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1. Introduction 
 

The constructions of different modeling methods are similar. The models are consisted of 
the following major stages:  
1- Recognizing the true or most effective inputs. 
2- Finding the numerical relationship between inputs and output. 
3- Explaining the numerical relationship mathematically. 
4- Utilizing the mathematical expressions to calculate the output using different inputs. 
5- Comparing the calculated and actual outputs and calculating the error. 
6- Modifying the mathematical expressions based on the calculated error. 
These stages seem to be complicated. This complexity seems to be due to the quantitative 
and exact definitions of the mentioned stages (Bagheri Shouraki and Honda, 1998). There 
are some demonstrations that the mentioned stages are performed qualitative with non-
exact concepts in the human brain (Schmidt, 1985), therefore any effort toward of expressing 
them using exact expressions (such as mathematics) are expected to have some differences 
with human thinking or modeling method. In the other words, the utilizing of exact 
mathematics in modeling has contradiction with human abilities (Bagheri Shouraki and 
Honda, 1999). 
Fuzzy concepts (e.g. Zadeh 1965) and related inferences (e.g. Mamdani 1974) proposed a 
new approach to human modeling and calculation methods. Although, different powerful 
fuzzy modeling methods have been developed up to now, but some of these methods are 
different with real human modeling method, because of utilized mathematics and exact 
calculations in their constructions (Bagheri Shouraki and Honda, 1999). The construction of 
human modeling is similar to the above stages, but avoids of mathematical complexities. 
Active Learning Method (ALM) is one of the fuzzy modeling methods Which uses basic 
level of mathematics. ALM was innovated by Bagheri Shouraki and Honda (1997). ALM has 
very simple algorithm that avoids of mathematical complexity and its accuracy and 
exactness increase unlimitedly by increasing the number of iterations of its algorithm.  
It is very difficult for human to memorize the numerical data points but tries to memorize 
the general behavior function of data points. In addition, for modeling, the human converts 
a MIMO (Multi Inputs - Multi Outputs) system to some SISO (Single Input – Single Output) 
systems and then human tries to find the general behavior function in each SISO system and 
the effects of other inputs are considered as the deviation of data points around of the 
general behavior function. In addition, human can save the data points on a continuous path  
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which means the general behavior function, but usually can not save the randomly 
distributed data points in the space of variable. ALM algorithm uses all of these mentioned 
constructions of human modeling method. 
Taheri Shahraiyni (2007) developed new heuristic search, fuzzification and defuzzification 
methods for ALM algorithm. In the next sections of this chapter, ALM algorithm with these 
modifications is explained and the ALM abilities and applications are illustrated. 

 
2. ALM algorithm 
 

The ALM algorithm has been presented in figure 1. 
 

           
Fig. 1. Proposed algorithm for Active Learning Method. 

Step 9. If error of modeling is more than 
threshold, divide the data domains of variables 
using an appropriate heuristic search method. 

Step 10. If error of modeling is less than 
threshold, save the model and stop 

Step 1. Gathering input-output numerical data 
(variables and function data) 

we call the inputs ‘x’ and the outputs ‘y’ 

Step 2. Projecting the gathered data in x–y planes 

Step 3. Applying the IDS method on the data in 
each x–y plane and finding the continuous path 

(general behavior or implicit nonlinear 
function) in each x–y plane 

Step 4. Finding the deviation of data points in 
each x–y plane around the continuous path 

Step 5. Choosing the best continuous path and 
saving it.

Step 6. Generating the fuzzy rules

Step 7. Calculating the output and measuring the 
error

Step 8. Comparing the modeling error with the 
predefined threshold error.

For the purpose of explaining the ALM algorithm, the Sugeno and Yasukawa (1993) dummy 
non-linear static problem (equation (1)) with two input variables (x1 and x2) and one output 
(y) is solved by this method.  
 

                                        2-2 -1.5
1 2 1 2= 1 + + , 1 , 5y x x x x                       (1) 

 
First, some data are extracted from equation 1 and some random noises are added to data 
(step 1). Then the data are projected on x–y plane (figures 2a and 2b) (step 2).  
Step 3: The heart of calculation in ALM is a fuzzy interpolation and curve fitting method 
which is entitled IDS (Ink Drop Spread). The IDS searches fuzzily for continuous possible 
paths on data planes. Assume that each data point on each x–y plane is a light source with a 
cone or pyramid shape illumination pattern. Therefore, with increase of distance of each 
data point, the intensity of light source decreases and goes toward zero. Also the 
illuminated patterns of different data points on each x–y plane are combined and new bright 
areas are formed. The IDS is exerted to each data point (pixel) on the normalized and 
discretized x–y planes. The radius of the base of cone or pyramid shape illumination pattern 
in each x–y plane is related to the positions of data in it. The radius increases until the all of 
the domain of variable in x–y plane be illuminated. Figures 2c and 2d show the created 
illumination pattern (IL values) after the combination of the illumination patterns of 
different points in x1–y and x2–y planes, respectively. Here, pyramid shape illumination 
pattern has been used. 
Now, the paths, general behaviour, or implicit nonlinear functions are determined by 
applying the center of gravity on y direction. The center of gravity is calculated using this 

equation: 

M

j i j
j=1

i M

i j
j=1

y × IL(x ,y )
y(x ) =

IL(x ,y )

  


, Where j:1…M, M is the resolution of y domain, 

yj is the output value in jth position, IL(xi,yj) is the illumination value on x–y plane at the  
(xi, yj) point or pixel ,and y(xi) is the corresponding function (path) value to xi . 
Hence, by applying the centre of gravity method on figures 2c and 2d, continuous paths are 
extracted (figures 2e and 2f).  
Subsequently, the deviation of data points around each continuous path can be calculated 
by various methods such as coefficient of determination (R2), Root Mean Square Error 
(RMSE) or Percent of Absolute Error (PAE). The PAE values of continuous paths on x1–y 
and x2–y planes (figures 2e and 2f) are 20.4 and 13.5%, respectively (Step 4).  
The results show that the path of figure 2f is better than the path of figure2e. The selected 
paths should be saved because these are implicit non-linear functions. The paths can be 
saved as a look-up table, heteroassociative neural network memory (Fausset, 1994) or fuzzy 
curve expressions such as Takagi and Sugeno method (TSM) (Takagi and Sugeno, 1985). 
Look up tables are most convenient method and it is used for path saving in this example 
(Step 5).  
We have no rules in the first iteration of ALM algorithm, hence we go to step 7. 

www.intechopen.com



Fuzzy modeling by Active Learning Method 197

which means the general behavior function, but usually can not save the randomly 
distributed data points in the space of variable. ALM algorithm uses all of these mentioned 
constructions of human modeling method. 
Taheri Shahraiyni (2007) developed new heuristic search, fuzzification and defuzzification 
methods for ALM algorithm. In the next sections of this chapter, ALM algorithm with these 
modifications is explained and the ALM abilities and applications are illustrated. 

 
2. ALM algorithm 
 

The ALM algorithm has been presented in figure 1. 
 

           
Fig. 1. Proposed algorithm for Active Learning Method. 

Step 9. If error of modeling is more than 
threshold, divide the data domains of variables 
using an appropriate heuristic search method. 

Step 10. If error of modeling is less than 
threshold, save the model and stop 

Step 1. Gathering input-output numerical data 
(variables and function data) 

we call the inputs ‘x’ and the outputs ‘y’ 

Step 2. Projecting the gathered data in x–y planes 

Step 3. Applying the IDS method on the data in 
each x–y plane and finding the continuous path 

(general behavior or implicit nonlinear 
function) in each x–y plane 

Step 4. Finding the deviation of data points in 
each x–y plane around the continuous path 

Step 5. Choosing the best continuous path and 
saving it.

Step 6. Generating the fuzzy rules

Step 7. Calculating the output and measuring the 
error

Step 8. Comparing the modeling error with the 
predefined threshold error.

For the purpose of explaining the ALM algorithm, the Sugeno and Yasukawa (1993) dummy 
non-linear static problem (equation (1)) with two input variables (x1 and x2) and one output 
(y) is solved by this method.  
 

                                        2-2 -1.5
1 2 1 2= 1 + + , 1 , 5y x x x x                       (1) 

 
First, some data are extracted from equation 1 and some random noises are added to data 
(step 1). Then the data are projected on x–y plane (figures 2a and 2b) (step 2).  
Step 3: The heart of calculation in ALM is a fuzzy interpolation and curve fitting method 
which is entitled IDS (Ink Drop Spread). The IDS searches fuzzily for continuous possible 
paths on data planes. Assume that each data point on each x–y plane is a light source with a 
cone or pyramid shape illumination pattern. Therefore, with increase of distance of each 
data point, the intensity of light source decreases and goes toward zero. Also the 
illuminated patterns of different data points on each x–y plane are combined and new bright 
areas are formed. The IDS is exerted to each data point (pixel) on the normalized and 
discretized x–y planes. The radius of the base of cone or pyramid shape illumination pattern 
in each x–y plane is related to the positions of data in it. The radius increases until the all of 
the domain of variable in x–y plane be illuminated. Figures 2c and 2d show the created 
illumination pattern (IL values) after the combination of the illumination patterns of 
different points in x1–y and x2–y planes, respectively. Here, pyramid shape illumination 
pattern has been used. 
Now, the paths, general behaviour, or implicit nonlinear functions are determined by 
applying the center of gravity on y direction. The center of gravity is calculated using this 

equation: 

M

j i j
j=1

i M

i j
j=1

y × IL(x ,y )
y(x ) =

IL(x ,y )

  


, Where j:1…M, M is the resolution of y domain, 

yj is the output value in jth position, IL(xi,yj) is the illumination value on x–y plane at the  
(xi, yj) point or pixel ,and y(xi) is the corresponding function (path) value to xi . 
Hence, by applying the centre of gravity method on figures 2c and 2d, continuous paths are 
extracted (figures 2e and 2f).  
Subsequently, the deviation of data points around each continuous path can be calculated 
by various methods such as coefficient of determination (R2), Root Mean Square Error 
(RMSE) or Percent of Absolute Error (PAE). The PAE values of continuous paths on x1–y 
and x2–y planes (figures 2e and 2f) are 20.4 and 13.5%, respectively (Step 4).  
The results show that the path of figure 2f is better than the path of figure2e. The selected 
paths should be saved because these are implicit non-linear functions. The paths can be 
saved as a look-up table, heteroassociative neural network memory (Fausset, 1994) or fuzzy 
curve expressions such as Takagi and Sugeno method (TSM) (Takagi and Sugeno, 1985). 
Look up tables are most convenient method and it is used for path saving in this example 
(Step 5).  
We have no rules in the first iteration of ALM algorithm, hence we go to step 7. 

www.intechopen.com



 New, Advanced Technologies198

     
      (a)         (b) 

 
     (c)                                   (d)    

   
     (e)         (f)  
Fig. 2. (a) Projected data on x1–y plane, (b) projected data on x2–y plane; (c) Results of 
applying IDS method on the data points in x1–y plane, (d) results of applying IDS on the 
data points in x2–y plane; (e) Extracted continuous path by applying center of gravity 
method on figure 2c, (f) extracted continuous path by applying center of gravity method on 
figure 2d. 
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The PAE of chosen path is more than a predefined threshold PAE value (5%). Hence, the 
error is more than predefined error (Steps 7 & 8) and we divide each space in two by using 
only one variable (Step 9) and go to the step 2 of figure 1. Dividing can be performed crisply 
or fuzzily, but for simplicity, a crisp dividing method is used here and the fuzzy dividing 
will be illustrated later. The results of ALM modeling after crisp division of space to four 
subspaces using a heuristic search method has been presented in figure 3. According to 
figure 3, the following rules are generated (Step6): 
 

          
Fig. 3. Divided entire space to four subspaces using the heuristic search method and the best 
continuous path (implicit non-linear function), extracted for each subspace (the data points 
in each subspace have been shown by black circles). 
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If ( 2 21.0 & <1.9x x )     then    y=f (x2) 
If ( 2 21.9 & <2.9x x )     then    y=g(x1) 
If ( 2 12.9 & <2.9x x )     then    y=h(x1) 
If ( 2 12.9 & > 2.9x x )     then    y=u(x2) 
 
Whenever the PAE value of the above rules is less than the threshold of 5%, the procedure 
of ALM modeling is stopped. Here, using four rules, a PAE of 3.8% is achieved. 

 
2.1 The new heuristic search method 
In this section, a new heuristic search method is introduced for dividing space in the ALM 
algorithm. 
Partitioning of multi-dimensional space is a combinatorial problem. There is no theoretical 
approach for it; therefore, heuristic search methods are used (Takagi and Sugeno 1985). 
The heuristic search is a guided search and it does not guarantee an optimal solution. 
However, it can often find satisfactory solutions (Abbass et al. 2002). 
Consider k inputs (x1, x2, …, xk), and a single output (y) system. The algorithm of the new 
heuristic search method for this system is depicted in figure 4. 
Step 1. The domain of x1 is divided into two parts (small and big). Using the ALM 
algorithm, the best continuous path is determined for each part of the x1 domain. Assume 
these paths are f11(xj) and f12(xm), which are the best paths for the first dividing step and for 
the small and big parts of the divided variable that are the functions of the jth and mth 
variables, respectively. Here, the rules for modeling are: 
 
If (x1 is small) then y=f11(xj) 
If (x1 is big) then y=f12(xm) 
 
Then, the modeling error (e11) is calculated for the above rules. Similarly, the domain of other 
variables are divided and their modeling errors are calculated and a set of k errors (e11, 
e12,...,e1k) are generated. For example, e1k shows the minimum modeling error after dividing 
the domain of kth variable in the first step of dividing. The variable corresponding to the 
minimum error is the best one for dividing of space. Suppose e1s is the minimum error and it 
is correspond to xs, then, the xs domain is divided into small and big values. If e1s is more 
than the threshold error, the dividing algorithm should continue.  
Step 2. Consider all possible combinations of xs–xj (j=1,2,…,k) for each part of xs and then 
divide the domain of xj again into two parts. Thus, 2k combinations are generated (k 
combinations of xs(small)–xj and k combinations of xs(big)–xj) where each combination has two 
parts. For example, xs(big)–xj means that when xs has a big value, the domain of xj is divided 
into small and big parts. Similarly, the ALM algorithm is applied to each part and the 
minimum modeling error is calculated for each k–combinations. Suppose these are e2m and 
e'2n . They imply that the minimum modeling errors in the second step of dividing the space 
of variables is related to dividing of mth and nth variables for the small and big parts of xs, 
respectively. Based on minimum errors, xm and xn are divided and the rules for modeling 
after dividing are: 
 
 

If (xs is small & xm is small)  then … 
If (xs is small & xm is big)  then … 
If (xs is big & xn is small)  then … 
If (xs is big & xn is big)  then … 
 
e2m and e2n are the local minimum errors. The appropriate global error (e2) can be calculated 
using minimum local errors (e2m and e2n). Dividing continues until the global error is less 
than the threshold error. In this heuristic search method, the global error decreases 
simultaneously by decreasing the local errors. 
Figure 4 depicts the next step of dividing algorithm which is step 3. 
This heuristic search method uses an appropriate criterion to select a variable for dividing 
and the median of data is used as the boundary for crisp dividing. Hence, the number of 
data points in the subspaces are equal.  
 

 
Fig. 4. Algorithm of the new heuristic search method for dividing the space. 
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2.2 Fuzzy dividing  
Although, ALM implements crisp or fuzzy dividing methods, but fuzzy dividing and 
modeling methods can improve the ALM performance by: 
1– Satisfaction of continuity condition, 
2– Better knowledge extraction of multi–variable non–linear systems, 
3– Decrease of ALM sensitivity to noise. 
Fuzzy dividing is similar to crisp dividing. In crisp dividing, the dividing point of a variable is 
the median as shown in figure 5a. But in fuzzy dividing, the boundary of small values of a 
variable is bigger than the median (figure 5b) and vice versa (figure 5c). Hence, the regions of 
small and big values of a variable can overlap. 
 

 

     (a)                   (b)     (c)  
Fig. 5. Schematic view of different dividing methods, (a) crisp dividing, (b) small part of 
variable domain in fuzzy dividing, (c) big part of variable domain in fuzzy dividing. 
 
The fuzzy systems are not too sensitive to the dividing points. Therefore, the appropriate 
points for fuzzy dividing can be calculated by investigating various alternatives to select the 
most appropriate one.  

 
2.3 Fuzzy modeling in ALM 
Since the presented new heuristic method (section 2.1) utilizes a complicated dividing method, 
the typical fuzzification methods are not compatible with it. Here, a new simple fuzzy 
modeling method is presented which is attuned to the heuristic search method. This fuzzy 
modeling method has been developed by Taheri Shahraiyni (2007). 

We denote the membership function of a fuzzy set as ks m
ij kΑ (x )  in which i is the dividing 

step, j is the number of dividing in each i which has a value between 1 and 12i . s is the 
membership function that is related to small (s=1) and big parts (s=2) of a variable domain. k 

denotes the divided variable number and m
kx  is the mth member of the kth variable (Xk) 

)m
k k k(x X and X X  .  1 nX = X , ..., X  is a set of n variables. ALM can be implemented by fuzzy 

modeling with miscellaneous shapes of membership functions and the performance of ALM 
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Median 
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Median 

as a fuzzy modeling method is not sensitive to the shape of membership function. Trapezoidal 
membership functions are one of the most used membership functions. In addition, 
implementation of a fuzzy modeling method using trapezoidal membership functions is very 
straightforward. Hence, trapezoidal membership functions are applied here.  
The truth value of a proposition is calculated by a combination of membership degrees. For 

example, the truth value of ‘ 1
1x  is 11

11Α  and 1
2x  is 22

21Α ’  is expressed as:  
 

( 1
1x  is 11

11Α  and 1
2x  is 22

21Α ) = ( 11 1
11 1Α (x )    22 1

21 2Α (x ) ) = ( 11 1
11 1Α (x )  22 1

21 2Α (x ) ). 

 
In this fuzzy method, the general fuzzy rules are defined as below: 
 
Rp: If  (

1

m
kx  is 1 1

1

k s
1jΑ  & 

2

m
kx  is 2 2

2

k s
2jΑ  & …) then  m

py  = fp(
3

m
kx ) 

 
Where p is the rule number and has a value between 1 and h (h is total number of fuzzy rules), 
Rp is the pth rule and fp is the pth one–variable non-linear function for the pth subspace (pth 
rule).  
1/P(fp) is considered as the weight of the pth rule (Wrp) where P(fp) is PAE of fp (continuous 
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2.2 Fuzzy dividing  
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Fig. 5. Schematic view of different dividing methods, (a) crisp dividing, (b) small part of 
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Consider a system with two variables (  1 2X= X , X ) and m m
1 1 2 2x X ,x X  that its 

fuzzy rules are: 
 

R1:  If  ( 1
mx  is small & 1

mx  is very small)   then  m
1y  = f1( 1

mx )  

R2:  If  ( 1
mx  is small & 1

mx  is moderate small) then  2
my  = f2( 2

mx )  

R3:  If  ( 1
mx  is big & 2

mx  is small)    then  3
my  = f3( 2

mx )  

R4:  If  ( 1
mx  is big & 2

mx  is big)    then  4
my  = f4( 1

mx )  

The above linguistic propositions are expressed by the following rules: 

R1:  If  ( 1
mx  is 11

11Α  & 1
mx  is 11

21Α )   then  1
my  = f1( 1

mx )  

R2:  If  ( 1
mx  is 11

11Α  & 1
mx  is 12

22Α )   then  2
my  = f2( 2

mx )  

R3:  If  ( 1
mx  is 12

11Α  & 2
mx  is 21

23Α )   then  3
my  = f3( 2

mx )  

R4:  If  ( 1
mx  is 12

11Α  & 2
mx  is 22

24Α )   then  4
my  = f4( 1

mx )  

 
Suppose the PAE of f1, f2, f3 and f4 are 5, 10, 5 and 20. Then, Wr1, Wr2, Wr3 and Wr4 are equal to 
0.2, 0.1, 0.2 and 0.05, respectively. 
Figure 6 shows the fuzzy dividing and the membership functions for this example 

As seen in figure 6, the membership degrees for x1 ( 1 1
1 2x ,x ) are: 

 
11 1
11 1Α (x )  = 0.34, 11 1

12 1Α (x )  = 0.66, 11 1
21 1Α (x )  = 0, 12 1

22 1Α (x )  = 1, 21 1
23 2Α (x )  = 0.1, 

22 1
24 2Α (x )  = 0.9, 

 
In accordance with the membership degrees of different membership functions, the truth 
values of different rules ( m

fpW ) can be determined using the following calculations. 
 

1 11 1 11 1
f1 11 1 21 1W = Α (x )× Α (x ) = 0.34×0=0  

1 11 1 12 1
f2 11 1 22 1W = Α (x )×Α (x ) =0.34 × 1=0.34  

1 12 1 21 1
f3 11 1 23 2W = Α (x )× Α (x ) =0.66 ×0.1=0.066  

1 12 1 22 1
f4 11 1 24 2W = Α (x )× Α (x ) = 0.66×0.9 =0.594  

 
Assume the rule functions ( m

py ) values for point x1 are: 
1
1y  = f1(

1
1x ) = 2.0, 1

2y  = f2(
1
2x ) = 1.8, 1

3y  = f3(
1
2x ) = 2.2 and 1

4y  = f4(
1
1x ) = 1.7. 

 

According to the equation 3, the output (y1) can be calculated as below: 
 

4
1 1

1 1 1 1 1 1 1 1p fp rp
p=1 1 f1 r1 2 f2 r2 3 f3 r3 4 f4 r41

4 1 1 1 1
1 f1 r1 f2 r2 f3 r3 f4 r4
fp rp

p=1

(y ×W ×W )
(y ×W ×W )+(y ×W ×W )+(y ×W ×W )+(y ×W ×W )

y = =
( W ×W )+( W ×W )+( W ×W )+( W ×W )(W ×W )




( 2.0 × 0×0.2)+(1.8× 0.34×0.1)+(2.2× 0.066×0.2)+(1.7×0.594 ×0.05)= =1.83

(0×0.2)+(0.34×0.1)+(0.066×0.2)+(0.594×0.05)
 

 

It could be observed that the calculations in this fuzzy modeling method are simple and 
straightforward.  
 

 
Fig. 6. Fuzzy dividing, trapezoidal membership functions and membership degrees for point 

x1 ( 1
1x , 1

2x ). 

www.intechopen.com



Fuzzy modeling by Active Learning Method 205

Consider a system with two variables (  1 2X= X , X ) and m m
1 1 2 2x X ,x X  that its 

fuzzy rules are: 
 

R1:  If  ( 1
mx  is small & 1

mx  is very small)   then  m
1y  = f1( 1

mx )  

R2:  If  ( 1
mx  is small & 1

mx  is moderate small) then  2
my  = f2( 2

mx )  

R3:  If  ( 1
mx  is big & 2

mx  is small)    then  3
my  = f3( 2

mx )  

R4:  If  ( 1
mx  is big & 2

mx  is big)    then  4
my  = f4( 1

mx )  

The above linguistic propositions are expressed by the following rules: 

R1:  If  ( 1
mx  is 11

11Α  & 1
mx  is 11

21Α )   then  1
my  = f1( 1

mx )  

R2:  If  ( 1
mx  is 11

11Α  & 1
mx  is 12

22Α )   then  2
my  = f2( 2

mx )  

R3:  If  ( 1
mx  is 12

11Α  & 2
mx  is 21

23Α )   then  3
my  = f3( 2

mx )  

R4:  If  ( 1
mx  is 12

11Α  & 2
mx  is 22

24Α )   then  4
my  = f4( 1

mx )  

 
Suppose the PAE of f1, f2, f3 and f4 are 5, 10, 5 and 20. Then, Wr1, Wr2, Wr3 and Wr4 are equal to 
0.2, 0.1, 0.2 and 0.05, respectively. 
Figure 6 shows the fuzzy dividing and the membership functions for this example 

As seen in figure 6, the membership degrees for x1 ( 1 1
1 2x ,x ) are: 

 
11 1
11 1Α (x )  = 0.34, 11 1

12 1Α (x )  = 0.66, 11 1
21 1Α (x )  = 0, 12 1

22 1Α (x )  = 1, 21 1
23 2Α (x )  = 0.1, 

22 1
24 2Α (x )  = 0.9, 

 
In accordance with the membership degrees of different membership functions, the truth 
values of different rules ( m

fpW ) can be determined using the following calculations. 
 

1 11 1 11 1
f1 11 1 21 1W = Α (x )× Α (x ) = 0.34×0=0  

1 11 1 12 1
f2 11 1 22 1W = Α (x )×Α (x ) =0.34 × 1=0.34  

1 12 1 21 1
f3 11 1 23 2W = Α (x )× Α (x ) =0.66 ×0.1=0.066  

1 12 1 22 1
f4 11 1 24 2W = Α (x )× Α (x ) = 0.66×0.9 =0.594  

 
Assume the rule functions ( m

py ) values for point x1 are: 
1
1y  = f1(

1
1x ) = 2.0, 1

2y  = f2(
1
2x ) = 1.8, 1

3y  = f3(
1
2x ) = 2.2 and 1

4y  = f4(
1
1x ) = 1.7. 

 

According to the equation 3, the output (y1) can be calculated as below: 
 

4
1 1

1 1 1 1 1 1 1 1p fp rp
p=1 1 f1 r1 2 f2 r2 3 f3 r3 4 f4 r41

4 1 1 1 1
1 f1 r1 f2 r2 f3 r3 f4 r4
fp rp

p=1

(y ×W ×W )
(y ×W ×W )+(y ×W ×W )+(y ×W ×W )+(y ×W ×W )

y = =
( W ×W )+( W ×W )+( W ×W )+( W ×W )(W ×W )




( 2.0 × 0×0.2)+(1.8× 0.34×0.1)+(2.2× 0.066×0.2)+(1.7×0.594 ×0.05)= =1.83

(0×0.2)+(0.34×0.1)+(0.066×0.2)+(0.594×0.05)
 

 

It could be observed that the calculations in this fuzzy modeling method are simple and 
straightforward.  
 

 
Fig. 6. Fuzzy dividing, trapezoidal membership functions and membership degrees for point 

x1 ( 1
1x , 1

2x ). 

www.intechopen.com



 New, Advanced Technologies206

3. The specific abilities of ALM 
 

3.1 Initial parameters for training 
In spite of many other well-known modeling methods (e.g. Neural Networks), ALM does not 
need initial parameters to start the training and thus it does not repeat the training, hence 
ALM training is very easy and straightforward and it is not time consuming. 

 
3.2 Finding and ranking the effective variables 
Although, the appropriate inputs to models are often determined before the beginning of 
modeling by physical or empirical based methods, but ALM can determine and rank the 
important input variables. Because it is very easy for ALM to find the important or divided 
variables and one–variable function in each step of modeling. Then, the variables can be 
ranked according to their roles in modeling easily. Suppose that the ranking criterion for used 
variables in one–variable functions is the number of subspaces which have been estimated 
using each variable. Similarly, suppose that the ranking criterion for the used variables for 
dividing is dividing times of each variable. Hence, ALM similar to human can find and rank 
the effective variables in a system.  

 
3.3 Sensitivity to noise 
In general, ALM has low sensitivity to noise. The main factor of robustness of ALM is IDS 
operator and it is similar to adding a cone shaped distribution noise to the inputs and output 
data using cone shaped illumination (distribution) pattern (solid line in figure 7). As shown in 
figure 7, the cone shaped noise which is added automatically by IDS is very similar to a 
normal distribution (solid line) noise.  
 

 

Fig. 7. Schematic view of normal distribution function 
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For the low sensitivity to noise (robust) modeling, it is necessary to add some noises to data 
and then train the model with noisy data. In the crisp modeling methods (e.g. neural 
networks), adding noise to data should be performed by repeating the dataset (for example 
100 times) and adding noise (often normal distribution noise) to the repeated dataset. It is time 
consuming to repeat the dataset, add random noise to data and train the model using the large 
repeated dataset. Therefore robust modeling is time consuming. But ALM does not need to 
repeat the dataset nor add noise to it. Because the cone shaped noise which is added 
automatically by IDS operator is very similar to a normal distribution (dotted line) noise (see 
figure 7). Thus, ALM is more rapid than any other crisp modeling method in training stage. 
In the crisp modeling methods, because of lack of necessary knowledge about the noise level 
in the system (e.g. noise level for different variables and functions), a constant level of noise is 
added to the functions and variables. But ALM determines the appropriate noise level for 
different variables by calculation of the optimum slopes of cone shaped illumination 
(distribution) patterns in the IDS operator for variables. Also ALM is able to add different 
levels of noise to the function and variables data by changing the resolution in x and y axes.  
For more details about the ALM abilities and demonstration of the mentioned abilities, refer to 
Taheri Shahraiyni (2007) and Taheri Shahraiyni et al. (2009).  

 
4. An application of ALM modeling 
 

Here, ALM is used for modeling of a very important problem (Algal bloom in marine 
environment) and its abilities and performances are investigated.  
Algal bloom is the result of interaction between physiological and ecological characteristics of 
the species as well as physiochemical processes in the water column. Algal bloom detection in 
the water bodies and the monitoring of its spatiotemporal changes is necessary for water 
quality or marine ecosystem modeling and management. Chlorophyll-a is an indicator for the 
phytoplanktonic biomass, hence the retrieved spatial distribution of chlorophyll concentration 
in a water body can be used for the monitoring of spatiotemporal changes of algal bloom.  
Remote sensing can provide a complementary tool for the chlorophyll retrieval in varying 
water bodies. Due to the very high level inherent noises in satellite images, the low sensitivity 
to noise method is needed for the extraction of chlorophyll concentration from satellite images. 
ALM is promising to be low sensitive to noise, hence used for solving of this problem. The 
reflected radiations of sea surface, measured in different wavelengths by satellite, are the input 
variables to ALM and the output is the corresponding chlorophyll concentration.  
We need to a dataset for training of ALM. The training dataset was generated by numerical 
solution of radiative transfer equation. Radiative transfer equation simulates the radiative 
transfer in atmosphere-ocean system.  
ALM was trained by this dataset and tested by satellite images and concurrent in-situ 
measurements of chlorophyll in Caspian Sea.  
The Caspian Sea is a land-locked sea between Asia and Europe. It is the largest inland water 
body in the world. It covers a surface area more than 370,000 km², reaches a maximum depth 
of about 1000 m. An algal bloom happened in the Caspian Sea on August 2005 in the southern 
part of Caspian Sea and it disappeared in October 2005. The sampling and analysis of species 
in the algal bloom showed that the bloom is related to toxic specie of the Cyanobacteria (Blue-
green algae) which is named Nodularia. 
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The utilized satellite images in the study were MERIS images. MERIS has been located on 
board of the ENVISAT satellite (European Space Agency). MERIS takes 15 images in different 
wavelengths between 412 and 900 nm. For details about MERIS refer to Rast et al. (1999). 
The results of test of trained ALM showed that it can derive the chlorophyll concentration with 
appropriate accuracy (percent of absolute error = 44%). This shows that ALM is very robust to 
noise. The developed ALM model had only 8 rules. The processing time of fuzzy models is 
highly related to the number of rules and this number of rules (8 rules) is small enough to 
allow for an appropriate processing time in operational applications. In addition, it could find 
that {490, 510, 560, 685, and 885 nm} are important and necessary wavelengths for chlorophyll 
modeling and remove the other ones. For details about this Chlorophyll estimation by ALM 
modeling refer to Taheri Shahraiyni et al. (2007). 
Finally, the satellite images were used as input to developed ALM model and the output 
chlorophyll concentration maps in Caspian Sea were extracted. Figure 8 shows these results 
from August to October.  
As you see in figure 8 and explanations on the figure 8, ALM has been successful for the 
appropriate monitoring of change of chlorophyll concentration in the Caspian Sea. 
The results demonstrated that ALM model is an appropriate and useful method for modeling 
of chlorophyll concentration and consequently, detection and monitoring of algal bloom in 
marine environment. 

 
5. Other applications 
 

Although we focused on the ALM abilities for modeling, but according to the structure of 
ALM, its application is not limited to modeling and it is applicable in different fields of 
engineering. Here we hint to some of ALM applications. 

 
5.1 Large scale optimization problems 
The large scale optimization problems are important in different fields of science, engineering 
and operation research. Unfortunately most of them are NP (Non-Polynomial) problems and 
finding their optimum solution in reasonable time is almost impossible (Garey and Johnson, 
1976). ALM can be used for solution of these problems and it presents satisfactory results. 
An example: Bin-Packing problem is a NP problem (Garey and Johnson, 1976) and it has many 
different applications such as  loading trucks subject to weight limitations. Lotfi and Bagheri 
Shouraki (2004) used ALM for solution of Bin-packing problem. They showed, in spite of very 
simple construction of ALM, it can obtain very good results for solving Bin Packing problem. 

 
5.2 Control problems 
Human modeling method has low sensitivity to noise. ALM is similar to human modeling 
methods and it is very robust to noise. Therefore it is very useful method for control 
problems. Up to now, several researches has been performed on the application of ALM in 
control problems. Some of these control researches are as below: 
Bagheri Shouraki and Honda (1998) showed the ability of ALM for stable controlling of 
dynamic systems such as invert pendulum.  
Shahdi and Bagheri Shouraki (2002) used of ALM for design of controller for Beam and Ball 
problem and showed the ability of ALM for control of this system. 

Shahdi and Bagheri Shouraki (2003) used of ALM for design of an intelligent control system 
in an automated vehicle. The problem was the control of a truck which is moving at the back 
of another truck in one line. The automated truck doesn’t contact to another truck. The ALM 
has been used to extract driver’s behavior and control rules for control system. Also, the 
effective parameters of controller were derived using ALM. 
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Fig. 8. Chlorophyll concentration (μg/lit) maps in Caspian Sea, derived by developed ALM 
model which shows the algal bloom appearance on August and its disappearance until 
October, 2005 

 
6. References 
 

ABBASS, H.A., SARKER, R.A. and NEWTON, C.S., 2002, Data mining: A heuristic approach (Idea 
Group Publishing). 

BAGHERI SHOURAKI, S. and HONDA, N., 1997, A new method for establishing and saving 
fuzzy membership functions. In 13th Fuzzy Symposium, 4–6 June 1997, Toyama, 
Japan, pp. 91–94. 

BAGHERI SHOURAKI, S. and HONDA, N., 1998, Fuzzy controller design by an active learning 
method. In 31th Symposium of Intelligent Control, 26 August 1998, Japan, Tokyo, pp. 
1–10. 

Appearance of 
algal bloom 

Growing of algal 
bloom 

Growing and 
Spreading of algal 

bloom 

Maximum growth and 
motion toward coastal 

zone  

Removing of algal 
bloom from water by 

transmission to 
coastal zone besides 
of a very small part 

Complete 
disappearance of 

algal bloom 

www.intechopen.com



Fuzzy modeling by Active Learning Method 209

The utilized satellite images in the study were MERIS images. MERIS has been located on 
board of the ENVISAT satellite (European Space Agency). MERIS takes 15 images in different 
wavelengths between 412 and 900 nm. For details about MERIS refer to Rast et al. (1999). 
The results of test of trained ALM showed that it can derive the chlorophyll concentration with 
appropriate accuracy (percent of absolute error = 44%). This shows that ALM is very robust to 
noise. The developed ALM model had only 8 rules. The processing time of fuzzy models is 
highly related to the number of rules and this number of rules (8 rules) is small enough to 
allow for an appropriate processing time in operational applications. In addition, it could find 
that {490, 510, 560, 685, and 885 nm} are important and necessary wavelengths for chlorophyll 
modeling and remove the other ones. For details about this Chlorophyll estimation by ALM 
modeling refer to Taheri Shahraiyni et al. (2007). 
Finally, the satellite images were used as input to developed ALM model and the output 
chlorophyll concentration maps in Caspian Sea were extracted. Figure 8 shows these results 
from August to October.  
As you see in figure 8 and explanations on the figure 8, ALM has been successful for the 
appropriate monitoring of change of chlorophyll concentration in the Caspian Sea. 
The results demonstrated that ALM model is an appropriate and useful method for modeling 
of chlorophyll concentration and consequently, detection and monitoring of algal bloom in 
marine environment. 

 
5. Other applications 
 

Although we focused on the ALM abilities for modeling, but according to the structure of 
ALM, its application is not limited to modeling and it is applicable in different fields of 
engineering. Here we hint to some of ALM applications. 

 
5.1 Large scale optimization problems 
The large scale optimization problems are important in different fields of science, engineering 
and operation research. Unfortunately most of them are NP (Non-Polynomial) problems and 
finding their optimum solution in reasonable time is almost impossible (Garey and Johnson, 
1976). ALM can be used for solution of these problems and it presents satisfactory results. 
An example: Bin-Packing problem is a NP problem (Garey and Johnson, 1976) and it has many 
different applications such as  loading trucks subject to weight limitations. Lotfi and Bagheri 
Shouraki (2004) used ALM for solution of Bin-packing problem. They showed, in spite of very 
simple construction of ALM, it can obtain very good results for solving Bin Packing problem. 

 
5.2 Control problems 
Human modeling method has low sensitivity to noise. ALM is similar to human modeling 
methods and it is very robust to noise. Therefore it is very useful method for control 
problems. Up to now, several researches has been performed on the application of ALM in 
control problems. Some of these control researches are as below: 
Bagheri Shouraki and Honda (1998) showed the ability of ALM for stable controlling of 
dynamic systems such as invert pendulum.  
Shahdi and Bagheri Shouraki (2002) used of ALM for design of controller for Beam and Ball 
problem and showed the ability of ALM for control of this system. 

Shahdi and Bagheri Shouraki (2003) used of ALM for design of an intelligent control system 
in an automated vehicle. The problem was the control of a truck which is moving at the back 
of another truck in one line. The automated truck doesn’t contact to another truck. The ALM 
has been used to extract driver’s behavior and control rules for control system. Also, the 
effective parameters of controller were derived using ALM. 
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Fig. 8. Chlorophyll concentration (μg/lit) maps in Caspian Sea, derived by developed ALM 
model which shows the algal bloom appearance on August and its disappearance until 
October, 2005 
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