
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

7,000

A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 365

A Multiagent Architecture Based in aFoundation Fieldbus Network
Function Blocks

Vinicius Ponte Machado, Dennis Brandão, Adrião Duarte Dória Neto and Jorge Dantas
de Melo

X

A Multiagent Architecture Based in
aFoundation Fieldbus Network

Function Blocks

Vinicius Ponte Machado
Federal University of Piaui

Natal – RN – Brazil
Dennis Brandão

University of São Paulo
São Carlos – SP – Brazil

Adrião Duarte Dória Neto
Federal University of Rio Grande do Norte

Natal – RN – Brazil
Jorge Dantas de Melo

Federal University of Rio Grande do Norte
Natal – RN – Brazil

1. Introduction

The industrial automation is directly related to the technological development of
information. Better hardware solutions, as well as improvements in software development
methodologies have made possible the rapid development of the productive process
control. In this Chapter, it is proposed an architecture that permits to join two technologies
in the same hardware (Industrial Network) and software context (Multiagent Systems –
MAS). We show a multiagent architecture which uses an algorithm-based Artificial Neural
Network (ANN) to learn about fault problem patterns, detect faults, and adapt algorithms
that can be used in these fault situations. We also present a dynamic Function Block (FB)
parameter exchange strategy which allows agent allocation in fieldbus. This proposed
architecture reduces the supervisor intervention to select and implement an appropriate
structure of function block algorithms. Furthermore, these algorithms, when implemented
into device function blocks, provide a solution at fieldbus level, reducing data traffic
between gateway and device, and speeding up the process of dealing with the problem. We
also present some examples for our approach. The first one introduces FBSIMU which
simulates Foundation Fieldbus function blocks architecture. This software has a controlled
process and allocates the MAS to detect and correct faults. The second example shows a
multiagent architecture that implements the neural network change in a laboratory test
process which imitates fault scenarios.

18

www.intechopen.com

Factory Automation366

2. Theoretical Foundation

2.1 Foundation Fieldbus Protocol
The term FOUNDATION Fieldbus (FF) indicates the protocol specified by the Fieldbus
Foundation and standardized by IEC1 standards number 61158 (IEC, 2000) and 61784 at
profile CPF2 - 1/1 (IEC, 2003). It is a digital, serial, bidirectional, and distributed protocol,
which interconnects field devices such as sensors, actuators and controllers. Basically, this
protocol can be classified as a LAN (Local Area Network) for instruments used in process
and industrial automation, with the ability to distribute the control application through a
network.
This protocol is based on the ISO/OSI (International Organization for
Standardization/Open System Interconnection) seven layer reference model (ISO, 1994).
Although being based on the ISO/OSI model, the FF does not use the network layer, the
transport layer, the section layer, nor the presentation layer, because it is restricted to local
applications. The entire network structure of the FF concentrates on the physical layer, the
data link layer (DLL) and the application layer. Besides these three implemented layers, the
protocol defines an additional layer named User Application Layer.
The FF Physical Layer, named H1, uses a shielded twisted pair cable as communication
medium. The H1 specifies a 31.25 kBit/s bit rate with Manchester codification over a bus
powered channel. The network topology configuration is flexible: it is typically configured
with a trunk and several spurs, attending certain physical and electrical limitations
regarding maximum spur lengths and number of transmitters.
The DLL carries the transmission control of all messages on the fieldbus and its protocol
grants to the FF network temporal determinism for critic process control data. The
communication is based on a master–slave model with a central communication scheduler
(master), named Link Active Scheduler or LAS. This node performs the medium access
control (MAC). Two types of DLL layer are standardized: Basic and Link Master. A Basic
DLL transmitter does not have LAS capabilities, it operates passively as a communication
slave. A Link Master DLL transmitter, on the other hand, can execute LAS functions and
thus, if the active LAS node fails, become the LAS node. The FF Data Link Layer supports
two transmission policies: one addressed to scheduled cyclic data, and another to sporadic
(unscheduled) background data. These two communication policies share the physical bus,
but they are sequentially segmented in cyclic time slots or periods. In the scheduled
communication period, most process variables generated by periodic processes are
transmitted cyclically according to a static global schedule table loaded on the LAS node.
This cyclic transmission mode has higher priority over acyclic transmission modes. A
periodic process can be defined as a process initiated at predetermined points in time, also
called a time-triggered process.
The period for the network cyclic process is typically from tenths to hundreds of
milliseconds, and it is mandatory to consider that the generated data must be delivered
before the next data is available. This type of periodic data is usually related to
measurement and control variables (Cavalieri et al., 1993).

1 International Electrotechnical Commission
2 Communication Profile Family

Sporadic or unscheduled communication is used to transmit non periodic, or aperiodic,
data, generated by sporadic processes not directly related to the control loop cycles, but to
user configuration actions and data supervision efforts. The unscheduled transmissions are
dispatched under a token pass scheme. A token that circulates among all active nodes on the
bus is used in FF protocol.
Once a transmitter receives the token, it is granted the right to send pending aperiodic
messages with a minimum priority for a specific time period. Non periodic (or event-
triggered) processes are initiated as soon as specific events are noted (Pop et al., 2002). The
event-triggered processes are unpredictable and usually related to alarm notifications,
configuration data and user commands as cited before. Although acyclic traffic is less
frequent than the cyclic one, the acyclic data should also be delivered prior to a given
deadline, according to the system requirements. For a description of the MAC operation on
both cyclic and acyclic phases, refer to Hong & Ko (2001), Wang et al. (2002), Petalidis & Gill
(1998).
The FF User Layer is directly related to the process automation tasks, and it is based on
distributed control or monitoring strategies composed of Function Blocks (FB). Function
Blocks are User Layer elements that encapsulate basic automation functions and
consequently make the configuration of a distributed industrial application modular and
simplified (Chen et al., 2002). Distributed among the transmitters, the FBs have their inputs
and outputs linked to other blocks in order to perform distributed closed control loop
schemes. When blocks from different transmitters are linked together, a remote link is
configured and mapped to a cyclic message. Considering that all cyclic messages should be
released in a predetermined instant defined on a schedule table, and that they carry data
generated by the FBs, it is adequate to synchronize the execution of the FB set on the system
with the referred cyclic transmissions schedule table. This solution leads to the concept of
joint scheduling (Ferreiro et al., 1997).
The Foundation Fieldbus standardized a set of ten basic function blocks (Fieldbus
Foundation, 1999a), a complementary set of eleven advanced control blocks (Fieldbus
Foundation, 1999b), and a special flexible function block intended to be fully configurable
by the user, i.e., internal ladder logic and parameter set (Fieldbus Foundation, 1999c). The
standard and advanced block sets provide mathematical and engineering calculations
necessary to configure typical industrial control loop strategies, while the flexible function
block can be applied to custom or advanced controls or to complex interlocking logics based
on ladder nets. It is important to mention, however, that the standard is open at this point,
permitting the integration of ‘‘user-defined’’ custom function blocks in order to enhance the
capabilities of FF control system, and make the integration of novel control techniques
possible.

2.2 Multiagent systems
An agent is a computer system, a paradigm to the development of software applications that
is situated in some environment and is capable of autonomous action in that environment in
order to meet its design objectives (Russell & Norvig, 2003). In a few words, a multiagent
system (MAS) is a problem of placing the agents together (organized as a society). The
application components of a multiagent system are agents. Several different multiagent
architectures can be found in the literature including applications in automation (Weyns et
al., 2005; Weyns & Holvoet, 2007; Seilonen et al., 2002; Feng et al., 2007). In a MAS, control is

www.intechopen.com

A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 367

2. Theoretical Foundation

2.1 Foundation Fieldbus Protocol
The term FOUNDATION Fieldbus (FF) indicates the protocol specified by the Fieldbus
Foundation and standardized by IEC1 standards number 61158 (IEC, 2000) and 61784 at
profile CPF2 - 1/1 (IEC, 2003). It is a digital, serial, bidirectional, and distributed protocol,
which interconnects field devices such as sensors, actuators and controllers. Basically, this
protocol can be classified as a LAN (Local Area Network) for instruments used in process
and industrial automation, with the ability to distribute the control application through a
network.
This protocol is based on the ISO/OSI (International Organization for
Standardization/Open System Interconnection) seven layer reference model (ISO, 1994).
Although being based on the ISO/OSI model, the FF does not use the network layer, the
transport layer, the section layer, nor the presentation layer, because it is restricted to local
applications. The entire network structure of the FF concentrates on the physical layer, the
data link layer (DLL) and the application layer. Besides these three implemented layers, the
protocol defines an additional layer named User Application Layer.
The FF Physical Layer, named H1, uses a shielded twisted pair cable as communication
medium. The H1 specifies a 31.25 kBit/s bit rate with Manchester codification over a bus
powered channel. The network topology configuration is flexible: it is typically configured
with a trunk and several spurs, attending certain physical and electrical limitations
regarding maximum spur lengths and number of transmitters.
The DLL carries the transmission control of all messages on the fieldbus and its protocol
grants to the FF network temporal determinism for critic process control data. The
communication is based on a master–slave model with a central communication scheduler
(master), named Link Active Scheduler or LAS. This node performs the medium access
control (MAC). Two types of DLL layer are standardized: Basic and Link Master. A Basic
DLL transmitter does not have LAS capabilities, it operates passively as a communication
slave. A Link Master DLL transmitter, on the other hand, can execute LAS functions and
thus, if the active LAS node fails, become the LAS node. The FF Data Link Layer supports
two transmission policies: one addressed to scheduled cyclic data, and another to sporadic
(unscheduled) background data. These two communication policies share the physical bus,
but they are sequentially segmented in cyclic time slots or periods. In the scheduled
communication period, most process variables generated by periodic processes are
transmitted cyclically according to a static global schedule table loaded on the LAS node.
This cyclic transmission mode has higher priority over acyclic transmission modes. A
periodic process can be defined as a process initiated at predetermined points in time, also
called a time-triggered process.
The period for the network cyclic process is typically from tenths to hundreds of
milliseconds, and it is mandatory to consider that the generated data must be delivered
before the next data is available. This type of periodic data is usually related to
measurement and control variables (Cavalieri et al., 1993).

1 International Electrotechnical Commission
2 Communication Profile Family

Sporadic or unscheduled communication is used to transmit non periodic, or aperiodic,
data, generated by sporadic processes not directly related to the control loop cycles, but to
user configuration actions and data supervision efforts. The unscheduled transmissions are
dispatched under a token pass scheme. A token that circulates among all active nodes on the
bus is used in FF protocol.
Once a transmitter receives the token, it is granted the right to send pending aperiodic
messages with a minimum priority for a specific time period. Non periodic (or event-
triggered) processes are initiated as soon as specific events are noted (Pop et al., 2002). The
event-triggered processes are unpredictable and usually related to alarm notifications,
configuration data and user commands as cited before. Although acyclic traffic is less
frequent than the cyclic one, the acyclic data should also be delivered prior to a given
deadline, according to the system requirements. For a description of the MAC operation on
both cyclic and acyclic phases, refer to Hong & Ko (2001), Wang et al. (2002), Petalidis & Gill
(1998).
The FF User Layer is directly related to the process automation tasks, and it is based on
distributed control or monitoring strategies composed of Function Blocks (FB). Function
Blocks are User Layer elements that encapsulate basic automation functions and
consequently make the configuration of a distributed industrial application modular and
simplified (Chen et al., 2002). Distributed among the transmitters, the FBs have their inputs
and outputs linked to other blocks in order to perform distributed closed control loop
schemes. When blocks from different transmitters are linked together, a remote link is
configured and mapped to a cyclic message. Considering that all cyclic messages should be
released in a predetermined instant defined on a schedule table, and that they carry data
generated by the FBs, it is adequate to synchronize the execution of the FB set on the system
with the referred cyclic transmissions schedule table. This solution leads to the concept of
joint scheduling (Ferreiro et al., 1997).
The Foundation Fieldbus standardized a set of ten basic function blocks (Fieldbus
Foundation, 1999a), a complementary set of eleven advanced control blocks (Fieldbus
Foundation, 1999b), and a special flexible function block intended to be fully configurable
by the user, i.e., internal ladder logic and parameter set (Fieldbus Foundation, 1999c). The
standard and advanced block sets provide mathematical and engineering calculations
necessary to configure typical industrial control loop strategies, while the flexible function
block can be applied to custom or advanced controls or to complex interlocking logics based
on ladder nets. It is important to mention, however, that the standard is open at this point,
permitting the integration of ‘‘user-defined’’ custom function blocks in order to enhance the
capabilities of FF control system, and make the integration of novel control techniques
possible.

2.2 Multiagent systems
An agent is a computer system, a paradigm to the development of software applications that
is situated in some environment and is capable of autonomous action in that environment in
order to meet its design objectives (Russell & Norvig, 2003). In a few words, a multiagent
system (MAS) is a problem of placing the agents together (organized as a society). The
application components of a multiagent system are agents. Several different multiagent
architectures can be found in the literature including applications in automation (Weyns et
al., 2005; Weyns & Holvoet, 2007; Seilonen et al., 2002; Feng et al., 2007). In a MAS, control is

www.intechopen.com

Factory Automation368

decentralized, i.e., none of the system components has global control over the system or
global knowledge about the distributed system.
The main reason for the use of agents in these environments is that these applications need
distributed interpretation and distributed planning by means of intelligent sensors.
Furthermore, distributed multiagent systems are an appropriate concept for many fields of
industrial automation like monitoring, fault diagnosis, simulation and control, as they give
several advantages for these applications. They allow distributed data collection while
maintaining a high level of scalability and flexibility, once they keep network load low
through an adequate pre-processing. They also provide on-site reactivity and intelligence
that is required in various remote control scenarios, since the network channel is not capable
of transporting each and every control command. Finally they offer an abstraction level
when accessing proprietary devices for monitoring and control, and they are often easier to
integrate into existing applications than, for example, a service oriented architecture (Theiss
et al., 2008).
Applications of agent technology in the research of process automation systems have not
been as numerous as many other industrial application domains. Neither the way to apply
agent technology in process automation nor the possible utility of it has been so evident in
process automation than in other fields. However, some promising research has been
reported and some experiences from other fields might also have applicability in process
automation (Seilonen et al., 2002).
Autonomy, high encapsulation and reactivity of agents motivate their usage in large
automation systems. The application area of multiagent systems includes power supply
systems, manufacturing systems, building automation and mobile applications (Jennings &
Bussmann, 2002). The agent functionality comprises monitoring and diagnosis (e.g., Taylor
& Sayda, 2003; Albert et al., 2003; Pirttioja et al., 2005), control, scheduling, modelling and
simulation of these applications. The agents primarily operate on management level
(Schoop et al., 2002) and use web-based technologies like web services and OSGi (Fei-Yue et
al., 2005). This allows them to use the PCs and servers as hosts, making the performance,
memory usage and real-time issues negligible.
As a conclusion to the current research about agent applications in process automation and
other control applications, one could state that agents have generally been applied either for
higher-level, non real-time and event-based operations, or for integration purposes. The
state-of-the-art research regarding MAS applications in process automation leaves some
questions unanswered behind. Research has mainly focused on control functions and the
functional role of MAS in process automation. Other functions, e.g., monitoring and
information access, have received less attention (Seilonen, 2006). Furthermore, in many cases
these models do not address the issue of deterministic response times. Unlike the
aforementioned studies, we have shown MAS architecture which enables the
implementation of control configuration at the fieldbus level. We believe this is the main
contribution of our work. A similar study was proposed by Brennan et al. (2002). However,
in our study we aggregate machine learning through an Artificial Neural Network (ANN)
and FIPA (Foundations of Intelligent Physical Agents) compliant agents. Moreover, our
implementation raises a basic agent feature: adaptation. The function block allocation will
change to adapt to a type of problem, without user intervention.

3. Function Block Intelligent Algorithms

Smart configuration strategies are implemented by intelligent algorithms that are
incorporated to the sensors using the standard function blocks. These blocks have basic
functions that, when combined, are able to implement the artificial neural network for
example. The organization of function blocks is essential to the success of this type of
process.
The protocol found to better suit these demands was the Foundation Fieldbus protocol,
because its system is gifted with the capacity of distributing the control of the process in the
field, i.e. the sensors and actuators have embedded processors which can execute the
algorithms in a distributed way.
Many projects have been developed using Foundation Fieldbus protocol and function
blocks. In ours laboratories (LAMP - Petroleum Measurement and Evaluation Laboratory in
Federal University of Rio Grande do Norte) some intelligent algorithms were implemented
using mainly neural networks.
In Silva et al. (2006), we can see a solution to execute artificial neural network algorithms in
the environment of networks to Foundation Fieldbus industrial automation, based on
standardized function blocks. This strategy involves two function blocks: arithmetic and
characterizer. They must be configured and linked in such a way that the set behaves as an
artificial neuron (Haykin, 1999). In the arithmetic block, the Algorithm Type parameter must
be chosen as Traditional Adder and the gains of the inputs must be filled according to the
training performed, as well as the bias values.
By linking the output of an arithmetic function block to the input of a signal characterizer
function block, configured as described above, we have an artificial neuron in the FF
environment. And by linking of these neurons, neural networks are built.
With another neural network function block, configuration of the agents can compensate the
error as it is seen in Cagni et al. (2005). In his work the implementation of the self-
calibration, self-compensation and self-validation algorithms for Foundation Fieldbus
sensors are presented using standard function blocks.
The deterioration of the sensors can make the sensor measurement precision decrease in
time, until another calibration of the sensor is made. The lack of precision and the
calibration process can be economically disadvantageous to the industries. Determining
what is the best calibration period for a sensor is the main focus of interest of this research.
With this purpose, some based-neural network algorithms were created to increase the
precision and the reliability of data collected by the sensors and to optimize the calibration
periods. These algorithms are the self-compensation, self-calibration and self-validation
ones.
The addition of noise is another very common problem during the process of extracting
information generated by a sensor installed in a field network. In Costa et al. (2003), the
implementation of a system is proposed so that, beginning from software embedded in a
DSP (Digital Signal Processor), interacts with fieldbus devices connected through a
Foundation Fieldbus network. This approach, based on the technique of Independent
Component Analysis (ICA), presents an efficient solution to the problem of extraction of the
noise derived from the sensor. In other work, Fernandes et al. (2007) presents an approach to
process fault detection and isolation (FDI) system applied to a level control system
connected with an industrial network Foundation Fieldbus. The FDI system was developed
using artificial neural networks (ANN). Basically, the FDI system was divided in two parts:

www.intechopen.com

A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 369

decentralized, i.e., none of the system components has global control over the system or
global knowledge about the distributed system.
The main reason for the use of agents in these environments is that these applications need
distributed interpretation and distributed planning by means of intelligent sensors.
Furthermore, distributed multiagent systems are an appropriate concept for many fields of
industrial automation like monitoring, fault diagnosis, simulation and control, as they give
several advantages for these applications. They allow distributed data collection while
maintaining a high level of scalability and flexibility, once they keep network load low
through an adequate pre-processing. They also provide on-site reactivity and intelligence
that is required in various remote control scenarios, since the network channel is not capable
of transporting each and every control command. Finally they offer an abstraction level
when accessing proprietary devices for monitoring and control, and they are often easier to
integrate into existing applications than, for example, a service oriented architecture (Theiss
et al., 2008).
Applications of agent technology in the research of process automation systems have not
been as numerous as many other industrial application domains. Neither the way to apply
agent technology in process automation nor the possible utility of it has been so evident in
process automation than in other fields. However, some promising research has been
reported and some experiences from other fields might also have applicability in process
automation (Seilonen et al., 2002).
Autonomy, high encapsulation and reactivity of agents motivate their usage in large
automation systems. The application area of multiagent systems includes power supply
systems, manufacturing systems, building automation and mobile applications (Jennings &
Bussmann, 2002). The agent functionality comprises monitoring and diagnosis (e.g., Taylor
& Sayda, 2003; Albert et al., 2003; Pirttioja et al., 2005), control, scheduling, modelling and
simulation of these applications. The agents primarily operate on management level
(Schoop et al., 2002) and use web-based technologies like web services and OSGi (Fei-Yue et
al., 2005). This allows them to use the PCs and servers as hosts, making the performance,
memory usage and real-time issues negligible.
As a conclusion to the current research about agent applications in process automation and
other control applications, one could state that agents have generally been applied either for
higher-level, non real-time and event-based operations, or for integration purposes. The
state-of-the-art research regarding MAS applications in process automation leaves some
questions unanswered behind. Research has mainly focused on control functions and the
functional role of MAS in process automation. Other functions, e.g., monitoring and
information access, have received less attention (Seilonen, 2006). Furthermore, in many cases
these models do not address the issue of deterministic response times. Unlike the
aforementioned studies, we have shown MAS architecture which enables the
implementation of control configuration at the fieldbus level. We believe this is the main
contribution of our work. A similar study was proposed by Brennan et al. (2002). However,
in our study we aggregate machine learning through an Artificial Neural Network (ANN)
and FIPA (Foundations of Intelligent Physical Agents) compliant agents. Moreover, our
implementation raises a basic agent feature: adaptation. The function block allocation will
change to adapt to a type of problem, without user intervention.

3. Function Block Intelligent Algorithms

Smart configuration strategies are implemented by intelligent algorithms that are
incorporated to the sensors using the standard function blocks. These blocks have basic
functions that, when combined, are able to implement the artificial neural network for
example. The organization of function blocks is essential to the success of this type of
process.
The protocol found to better suit these demands was the Foundation Fieldbus protocol,
because its system is gifted with the capacity of distributing the control of the process in the
field, i.e. the sensors and actuators have embedded processors which can execute the
algorithms in a distributed way.
Many projects have been developed using Foundation Fieldbus protocol and function
blocks. In ours laboratories (LAMP - Petroleum Measurement and Evaluation Laboratory in
Federal University of Rio Grande do Norte) some intelligent algorithms were implemented
using mainly neural networks.
In Silva et al. (2006), we can see a solution to execute artificial neural network algorithms in
the environment of networks to Foundation Fieldbus industrial automation, based on
standardized function blocks. This strategy involves two function blocks: arithmetic and
characterizer. They must be configured and linked in such a way that the set behaves as an
artificial neuron (Haykin, 1999). In the arithmetic block, the Algorithm Type parameter must
be chosen as Traditional Adder and the gains of the inputs must be filled according to the
training performed, as well as the bias values.
By linking the output of an arithmetic function block to the input of a signal characterizer
function block, configured as described above, we have an artificial neuron in the FF
environment. And by linking of these neurons, neural networks are built.
With another neural network function block, configuration of the agents can compensate the
error as it is seen in Cagni et al. (2005). In his work the implementation of the self-
calibration, self-compensation and self-validation algorithms for Foundation Fieldbus
sensors are presented using standard function blocks.
The deterioration of the sensors can make the sensor measurement precision decrease in
time, until another calibration of the sensor is made. The lack of precision and the
calibration process can be economically disadvantageous to the industries. Determining
what is the best calibration period for a sensor is the main focus of interest of this research.
With this purpose, some based-neural network algorithms were created to increase the
precision and the reliability of data collected by the sensors and to optimize the calibration
periods. These algorithms are the self-compensation, self-calibration and self-validation
ones.
The addition of noise is another very common problem during the process of extracting
information generated by a sensor installed in a field network. In Costa et al. (2003), the
implementation of a system is proposed so that, beginning from software embedded in a
DSP (Digital Signal Processor), interacts with fieldbus devices connected through a
Foundation Fieldbus network. This approach, based on the technique of Independent
Component Analysis (ICA), presents an efficient solution to the problem of extraction of the
noise derived from the sensor. In other work, Fernandes et al. (2007) presents an approach to
process fault detection and isolation (FDI) system applied to a level control system
connected with an industrial network Foundation Fieldbus. The FDI system was developed
using artificial neural networks (ANN). Basically, the FDI system was divided in two parts:

www.intechopen.com

Factory Automation370

the first corresponds to neural identification of the plant model; and the second, to the
detection and isolation of faults in process.

4. Foundation Fieldbus Simulated Environment

The basic concept of the FBSIMU (Foundation Fieldbus Simulated Environment)
architecture is to map each Function Block, as well as the plant, in an independent
LabVIEW3 application, also named Virtual Instrument (VI). The configuration of the whole
system is centralized in the FBSIMU.CONF module. This module’s graphical user interface
is inspired by commercial fieldbus configuration tools. As mentioned before, the FBSIMU is
focused on the function block application layer and it is composed exclusively of software
according to a modular and extensible architecture. The simulator was developed in
LabVIEW using the G graphical programming language, ‘‘native’’ language in this
environment. Each FBSIMU module or software unit simulates an element or a structure of
a real FOUNDATION Fieldbus system (Brandão, 2005).

4.1 Function Block simulation
The Function Block modules are programmed into the FBSIMU according to the FF
specifications directions and, consequently, the usage and configuration of a simulated
control loop on the FBSIMU environment is identical to a real FF system. A ‘‘LabVIEW
Foundation Fieldbus Tool Kit’’ library has been developed (Pinotti et al., 2005) to provide a
range of typical Foundation Fieldbus control and acquisition functions, according to the
standards. These functions encapsulate different FF calculations and data type
manipulations necessary to build standard or custom Function Blocks. A Function Block
seed module is also used to accelerate the process of developing and integrating new
projects. The seed has the whole FB module structure (an empty structure) and directions to
proceed with a FB project from the design to the final test procedures.
Each FB module is built in two different versions that share the same FB core: stand-alone
and process. The stand-alone FBs are executed by user commands and controlled by its
graphical user interface. Its execution can be performed independently of any other module,
so the user is able to test the FB and simulate its operation under a controlled condition of
inputs and outputs. The graphical user interface is intuitive and enables the user to execute
the FB continually or in a step-by-step mode. The process version of a FB, on the other hand,
is controlled remotely likewise real FBs. Each process FB has a unique identification and its
operation is controlled by the user through the following commands:

 FB_Read: this service allows the value associated with a block parameter to be
read.

 FB_Write: this confirmed service allows the value associated with a block
parameter to be written.

 FB_Exec: this service triggers the block algorithm to be executed.

3 LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench), a
platform and development environment for a visual programming language (National
Instruments)

 FB_Reset: this service allows default values associated with all block parameters to
be written.

Process FBs do not have graphical user interface, they are instantiated by the
FBSIMU.CONF in each simulation process. The communications between process FBs and
the FBSIMU.CONF are performed programmatically and dynamically by the LabVIEW
function ‘‘Call by Reference Node’’. It is important to note that the industrial transmitters
are not considered in the FBSIMU architecture, i.e., function blocks are instantiated on the
simulation without being allocated in specific ‘‘virtual’’ transmitters. The FBSIMU.CONF
module graphical user interface for fieldbus configuration is shown in Figure 1.

4.2 Physical plant simulations
The plant module cyclically executes a discrete single variable (SISO) linear ARX (Auto-
Regressive with Exogenous Inputs) mathematical structure (Ljung, 1999). This module is
configured on the FBSIMU.CONF and simulates the controlled plant. The adopted ARX
structure is represented by Equation 1, where k is the discrete time instant, Y is the output
vector, U is the input vector, i is the number of MIMO plant inputs and outputs, na is the
number of output regressors, and nb is the number of input regressors. In the current
version, i is set to 1 (one) to reflect a SISO model.

Fig. 1. FBSIMU.CONF graphical user interface for fieldbus configuration

www.intechopen.com

A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 371

the first corresponds to neural identification of the plant model; and the second, to the
detection and isolation of faults in process.

4. Foundation Fieldbus Simulated Environment

The basic concept of the FBSIMU (Foundation Fieldbus Simulated Environment)
architecture is to map each Function Block, as well as the plant, in an independent
LabVIEW3 application, also named Virtual Instrument (VI). The configuration of the whole
system is centralized in the FBSIMU.CONF module. This module’s graphical user interface
is inspired by commercial fieldbus configuration tools. As mentioned before, the FBSIMU is
focused on the function block application layer and it is composed exclusively of software
according to a modular and extensible architecture. The simulator was developed in
LabVIEW using the G graphical programming language, ‘‘native’’ language in this
environment. Each FBSIMU module or software unit simulates an element or a structure of
a real FOUNDATION Fieldbus system (Brandão, 2005).

4.1 Function Block simulation
The Function Block modules are programmed into the FBSIMU according to the FF
specifications directions and, consequently, the usage and configuration of a simulated
control loop on the FBSIMU environment is identical to a real FF system. A ‘‘LabVIEW
Foundation Fieldbus Tool Kit’’ library has been developed (Pinotti et al., 2005) to provide a
range of typical Foundation Fieldbus control and acquisition functions, according to the
standards. These functions encapsulate different FF calculations and data type
manipulations necessary to build standard or custom Function Blocks. A Function Block
seed module is also used to accelerate the process of developing and integrating new
projects. The seed has the whole FB module structure (an empty structure) and directions to
proceed with a FB project from the design to the final test procedures.
Each FB module is built in two different versions that share the same FB core: stand-alone
and process. The stand-alone FBs are executed by user commands and controlled by its
graphical user interface. Its execution can be performed independently of any other module,
so the user is able to test the FB and simulate its operation under a controlled condition of
inputs and outputs. The graphical user interface is intuitive and enables the user to execute
the FB continually or in a step-by-step mode. The process version of a FB, on the other hand,
is controlled remotely likewise real FBs. Each process FB has a unique identification and its
operation is controlled by the user through the following commands:

 FB_Read: this service allows the value associated with a block parameter to be
read.

 FB_Write: this confirmed service allows the value associated with a block
parameter to be written.

 FB_Exec: this service triggers the block algorithm to be executed.

3 LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench), a
platform and development environment for a visual programming language (National
Instruments)

 FB_Reset: this service allows default values associated with all block parameters to
be written.

Process FBs do not have graphical user interface, they are instantiated by the
FBSIMU.CONF in each simulation process. The communications between process FBs and
the FBSIMU.CONF are performed programmatically and dynamically by the LabVIEW
function ‘‘Call by Reference Node’’. It is important to note that the industrial transmitters
are not considered in the FBSIMU architecture, i.e., function blocks are instantiated on the
simulation without being allocated in specific ‘‘virtual’’ transmitters. The FBSIMU.CONF
module graphical user interface for fieldbus configuration is shown in Figure 1.

4.2 Physical plant simulations
The plant module cyclically executes a discrete single variable (SISO) linear ARX (Auto-
Regressive with Exogenous Inputs) mathematical structure (Ljung, 1999). This module is
configured on the FBSIMU.CONF and simulates the controlled plant. The adopted ARX
structure is represented by Equation 1, where k is the discrete time instant, Y is the output
vector, U is the input vector, i is the number of MIMO plant inputs and outputs, na is the
number of output regressors, and nb is the number of input regressors. In the current
version, i is set to 1 (one) to reflect a SISO model.

Fig. 1. FBSIMU.CONF graphical user interface for fieldbus configuration

www.intechopen.com

Factory Automation372

The simulated plant dynamic behavior is modeled on the dynamic matrixes A and B. It must
be observed that the number of regressors limits the model dynamic order and that all
regressors must be initialized prior to starting the simulation.





nb

s
ixixi

na

s
ixixiix skUBsskYAskY

1
1

1
11)()()((1)

 As the user chooses the plant order (1st, 2nd or 3rd) and dynamics (gain for 1st and 2nd
order systems, damping ratio, natural frequency and time constant), the selected plants’
Bode Magnitude Chart, Pole-Zero Map, Root Locus Graph and the Step Response are
instantly presented on the graphical user interface.
A white noise generator function adds a simulated acquisition noise to each plant output
bounded by user configurable amplitude. Figure 2 shows the FBSIMU.CONF module
graphical user interface for plant configuration.

Fig. 2. FBSIMU.CONF graphical user interface for plant configuration

4.3 Simulation Architecture
The proposed execution model for the fieldbus simulation on FBSIMU is considered hybrid,
because some tasks are event-driven while other tasks are time-triggered, according to table
1. All tasks related to the user interface are event-driven, they are executed after a user
action such as selecting a new block, configuring schedule table, saving a configuration or
starting the execution.

On the other hand, the tasks related to executing FBs according to a schedule table, plant
simulation, and online monitoring of FBs are time-triggered.

Module Priority Execution Timeout Determinism
GUI & User
commands

Low-
Low

Event driven 1 sec. No

FB Schedule High-
High

Time triggered according to
the schedule table

No Yes

Plant Execution High Periodic with configurable
period

No Yes

Online FB
Parameters
Monitoring

Low Periodic with period =
500ms

No Yes

Table 1. FBSIMU task set

Once all tasks are performed on a single microprocessor they are, naturally, concurrent. The
proposed solution for preventing unexpected delays of time-triggered tasks (considered
critical) due to executing event-driven tasks (considered non-critical) is adopting priority
levels for each task and preemptive execution mode.
In the preemptive execution mode, a higher priority task that is ready to execute preempts
all lower priority tasks, which are also ready to execute or actually during execution. Table 1
summarizes the FBSIMU task set and its timing and execution characteristics.

4.4 A typical simulation experiment
The intrinsic flexibility of simulation tools opens a wide range of FBSIMU experiments
where users can exploit the effect of important communication parameters and
configurations found in industrial FF systems. Practical experiments consist in comparing
given simulated fieldbus system performances over different operation conditions. The
results can be analyzed via log files or graphically on charts.
For typical simulation sessions, a specific FB control strategy should be defined. Then, the
period of the macrocycle must be set in milliseconds, and all the release times (in
milliseconds) of each FB execution and FB link must be defined regarding the macrocycle
start instant. Figures 3 and 4 present an example of these configurations on the FBSIMU.

Fig. 3. FBSIMU block list

www.intechopen.com

A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 373

The simulated plant dynamic behavior is modeled on the dynamic matrixes A and B. It must
be observed that the number of regressors limits the model dynamic order and that all
regressors must be initialized prior to starting the simulation.





nb

s
ixixi

na

s
ixixiix skUBsskYAskY

1
1

1
11)()()((1)

 As the user chooses the plant order (1st, 2nd or 3rd) and dynamics (gain for 1st and 2nd
order systems, damping ratio, natural frequency and time constant), the selected plants’
Bode Magnitude Chart, Pole-Zero Map, Root Locus Graph and the Step Response are
instantly presented on the graphical user interface.
A white noise generator function adds a simulated acquisition noise to each plant output
bounded by user configurable amplitude. Figure 2 shows the FBSIMU.CONF module
graphical user interface for plant configuration.

Fig. 2. FBSIMU.CONF graphical user interface for plant configuration

4.3 Simulation Architecture
The proposed execution model for the fieldbus simulation on FBSIMU is considered hybrid,
because some tasks are event-driven while other tasks are time-triggered, according to table
1. All tasks related to the user interface are event-driven, they are executed after a user
action such as selecting a new block, configuring schedule table, saving a configuration or
starting the execution.

On the other hand, the tasks related to executing FBs according to a schedule table, plant
simulation, and online monitoring of FBs are time-triggered.

Module Priority Execution Timeout Determinism
GUI & User
commands

Low-
Low

Event driven 1 sec. No

FB Schedule High-
High

Time triggered according to
the schedule table

No Yes

Plant Execution High Periodic with configurable
period

No Yes

Online FB
Parameters
Monitoring

Low Periodic with period =
500ms

No Yes

Table 1. FBSIMU task set

Once all tasks are performed on a single microprocessor they are, naturally, concurrent. The
proposed solution for preventing unexpected delays of time-triggered tasks (considered
critical) due to executing event-driven tasks (considered non-critical) is adopting priority
levels for each task and preemptive execution mode.
In the preemptive execution mode, a higher priority task that is ready to execute preempts
all lower priority tasks, which are also ready to execute or actually during execution. Table 1
summarizes the FBSIMU task set and its timing and execution characteristics.

4.4 A typical simulation experiment
The intrinsic flexibility of simulation tools opens a wide range of FBSIMU experiments
where users can exploit the effect of important communication parameters and
configurations found in industrial FF systems. Practical experiments consist in comparing
given simulated fieldbus system performances over different operation conditions. The
results can be analyzed via log files or graphically on charts.
For typical simulation sessions, a specific FB control strategy should be defined. Then, the
period of the macrocycle must be set in milliseconds, and all the release times (in
milliseconds) of each FB execution and FB link must be defined regarding the macrocycle
start instant. Figures 3 and 4 present an example of these configurations on the FBSIMU.

Fig. 3. FBSIMU block list

www.intechopen.com

Factory Automation374

Fig. 4. – FBSIMU schedule table

The configuration parameters from all FBs on the schedule table must be set in a parameter
table, as shown in Figure 5, to support the proposed strategy (for example, Block Mode,
Scaling, Gains), exactly likewise a real block strategy configuration.

Fig. 5. FB parameter table

The last step is to link the input and output parameters from the AI and AO blocks to the
plant simulation module as represented in Figure 6. The connection between an Analog
Output block (AO) and the plant input (manipulated variable - MV) and the connection
between the plant output (primary value - PV) and the Analog Input block (AI) are
configured by the user for close loop experiments. Alternatively, the user may connect only
the plant PV to the AI block for an open loop simulation, or manually load the plant PV
with a given numeric value.

 Fig. 6. - Plant simulation module

Finally, the user downloads the configuration to each FB and starts executing the schedule.
During the execution, it is possible to monitor the parameter table with online parameter
values and register the parameters on text files for further analysis. With the FBSIMU
architecture, the FF operation scenarios can be configurable and different sequences of
practice training can be defined to embrace fundamental concepts of fieldbus control
systems, as well as practical situations of alarms or events handling. This characteristic is
considered important because most of the traditional pilot plants equipped with fieldbus
instrumentation offer just one or a few scenarios where a full sequence of practice
experiments should be based on. Thus, the use of a simulated fieldbus system enables a
flexible evaluation of the contribution and effect of the communication protocol on the
overall system dynamics, which is an impossible goal considering that, in pilot plants
equipped with real instrumentation, most communication configurations are fixed and, in
most cases, inaccessible to end-users.

5. Multiagent Architecture

There is a number of requirements that ensures control of the production process. These
include process variables, that is, data collected by the sensors that are often used for
actuator actions. An incorrect interpretation and analysis of current data can result in the
malfunctioning of the productive process. Thus, the functioning of a process can occur by
combining these two items: collected data (sensors) and actions (actuators). Accordingly,
we propose multiagent architecture which enables the analysis, interpretation and
correction of data and events occurring in the fieldbus to improve production processes at
the fieldbus level.
This architecture is composed of a multiagent system that generates inspection routines of
the collected data in the plant's sensors. The aim is to induce the agents to evaluate field
device data and investigate inconsistencies that may impede the productive process, such as
lack of precision, external noise, alarm interpretation etc. During the process, the agents start
functioning and perform tasks such as analyzing and correcting events through intelligent
algorithm, as shown in Section 3.
Figure 7 shows that our architecture is composed of observation, diagnostic, and execution
agents. The Observation Agent (OA) is responsible for monitoring field devices and
checking for inconsistencies and faults. The Diagnostic Agent (DA) attempts to identify the
type of fault (detected by OA) occurring in the field devices. Once the problem is diagnosed,
the Execution Agent (EA) tries to correct it by implementing an intelligent algorithm.
Another component in this architecture is a layer (LABVIEW/FIPA Layer) that allows

www.intechopen.com

A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 375

Fig. 4. – FBSIMU schedule table

The configuration parameters from all FBs on the schedule table must be set in a parameter
table, as shown in Figure 5, to support the proposed strategy (for example, Block Mode,
Scaling, Gains), exactly likewise a real block strategy configuration.

Fig. 5. FB parameter table

The last step is to link the input and output parameters from the AI and AO blocks to the
plant simulation module as represented in Figure 6. The connection between an Analog
Output block (AO) and the plant input (manipulated variable - MV) and the connection
between the plant output (primary value - PV) and the Analog Input block (AI) are
configured by the user for close loop experiments. Alternatively, the user may connect only
the plant PV to the AI block for an open loop simulation, or manually load the plant PV
with a given numeric value.

 Fig. 6. - Plant simulation module

Finally, the user downloads the configuration to each FB and starts executing the schedule.
During the execution, it is possible to monitor the parameter table with online parameter
values and register the parameters on text files for further analysis. With the FBSIMU
architecture, the FF operation scenarios can be configurable and different sequences of
practice training can be defined to embrace fundamental concepts of fieldbus control
systems, as well as practical situations of alarms or events handling. This characteristic is
considered important because most of the traditional pilot plants equipped with fieldbus
instrumentation offer just one or a few scenarios where a full sequence of practice
experiments should be based on. Thus, the use of a simulated fieldbus system enables a
flexible evaluation of the contribution and effect of the communication protocol on the
overall system dynamics, which is an impossible goal considering that, in pilot plants
equipped with real instrumentation, most communication configurations are fixed and, in
most cases, inaccessible to end-users.

5. Multiagent Architecture

There is a number of requirements that ensures control of the production process. These
include process variables, that is, data collected by the sensors that are often used for
actuator actions. An incorrect interpretation and analysis of current data can result in the
malfunctioning of the productive process. Thus, the functioning of a process can occur by
combining these two items: collected data (sensors) and actions (actuators). Accordingly,
we propose multiagent architecture which enables the analysis, interpretation and
correction of data and events occurring in the fieldbus to improve production processes at
the fieldbus level.
This architecture is composed of a multiagent system that generates inspection routines of
the collected data in the plant's sensors. The aim is to induce the agents to evaluate field
device data and investigate inconsistencies that may impede the productive process, such as
lack of precision, external noise, alarm interpretation etc. During the process, the agents start
functioning and perform tasks such as analyzing and correcting events through intelligent
algorithm, as shown in Section 3.
Figure 7 shows that our architecture is composed of observation, diagnostic, and execution
agents. The Observation Agent (OA) is responsible for monitoring field devices and
checking for inconsistencies and faults. The Diagnostic Agent (DA) attempts to identify the
type of fault (detected by OA) occurring in the field devices. Once the problem is diagnosed,
the Execution Agent (EA) tries to correct it by implementing an intelligent algorithm.
Another component in this architecture is a layer (LABVIEW/FIPA Layer) that allows

www.intechopen.com

Factory Automation376

agents to interact with the Foundation Fieldbus model. We use LABVIEW framework to
develop based-agents FIPA (Polaków & Metzger, 2007). The main reason for using FIPA-
compliant agents is their capacity to aggregate other FIPA agents in the architecture. We
also use an OPC (OLE for Process Control) interface, such as that used by Seilonen et al.
(2002b) to integrate agents with the fieldbus. In our study, we change the function block
connections to perform a desired control algorithm and to make these function block
interconnections act as agents.

Fig. 7. – Proposed Multiagent architecture environment

The LABVIEW-FIPA layer allows communication with field devices through the OPC.
Agents can access field devices and allocate function blocks. Agent learning occurs at higher
levels (supervisory) which communicate with field devices (through the LABVIEW-
FIPA/OPC layer). The gateway is responsible (physically) for establishing this
communication. What is learned by the agent is stored in the Information Repository. This
information is useful to other agents and reused in similar situations. Learning is
implemented in computer supervisory machines as part of the agent. The agent action is
performed at fieldbus levels, i.e., device function blocks (FB). The FB interconnections form
an algorithm which controls a process. In our agent, this algorithm (ANN) is used in some
instances to monitor devices (OA), and in others to correct faults (EA).
One of the OPC client and Foundation Fieldbus restrictions is the inability to allocate and
deallocate function blocks in execution time. This operation is conducted by supervisors in
plant control planning and any modification discontinues its operation. The operator
performs the new configuration using proper software such as Syscon . Our strategy is to
create a macro FB configuration from which others can be derived. In other words, changing
the interconnections between allocated function blocks, it also changes control strategies.
Figure 8 shows a number of possibilities of function block changes caused by a

predetermined macro allocation. The advantage of this approach is the use of more than one
ANNs. Agent actions are performed by an artificial neural network. A change in the
interconnections between function blocks also leads to a change in ANN structure, which, in
turn, changes agent structure. Thus, we exchange fieldbus agents through the function block
interconnection configuration.

Fig. 8. - Change in Function Block structure

We have also apllied our architecture in FBSIMU to compare a real approach to a simulated
one. It is important to underline that, in the FBSIMU, is possible to change all function
blocks allocation in execution time, what is not possible in real fieldbus environment.
As an ANN, the agents go through two phases. The agents must learn (ANN train) and act
(trained ANN use). They learn about the device (e.g. the OA learns how to predict device
output values and the EA learns how to compensate for noise in device measurement). This
training is conducted at the supervisory level and the device communicates with the
fieldbus through a LABVIEW-FIELDBUS layer. The learned data (neural network weights)
are stored in an information repository (IR).
In the learning phase the agents will train an artificial neural network to learn about fieldbus
behavior. In the execution phase, the observation agents are able to monitor the field device
and detect any faults therein. The OA and EA learns about the device or FBSIMU output
(i.e., the OA learns how to predict device output values and the EA learns how to
compensate for noise in device measurement, for example). The learned data (neural
network weights) are stored in the information repository (IR). The EA uses this learned
data to monitor devices. The system output is monitored In FBSIMU.
When a problem (malfunction) is detected, it must be correctly diagnosed to ensure a proper
correction. The diagnostic agent (DA) consults the information repository to identify the

www.intechopen.com

A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 377

agents to interact with the Foundation Fieldbus model. We use LABVIEW framework to
develop based-agents FIPA (Polaków & Metzger, 2007). The main reason for using FIPA-
compliant agents is their capacity to aggregate other FIPA agents in the architecture. We
also use an OPC (OLE for Process Control) interface, such as that used by Seilonen et al.
(2002b) to integrate agents with the fieldbus. In our study, we change the function block
connections to perform a desired control algorithm and to make these function block
interconnections act as agents.

Fig. 7. – Proposed Multiagent architecture environment

The LABVIEW-FIPA layer allows communication with field devices through the OPC.
Agents can access field devices and allocate function blocks. Agent learning occurs at higher
levels (supervisory) which communicate with field devices (through the LABVIEW-
FIPA/OPC layer). The gateway is responsible (physically) for establishing this
communication. What is learned by the agent is stored in the Information Repository. This
information is useful to other agents and reused in similar situations. Learning is
implemented in computer supervisory machines as part of the agent. The agent action is
performed at fieldbus levels, i.e., device function blocks (FB). The FB interconnections form
an algorithm which controls a process. In our agent, this algorithm (ANN) is used in some
instances to monitor devices (OA), and in others to correct faults (EA).
One of the OPC client and Foundation Fieldbus restrictions is the inability to allocate and
deallocate function blocks in execution time. This operation is conducted by supervisors in
plant control planning and any modification discontinues its operation. The operator
performs the new configuration using proper software such as Syscon . Our strategy is to
create a macro FB configuration from which others can be derived. In other words, changing
the interconnections between allocated function blocks, it also changes control strategies.
Figure 8 shows a number of possibilities of function block changes caused by a

predetermined macro allocation. The advantage of this approach is the use of more than one
ANNs. Agent actions are performed by an artificial neural network. A change in the
interconnections between function blocks also leads to a change in ANN structure, which, in
turn, changes agent structure. Thus, we exchange fieldbus agents through the function block
interconnection configuration.

Fig. 8. - Change in Function Block structure

We have also apllied our architecture in FBSIMU to compare a real approach to a simulated
one. It is important to underline that, in the FBSIMU, is possible to change all function
blocks allocation in execution time, what is not possible in real fieldbus environment.
As an ANN, the agents go through two phases. The agents must learn (ANN train) and act
(trained ANN use). They learn about the device (e.g. the OA learns how to predict device
output values and the EA learns how to compensate for noise in device measurement). This
training is conducted at the supervisory level and the device communicates with the
fieldbus through a LABVIEW-FIELDBUS layer. The learned data (neural network weights)
are stored in an information repository (IR).
In the learning phase the agents will train an artificial neural network to learn about fieldbus
behavior. In the execution phase, the observation agents are able to monitor the field device
and detect any faults therein. The OA and EA learns about the device or FBSIMU output
(i.e., the OA learns how to predict device output values and the EA learns how to
compensate for noise in device measurement, for example). The learned data (neural
network weights) are stored in the information repository (IR). The EA uses this learned
data to monitor devices. The system output is monitored In FBSIMU.
When a problem (malfunction) is detected, it must be correctly diagnosed to ensure a proper
correction. The diagnostic agent (DA) consults the information repository to identify the

www.intechopen.com

Factory Automation378

type of problem that is occurring in the fieldbus. As soon as the problem is detected (by the
observation agent), and identified (by the diagnostic agent) from the information repository,
the execution agents decide the best configuration to resolve the problem. The execution
agents are function blocks that is used in the devices. The organization of these blocks
characterizes the way the EA solves the problem (algorithm). At the end, we have an error-
free signal (or an output), for example. In the FBSIMU environment we replace the original
schedule table for one which simulates an ANN function block configuration. A new table
means a new process control. As previously discussed, the implementation of these agents is
based on a structure formed by function blocks. Each function block executes a different
kind of algorithm, and together they are capable of meeting a specific application, such as an
ANN.

5.1 Observation Agents
Observation Agents, launched in a fieldbus, monitor the variable values of a number of
devices. These agents aim to detect measurement anomalies in sensor values or actuator
inaccuracies. Previous information about the system behavior is important to properly
detect and diagnose faults. Thus, automation engineers can associate the faults with signal
patterns. In recent years, research carried out in fault detection and isolation systems (FDI)
has shown procedures that use computer intelligence procedures, such as the Fuzzy Logic
system and Artificial Neural Networks.
In this work the observation agents use an ANN to predict the measured value of a device.
Therefore, the OA must learn how to predict the measured signal behavior before it is
launched in a fieldbus. This learning is accomplished at the supervisory level, that is, neural
network training for a prediction problem. Thus, the observation agents know the expected
signal behavior. When it is launched in fieldbus (ANN with trained weights), the OA tries to
predict the next signal and compares it to the real signal. A difference in signals indicates a
problem.

5.2 Diagnostic Agents
When a problem (fault) is detected, it must be correctly diagnosed to ensure proper
correction. The diagnostic agent (DA), like an AO, uses neural networks to correctly
diagnose which fault is occurring in the fieldbus. it is necessary identify which problem is
occurring in the process. The DA is based on previous work (Fernandes et al., 2007), and it
identifies the type of fault is occurring in the system. Like other agents, the DA is based on
an ANN. It is implemented at the supervisory level which communicates with the fieldbus
through the OPC client. The neural identification system is defined as a two-step
identification process, signifying the existence of an ANN to evaluate a system output value.
The general scheme of the functioning system is shown in Figure 9. In this case, while the
level system is in execution, a system from the ANNs tries to find its identification using its �ݔ�݇�� inputs. Each time, output level system �ݕ�݇�� is compared to output identification
system �ݕ′�݇��, generating a residue value ���݇� � �݇�ݕ � that is used later in the ��݇�′ݕ
fault isolation/classification system. Then, one system analyzes the residue values and
indicates the occurrence or not of faults. When faults are detected, it indicates which type is
occurring. In Section 6, we show this approach applied in a real example.

5.3 Execution Agents
As soon as the problem is detected by the observation agents, the execution agents change
function block interconnections to allocate an algorithm (ANN) which can fix the problem.
The organization of these blocks determines how the EA solves the problem (algorithm).
The execution agents can act (configure) in different ways to correct the errors. As it was
previously discussed, the implementation of these agents is based on a structure formed by
function blocks.

Fig. 9. - General scheme of FDI system (Fernandes et al., 2007)

A type of EA is illustrated in Figure 10. In this case, the structure formed by the function
blocks contains a neural network-based noise filter. This algorithm (ANN) is able to remove
noise from a measured signal. This structure is explained in Section 6.

Fig. 10. - Noise Filter implemented as a Neural Network in Function Blocks as seen in
SYSCON

The flexibility given by the application layer (represented by the function blocks) in the
Foundation Fieldbus protocol enables different implementations at the field level. The
combining of arithmetic and function characterizer blocks can produce a configuration
similar to a neural network neuron (Silva et al., 2006). Thus, these examples show the variety
of applications generated by different execution agents. For example: if the problem is noise

www.intechopen.com

A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 379

type of problem that is occurring in the fieldbus. As soon as the problem is detected (by the
observation agent), and identified (by the diagnostic agent) from the information repository,
the execution agents decide the best configuration to resolve the problem. The execution
agents are function blocks that is used in the devices. The organization of these blocks
characterizes the way the EA solves the problem (algorithm). At the end, we have an error-
free signal (or an output), for example. In the FBSIMU environment we replace the original
schedule table for one which simulates an ANN function block configuration. A new table
means a new process control. As previously discussed, the implementation of these agents is
based on a structure formed by function blocks. Each function block executes a different
kind of algorithm, and together they are capable of meeting a specific application, such as an
ANN.

5.1 Observation Agents
Observation Agents, launched in a fieldbus, monitor the variable values of a number of
devices. These agents aim to detect measurement anomalies in sensor values or actuator
inaccuracies. Previous information about the system behavior is important to properly
detect and diagnose faults. Thus, automation engineers can associate the faults with signal
patterns. In recent years, research carried out in fault detection and isolation systems (FDI)
has shown procedures that use computer intelligence procedures, such as the Fuzzy Logic
system and Artificial Neural Networks.
In this work the observation agents use an ANN to predict the measured value of a device.
Therefore, the OA must learn how to predict the measured signal behavior before it is
launched in a fieldbus. This learning is accomplished at the supervisory level, that is, neural
network training for a prediction problem. Thus, the observation agents know the expected
signal behavior. When it is launched in fieldbus (ANN with trained weights), the OA tries to
predict the next signal and compares it to the real signal. A difference in signals indicates a
problem.

5.2 Diagnostic Agents
When a problem (fault) is detected, it must be correctly diagnosed to ensure proper
correction. The diagnostic agent (DA), like an AO, uses neural networks to correctly
diagnose which fault is occurring in the fieldbus. it is necessary identify which problem is
occurring in the process. The DA is based on previous work (Fernandes et al., 2007), and it
identifies the type of fault is occurring in the system. Like other agents, the DA is based on
an ANN. It is implemented at the supervisory level which communicates with the fieldbus
through the OPC client. The neural identification system is defined as a two-step
identification process, signifying the existence of an ANN to evaluate a system output value.
The general scheme of the functioning system is shown in Figure 9. In this case, while the
level system is in execution, a system from the ANNs tries to find its identification using its �ݔ�݇�� inputs. Each time, output level system �ݕ�݇�� is compared to output identification
system �ݕ′�݇��, generating a residue value ���݇� � �݇�ݕ � that is used later in the ��݇�′ݕ
fault isolation/classification system. Then, one system analyzes the residue values and
indicates the occurrence or not of faults. When faults are detected, it indicates which type is
occurring. In Section 6, we show this approach applied in a real example.

5.3 Execution Agents
As soon as the problem is detected by the observation agents, the execution agents change
function block interconnections to allocate an algorithm (ANN) which can fix the problem.
The organization of these blocks determines how the EA solves the problem (algorithm).
The execution agents can act (configure) in different ways to correct the errors. As it was
previously discussed, the implementation of these agents is based on a structure formed by
function blocks.

Fig. 9. - General scheme of FDI system (Fernandes et al., 2007)

A type of EA is illustrated in Figure 10. In this case, the structure formed by the function
blocks contains a neural network-based noise filter. This algorithm (ANN) is able to remove
noise from a measured signal. This structure is explained in Section 6.

Fig. 10. - Noise Filter implemented as a Neural Network in Function Blocks as seen in
SYSCON

The flexibility given by the application layer (represented by the function blocks) in the
Foundation Fieldbus protocol enables different implementations at the field level. The
combining of arithmetic and function characterizer blocks can produce a configuration
similar to a neural network neuron (Silva et al., 2006). Thus, these examples show the variety
of applications generated by different execution agents. For example: if the problem is noise

www.intechopen.com

Factory Automation380

interference collected by the sensor, the execution agents combine function blocks to form a
neural network. With training values former acquired, this network can function as a filter
(Costa et al., 2005), decreasing the value measured by the sensor. In the event of a tendency
toward loss of accuracy in the measured values, detected by the observation agents, the EA
can act as a prediction system, anticipating the presumed supervisory faults that may occur.
The EA can also act as a recalibration algorithm in detecting a decalibrated sensor (Cagni et
al., 2005).

6. MultiAgent Architecture Example

6.1 FBSIMU Example
In this example, we show the proposed multiagent architecture which uses the function
blocks configuration exchange approach as it was previously showed. A simulated process
automation was implemented for testing the feasibility of the architecture. The test
environment consists of a simulated fieldbus-based automation system (FBSIMU) and a
prototype agent application. The simulated process is controlled by a AI-PID-AO function
blocks represented in Figure 4.
This environment is used in our example to detect and remove noise. First, the agents
(ANN) undergo a learning process. The Observation Agent is trained to predict a FBSIMU
output at given moment, based on its past outputs, considering that the simulated signal is
noise free. The neural networks used by the Diagnostic Agent are trained to identify a kind
of problem that may occur in the simulated environment. The EA is trained to act as a noise
filter. The information acquired by the agent is stored in the Information Repository and can
be used by other agents, in other situations, if necessary.
When the learning phase is over, the Observation Agent starts monitoring the FBSIMU
output. Indeed, this agent is a prediction ANN. It monitors the output signal and predicts its
corresponding value in the next step.

Fig. 11. - Recurrent Neural Network as Predictor

The type of prediction architecture used in this study is shown in Figure 11. It is a model
with overall refeeding, resulting from a multiple-layer perceptron. The model has a single
input, which is applied to delay line memory with n-units. It has a single output which is
refed from the input of another delay line memory. The contents of these two memories are
used to feed the input layer of the network.
In our test, FBSIMU introduces a simulated noise signal to the signal monitored by the agent
(Figure 12). In certain moment, the output signal starts to exhibit different behavior as it was
predicted. The difference between the measured and predicted signals is considered a
problem by the OA.

Fig. 12. – Output signal with noise in FBSIMU

At this moment, it is necessary identify which problem is occurring in the process. The
diagnostic agent (DA) is responsible for identifying the problem. Like other agents, the DA
is based on an ANN. It is implemented at the supervisory level which communicates with
the fieldbus through the OPC client.
As mentioned in Section 5.3, the DA tries to find its identification using its inputs. Each
time, FBSIMU ���k�� is compared to predicted output ��′�k��, provided by AO, generating a
residue value �r�k� � ��k� � �′�k��. This residue value indicates the occurrence or not of
faults. If it is closer to zero, this indicates no faults. Otherwise, it indicates which type is
occurring. If residue is positive, it indicates a positive noise, if not, it indicates negative
noise. In this particular example, we simplify the detection. The Diagnostic Agent
determines noise presence or not.
In this example, the DA detects positive. This means there is noise in the FBSIMU output. At
this moment, the function block parameters change to allocate the EA as an ANN acting as a

www.intechopen.com

A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 381

interference collected by the sensor, the execution agents combine function blocks to form a
neural network. With training values former acquired, this network can function as a filter
(Costa et al., 2005), decreasing the value measured by the sensor. In the event of a tendency
toward loss of accuracy in the measured values, detected by the observation agents, the EA
can act as a prediction system, anticipating the presumed supervisory faults that may occur.
The EA can also act as a recalibration algorithm in detecting a decalibrated sensor (Cagni et
al., 2005).

6. MultiAgent Architecture Example

6.1 FBSIMU Example
In this example, we show the proposed multiagent architecture which uses the function
blocks configuration exchange approach as it was previously showed. A simulated process
automation was implemented for testing the feasibility of the architecture. The test
environment consists of a simulated fieldbus-based automation system (FBSIMU) and a
prototype agent application. The simulated process is controlled by a AI-PID-AO function
blocks represented in Figure 4.
This environment is used in our example to detect and remove noise. First, the agents
(ANN) undergo a learning process. The Observation Agent is trained to predict a FBSIMU
output at given moment, based on its past outputs, considering that the simulated signal is
noise free. The neural networks used by the Diagnostic Agent are trained to identify a kind
of problem that may occur in the simulated environment. The EA is trained to act as a noise
filter. The information acquired by the agent is stored in the Information Repository and can
be used by other agents, in other situations, if necessary.
When the learning phase is over, the Observation Agent starts monitoring the FBSIMU
output. Indeed, this agent is a prediction ANN. It monitors the output signal and predicts its
corresponding value in the next step.

Fig. 11. - Recurrent Neural Network as Predictor

The type of prediction architecture used in this study is shown in Figure 11. It is a model
with overall refeeding, resulting from a multiple-layer perceptron. The model has a single
input, which is applied to delay line memory with n-units. It has a single output which is
refed from the input of another delay line memory. The contents of these two memories are
used to feed the input layer of the network.
In our test, FBSIMU introduces a simulated noise signal to the signal monitored by the agent
(Figure 12). In certain moment, the output signal starts to exhibit different behavior as it was
predicted. The difference between the measured and predicted signals is considered a
problem by the OA.

Fig. 12. – Output signal with noise in FBSIMU

At this moment, it is necessary identify which problem is occurring in the process. The
diagnostic agent (DA) is responsible for identifying the problem. Like other agents, the DA
is based on an ANN. It is implemented at the supervisory level which communicates with
the fieldbus through the OPC client.
As mentioned in Section 5.3, the DA tries to find its identification using its inputs. Each
time, FBSIMU ���k�� is compared to predicted output ��′�k��, provided by AO, generating a
residue value �r�k� � ��k� � �′�k��. This residue value indicates the occurrence or not of
faults. If it is closer to zero, this indicates no faults. Otherwise, it indicates which type is
occurring. If residue is positive, it indicates a positive noise, if not, it indicates negative
noise. In this particular example, we simplify the detection. The Diagnostic Agent
determines noise presence or not.
In this example, the DA detects positive. This means there is noise in the FBSIMU output. At
this moment, the function block parameters change to allocate the EA as an ANN acting as a

www.intechopen.com

Factory Automation382

noise filter, trained recursively until reasonable noise extraction is achieved. In the FBSIMU
the EA exchanges the schedule table (Figure 13). The normal function block schedule is
replaced by a new table which represents the EA allocation (trained ANN to remove noise).
This function block allocation (EA) continues until the problem is solved (removing noise),
then, the function block parameters (schedule table) change again to allocate the normal
control and OA, and it restarts tracking the FBSIMU output.

6.2 Real Environment Example
In this second example, we show the proposed multiagent architecture which uses the
function blocks configuration exchange approach, as it was previously showed. A prototype
version of process automation was implemented for research purposes, and a laboratory test
environment was used for testing the feasibility of the architecture. The test environment
consisted of a simulated test, a fieldbus-based automation system and a prototype agent
application. The test process contained parts that were similar to industrial processes. This
environment was presented for the first time in our previous work (Machado et al., 2008a),
and the results were showed in Machado et al. (2008b).

Fig. 13. – Schedule Table Exchange

As we can see in Figure 14, the plant level is composed of two cascading tanks. The water
that flows out from the small hole of tank 1 falls into tank 2. This tank also has a small hole
through which the water falls directly to the reservoir. A pump impels the water from the
reservoir to tank 1. In each tank there is a Foundation Fieldbus pressure sensor, used to
measure the corresponding levels connected to the Fieldbus network. Besides the pressure
sensors, an FF/ loop of current from a 4 to 20 mA converter is used to send signals to the
water pump. The industrial network Foundation Fieldbus is connected to a supervisory
computer through Ethernet network interfaces. All the device configuration processes are
carried out from this computer, and later supervised. This system transmits signals to the
pump input to allow for water injection (or not) in tank 1 and to control the water level in
both tanks. There is also a PC (OPC client) that sends a simulated noise signal (red dotted
line) to a device.

Like previous FBSIMU example, this environment is used by agents to detect and remove
noise. The Observation Agent is trained to predict a sensor output at given moment, based
on its past outputs, considering that the signal is noise free. The neural networks used by the
Diagnostic Agent is trained to identify a kind of problem that may occurs in the tanks. The
EA is trained to act as a noise filter. When the learning phase is over, the Observation Agent
starts monitoring the field device, which is allocated in the function blocks. This agent is
allocated as a prediction ANN in field devices. It monitors the output signal and predicts its
corresponding value in the next step. The ANN model for prediction is the same showed in
Section 6.1 (Figure 11).
In our test, a PC (OPC client) sends a simulated noise signal to the device monitored by the
agent. In Figure 15 A, we can observe both real and predicted signals. In half of samples, the
sensor output signal starts to exhibit different behavior from that predicted (noise added by
OPC Client). The difference between the compared signals is considered a problem by the
OA. This difference can be seen in Figure 15 B.

Fig. 14. – Laboratory environment

At this moment, the Diagnostic Agent (DA) is responsible for identifying a problem and
selecting the best function block allocation to solve it. The DA is based on the previous
described work (Section 6.1) which identifies what kind of fault is occurring in the tanks
system. The DA is implemented in supervisory level and communicates with the fieldbus

www.intechopen.com

A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 383

noise filter, trained recursively until reasonable noise extraction is achieved. In the FBSIMU
the EA exchanges the schedule table (Figure 13). The normal function block schedule is
replaced by a new table which represents the EA allocation (trained ANN to remove noise).
This function block allocation (EA) continues until the problem is solved (removing noise),
then, the function block parameters (schedule table) change again to allocate the normal
control and OA, and it restarts tracking the FBSIMU output.

6.2 Real Environment Example
In this second example, we show the proposed multiagent architecture which uses the
function blocks configuration exchange approach, as it was previously showed. A prototype
version of process automation was implemented for research purposes, and a laboratory test
environment was used for testing the feasibility of the architecture. The test environment
consisted of a simulated test, a fieldbus-based automation system and a prototype agent
application. The test process contained parts that were similar to industrial processes. This
environment was presented for the first time in our previous work (Machado et al., 2008a),
and the results were showed in Machado et al. (2008b).

Fig. 13. – Schedule Table Exchange

As we can see in Figure 14, the plant level is composed of two cascading tanks. The water
that flows out from the small hole of tank 1 falls into tank 2. This tank also has a small hole
through which the water falls directly to the reservoir. A pump impels the water from the
reservoir to tank 1. In each tank there is a Foundation Fieldbus pressure sensor, used to
measure the corresponding levels connected to the Fieldbus network. Besides the pressure
sensors, an FF/ loop of current from a 4 to 20 mA converter is used to send signals to the
water pump. The industrial network Foundation Fieldbus is connected to a supervisory
computer through Ethernet network interfaces. All the device configuration processes are
carried out from this computer, and later supervised. This system transmits signals to the
pump input to allow for water injection (or not) in tank 1 and to control the water level in
both tanks. There is also a PC (OPC client) that sends a simulated noise signal (red dotted
line) to a device.

Like previous FBSIMU example, this environment is used by agents to detect and remove
noise. The Observation Agent is trained to predict a sensor output at given moment, based
on its past outputs, considering that the signal is noise free. The neural networks used by the
Diagnostic Agent is trained to identify a kind of problem that may occurs in the tanks. The
EA is trained to act as a noise filter. When the learning phase is over, the Observation Agent
starts monitoring the field device, which is allocated in the function blocks. This agent is
allocated as a prediction ANN in field devices. It monitors the output signal and predicts its
corresponding value in the next step. The ANN model for prediction is the same showed in
Section 6.1 (Figure 11).
In our test, a PC (OPC client) sends a simulated noise signal to the device monitored by the
agent. In Figure 15 A, we can observe both real and predicted signals. In half of samples, the
sensor output signal starts to exhibit different behavior from that predicted (noise added by
OPC Client). The difference between the compared signals is considered a problem by the
OA. This difference can be seen in Figure 15 B.

Fig. 14. – Laboratory environment

At this moment, the Diagnostic Agent (DA) is responsible for identifying a problem and
selecting the best function block allocation to solve it. The DA is based on the previous
described work (Section 6.1) which identifies what kind of fault is occurring in the tanks
system. The DA is implemented in supervisory level and communicates with the fieldbus

www.intechopen.com

Factory Automation384

through an OPC client. The neural identification system was defined as identification in two
steps, which means the existence of an ANN to evaluate the level of tank 1, and another to
evaluate the level of tank 2.
With identification in two steps, it is possible to get two residues: r�1� and r�2�, where r�1� � ��1� � �′�1� and r�2� � ��2� � �′�2�. ��1� is the real measured signal, and �′�1� is the
predicted signal. In this case, an ANN, named ANN 3, is trained by receiving as input data
the values from ��1� and ��2�. The networks output corresponds to a vector of � � 1
numbers, numbers, where n is a quantity of faults that the network is able to classify.
Considering the two residues to detect and isolate the faults, the FDI system could detect in
maximum 8 different faults, in which the situation ��1� � � and ��2� � � would be a normal
behavior of the system. In view of the test, we managed to foresee only six types of faults
with joint distinct residues.

Fig. 15. – Real and Predict Signals

Table 2 shows the five types of faults selected for the result analysis, where (+) represents
the positive residue, (-), the negative residue, and (0), the equal residue or very close to zero.
In this example, the DA detects positive residue for ��1� and null value for ��2�. This means
there is a noise in tank 1 output sensor. At this moment, the function block parameters
change to allocate the EA as an ANN, acting as a noise filter, once it was trained recursively
until a reasonable noise extraction.

Fault Description R(1) R(2)
 Absence of fault 0 0
1 New hole in tank 1. No fall of water in tank 2 - 0
2 Decrease of hole in tank 1 + -
3 Decrease of hole in tank 2 - +
4 Increase of hole in tank 2 0 -
5 Read error in Sensor 1. Positive

Bias. (Noise Added) + 0

Table 2 – Dispositions of the 6 fault residues

The EA (acting as a filter) acts immediately after noise detection. This function block
allocation (EA) continues until the problem is solved, then, the function block parameters
change again to allocate the OA and restart device tracking. It is important to emphasize
that for experimental purposes the function block structure is replaced by another when the
agents are exchanged (e.g., Observation Agents to Execution Agents). If the number of
devices is substantial, the architecture can allocate many OA and EA at the same time,
monitoring and acting on different devices and fault situations.

7. Conclusions

Nowadays, problems in the field devices are detected by supervisors through alarm
triggers. From the proposed SMA architecture, the agents are able to detect and apply
intelligent algorithms to solve these problems without user intervention. This article shows
multiagent architecture which is able to detect and correct an undesired noise in a
Foundation Fieldbus device and simulated environment (FBSIMU) by implementing
function block intelligent algorithms. The intelligent algorithms use Artificial Neural
Network (ANN) to find out about the noise and remove it. The agents encapsulate these
ANNs and, using a LABVIEW-Fieldbus layer, can directely interact with field devices
through an OPC client. In this approach the algorithm is implemented in the device function
blocks providing a solution at fieldbus level.
This chapter provides two innovations in fieldbus research mentioned in our previous
works. First, we have a dynamic function block interconnection exchange that allows the
allocation of different neural network structures at fieldbus level. Accordingly, we have
several control strategies (agents) allocated in field devices, which can monitor, detect, and
correct a number of faults. The second innovation is the reusing of function block
configurations. The same ANN structure can be used in different situations. That is, the
same agent can act in other processes. The use of Information Repository allows us to share
the ANN structure with other agents.

www.intechopen.com

A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 385

through an OPC client. The neural identification system was defined as identification in two
steps, which means the existence of an ANN to evaluate the level of tank 1, and another to
evaluate the level of tank 2.
With identification in two steps, it is possible to get two residues: r�1� and r�2�, where r�1� � ��1� � �′�1� and r�2� � ��2� � �′�2�. ��1� is the real measured signal, and �′�1� is the
predicted signal. In this case, an ANN, named ANN 3, is trained by receiving as input data
the values from ��1� and ��2�. The networks output corresponds to a vector of � � 1
numbers, numbers, where n is a quantity of faults that the network is able to classify.
Considering the two residues to detect and isolate the faults, the FDI system could detect in
maximum 8 different faults, in which the situation ��1� � � and ��2� � � would be a normal
behavior of the system. In view of the test, we managed to foresee only six types of faults
with joint distinct residues.

Fig. 15. – Real and Predict Signals

Table 2 shows the five types of faults selected for the result analysis, where (+) represents
the positive residue, (-), the negative residue, and (0), the equal residue or very close to zero.
In this example, the DA detects positive residue for ��1� and null value for ��2�. This means
there is a noise in tank 1 output sensor. At this moment, the function block parameters
change to allocate the EA as an ANN, acting as a noise filter, once it was trained recursively
until a reasonable noise extraction.

Fault Description R(1) R(2)
 Absence of fault 0 0
1 New hole in tank 1. No fall of water in tank 2 - 0
2 Decrease of hole in tank 1 + -
3 Decrease of hole in tank 2 - +
4 Increase of hole in tank 2 0 -
5 Read error in Sensor 1. Positive

Bias. (Noise Added) + 0

Table 2 – Dispositions of the 6 fault residues

The EA (acting as a filter) acts immediately after noise detection. This function block
allocation (EA) continues until the problem is solved, then, the function block parameters
change again to allocate the OA and restart device tracking. It is important to emphasize
that for experimental purposes the function block structure is replaced by another when the
agents are exchanged (e.g., Observation Agents to Execution Agents). If the number of
devices is substantial, the architecture can allocate many OA and EA at the same time,
monitoring and acting on different devices and fault situations.

7. Conclusions

Nowadays, problems in the field devices are detected by supervisors through alarm
triggers. From the proposed SMA architecture, the agents are able to detect and apply
intelligent algorithms to solve these problems without user intervention. This article shows
multiagent architecture which is able to detect and correct an undesired noise in a
Foundation Fieldbus device and simulated environment (FBSIMU) by implementing
function block intelligent algorithms. The intelligent algorithms use Artificial Neural
Network (ANN) to find out about the noise and remove it. The agents encapsulate these
ANNs and, using a LABVIEW-Fieldbus layer, can directely interact with field devices
through an OPC client. In this approach the algorithm is implemented in the device function
blocks providing a solution at fieldbus level.
This chapter provides two innovations in fieldbus research mentioned in our previous
works. First, we have a dynamic function block interconnection exchange that allows the
allocation of different neural network structures at fieldbus level. Accordingly, we have
several control strategies (agents) allocated in field devices, which can monitor, detect, and
correct a number of faults. The second innovation is the reusing of function block
configurations. The same ANN structure can be used in different situations. That is, the
same agent can act in other processes. The use of Information Repository allows us to share
the ANN structure with other agents.

www.intechopen.com

Factory Automation386

However, the main novelty in this chapter is the use of our approach in a function block
simulated environment (FBSIMU). Thus, we can compare two types of function block
intelligent algorithm implementation. The first one, in FBSIMU, is able to exchange all
function blocks configuration in execution time. This approach is not permitted in real
fieldbus environment. In this (second) case, we opt for a function blocks interconnections
exchange. So, we can observe, despite second approach is well suited for a real Foundation
Fieldbus environment, the full function block allocation and deallocation is more
appropriate for exchange control algorithms in fieldbus devices function blocks. For safety
reasons and respecting the industries patterns, the real time function block exchange was
not implemented by foundation fieldbus manufacturers. We believe that our approach can
supply this gap.

8. References

Albert , M.; Längle, T.; Wörn, H. (2003). Generic Diagnostic Functionalities Encapsulated
within a Software Agent. IAR-ICD/IFATIS/ MAGIC Workshop on Advanced Control
and Diagnosis.

Brandão, D. (2005). Ferramenta de simulação para projeto, avaliação e ensino de redes
fieldbus, Doctorate thesis. Escola de Engenharia de São Carlos, USP.

Brennan, R. W.; Zhang, X.; Xu, Y.; Norrie, D. H. (2002). A reconfigurable concurrent function
block model and its implementation in real-time java, Integr. Comput.-Aided Eng.,
vol. 9, no. 3, pp. 263–279, 2002.

Cagni, E.; Pereira, D.; Pereira, A.; Doria Neto, A. D.; de Melo, J. D.; Guedes, L. A. (2005).The
implementation of the self-calibration, self-compensation and self-validation
algorithms for foundation fieldbus sensors are presented using standard function
blocks, IEEE International Conference on Computational Intelligence for Measurement
Systems and Applications, pp. 220–225.

Cavalieri, S.; Di Stefano, A.; Mirabella O. (1993). Optimization of acyclic bandwidth
allocation exploiting the priority mechanism in the fieldbus data link layer. IEEE
Transactions on Industrial Electronics, pp. 297–306.

Chen, J.; Wang, Z.; Sun, Y. (2002). How to improve control system performance using FF
function blocks. In: IEEE international conference on control application. Glasgow,
Scotland, pp.1022-1026.

Costa, I.; Doria Neto, A. D.; de Melo, J. D.; de Oliveira J. (2005). Embedded FASTICA
algorithm applied to the sensor noise extraction problem of foundation fieldbus
network, Neural Networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE International
Joint Conference on, vol. 4, pp. 2217–2221.

Fei-Yue, W.; Haitao, Z.; Yunfeng, A. (2005). An OSGi and agent based control system
architecture for smart home, Proc. Networking, Sensing and Control, pp. 13–18.

Feng, Q.; Bratukin, A.; Treytl, A.; Sauter, T. (2007). A flexible multi-agent system architecture
for plant automation, in 5th IEEE International Conference on Industrial Informatics
(INDIN 2007) Industrial Informatics, IEEE Transactions on, pp. 1047–1052.

Fernandes, R. G.; Silva, D. R.; Guedes, L. A.; Doria Neto, A. D. (2007). An implementation of
a fault detection and isolation system on foundation fieldbus environment.
International Journal of Factory Automation, Robotics and Soft Computing, vol. 3, pp.
130–136.

Ferreiro, R.; Vidal J.; Pardo, C.; Coego, J. (1997) Fieldbus: Preliminary design approach to
optimal network management. In: IEEE international workshop on factory
communication systems, pp. 321 – 325.

Fieldbus Foundation. (1999b). Foundation specification function block application process, Part 3:
FF-892 – FS1.4. Austin, USA.

Fieldbus Foundation. (1999c). Foundation specification function block application process, Part 5:
FF-894 – DPS0.95. Austin, USA.

Fieldbus Foundation. FF-890-1.3. (1999a). Foundation specification function block application
process, Part 1. Austin, USA.

Haykin, S. (1999). Neural Networks - A Comprehensive Foundation. Prentice Hall.
Hong, S.H.; Ko, S.J. (2001) A simulation study on the performance analysis of the data link

layer of IEC/ISA fieldbus. SIMULATION, pp. 109–18.
International Electrotechnical Comission. (2000). IEC 61158: Digital data communications for

measurement and control – fieldbus for use in industrial control systems. Switzerland.
CD- ROM.

International Electrotechnical Comission. (2003). IEC 61784: Digital data communications for
measurement and control - Part 1: Profile sets for continuous and discrete manufacturing
relative to fieldbus use in industrial control systems. Switzerland. CD-ROM. 2003.

International organization for standardization. (2009). ISO/IEC 7498-1: Information
technology – open systems interconnection – basic referencemodel: The basic
model. Switzerland. CD-ROM.

Jennings, N.R.; Bussmann, S. (2003) Agent-based control systems: Why are they suited to
engineering complex systems?, in IEEE Control Systems Magazine, v. 23, Issue 3, pp.
61-73.

Ljung, L. (1999). System identification- theory for the user. Englewood Cliffs: Prentice Hall.
Machado, V.; Doria Neto, A. D.; de Melo, J. D.; Ramalho, L.; Medeiros, J. (2008a). Multiagent

architecture for function blocks: Intelligent configuration strategies allocation, in
Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference on, 2008,
pp. 1377–1382.

Machado, V.; Doria Neto, A. D.; de Melo, J. D.; Ramalho, L.; Medeiros, J. (2008b). A neural
network multiagent architecture applied to fieldbus intelligent control. in Emerging
Technologies and Factory Automation, 2008. ETFA 2008. IEEE International Conference
on. IEEE, pp. 567–574.

Petalidis, N.; Gill, D. S. (1998) The formal specification of the fieldbus foundation link
scheduler in E-LOTOS. In: International conference on formal engineering methods.

Pinotti Jr., M.; Brandão, D. (2005). A flexible fieldbus simulation platform for distributed
control systems laboratory courses. The International Journal of Engineering Education,
pp. 21(6):1050–8. Dublin.

Pirttioja, T.; Pakonen, A.; Seilonen, I.; Halme, A.; Koskinen, K. (2005). Multi-agent based
information access services for condition monitoring in process automation, in Proc.
INDIN '05, 3rd IEEE International Conference on Industrial Informatics, pp. 240 – 245.

Polaków, G.; and Metzger, M. (2007). Agent-Based Approach for LabVIEW Developed
Distributed Control Systems. In Proceedings of the 1st KES international Symposium on
Agent and Multi-Agent Systems: Technologies and Applications. N. T. Nguyen, A.
Grzech, R. J. Howlett, and L. C. Jain, Eds. Lecture Notes In Artificial Intelligence,
vol. 4496. Springer-Verlag, Berlin, Heidelberg, pp. 21-30.

www.intechopen.com

A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 387

However, the main novelty in this chapter is the use of our approach in a function block
simulated environment (FBSIMU). Thus, we can compare two types of function block
intelligent algorithm implementation. The first one, in FBSIMU, is able to exchange all
function blocks configuration in execution time. This approach is not permitted in real
fieldbus environment. In this (second) case, we opt for a function blocks interconnections
exchange. So, we can observe, despite second approach is well suited for a real Foundation
Fieldbus environment, the full function block allocation and deallocation is more
appropriate for exchange control algorithms in fieldbus devices function blocks. For safety
reasons and respecting the industries patterns, the real time function block exchange was
not implemented by foundation fieldbus manufacturers. We believe that our approach can
supply this gap.

8. References

Albert , M.; Längle, T.; Wörn, H. (2003). Generic Diagnostic Functionalities Encapsulated
within a Software Agent. IAR-ICD/IFATIS/ MAGIC Workshop on Advanced Control
and Diagnosis.

Brandão, D. (2005). Ferramenta de simulação para projeto, avaliação e ensino de redes
fieldbus, Doctorate thesis. Escola de Engenharia de São Carlos, USP.

Brennan, R. W.; Zhang, X.; Xu, Y.; Norrie, D. H. (2002). A reconfigurable concurrent function
block model and its implementation in real-time java, Integr. Comput.-Aided Eng.,
vol. 9, no. 3, pp. 263–279, 2002.

Cagni, E.; Pereira, D.; Pereira, A.; Doria Neto, A. D.; de Melo, J. D.; Guedes, L. A. (2005).The
implementation of the self-calibration, self-compensation and self-validation
algorithms for foundation fieldbus sensors are presented using standard function
blocks, IEEE International Conference on Computational Intelligence for Measurement
Systems and Applications, pp. 220–225.

Cavalieri, S.; Di Stefano, A.; Mirabella O. (1993). Optimization of acyclic bandwidth
allocation exploiting the priority mechanism in the fieldbus data link layer. IEEE
Transactions on Industrial Electronics, pp. 297–306.

Chen, J.; Wang, Z.; Sun, Y. (2002). How to improve control system performance using FF
function blocks. In: IEEE international conference on control application. Glasgow,
Scotland, pp.1022-1026.

Costa, I.; Doria Neto, A. D.; de Melo, J. D.; de Oliveira J. (2005). Embedded FASTICA
algorithm applied to the sensor noise extraction problem of foundation fieldbus
network, Neural Networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE International
Joint Conference on, vol. 4, pp. 2217–2221.

Fei-Yue, W.; Haitao, Z.; Yunfeng, A. (2005). An OSGi and agent based control system
architecture for smart home, Proc. Networking, Sensing and Control, pp. 13–18.

Feng, Q.; Bratukin, A.; Treytl, A.; Sauter, T. (2007). A flexible multi-agent system architecture
for plant automation, in 5th IEEE International Conference on Industrial Informatics
(INDIN 2007) Industrial Informatics, IEEE Transactions on, pp. 1047–1052.

Fernandes, R. G.; Silva, D. R.; Guedes, L. A.; Doria Neto, A. D. (2007). An implementation of
a fault detection and isolation system on foundation fieldbus environment.
International Journal of Factory Automation, Robotics and Soft Computing, vol. 3, pp.
130–136.

Ferreiro, R.; Vidal J.; Pardo, C.; Coego, J. (1997) Fieldbus: Preliminary design approach to
optimal network management. In: IEEE international workshop on factory
communication systems, pp. 321 – 325.

Fieldbus Foundation. (1999b). Foundation specification function block application process, Part 3:
FF-892 – FS1.4. Austin, USA.

Fieldbus Foundation. (1999c). Foundation specification function block application process, Part 5:
FF-894 – DPS0.95. Austin, USA.

Fieldbus Foundation. FF-890-1.3. (1999a). Foundation specification function block application
process, Part 1. Austin, USA.

Haykin, S. (1999). Neural Networks - A Comprehensive Foundation. Prentice Hall.
Hong, S.H.; Ko, S.J. (2001) A simulation study on the performance analysis of the data link

layer of IEC/ISA fieldbus. SIMULATION, pp. 109–18.
International Electrotechnical Comission. (2000). IEC 61158: Digital data communications for

measurement and control – fieldbus for use in industrial control systems. Switzerland.
CD- ROM.

International Electrotechnical Comission. (2003). IEC 61784: Digital data communications for
measurement and control - Part 1: Profile sets for continuous and discrete manufacturing
relative to fieldbus use in industrial control systems. Switzerland. CD-ROM. 2003.

International organization for standardization. (2009). ISO/IEC 7498-1: Information
technology – open systems interconnection – basic referencemodel: The basic
model. Switzerland. CD-ROM.

Jennings, N.R.; Bussmann, S. (2003) Agent-based control systems: Why are they suited to
engineering complex systems?, in IEEE Control Systems Magazine, v. 23, Issue 3, pp.
61-73.

Ljung, L. (1999). System identification- theory for the user. Englewood Cliffs: Prentice Hall.
Machado, V.; Doria Neto, A. D.; de Melo, J. D.; Ramalho, L.; Medeiros, J. (2008a). Multiagent

architecture for function blocks: Intelligent configuration strategies allocation, in
Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference on, 2008,
pp. 1377–1382.

Machado, V.; Doria Neto, A. D.; de Melo, J. D.; Ramalho, L.; Medeiros, J. (2008b). A neural
network multiagent architecture applied to fieldbus intelligent control. in Emerging
Technologies and Factory Automation, 2008. ETFA 2008. IEEE International Conference
on. IEEE, pp. 567–574.

Petalidis, N.; Gill, D. S. (1998) The formal specification of the fieldbus foundation link
scheduler in E-LOTOS. In: International conference on formal engineering methods.

Pinotti Jr., M.; Brandão, D. (2005). A flexible fieldbus simulation platform for distributed
control systems laboratory courses. The International Journal of Engineering Education,
pp. 21(6):1050–8. Dublin.

Pirttioja, T.; Pakonen, A.; Seilonen, I.; Halme, A.; Koskinen, K. (2005). Multi-agent based
information access services for condition monitoring in process automation, in Proc.
INDIN '05, 3rd IEEE International Conference on Industrial Informatics, pp. 240 – 245.

Polaków, G.; and Metzger, M. (2007). Agent-Based Approach for LabVIEW Developed
Distributed Control Systems. In Proceedings of the 1st KES international Symposium on
Agent and Multi-Agent Systems: Technologies and Applications. N. T. Nguyen, A.
Grzech, R. J. Howlett, and L. C. Jain, Eds. Lecture Notes In Artificial Intelligence,
vol. 4496. Springer-Verlag, Berlin, Heidelberg, pp. 21-30.

www.intechopen.com

Factory Automation388

Pop, T.; Eles, P.; Peng, Z. (2002). Holistic scheduling and analysis of mixed time/event-
triggered distributed embedded systems. In: 10th international symposium on
Hardware/software codesign. pp. 187 – 192.

Russell, S.; Norvig, P. (2003) Artificial Intelligence: A Modern Approach, 2nd ed. prenticeort:
prentice.

Schoop, R.; Colombo, A.W.; Suessmann, B.; Neubert, R. (2002). Industrial experiences,
trends and future requirements on agent-based intelligent automation, in Proc.
IECON 02, 28th IEEE Annual Conference of the Industrial Electronics Society, pp. 2978–
2983, vol.4.

Seilonen, I. (2006) An extended process automation system: An approach based on a multi-
agent system. Ph.D. dissertation, Helsinki University of Technology, Espoo, Finland.

Seilonen, I.; Appelqvist, P.; Koskinen, K. (2002a). Agent-based approach for faulttolerance in
process automation systems, in Proceedings of the 3rd International Symposium on
Robotics and Automation (ISRA 2002).

Seilonen, I.; Pirttioja T.; Appelqvist, P. (2002b). Agent technology and process automation,
pp. 31–35.

Silva, D.; Guedes L. A.; Doria Neto, A. D.; de Melo, J. D. (2006) “Neural networks
implementation in foundation fieldbus environment: A case study in neural
control”, International Journal of Factory Automation, Robotics and Soft Computing, pp.
48–54.

Taylor, J. H.; Sayda A. (2005). An Intelligent Architecture for Integrated Control and Asset
Management for Industrial Processes, in Proc. IEEE International Symposium on
Intelligent Control, Limassol, Cyprus, pp. 27-29.

Theiss, S.; Vasyutynskyy, V.; Kabitzsch, K., (2008). AMES - a resource-efficient platform for
industrial agents, Factory Communication Systems, 2008. WFCS 2008. IEEE
International Workshop on , pp.405-413, 21-23.

Wang, Z.; Yue, Z.; Chen, J.; Song, Y.; Sun, Y. Realtime characteristic of FF like centralized
control fieldbus and it’s state-of-art. In: IEEE international symposium on industrial
electronics. 2002.

Weyns, D.; Holvoet T. (2007). Architectural design of a situated multiagent system for
controlling automatic guided vehicles, International Journal on Agent Oriented
Software Engineering, vol. 1, no. 4, pp. 1–39.

Weyns, D.; Schelfthout, K.; Holvoet, T.; Lefever, T.; (2005). “Decentralized control of e’gv
transportation systems,” in Autonomous Agents and Multiagent Systems, pp. 67–
74. [Online]. Available: citeseer.ist.psu.edu/weyns05decentralized.html

www.intechopen.com

Factory Automation

Edited by Javier Silvestre-Blanes

ISBN 978-953-307-024-7

Hard cover, 602 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Factory automation has evolved significantly in the last few decades, and is today a complex, interdisciplinary,

scientific area. In this book a selection of papers on topics related to factory automation is presented, covering

a broad spectrum, so that the reader may become familiar with the various fields, and also study them in more

depth where required. Within various chapters in this book, special attention is given to distributed applications

and their use of networks, since it is one of the most relevant subjects in the evolution of factory automation.

Different Medium Access Control and networks are analyzed, while Ethernet and Wireless networks are looked

at in more detail, since they are among the hottest topics in recent research. Another important subject is

everything concerning the increase in the complexity of factory automation, and the need for flexibility and

interoperability. Finally the use of multi-agent systems, advanced control, formal methods, or the application in

this field of RFID, are additional examples of the ideas and disciplines that experts around the world have

analyzed in their work.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Vinicius Ponte Machado, Dennis Brandao, Adriao Duarte Doria Neto and Jorge Dantas de Melo (2010). A

Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks, Factory Automation, Javier

Silvestre-Blanes (Ed.), ISBN: 978-953-307-024-7, InTech, Available from:

http://www.intechopen.com/books/factory-automation/a-multiagent-architecture-based-in-afoundation-fieldbus-

network-function-blocks

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

