
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

16

User Interface for
Automatic Service Composition

Incheon Paik
 University of Aizu

Aizu-Wakamatsu City, Fukushima,
Japan

1. Introduction

Service-oriented computing provides an evolving paradigm for flexible and scalable

applications of open systems. Web services are already providing useful application

programmers’ interfaces (APIs) for open systems on the Internet and, thanks to the semantic

Web, are evolving into the rudiments of an automatic development environment for agents.

To further develop this environment, automatic service composition (ASC) aims to create

new value-added services from existing services, resulting in more capable and novel

services for users.

Consider an ASC example. If a user is planning a trip from Aizu (a city in Japan) to San
Francisco for an international conference, the user needs to find a transportation sequence
from the departure location to the arrival location, a hotel, and forms of entertainment.
Then, reservations and payment will be made. Manually, this takes time and effort. ASC can
achieve it dynamically and automatically, with minimal human effort and interaction.
ASC requires several stages, namely finding a workflow to fulfill the user’s goal, locating

service instances for the workflow, selecting services to satisfy nonfunctional properties

(NFPs), and executing the selected services. When a user gives a request to the composer,

the request has to be understood by the composer, and the composition process started. If

the composition completes after receiving the request from the user, only one interaction

(inputting the user’s goal) exists. However, there are many cases where the user needs to

interact further with the composer. This interaction can happen at each stage or just at the

start and end of the composition.

The composers (or agents) are computer-based, and are displayed in the form of user
interfaces (UIs). The UIs enable human users to communicate with composers. Users supply
a request to the composer via the UI that comprises a functional requirement (goal) and
nonfunctional requirements such as preferences, constraints, or quality of service (QoS)
issues. Usually, the whole composition does not finish without interaction with the user.
The user needs to respond to questions from the composer for interim decisions to be used
in the composition. The UI is important as the gateway through which the composer
receives several requests from the external human user. Therefore, those parts that involve
communication between human users and the composer will be defined together with the
ASC architecture. The necessity for, and the contents of, the communications between them

Source: User Interfaces, Book edited by: Rita Mátrai,
 ISBN 978-953-307-084-1, pp. 270, May 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 User Interfaces

256

should also be considered in detail. The design of the ontology for data and workflow of the
UIs will be explained, and examples of UI implantation will be introduced.

2. ASC

ASC usually involves four stages (Claro et al., 2006), namely 1) planning a workflow of
individual service types, 2) locating services from a service registry (i.e., finding service
instances), 3) selecting the best candidate services for deployment and execution by using
NFPs, and 4) executing the selected services (Fig. 1). If an exception occurs during execution,
the planning or selection might have to be repeated to satisfy the composition goal (Shi et
al., 2004), (Claro et al., 2006). Each stage can be ranked and overridden for the best service
execution result (Agarwal et al., 2008). Some stages can be merged according to the domain,
problem, and various composition conditions (Lecue et al., 2007), (Lecue & Delteil, 2007),
(Kona & Gupta, 2008), (Oh et al., 2008).

P
la

n
n

in
g

D
is

c
o

v
e

ry

S
e

le
c

ti
o

n
 &

O
p

ti
m

iz
a

ti
o

n

E
x

e
c

u
ti

o
n

Replanning

Rechoosing

Request

(Goal)

U
s
e
r

Fig. 1. Stages of ASC

2.1 The four-stage composition architecture

1. Planning Stage
The planning stage generates a finite sequence of Web services (we call it the abstract
workflow). The result is an execution order of tasks to fulfill the functionality of the
composition goal. The decision process chooses a finite sequence of Web services from a
service registry via its own decision approach.
In the planning stage, firstly, the definition of the problem space should be considered. The
elements of the composition problem space are a set of Web services with a set of initial
input parameters and desired output parameters. The elements can be transformed into a
state-space model within which a planner can work. In the state-space model for service
composition, the states are usually a collection of parameters when the planner has no
additional knowledge or planning information, as described in (Oh et al., 2008), (Kona &
Gupta, 2008).
The second issue is a decision about the sequence of services. To automate the finding of a
service sequence for an abstract workflow, several planning methods have been used, such
as hierarchical task networks (HTNs), finite state machines, constraint programming, and

www.intechopen.com

User Interface for Automatic Service Composition

257

Petri nets (Narayanan & McIlraith, 2002), (Nau et al., 2004). There have been arguments
about which of planning and constraint programming is the better method (Nareyek et al.,
2005).
The third issue is the type of abstract workflow. There are several patterns for workflows.
They can be described as a simple sequence of tasks or a directed acyclic graph using a Petri
net, a workflow language, a services composition framework such as the semantic Web
ontology language (OWL-S) or the Web service modeling ontology (WSMO), a business
process execution language (BPEL) (Andrews et al., 2003), a Web service choreography
interface (Arkin et al., 2002), etc.
2. Discovery Stage
The candidate services for the task created in the planning stage are found in the discovery
stage. In general, this stage finds services matching service advertisements and service
requests. The discovery process comprises preprocessing of service requests, matchmaking,
and postprocessing of discovery results. The most important function, matchmaking,
discovers the best candidates for matches between the service advertisements and requests.
There are several methods for matchmaking of services, based on keywords, tables,
concepts, or ontologies (Paolucci & Sycara, 2002). To achieve better performance, several
aspects are considered, including services representation for functionality, context
information, definition of joint knowledge between service providers and service requestors,
reasoning behind the matching operation, and other methods that decide the uncertainty of
the matching such as text mining or statistical methods (Klusch & Sycara, 2006).
3. Selection and Optimization Stage
With the increasing number of services and better performance of services discovery, there
may be many candidate services for the tasks identified in the planning stage. The selection
and optimization stage selects an optimal set of candidate service instances to fulfill the
NFPs. The main issues of this stage are the modeling of NFPs, the matrix of service instances
and tasks, and how to solve the optimization problem of selecting a set of service instances
to satisfy the objective function with the given NFPs (Hassine et al., 2006). Much work is
required in modeling a complete NFP to be applicable to any set of properties.
4. Execution Stage
The selected service instances are executed in this stage. The stage should manage execution
monitoring. The monitor aims at maintaining better quality and analysis of execution
performance and exception handling. When the monitor finds errors or exceptions, a
handling mechanism for them will be executed. An exception manager can handle actions
for recovery such as rechoosing and replanning in the architecture. There have been several
approaches to execution monitoring on various execution platforms such as the OWL-S
virtual machine and the BPEL engine. Checks of functional properties and NFPs during
execution, languages for run-time execution monitoring, and combined approaches have
been developed (Baresi & Trainotti, 2009). These approaches can deal with the role of the
planning or selection stages in the execution stage to some extent. However, service
execution monitoring is very complex.

2.2 Additional functional blocks for ASC
In addition to the functional blocks of four-stage ASC, there are other important functional
blocks in a complete service composition. These blocks handle NFP transformation,
property translation, and workflow orchestration management. The whole ASC architecture
is shown in Fig. 2.

www.intechopen.com

 User Interfaces

258

1. Property translation
In terms of abstractness and the users’ technological perspective, there are two domains,
namely the goal (or business) domain and the service domain. While the goal domain refers
to the requestors’ (human or machine) perspective, the service domain refers to the concrete
services at the system level. When a user makes a request to the composer, the composer
returns a sequence of services to fulfill the request.
The request usually comes in an abstract form understood by the user in the goal domain. In
the specified request given to the composer by the user, a goal consists of the functionality
to be achieved, nonfunctionalities, and other related information (WSMO, 2005). There may
be other nonfunctionalities that are not related to the requests. There are two types of goal,
namely the one understood by requestors only, and the other registered so that it can be
understood by the system. The registered goals can help the discovery service to locate the
corresponding services in the service domain. All services, including terms for
nonfunctionalities in the service domain, can be located from any service registry. The
abstract requests must link to the corresponding services, and it is important to refine the
generic and abstract goals into concrete goals and to discover services from the abstract
goals.
2. NFP transformation (Takada & Paik, 2009)
The functional property of a goal is to be used in the planning stage to fulfill the
functionality of the goal, and will be located in the discovery stage. On the other hand, an
NFP is generally used at the service selection stage. Users supply abstract NFPs, which
cannot be understood in the selection stage.
There are three levels of NFP. The first level includes abstract-level constraints. (Here, we
define the constraint as the representative term for an NFP.) These constraints are at a high
abstraction level close to natural human concepts. All terms are abstract, and the constraints
may not be defined in formal terms. They can be in natural language or may contain several
complex meanings in a keyword.
The second level includes intermediate-level constraints. Each comprises a relation, two
terms, context information, and an operator. They are generated by extracting abstract
relations, terms, and context information from abstract terms (which may include context
information) in natural language or compound terms at an abstract level. All the terms are
terminal (not compound) and have not yet been bound to concrete terms. The role of the
translator is to find the context information, operator, and variables by referring to the
ontology.
The third level includes concrete-level constraints. These have relations, terms as binding
information, and indexes of abstract workflow. For example,
“LessThan(Sum(AllService.Cost))” is transformed to “LessThan(Sum(task[0].Cost,task[1].
Cost, ..., task[n].Cost))”. “Cost” refers to the “getCost” method in a real Web service.
While the translator locates the terms in the service domain from abstract terms in the
business domain, the transformation obtains the information binding the intermediate terms
to the concrete terms that will be used in the selection stage.
3. Workflow orchestration management
There have been many studies of ASC, but they have only considered it as a one-step
composition. Where one-step composition does not achieve the goal requested by a user, we
must orchestrate further processes dynamically to reach the final goal. This procedure can
be recognized as multistep composition via orchestration of the workflows in a nested
composition structure.

www.intechopen.com

User Interface for Automatic Service Composition

259

For example, consider a scenario involving a tour group for a conference (traveling from
Aizu to San Francisco. To create the tour group package (the top goal), there must be a
composition of three subprocesses, namely (1) trip scheduling, (2) making reservations, and
(3) creating the tour group package.
The trip scheduling service can be composed by ASC. Here, the ASC planner generates an
abstract workflow (using staged composition and execution) for traffic routes and hotels
between Aizu and Los Angeles, and selects an optimal workflow using a metric of
preconditions. Then, ASC discovers service candidates, and selects optimal instances of
services using QoS and user constraints on the workflow, which are normal steps in an ASC
activity (OWL-S, 2003).
However, to achieve the final goal, the selected trip schedule should be passed to the
reservation process, and the results of these two processes must be combined to create the
tour group. Therefore, the results of subprocesses must be orchestrated by an outer ASC to
achieve the final goal. The workflow orchestration manager orchestrates the nested
compositions and the whole composition flow.

Workflow

Generator

(Logical

Composer)

Selector

(Physical

Composer)

Abstract

Workflow

Verification

Exception Handling

Transformer

Concrete Constraints

Ontology

Knowledge Base

Discoverer

Concrete

Workflow

QoS

Service

Candidates

User

Matcher

Filter /

Selection

Services

Repository

T
o

 E
x
e
c

u
to

r

Abstract Constraints

Goal Domain

Request

Translator

Service Domain

Request

Fig. 2. ASC architecture

2.3 Service domain ontologies

For translation and transformation, many ontologies for service and service terms are
needed. The transformation algorithm uses the ontologies to include all classes of service
and the service variables being transformed, as shown in Fig. 3, and they will be used for the
UIs as well. According to the characteristics of the various service domains, the ontologies

www.intechopen.com

 User Interfaces

260

for the domains can be changed. If new services and conditions are added to the domain,
the ontology should be changed dynamically and gradually.

 (a) Service domain ontology (b) Variable domain ontology

Fig. 3. Domain ontologies for transformation

3. User interaction with service composer

It is important to decide the component parts of interactions between the user and the
composer, and the contents of the interaction. Let us consider each functional block in Table
1 using this scenario.
1. Translator
When a user supplies a request about composing a new service in ASC, the request should
be captured semantically. For example, consider the user request:
“I want to make a trip from a location A to a location B during October 1 – October 15. Total
cost should be less than 300,000.”
The request should be captured in a recognizable form by ASC. This can be in first-order

logic (FOL) or via a graphical user interface (GUI). The natural-language goal can be

described in the FOL form of Example 1.

Example 1. Service-level goal with abstract constraint.

| ServiceDomain(Trip).
~ TripLocation(A, B).
¡ TripDuration(2009-10-,2009-10-15).
¢ LessThan(TotalCost,300000).
The service-level goals contain services and relations in a service and relation registry.

However, the terms of constraints may still be nonterminal. For instance, the term

“TotalCost” contains a compound meaning, namely the total cost of all services for the trip.

Therefore, the term “Total” can be categorized as an operator (here, the sum), and the term

“Cost” can be a variable of the constraint. The translator converts properties in the business

domain into those in the service domain.

The user inputs the request via the UI in the translator, and the UI outputs/emits the

translation result as a basic function. The user inputs a request (with both functional and

nonfunctional elements) in the goal domain, with additional context information such as

www.intechopen.com

User Interface for Automatic Service Composition

261

Contents of Interaction with Machine Interaction
Functional Blocks Input Output

Translation
M: N/A
H: - Request in goal domain
- Additional context information

M: Request in service domain
H: - Possible inquiries for
checking translation result

Planning
M: Request in service domain
H: Additional request in service
domain

M: - Abstract workflow
- Interim constraints
H: - Possible inquiries for
checking planning result

Discovery

M: - List of abstract tasks of the
workflow
- Additional QoS requirements
H: - Additional context
information
- Additional QoS requirements

M: Service instances
H: - Possible inquiries for
checking discovery result

Selection

M: - Service instances
Nonfunctional concrete
constraints
H: - Additional constraints
Context information

M: Selected service instances
optimally
H: - Possible inquiries for
checking selection result

Execution
M: Selected service instances
H: Additional execution
condition

M: - Execution trace
- Exception after the execution
H: - Possible inquiries for
checking execution result
- Possible inquiries for selecting
exception handling method

Transformation

M: Intermediate constraints
from the orchestration manager
H: - Additional constraints in
intermediate form
- Additional context information

M: Concrete constraints
 (How can the human check this
correctness?)
H: - Possible inquiries for
checking transformation result

Orchestration

M: Interaction with all the other
blocks.
H: Decision guide input

M: Interaction with all the other
blocks for orchestration
H: - Possible inquiries for
checking orchestration
management

Legend:
- M: Machine (one of the ASC blocks) interacts with the human world via the API and defined

data format, but sometimes via the UI when required.
- H: Human being interacts with the machine (one of the ASC blocks) via the UI.
- There are two types of interaction, namely input and output, but, according to the target, we

differentiate the types of interactions as “input/output” for human beings, and “receive/emit” for
machines (i.e., UI).

Table 1. Interactions in ASC

www.intechopen.com

 User Interfaces

262

additional/changed goals and constraints. The translator outputs the translation result for
the user to check, and receives an input of the user reply about any additional request after
the check.
2. Planner
The planner, also called the logical composer (LC), generates a workflow to fulfill the
functionality of the request. The workflow comprises several abstract tasks that can reach
the final goal state. The planner is inputted (receives) requests in the service domain. A
request includes a top-level functionality and nonfunctionalites that affect the functionality.
It becomes a sequence of abstract tasks, together with interim constraints related to the tasks
generated by the planner.
The UI in the planner receives service-domain requests from the translator or obtains
service-level requests from users directly. Additional service-domain requests can be
supplied by users. The planner emits an abstract workflow to the discoverer or outputs
abstract workflow information for the user to check. The user can then input modifications
or possible additional inquiries to the planning result via the UI.
3. Discoverer
The discoverer receives the list of abstract tasks that were generated by the planner, and
outputs/emits service instances for each abstract task. Users can input QoS information to
the discoverer for further filtering of matched service instances.
Therefore, the UI of the discoverer receives abstract tasks from the planner, or obtains inputs
of additional constraints such as QoS factors to choose more-suitable service instances for
the user. In addition, it emits the service instances discovered to the selector, and outputs
the discovered result to the user for checking.
4. Selector
The selector, also called the physical composer (PC), selects the optimal service instances
that satisfy all the constraints from users or other composition blocks. It receives service
instances from the discoverer, and emits the selected service instances to the executor.
The UI of the selector obtains the input of additional constraints or context information such
as the user’s additional preferences or the detailed semantics of variable terms in the
constraints. It also outputs the selection result to the user for checking. The checking process
can be repeated according to the user and the result.
5. Executor
The executor receives the sequence of service instances, i.e., the result of services chosen
optimally by the selector, and executes the sequence. In addition, it outputs/emits the
execution result to the orchestrator or the user.
The UI of the executor obtains the input of additional execution conditions or context, and
outputs/emits an execution result such as the execution trace, information about exceptions,
or errors. The user can choose how to deal with any exceptions via the UI.
6. Transformer
The transformer receives intermediate constraints from the orchestrator or users and emits
or outputs the result as concrete constraints to the selector. It shows the transformation
result to the user for checking the correctness of the result or for re-binding the constraint to
another service instance.
The UI of the transformer obtains the input of additional constraints or context for the
constraints in intermediate form from the user. It also outputs the transformation result,
which includes linkage between constraint terms and the corresponding variables of real
service instances. The UI can provide a user editing function for the links to be decided by
the transformer. The procedure can be repeated several times.

www.intechopen.com

User Interface for Automatic Service Composition

263

7. Orchestrator
The orchestrator interacts with all the blocks both internally and via users. The orchestrator
can instantiate the UIs of other blocks, and manage blocks to guide decisions. This means
that other blocks can input/output and receive/emit all their user information via the UI of
the orchestration manager.

4. Ontology for the ASC UI

Generally, the ontology for the UI describes the visual component, the data, and the
workflow, together with a UI specification for the human-computer interaction (Tsai &
Chen, 2008). The data and workflow for ASC and their ontology are the main components of
the design of the ASC UI.

4.1 Ontology for data in ASC

There are two kinds of data for the UI in ASC, namely the UI itself and the composition of
the data used by the UI. The ontology for the data to describe the UI is shown in Fig. 4. The
UI data profiles are modeled as input, output, emitting, or receiving. The figure shows the
detailed ontological structure of the four data profiles. The UI has input/output (IO) types
that inherit each data profile. In addition, each data profile is used by the corresponding UI.

useData useData useData useData

Fig. 4. Ontology for data profiles related to the UI

The data used by the UI in ASC are very extensive in various domains. As explained in the
previous section, the composer comprises seven functional blocks, each having its own UI.
The ontology for the main UIs and the input/output data for the whole composer are shown
in Fig. 5. The request is the initial data from a user, which initiates the composer, and is
important data for the operation of the composer. The request contains functional and
nonfunctional elements. The ontology for a request is shown in Fig. 6. The request in the
business domain may not have detailed service information, but may have abstract service
information only. The request in the service domain contains request information registered
in the service registry. These can be recognized by the service composer.

www.intechopen.com

 User Interfaces

264

RequestInBusinessDomain

TranslatorUI

RequestInServiceDomain

IntermediateConstraint

TransformerUser ConcreteConstraint

ServiceInstance

DiscoverUI

SelectedService

SelectorUI
ExecutorUI

ExecutionTrace

Exception

OrchestrationManagerUI

ExeptionHandlingMessage

Planner

Selector

Planner

AbstractWorkflow

AbstractTask

input/receive

output/emit

emit/output

receive

output/emitinput

input/receive

receive/input

emit/output

receive/input

has

output/emit

receive/input

ExtractNFP

output/emit

receive/input

output/emit

output/emit

input/receive

output/emit

Fig. 5. Ontology for the whole composition: blocks and data

hasData hasData

IntermediateConstraintAbstractConstraint

Fig. 6. Ontology for a request

4.2 Composer UI workflow

Most top-level workflows of the UI for composition are related to the functional blocks of
the composer. The workflows are described in terms of a sequence of interactions among the

www.intechopen.com

User Interface for Automatic Service Composition

265

blocks and users, and the data of the interaction. Users supply input data that the UIs read,
or deal with the output data that the UIs display. In addition, the UIs emit data that other
UIs will receive. Figure 7 shows an example of a workflow of a selector UI interacting with
other UIs and the user.
At first, the SelectorUI receives the ServiceInstances that have been emitted or input by the
DiscovererUI or by users. It also receives any ConcreteConstraint that has been emitted by
the TransformerUI. The user can input the constraints directly and the SelectorUI will read
them. When the SelectorUI finishes the selection procedure, it displays the result as
SelectedService. If the user wants to edit the constraint according to the result, the user
sends an EditedConstraint that the SelectorUI will read. The SelectorUI may display the
result (SelectedService) repeatedly until the user is satisfied. Finally, when the SelectorUI
gets an OK signal from the user, it emits the result (SelectedService) to the ExecutorUI that
belongs to the service executor.

User

Input

ConcreteConstraint

DiscovererUI

EmitServiceInstance

TransformerUI

EmitConcreteConstraint

SelectorUI

ReceiveServiceInstance

ReceiveConcreteConstraint

ReadConstraint

DisplaySelectedService

ReadEditedConstraint

Display SelectedService

ReadOK

EmitSelectedService ReceiveSelectedService

ExecutorUI

Input

EditedConstraint

InputOK

Fig. 7. Workflow of UI data handling in the SelectorUI

5. Case study of UIs for ASC

There are main UI points at seven functional blocks in the composer. Each UI can create sub-
UIs such as result windows, dialogs, and message boxes for subsequent activities. Figure 8
illustrates a case of UIs for ASC of a trip domain (Takada & Paik, 2008). The UI uses the
ontology, generates a web form, and sends user demands to the LC planner and a
transformer. A task search engine searches the task using keywords input by users from an
HTN planner ontology and a service domain ontology and proposes task candidates. The UI

www.intechopen.com

 User Interfaces

266

provides several GUI forms, namely a task search and select form, a user constraint form,
and a result form. Users use them sequentially. The HTN ontology describes information for
the planner and the task search engine. It has four classes and six properties (see Fig. 9). The
task search engine searches for the name of the task and the domain to which it belongs
using keywords and suggests results from the HTN ontology.

An Example Scenario

The scenario is trip planning from Aizuwakamatsu (a city in Japan) to San Francisco. If a
user inputs the keywords “trip aizu sanfrancisco” in the task-search GUI form (Fig. 10), the
instance Trip_Aizuwakamatsu_SanFrancisco is proposed by the task search engine and the
user can select it. The LC planner generates an abstract workflow as follows.

A1 = Train_Aizuwakamatsu_Koriyama
A2 = Train_Koriyama_Tokyo
A3 = Train_Tokyo_Narita
A4 = Airplane_Narita_SanFrancisco

Abstract tasks and abstract terms belong to the service-domain ontology. Abstract terms are
described as term objects (output of services) and term context information, as shown in the
Table 2.

Fig. 8. An example of ASC implementation, including UI

www.intechopen.com

User Interface for Automatic Service Composition

267

Fig. 9. HTN ontology

Abstract term Term object Context

AT_StartTime TO_TimeFrom First

AT_EndTime TO_TimeTo End

AT_TotalCost TO_Cost Sum

AT_SeatClass TO_SeatClass

AT_Smoking TO_Smoking

AT_NowArrivalTime TO_TimeTo Now

AT_NextDepartureTime TO_TimeFrom Next

Table 2. Abstract terms in the trip domain.

Instances of the trip’s subclasses are proposed via the user’s constraint generation.
NextArrivalTime and NextDepartureTime are not proposed because there are terms for
hard constraints (as opposed to user demands). Users can supply constraints such as
TotalCost < $2,000 and SeatClass = Economy, as shown in Fig. 11. The user constraints are
transformed in the transformer to concrete constraints such as Sum(Cost) < $2,000 and
A4.SeatClass = Economy. The term object’s domain is used to determine abstract tasks such
as those related to AirplaneService and SeatClass. Service candidates are provided by the
service registry. Each concrete service has its own QoS, departure time, cost, grade, etc.
Service candidates and concrete constraints are common spatial pattern (CSP) triples. The
PC selector solves the CSP triple to select the concrete services in the final selection result
(see Fig. 12).

Fig. 10. Task search and select form

www.intechopen.com

 User Interfaces

268

Fig. 11. User constraint form

Fig. 12. Result of trip planning scenario

www.intechopen.com

User Interface for Automatic Service Composition

269

6. Conclusion

The overall concept of ASC was explained first. According to this concept, all possible
interaction points and contents were investigated. To devise UIs for ASC, the data ontology,
UIs, and workflows were designed and introduced. Finally, examples of UIs for ASC based
on this design were given.
The complete ontology set for the top-level UI was introduced, and an example of workflow
for service selection was illustrated. It can be extended to other UI workflows and detailed
data ontologies. Mapping to real GUIs is for interested readers to consider. We should
remember that there are many possibilities for variation in service composition, particularly
for goals and services that are more flexible.

7. Reference

Agarwal, V.; Chafle, G; Mittal S.; & Srivastava, B. (2008) Understanding Approaches for

Web Service Composition and Execution, Proceedings of COMPUTE 2008,

Bangalore, India, 2008

Andrews T.; & 16 others. (2003) Business Process Execution Language for Web Services

version 1.1, BEA Systems, IBM, Microsoft, SAP AG, and Siebel Systems (May 2003).

http://www-106.ibm.com/developerworks/library/ws-bpel/

Arkin A.; & 11 others. (2002) Web Service Choreography Interface (WSCI) 1.0, draft

specification, BEA Systems, Intalio, SAP AG, and Sun Microsystems (2002).

http://www.sun.com/software/xml /developers/wsci/wsci-spec-10.pdf

Baresi, L.; Guinea, S.; Pistore, M; & Trainotti, M. (2009) Dynamo + Astro: An Integrated

Approach for BPEL Monitoring, Proceedings of IEEE International Conference on

Web Services (ICWS'09), pp. 230–237, Jul. 2009, L.A, USA.

Claro, D.; Albers, P; & Hao, J. (2006). Web Services Composition in Semantic Web Service,

Processes and Application, Springer, New York

Hassine, A.; Matsubara, S.; Ishida, T. (2006) A Constraint based Approach to Horizontal

Web Service Composition, Proceedings of ISWC 2006, Athen, U.S.A

Klusch, M; Fries, B.; & Sycara, K. (2006) Automated Semantic Web Service Discovery with

OWLS-MX, Proceedings of AAMAS, Hakodate, Hokkaido

Kona, S.; Bansal, A.; Blake, M.; & Gupta, G. (2008) Generalized Semantics-based Service

Composition, Proc. of IEEE Int. Conf. on Web Services, p. 219-227, Beijing, China

Lecue, F.; Delteil, A. (2007) Making the Difference in Semantic Web Service Composition,

Proceedings of AAAI-2007, pp. 1383-1388, British Columbia

Lecue, F.; Delteil, A.; Leger, A. (2007) Applying Abduction in Semantic Web Service

Composition, IEEE International Conference on Web Services (ICWS 2007), pp. 94-

101, Salt Lake City/Utah, USA

Narayanan, S.; McIlraith, S. (2002). Simulation, Verification and automated Composition of

Web Services, In Proceeding 11th Int. Conf. WWW, Honolulu, Hawaii, USA

Nareyek, A.; Freuder, E.; Fourer, R; Giunchiglia, E.; Goldman, R.; Kautz, H.; Rintanen, J; &

Tate, A. Constraints and AI Planning, IEEE Intelligent Systems, Mar./Apr. 2005,

pp. 62-70

www.intechopen.com

 User Interfaces

270

Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; William Murdock, J; Wu, D.; & Yaman, F. (2004).

SHOP2: An HTN Planning System, Journal of Artificial Intelligence Research

Oh, S.; Lee, D.; & Kumara, S. (2008) Effective Web Service Composition in Diverse and

Large-scale Service Networks, IEEE Transactions on Services Computing, 2008, vol.

1, no. 1, pp. 15-32.

OWL Services Coalition, (2003) OWL-S: Semantic Markup for Web services, OWL-S White

Paper http://www.daml.org/services/owl-s/1.0/owl-s.pdf

Paolucci, M.; Kawamura, T.; Payne, T.; & Sycara, K. (2002) Semantic Matching of Web

Services Capabilities, Proceedings of the First International Semantic Web

Conference, Sardinia, Italy

Shi, Y.; Zhang, L.; & Shi, B. (2004). Exception Handling of Workflow for Web Services,

Proceedings of International IEEE Conference Computer and Information

Technology, pp. 273-277, Shanghai, 2004

Takada, H. & Paik, I. (2008). Design of General User Interface for AutomaticWeb Service

Composition, Joint Workshop on Frontier of Computer Science and Technology

(FCST), Nagasaki, Japan, Dec. 2008.

Takada, H.; Paik, I. (2009). Transformation of Non-Functional Properties for Automatic

Service Composition, Proceedings of The 3rd Workshop on Non-Functional

Properties and SLA Management in Service-Oriented Computing NFPSLAM-

SOC'09 , Nov. 2009, Stockholem, Sweden

Tsai, W.; Huang, Q.; Elston, J.; & Chen, Y. (2008) Service-Oriented User Interface Modeling

and Composition, Proceedings of IEEE International Conference on e-Business

Engineering, pp. 21-28, Xian, China

WSMO. (2005) The Web Service Modeling Ontology (WSMO) Primer. Final Draft. Available

at: http://www.wsmo.org/TR/d3/d3.1/v0.1/

www.intechopen.com

User Interfaces

Edited by Rita Matrai

ISBN 978-953-307-084-1

Hard cover, 270 pages

Publisher InTech

Published online 01, May, 2010

Published in print edition May, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Designing user interfaces nowadays is indispensably important. A well-designed user interface promotes users

to complete their everyday tasks in a great extent, particularly users with special needs. Numerous guidelines

have already been developed for designing user interfaces but because of the technical development, new

challenges appear continuously, various ways of information seeking, publication and transmit evolve.

Computers and mobile devices have roles in all walks of life such as in a simple search of the web, or using

professional applications or in distance communication between hearing impaired people. It is important that

users can apply the interface easily and the technical parts do not distract their attention from their work.

Proper design of user interface can prevent users from several inconveniences, for which this book is a great

help.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Incheon Paik (2010). User Interface for Automatic Service Composition, User Interfaces, Rita Matrai (Ed.),

ISBN: 978-953-307-084-1, InTech, Available from: http://www.intechopen.com/books/user-interfaces/user-

interface-for-automatic-service-composition

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

