put the 
application code. If the network is not joined or formed, then the node will try to join or 
form the network. State indicators are simply LEDs but could be an alphanumeric display or 
some other state indicator. The function emberTick is a periodic tick routine that should be 
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called in the application's main event loop after emberInit. The watchdog timer should also 
be reset once per event loop by calling halResetWatchdog.  
The skeleton of the simple application implementation in ZigBee is shown in figure 9. Here, 
the state machine is called from applicationTick. The state machine is called at 10 millisecond 
intervals, which implements the CLK of the state machine. When the  receivePacket method is 
called from the state machine, we start the radio by calling the emberStackPowerUp API and 
then schedule an event  (RXwindowTimer) which will generate a callback event after 
expiration of receiving timer (30ms). When this callback event (RXwindowTimerHandler) 
occurs, we stop the radio.  In this time frame, if a packet is received by the ZigBee stack, it 
calls an incoming message handler function emberIncomingMessageHandler. Inside this 
function, the state machine is called with the incoming packet event (PKT event of the state 
machine). When the sendPacket method is called from the state machine, again we start the 
radio and send the packet by calling the  emberSendUnicast API which afterward calls back 
the emberMessageSentHandler function. Inside this event handler, we stop the radio. 
Implementations of led_toggle and led_on methods are simple like in MANTIS and TinyOS. 

 
9. Conclusion 
 

We described an extensible framework for modeling, simulation and multi-platform code 
generation of sensor network algorithms based on MathWorks tools. We developed 
parameterized blocks for the sensor node and communication medium to ease the modeling and 
simulation of WSN applications. Portability of application between multiple platforms is an 
open problem, especially in the WSN domain because of the lack of a single platform 
standard. We presented application porting in MANTIS, TinyOS and ZigBee using a simple 
application. We identified a single code writing style, namely state machine-like, that can be 
ported easily across different platforms by just creating an API abstraction layer for sensors, 
actuators and non-blocking OS calls. This FSM-like code can be written by or generated 
from different StateChart-like or Synchronous Language models, which also makes the 
generation of the adaptation layer to each platform easier. The reason for choosing the 
MathWorks tools over, for example, TOSSIM, NS, OmNet, is that they are well known and 
already provide rich libraries for digital signal processing and control algorithm behavior 
simulation. 
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called in the application's main event loop after emberInit. The watchdog timer should also 
be reset once per event loop by calling halResetWatchdog.  
The skeleton of the simple application implementation in ZigBee is shown in figure 9. Here, 
the state machine is called from applicationTick. The state machine is called at 10 millisecond 
intervals, which implements the CLK of the state machine. When the  receivePacket method is 
called from the state machine, we start the radio by calling the emberStackPowerUp API and 
then schedule an event  (RXwindowTimer) which will generate a callback event after 
expiration of receiving timer (30ms). When this callback event (RXwindowTimerHandler) 
occurs, we stop the radio.  In this time frame, if a packet is received by the ZigBee stack, it 
calls an incoming message handler function emberIncomingMessageHandler. Inside this 
function, the state machine is called with the incoming packet event (PKT event of the state 
machine). When the sendPacket method is called from the state machine, again we start the 
radio and send the packet by calling the  emberSendUnicast API which afterward calls back 
the emberMessageSentHandler function. Inside this event handler, we stop the radio. 
Implementations of led_toggle and led_on methods are simple like in MANTIS and TinyOS. 

 
9. Conclusion 
 

We described an extensible framework for modeling, simulation and multi-platform code 
generation of sensor network algorithms based on MathWorks tools. We developed 
parameterized blocks for the sensor node and communication medium to ease the modeling and 
simulation of WSN applications. Portability of application between multiple platforms is an 
open problem, especially in the WSN domain because of the lack of a single platform 
standard. We presented application porting in MANTIS, TinyOS and ZigBee using a simple 
application. We identified a single code writing style, namely state machine-like, that can be 
ported easily across different platforms by just creating an API abstraction layer for sensors, 
actuators and non-blocking OS calls. This FSM-like code can be written by or generated 
from different StateChart-like or Synchronous Language models, which also makes the 
generation of the adaptation layer to each platform easier. The reason for choosing the 
MathWorks tools over, for example, TOSSIM, NS, OmNet, is that they are well known and 
already provide rich libraries for digital signal processing and control algorithm behavior 
simulation. 
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