
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Modelling Embedded Systems with AADL: A Practical Study 247

Modelling Embedded Systems with AADL: A Practical Study

Naeem Muhammad, Yves Vandewoude, Yolande Berbers and Sjir van Loo

X

Modelling Embedded Systems
with AADL: A Practical Study

Naeem Muhammad1, Yves Vandewoude1, Yolande Berbers1 and Sjir van Loo2

1Departement of Computer Science, Katholieke Universiteit Leuven, Belgium
2Embedded Systems Institute, The Netherlands

1. Introduction

In today’s world, embedded systems can be seen everywhere around us. These systems
range from consumer electronics such as mobile phones, cameras and portable music
players to sophisticated devices such as planes and satellite systems. In either form
embedded systems are designed to perform specific tasks with constraints on their qualities
and available resources. These constraints can either be soft or hard depending on the
nature of the system: a satellite system, for example, has hard safety constraints. Some of the
major constraints for embedded systems are high reliability, performance, safety and
dependability, small memory size, low power and low processing capabilities. Designing
systems with such constraints is a challenge.
Developing system architectures during system development has gained importance as it
helps in analyzing the system before its implementation. A system architecture is a formal
description of a system that describes its building blocks, their properties and the
interactions among them. System architectures can be used to analyze various properties of
a system such as memory consumption and system safety. For embedded systems, this is of
extreme importance since a well described system architecture allows us to predict whether
any of the previously mentioned constraints can be met, without requiring the construction
of an often expensive prototype implementation.
Description of system architectures can be achieved using the formal notations offered by
Architecture Description Languages (ADLs). Such ADLs often also provide tool support for
the modelling and analysis of the system architecture. Many ADLs for embedded systems
are available in both academic and industrial communities, such as Rapide, MetaH, AADL
and Wright. Among the available ADLs, the best known and most actively used language is
the Architecture Analysis and Design Language (AADL). Standardized by the Society of
Automotive Engineers, AADL was originally developed for modelling and analysis of
systems in the domain of avionics. However, because of its rich modelling and analysis
capabilities, it is widely used for embedded systems in other domains as well. AADL
provides a modelling formalism accompanied by a toolset to support modelling activities
and system analyses. AADL models can be used to perform various analyses such as flow
latency, resource consumption, real-time schedulability, security and safety analysis.
Because of its history in the avionics domain, AADL does not address each and every

15

www.intechopen.com

 New, Advanced Technologies248

modelling and analysis requirement of other embedded domains. However, during its
design, it was foreseen that use of AADL in other domains could require additional
modelling concepts and analyses. To meet potential needs AADL was designed as an
extensible ADL.
This chapter is intended to provide insight into the design needs of embedded systems and
the formalisms available to address those needs; we discuss them in section 2 and 3
respectively. We will explain the suitability of AADL and will present its architectural
elements for modelling embedded systems in section 4. We will also highlight the
shortcomings currently present in AADL and describe its extension mechanism by
addressing one of the shortcomings with the help of an example, in section 5.

2. Embedded Systems

There is no standard, universally accepted definition of embedded systems. Some recognize
embedded systems as a computer inside a product; some view them as computing systems
embedded inside electronic devices; some refer them as electronic programmable devices
integrated in a larger heterogeneous system. Despite the lack of a standard definition, a
general consensus about embedded systems is that they are computer systems designed to
perform dedicated functions. Today we can see many such systems ranging from very
simple single-chip systems to complex and highly distributed embedded systems. They are
present around us in various forms at various places such as digital cameras, home appliances,
elevators, planes and medical devices. The role of embedded systems in human life has
increased drastically over the last decade as human dependency on electronic systems has
surged. In past, embedded systems were mainly used to address needs of the mission-critical
systems. Recently however, they are used in devices such as mobile phones and PDAs as well.
One example of a very common embedded system is a digital camera, which is a
composition of hardware and software components. The hardware is mainly responsible for
capturing objects through sensors and storing images whereas the software facilitates image
processing functions. Digital cameras usually have constraints such as low computation
power, small size and low power consumption.
Physical constrains, such as size and weight, and cost are reasons why embedded systems,
such as mobile phones or digital cameras are forced to perform their functions with
considerably fewer resources than conventional systems. Other systems, such as flight-
computers or transportation systems have high safety and reliability requirements. It is the
presence of these non-functional constraints that makes the design and development of such
systems a daunting task.
Embedded systems can be divided in to real-time and non-real time embedded systems.
Real-time embedded systems have various timing constraints on their behavior, they are
required to react and respond to such constraints. Correctness of their behavior depends on
the ability to perform it in the given time frame or before a certain deadline. Whereas, non-
real time embedded systems do not have time obligations.
Real-time embedded systems can further be categorized in hard and soft real-time
embedded systems. Hard real-time systems have tight timing constrains with nearly zero-
tolerance level. Failure to meet the deadlines causes the operations to stop and is considered
an anomaly. Mission critical systems usually fall in hard real-time embedded systems
category. Soft real-time constrains can be found in video streaming applications for

example. Failure to achieve required deadlines or throughput is annoying but does not
necessarily invalidate the results. An embedded system may have both hard and soft real-
time constraints for different functional and non-functional requirements.
The affordability of embedded systems is an indicator for a further increase of their use in
the near future. Not only they are more widely used, embedded systems also provide more
and more features and grow increasingly more complex each year. In a study, in 2008, about
30 embedded microprocessors were found per person in developed countries, with at least
2.5 million function points in the associated embedded software (Christof & Capers, 2009).
The number of embedded devices in automobiles is an important growth rate indicator.
Modern cars contain 20 – 70 electronic control units with up to 1Gigabyte total size of the
accompanied software. A similar growth rate is predicted for embedded systems in other
domains too. Embedded systems with complex specifications require sophisticated
development methodologies in general and especially for modelling their architecture
(Bouyssounouse & Sifakis, 2005).

Embedded Systems Specification and Modelling Needs
Embedded systems consist of both functional and non-functional properties. Although the
nature of their functional properties differs between different domains, embedded systems
often have similar non-functional properties known as Quality Attributes (QA). A camera for
instance has different functional properties than a mobile phone but both of them are required
to work with a small amount of memory and less computation power. QAs are system
requirements used to describe quality aspects of the system. The quality aspects may include
performance, usability, security, portability, availability, robustness and testability. There is no
standard list of such QAs that define system quality, however a general criteria that
distinguishes them from other requirements is that they only describe non functional aspects
of system. The quality of a system is analyzed against these requirements; importantly they are
used during architecture level analysis to find and fix any discrepancy to system requirements
early in the development life cycle. Trudy Sherman in his research work identified QAs for
embedded systems by examining eleven architectural designs of embedded systems
developed by three different organizations. He produced a list of 30 QAs that are used to
define various quality aspects of embedded systems (Sherman, 2007). Following are some
commonly used QAs for embedded systems given in the list he produced:

Quality Attributes Description
Reliability The ability of a system to perform desired behavior under

previously specified circumstances, and recover from
undesired states if occurred.

Safety The ability of a system to avoid potential hazards to itself,
its users and the environment in which it is used.

Security The ability of a system to resist any unauthorized usage.
Memory Usage The capability to work with a limited amount of memory.
Performance

The degree to which a system or component accomplishes
its designated functions within given constraints, such as
speed and accuracy.

Usability The system must be easy to use, operate and handle.

Table 1. Embedded System Quality Attributes

www.intechopen.com

Modelling Embedded Systems with AADL: A Practical Study 249

modelling and analysis requirement of other embedded domains. However, during its
design, it was foreseen that use of AADL in other domains could require additional
modelling concepts and analyses. To meet potential needs AADL was designed as an
extensible ADL.
This chapter is intended to provide insight into the design needs of embedded systems and
the formalisms available to address those needs; we discuss them in section 2 and 3
respectively. We will explain the suitability of AADL and will present its architectural
elements for modelling embedded systems in section 4. We will also highlight the
shortcomings currently present in AADL and describe its extension mechanism by
addressing one of the shortcomings with the help of an example, in section 5.

2. Embedded Systems

There is no standard, universally accepted definition of embedded systems. Some recognize
embedded systems as a computer inside a product; some view them as computing systems
embedded inside electronic devices; some refer them as electronic programmable devices
integrated in a larger heterogeneous system. Despite the lack of a standard definition, a
general consensus about embedded systems is that they are computer systems designed to
perform dedicated functions. Today we can see many such systems ranging from very
simple single-chip systems to complex and highly distributed embedded systems. They are
present around us in various forms at various places such as digital cameras, home appliances,
elevators, planes and medical devices. The role of embedded systems in human life has
increased drastically over the last decade as human dependency on electronic systems has
surged. In past, embedded systems were mainly used to address needs of the mission-critical
systems. Recently however, they are used in devices such as mobile phones and PDAs as well.
One example of a very common embedded system is a digital camera, which is a
composition of hardware and software components. The hardware is mainly responsible for
capturing objects through sensors and storing images whereas the software facilitates image
processing functions. Digital cameras usually have constraints such as low computation
power, small size and low power consumption.
Physical constrains, such as size and weight, and cost are reasons why embedded systems,
such as mobile phones or digital cameras are forced to perform their functions with
considerably fewer resources than conventional systems. Other systems, such as flight-
computers or transportation systems have high safety and reliability requirements. It is the
presence of these non-functional constraints that makes the design and development of such
systems a daunting task.
Embedded systems can be divided in to real-time and non-real time embedded systems.
Real-time embedded systems have various timing constraints on their behavior, they are
required to react and respond to such constraints. Correctness of their behavior depends on
the ability to perform it in the given time frame or before a certain deadline. Whereas, non-
real time embedded systems do not have time obligations.
Real-time embedded systems can further be categorized in hard and soft real-time
embedded systems. Hard real-time systems have tight timing constrains with nearly zero-
tolerance level. Failure to meet the deadlines causes the operations to stop and is considered
an anomaly. Mission critical systems usually fall in hard real-time embedded systems
category. Soft real-time constrains can be found in video streaming applications for

example. Failure to achieve required deadlines or throughput is annoying but does not
necessarily invalidate the results. An embedded system may have both hard and soft real-
time constraints for different functional and non-functional requirements.
The affordability of embedded systems is an indicator for a further increase of their use in
the near future. Not only they are more widely used, embedded systems also provide more
and more features and grow increasingly more complex each year. In a study, in 2008, about
30 embedded microprocessors were found per person in developed countries, with at least
2.5 million function points in the associated embedded software (Christof & Capers, 2009).
The number of embedded devices in automobiles is an important growth rate indicator.
Modern cars contain 20 – 70 electronic control units with up to 1Gigabyte total size of the
accompanied software. A similar growth rate is predicted for embedded systems in other
domains too. Embedded systems with complex specifications require sophisticated
development methodologies in general and especially for modelling their architecture
(Bouyssounouse & Sifakis, 2005).

Embedded Systems Specification and Modelling Needs
Embedded systems consist of both functional and non-functional properties. Although the
nature of their functional properties differs between different domains, embedded systems
often have similar non-functional properties known as Quality Attributes (QA). A camera for
instance has different functional properties than a mobile phone but both of them are required
to work with a small amount of memory and less computation power. QAs are system
requirements used to describe quality aspects of the system. The quality aspects may include
performance, usability, security, portability, availability, robustness and testability. There is no
standard list of such QAs that define system quality, however a general criteria that
distinguishes them from other requirements is that they only describe non functional aspects
of system. The quality of a system is analyzed against these requirements; importantly they are
used during architecture level analysis to find and fix any discrepancy to system requirements
early in the development life cycle. Trudy Sherman in his research work identified QAs for
embedded systems by examining eleven architectural designs of embedded systems
developed by three different organizations. He produced a list of 30 QAs that are used to
define various quality aspects of embedded systems (Sherman, 2007). Following are some
commonly used QAs for embedded systems given in the list he produced:

Quality Attributes Description
Reliability The ability of a system to perform desired behavior under

previously specified circumstances, and recover from
undesired states if occurred.

Safety The ability of a system to avoid potential hazards to itself,
its users and the environment in which it is used.

Security The ability of a system to resist any unauthorized usage.
Memory Usage The capability to work with a limited amount of memory.
Performance

The degree to which a system or component accomplishes
its designated functions within given constraints, such as
speed and accuracy.

Usability The system must be easy to use, operate and handle.

Table 1. Embedded System Quality Attributes

www.intechopen.com

 New, Advanced Technologies250

The magnitude of constraints on QAs defines the nature of a system as either a non-real
time, soft or hard real-time embedded system. This magnitude must be explicitly defined
and is based on the domain for which the system is developed. Furthermore, it serves as an
important factor during QAs’ tradeoff.
Because of the high pressure to produce embedded systems with previously mentioned
characteristics in a low-cost and short time-to-market setting, embedded systems design
methodologies are required to well address functional and non-functional constraints, and
resolve potential issues before implementation. According to Talarico et al. they must
provide support mainly to (Talarico et al., 2005)

1. Describe the interactions between the system and the external environment
2. Describe the system architecture
3. Model the behavior of hardware and software components that make up the

system
4. Describe the system constraints and requirements
5. Describe the test scenarios used to simulate the system
6. Define a set of gauges to measure various performance metrics during simulation

execution
Although the criteria of Talarico et al. are valid for every software system a number of
aspects are especially different for embedded systems. For example, the forth requirement
support for a cost-effective method to formally specify system constrains is difficult for
embedded systems, since the exact nature of all constraints is often not yet known in the
early stages of development.
In addition, embedded systems are composed of software and hardware components which
require that the modeling needs of both domains are well addressed. These needs include
the specification of all types of software elements (such as processes, threads,
communication among software elements and shared data), hardware elements (for
instance processors, memory and physical communication channels), and most importantly
the mapping of software elements to hardware elements. Additionally support is required
for describing system dynamics. These dynamics may include system flows, system states
and run-time interactions among system components.
It is also important that the support offered by the design methodology is not restricted to
the modelling only but that it also facilitates system designers to analyze designs for issues
and fix them early. Therefore, for modern system development methodologies the presence
of design artifacts is extremely important. They not only serve as input to the next phase but
are used for early system verification and validation (V&V). They can be analyzed to find
potential performance deficiencies, security leaks and safety hazards. As previously
discussed fixing these issues at early stage is cost effective. Any unaddressed performance
deficiency or security leak that propagates to later stages of development may lead to a
major refactoring and cost afterwards. With this additional perspective design techniques
and tools are required to support V&V activities.
Moreover, it is important to assist design activities with rich set of toolsets to make these
activities quick and correct. Although, many tools are available for modeling and analysis of
functional and non-functional behaviours, some non-functional aspects remain unaddressed
which are of primary focus for embedded systems. Tool support should be enhanced not
only to deal with unaddressed areas but to tackle future design complexities.

3. Architecture Description Languages

Architecture Description Languages (ADLs) are modelling formalisms that provide support
for describing system architectures through their formal notations. These are considered as
modelling-language-plus as they can model more than conventional modelling languages.
ADLs can model not only static but dynamic properties of systems as well. There is no
consensus on a standard definition of ADL yet, for our discussions we will however use the
one provided by Medvidovic and Taylor (Medvidovic & Taylor, 2000) “an ADL must
explicitly model components, connectors, and their configurations; furthermore, to be truly usable
and useful, it must provide tool support for architecture-based development and evolution”.
The definition identifies three essential requirements an AADL must fulfil. Firstly, it should
provide support for modelling a static structure in the form of components and connectors.
Secondly, ADLs should provide support for modelling configurations of components and
connectors, which usually define system’s dynamic behaviour. The third pivotal
requirement for an ADL is to provide tool support to assist modelling and analysis
activities. There are several ADLs available to date; some of them are given in the following
table.

ADL Application Domain
AADL Is used to model real time embedded systems particularly in the avionics

domain.
Acme Interchanges architecture description information between ADLs.
Aesop Is used to model style-specific architecture descriptions, also provides

support for designing custom architecture styles.
ArchC Is a SystemC based language used to describe hardware elements.
ArchJava Checks conformance of an architecture of a software system to its

implementation, and keeps architecture and code consistent during their
evolution.

ControlH Is used to develop the architecture specification and code generation for
control and navigation systems.

C2 Supports architecture description of highly-distributed, evolvable, and
dynamic systems.

Darwin Is used to describe architectures of dynamically changing highly-
distributed systems.

EAST-ADL Addresses modelling and analysis needs of automotive electronic systems.
MetaH Supports modelling of real-time systems in the domain of guidance,

navigation and control.
Modechart Is used to describe architecture for hard real-time embedded systems.
Rapide Provides support for developing event based simulations for distributed

event-extensive systems.
SADL Is designed to simulate real-time properties for hard real-time systems

from the avionics domain.
Weaves Is used for describing architecture for data-flow-extensive systems with

real-time processing on a high volume of data.
Wright Is used for describing communication behaviour of concurrent systems.

Table 2. Architecture Description Languages

www.intechopen.com

Modelling Embedded Systems with AADL: A Practical Study 251

The magnitude of constraints on QAs defines the nature of a system as either a non-real
time, soft or hard real-time embedded system. This magnitude must be explicitly defined
and is based on the domain for which the system is developed. Furthermore, it serves as an
important factor during QAs’ tradeoff.
Because of the high pressure to produce embedded systems with previously mentioned
characteristics in a low-cost and short time-to-market setting, embedded systems design
methodologies are required to well address functional and non-functional constraints, and
resolve potential issues before implementation. According to Talarico et al. they must
provide support mainly to (Talarico et al., 2005)

1. Describe the interactions between the system and the external environment
2. Describe the system architecture
3. Model the behavior of hardware and software components that make up the

system
4. Describe the system constraints and requirements
5. Describe the test scenarios used to simulate the system
6. Define a set of gauges to measure various performance metrics during simulation

execution
Although the criteria of Talarico et al. are valid for every software system a number of
aspects are especially different for embedded systems. For example, the forth requirement
support for a cost-effective method to formally specify system constrains is difficult for
embedded systems, since the exact nature of all constraints is often not yet known in the
early stages of development.
In addition, embedded systems are composed of software and hardware components which
require that the modeling needs of both domains are well addressed. These needs include
the specification of all types of software elements (such as processes, threads,
communication among software elements and shared data), hardware elements (for
instance processors, memory and physical communication channels), and most importantly
the mapping of software elements to hardware elements. Additionally support is required
for describing system dynamics. These dynamics may include system flows, system states
and run-time interactions among system components.
It is also important that the support offered by the design methodology is not restricted to
the modelling only but that it also facilitates system designers to analyze designs for issues
and fix them early. Therefore, for modern system development methodologies the presence
of design artifacts is extremely important. They not only serve as input to the next phase but
are used for early system verification and validation (V&V). They can be analyzed to find
potential performance deficiencies, security leaks and safety hazards. As previously
discussed fixing these issues at early stage is cost effective. Any unaddressed performance
deficiency or security leak that propagates to later stages of development may lead to a
major refactoring and cost afterwards. With this additional perspective design techniques
and tools are required to support V&V activities.
Moreover, it is important to assist design activities with rich set of toolsets to make these
activities quick and correct. Although, many tools are available for modeling and analysis of
functional and non-functional behaviours, some non-functional aspects remain unaddressed
which are of primary focus for embedded systems. Tool support should be enhanced not
only to deal with unaddressed areas but to tackle future design complexities.

3. Architecture Description Languages

Architecture Description Languages (ADLs) are modelling formalisms that provide support
for describing system architectures through their formal notations. These are considered as
modelling-language-plus as they can model more than conventional modelling languages.
ADLs can model not only static but dynamic properties of systems as well. There is no
consensus on a standard definition of ADL yet, for our discussions we will however use the
one provided by Medvidovic and Taylor (Medvidovic & Taylor, 2000) “an ADL must
explicitly model components, connectors, and their configurations; furthermore, to be truly usable
and useful, it must provide tool support for architecture-based development and evolution”.
The definition identifies three essential requirements an AADL must fulfil. Firstly, it should
provide support for modelling a static structure in the form of components and connectors.
Secondly, ADLs should provide support for modelling configurations of components and
connectors, which usually define system’s dynamic behaviour. The third pivotal
requirement for an ADL is to provide tool support to assist modelling and analysis
activities. There are several ADLs available to date; some of them are given in the following
table.

ADL Application Domain
AADL Is used to model real time embedded systems particularly in the avionics

domain.
Acme Interchanges architecture description information between ADLs.
Aesop Is used to model style-specific architecture descriptions, also provides

support for designing custom architecture styles.
ArchC Is a SystemC based language used to describe hardware elements.
ArchJava Checks conformance of an architecture of a software system to its

implementation, and keeps architecture and code consistent during their
evolution.

ControlH Is used to develop the architecture specification and code generation for
control and navigation systems.

C2 Supports architecture description of highly-distributed, evolvable, and
dynamic systems.

Darwin Is used to describe architectures of dynamically changing highly-
distributed systems.

EAST-ADL Addresses modelling and analysis needs of automotive electronic systems.
MetaH Supports modelling of real-time systems in the domain of guidance,

navigation and control.
Modechart Is used to describe architecture for hard real-time embedded systems.
Rapide Provides support for developing event based simulations for distributed

event-extensive systems.
SADL Is designed to simulate real-time properties for hard real-time systems

from the avionics domain.
Weaves Is used for describing architecture for data-flow-extensive systems with

real-time processing on a high volume of data.
Wright Is used for describing communication behaviour of concurrent systems.

Table 2. Architecture Description Languages

www.intechopen.com

 New, Advanced Technologies252

The ADLs given in the table clearly show that most of them are domain specific description
languages addressing needs of systems for particular domains. They vary widely in their
supported abstractions and analysis capabilities. Their incapability to be applicable for every
domain is resulting in new ADLs. With a large number of ADLs available and most of them
domain specific, and considering the fact that a single ADL does not address every
modelling requirement particularly in the case of multidisciplinary systems, it is difficult to
choose the right language. Some work however is being done in establishing a contact point
among ADLs where multiple languages may be used together. Acme is serving as such a
contact point, it is an ADL whose core purpose is to support the mapping of an architecture
description of one ADL to another (Medvidovic & Taylor, 2000).
The role of architecture for early system validation certainly is of great importance.
However, the effectiveness of the validation activities can only be increased by a formal
description of the architecture and assisting the activities with tool support. ADLs with their
support for formal description and accompanied toolset for architecture modelling and
analysis can serve for this purpose.
The QAs of an embedded system are difficult to model and analyze because they are
associated with a system’s dynamic behavior that is only available during the last phases of
its development. It is nevertheless cost effective to resolve issues related to them as early as
possible. ADLs’ support for modelling dynamic behavior and tools for analyzing
architecture for quality attributes can be utilized for embedded systems.
Although a large number of ADLs is available, most of those are present only in the research
community, and are not applied in industry. In addition, some of them are no longer in use.
In a survey, which we conducted to find a suitable ADL for modelling performance for an
electron microscope embedded system we found that most of the candidate languages are
no longer active. Among MetaH, Rapide, AADL and Wright, only AADL is active and being
used in industry. In addition, the amount of literature published between 2000 and 2008 for
AADL magnitudes greater than for others, suggesting a wide acceptance in the research
community as well.
Besides its wide acceptance, AADL distinguishes itself from other ADLs by its extensible
nature. Although initially designed for the avionics industry it can be applied to other
domains by extending its core concepts where required (Feiler et al., 2006). This will help in
generalizing an ADL for various domains, previously an issue with many ADLs.
In the following section we will discuss AADL in detail; we will highlight its modelling and
analysis capabilities and discuss its toolset. Moreover, in section 5 we will explain how
AADL can be extended to meet custom modelling needs using an example.

4. Architecture Analysis and Design Language (AADL)

In compliance to the definition of ADL, AADL provides a modelling formalism
accompanied by a toolset to support modelling activities and analysis. Originally developed
for modelling and analysis of systems in the domain of avionics, it has been standardized by
the Society of Automotive Engineers. Because of its rich modelling and analysis capabilities
it is widely used for embedded systems in other domains as well, especially suitable for
model-based analysis and specification of complex real-time embed systems (Feiler et al.,
2006). In this section a brief introduction is given on the AADL architectural notations, its
analysis and its tool support.

4.1 Modelling
AADL consists of a rich set of architectural elements for modelling components, their
interactions and their configurations. Architectural elements and the core concepts of the
language are given in figure 1.
Components in AADL are used in terms of component types and component
implementations. A component type defines the externally visible characteristics of a
component usually by using features, flows and properties. Whereas, a component
implementation models the internal structure of the component. An internal structure may
consist of subcomponents, connection among them, flows across them and their operational
behaviour. AADL distinguishes between three types of components: software components,
hardware components and composite (system) components:

Software Components:
Thread: Represents a unit of sequential execution through source code.
Thread group: Represents a logical grouping of threads.
Process: Represents a protected address space.
Data: Represents static data and data types.
Subprogram: Represents a callable part of a source code.

Hardware Components:
Processor: Hardware that is responsible for executing threads.
Device: Hardware that interacts with the external environment.
Bus: Hardware that provides access to the other execution platform components.
Memory: Hardware that stores digital data.

Composite (System) Component: A component composed of software and hardware or even
system components.

Fig. 1. AADL Architectural Elements (Feiler et al., 2006)

www.intechopen.com

Modelling Embedded Systems with AADL: A Practical Study 253

The ADLs given in the table clearly show that most of them are domain specific description
languages addressing needs of systems for particular domains. They vary widely in their
supported abstractions and analysis capabilities. Their incapability to be applicable for every
domain is resulting in new ADLs. With a large number of ADLs available and most of them
domain specific, and considering the fact that a single ADL does not address every
modelling requirement particularly in the case of multidisciplinary systems, it is difficult to
choose the right language. Some work however is being done in establishing a contact point
among ADLs where multiple languages may be used together. Acme is serving as such a
contact point, it is an ADL whose core purpose is to support the mapping of an architecture
description of one ADL to another (Medvidovic & Taylor, 2000).
The role of architecture for early system validation certainly is of great importance.
However, the effectiveness of the validation activities can only be increased by a formal
description of the architecture and assisting the activities with tool support. ADLs with their
support for formal description and accompanied toolset for architecture modelling and
analysis can serve for this purpose.
The QAs of an embedded system are difficult to model and analyze because they are
associated with a system’s dynamic behavior that is only available during the last phases of
its development. It is nevertheless cost effective to resolve issues related to them as early as
possible. ADLs’ support for modelling dynamic behavior and tools for analyzing
architecture for quality attributes can be utilized for embedded systems.
Although a large number of ADLs is available, most of those are present only in the research
community, and are not applied in industry. In addition, some of them are no longer in use.
In a survey, which we conducted to find a suitable ADL for modelling performance for an
electron microscope embedded system we found that most of the candidate languages are
no longer active. Among MetaH, Rapide, AADL and Wright, only AADL is active and being
used in industry. In addition, the amount of literature published between 2000 and 2008 for
AADL magnitudes greater than for others, suggesting a wide acceptance in the research
community as well.
Besides its wide acceptance, AADL distinguishes itself from other ADLs by its extensible
nature. Although initially designed for the avionics industry it can be applied to other
domains by extending its core concepts where required (Feiler et al., 2006). This will help in
generalizing an ADL for various domains, previously an issue with many ADLs.
In the following section we will discuss AADL in detail; we will highlight its modelling and
analysis capabilities and discuss its toolset. Moreover, in section 5 we will explain how
AADL can be extended to meet custom modelling needs using an example.

4. Architecture Analysis and Design Language (AADL)

In compliance to the definition of ADL, AADL provides a modelling formalism
accompanied by a toolset to support modelling activities and analysis. Originally developed
for modelling and analysis of systems in the domain of avionics, it has been standardized by
the Society of Automotive Engineers. Because of its rich modelling and analysis capabilities
it is widely used for embedded systems in other domains as well, especially suitable for
model-based analysis and specification of complex real-time embed systems (Feiler et al.,
2006). In this section a brief introduction is given on the AADL architectural notations, its
analysis and its tool support.

4.1 Modelling
AADL consists of a rich set of architectural elements for modelling components, their
interactions and their configurations. Architectural elements and the core concepts of the
language are given in figure 1.
Components in AADL are used in terms of component types and component
implementations. A component type defines the externally visible characteristics of a
component usually by using features, flows and properties. Whereas, a component
implementation models the internal structure of the component. An internal structure may
consist of subcomponents, connection among them, flows across them and their operational
behaviour. AADL distinguishes between three types of components: software components,
hardware components and composite (system) components:

Software Components:
Thread: Represents a unit of sequential execution through source code.
Thread group: Represents a logical grouping of threads.
Process: Represents a protected address space.
Data: Represents static data and data types.
Subprogram: Represents a callable part of a source code.

Hardware Components:
Processor: Hardware that is responsible for executing threads.
Device: Hardware that interacts with the external environment.
Bus: Hardware that provides access to the other execution platform components.
Memory: Hardware that stores digital data.

Composite (System) Component: A component composed of software and hardware or even
system components.

Fig. 1. AADL Architectural Elements (Feiler et al., 2006)

www.intechopen.com

 New, Advanced Technologies254

Interactions between components can be realized by using features and connections. Features
are interaction points of components, which are used for communication. Features are
classified into ports, component access, subprogram calls and parameters. A port is a
communication interface of components used to exchange data and events. AADL
categorizes ports as data ports, event ports and event data ports. Moreover, multiple ports can
be grouped together in a port group. Component access enables components to access shared
data and bus. For access, components are required to explicitly use provides access and
requires access declarations. Subprogram calls are used for synchronous calls to subprogram
components, and parameters are used to represent data values passing in and out of a
subprogram. Connectors are used to connect interaction points of components. AADL
provides data, event, eventdata, dataaccess, bussaccess and portgroup connectors.

4.2 Analysis and Tool Support
In its conformity to the ADL definition, AADL provides support for various kinds of
analyses along with conventional modelling. A few of the supported analysis are:
Flow Latency Analysis
Understand the amount of time consumed for information flows within a system,
particularly the end-to-end time consumed from a starting point to a destination.
Resource Consumption Analysis
Allows system architects to perform resource allocation for processors, memory, and
network bandwidth and analyze the requirements against the available resources.
Real-Time Schedulability Analysis
AADL models bind software elements such as threads to hardware elements like processors.
Schedulability analysis helps in examining such bindings and scheduling policies.
Safety Analysis
Checks the safety criticality level of system components and highlights potential safety
hazards that may occur because of communication among components with different safety
levels.
Security Analysis
Like safety levels, AADL components can be assigned various security levels. The analysis
helps in identifying the security loopholes that may happen because of mismatches in
security levels between a component and its subcomponents, and communication among
components with different security levels.
Various tools are available to perform these analyses:
OSATE (Open Source AADL Tool Environment) developed by SEI is a set of Eclipse plug-
ins for front-end processing and various analyses of AADL models (Feiler & Hansson, 2007).
ADeS (Architecture Description Simulation) by Axlog simulates various aspects of the
system behaviour, such as scheduling of processes and threads by processors (AXLOG, 2009).
Cheddar (Singhoff & Plantec, 2007), developed by LISyC Team, is a real-time scheduling
tool which provides support for quick prototyping of real-time schedulers and
schedulability analysis. Like ADeS, Cheddar also supports simulation of scheduling
properties of a system.
ANDES (ANalysis-based DEsign tool for wireless Sensor networks) (Prasad et al., 2007) was
developed for modelling and analysis of wireless sensor network systems. It provides
support for real-time communication schedulability, target tracking and real-time capacity
analyses.

5. Extension to AADL

Initially designed as a language for modelling avionic systems, AADL includes core
modelling concepts and certain analyses essential for real-time systems in the aerospace
domain. However, during its design, it was foreseen that use of AADL in other domains
could require additional modelling concepts and analyses. To meet potential needs AADL
was designed as an extensible ADL.
It is possible to extend the AADL concepts either by introducing new properties to the
modelling elements, by addition of new modelling notations, or by developing a
sublanguage as annex to the AADL standard (Frana et al., 2007). The latter technique is
mainly used for large-scale extensions and was considered out of scope for our own
purpose. Since, for our research work we extended AADL by using the property based
extension technique, the scope of the example we present here will be restricted to this
technique only. In this ecample, we will extend AADL End-to-End (EtE) flows to provide
support for Composite EtE flow modelling and latency analysis.
EtE flow latency is the amount of time consumed by the contributing components for a
specific flow of information from a source to a destination. Currently, AADL requires that
flow specifications of the contributing components are connected through the AADL
connector element and does not provide support for composite EtE flows: flows that
themselves consist of multiple discrete EtE flows. We will describe how this issue can be
overcome with an extension to AADL, by introducing a new property for the AADL EtE
flow element. Latter we will discuss results of the extended EtE flow analysis with the help
of an analysis tool that we developed for this purpose.
We will apply this technique on an electron microscope embedded system. An electron
microscope is a sophisticated microscope used to examine minute specimens by creating
highly-magnified images.

5.1 AADL EtE Flow Extension
Flows in AADL describe the different sequences of an information flow through a set of
contributing components. The description of this flow is subsequently used in certain
analyses such as a flow latency analysis. In AADL, flows are defined with a flow
specification and a flow implementation. A flow specification represents the externally
visible flow of information in a component; it is specified within the component type
declarations using flow sources, flow paths and flow sinks (Feiler & Hansson,2007). A flow
source represents the originator of the flow, the flow sink represents the end consumer of
the flow information, and the flow path embodies the link between incoming and outgoing
ports involved in the flow. A flow implementation on the other hand represents the actual
realization of a flow within a component; it is specified within the component
implementation declarations.

www.intechopen.com

Modelling Embedded Systems with AADL: A Practical Study 255

Interactions between components can be realized by using features and connections. Features
are interaction points of components, which are used for communication. Features are
classified into ports, component access, subprogram calls and parameters. A port is a
communication interface of components used to exchange data and events. AADL
categorizes ports as data ports, event ports and event data ports. Moreover, multiple ports can
be grouped together in a port group. Component access enables components to access shared
data and bus. For access, components are required to explicitly use provides access and
requires access declarations. Subprogram calls are used for synchronous calls to subprogram
components, and parameters are used to represent data values passing in and out of a
subprogram. Connectors are used to connect interaction points of components. AADL
provides data, event, eventdata, dataaccess, bussaccess and portgroup connectors.

4.2 Analysis and Tool Support
In its conformity to the ADL definition, AADL provides support for various kinds of
analyses along with conventional modelling. A few of the supported analysis are:
Flow Latency Analysis
Understand the amount of time consumed for information flows within a system,
particularly the end-to-end time consumed from a starting point to a destination.
Resource Consumption Analysis
Allows system architects to perform resource allocation for processors, memory, and
network bandwidth and analyze the requirements against the available resources.
Real-Time Schedulability Analysis
AADL models bind software elements such as threads to hardware elements like processors.
Schedulability analysis helps in examining such bindings and scheduling policies.
Safety Analysis
Checks the safety criticality level of system components and highlights potential safety
hazards that may occur because of communication among components with different safety
levels.
Security Analysis
Like safety levels, AADL components can be assigned various security levels. The analysis
helps in identifying the security loopholes that may happen because of mismatches in
security levels between a component and its subcomponents, and communication among
components with different security levels.
Various tools are available to perform these analyses:
OSATE (Open Source AADL Tool Environment) developed by SEI is a set of Eclipse plug-
ins for front-end processing and various analyses of AADL models (Feiler & Hansson, 2007).
ADeS (Architecture Description Simulation) by Axlog simulates various aspects of the
system behaviour, such as scheduling of processes and threads by processors (AXLOG, 2009).
Cheddar (Singhoff & Plantec, 2007), developed by LISyC Team, is a real-time scheduling
tool which provides support for quick prototyping of real-time schedulers and
schedulability analysis. Like ADeS, Cheddar also supports simulation of scheduling
properties of a system.
ANDES (ANalysis-based DEsign tool for wireless Sensor networks) (Prasad et al., 2007) was
developed for modelling and analysis of wireless sensor network systems. It provides
support for real-time communication schedulability, target tracking and real-time capacity
analyses.

5. Extension to AADL

Initially designed as a language for modelling avionic systems, AADL includes core
modelling concepts and certain analyses essential for real-time systems in the aerospace
domain. However, during its design, it was foreseen that use of AADL in other domains
could require additional modelling concepts and analyses. To meet potential needs AADL
was designed as an extensible ADL.
It is possible to extend the AADL concepts either by introducing new properties to the
modelling elements, by addition of new modelling notations, or by developing a
sublanguage as annex to the AADL standard (Frana et al., 2007). The latter technique is
mainly used for large-scale extensions and was considered out of scope for our own
purpose. Since, for our research work we extended AADL by using the property based
extension technique, the scope of the example we present here will be restricted to this
technique only. In this ecample, we will extend AADL End-to-End (EtE) flows to provide
support for Composite EtE flow modelling and latency analysis.
EtE flow latency is the amount of time consumed by the contributing components for a
specific flow of information from a source to a destination. Currently, AADL requires that
flow specifications of the contributing components are connected through the AADL
connector element and does not provide support for composite EtE flows: flows that
themselves consist of multiple discrete EtE flows. We will describe how this issue can be
overcome with an extension to AADL, by introducing a new property for the AADL EtE
flow element. Latter we will discuss results of the extended EtE flow analysis with the help
of an analysis tool that we developed for this purpose.
We will apply this technique on an electron microscope embedded system. An electron
microscope is a sophisticated microscope used to examine minute specimens by creating
highly-magnified images.

5.1 AADL EtE Flow Extension
Flows in AADL describe the different sequences of an information flow through a set of
contributing components. The description of this flow is subsequently used in certain
analyses such as a flow latency analysis. In AADL, flows are defined with a flow
specification and a flow implementation. A flow specification represents the externally
visible flow of information in a component; it is specified within the component type
declarations using flow sources, flow paths and flow sinks (Feiler & Hansson,2007). A flow
source represents the originator of the flow, the flow sink represents the end consumer of
the flow information, and the flow path embodies the link between incoming and outgoing
ports involved in the flow. A flow implementation on the other hand represents the actual
realization of a flow within a component; it is specified within the component
implementation declarations.

www.intechopen.com

 New, Advanced Technologies256

system motion_client
flows
start_motion_flow: flow source C_start_motion;
move_status_flow: flow sink C_motion_status;

end motion_client;

system motion_server
flows
start_motion_flow: flow sink S_start_motion;
axis_move_flow: flow source S_move_axis;
move_status_flow: flow path S_move_status ->

 S_motion_status;
end motion_server;

device motion_controller
flows
axis_move_flow: flow sink Ctr_move_axis;
move_status_flow: flow source Ctr_move_status;

end motion_controller;

Fig. 2. AADL Flow Specification

An example of both a flow specification and a flow implementation is given in Figures 2 and
4. The excerpts are taken from the electron microscope’s motion-subsystem that is
responsible for moving the specimen holder. The system consists of three major components
working in a client-server environment: the motion client, the motion server and the motion
controller. The motion server receives its stage movement commands from a client
application, processes it and moves the motion controller to the desired position. The
externally visible flow of the move command is shown in Figure 3, which corresponds with
the textual AADL representation in Figure 2.

Fig. 3. Motion-Subsystem Move Command Flow

system implementation motion_server.server_app

--following flow receives information at a sink port of the server and passes it to a flow specification
--of the MdlMotion subcomponent of the server through a connector.
start_motion_flow: flow sink S_start_motion -> ServertoMdlConnector
 -> MdlMotion.start_motion_flow;

--following flow connects a flow specification of the MdlMotion subcomponent to a flow specification
--of the HalMotion subcomponent through a connector and continues through another connector to
--an out port of the Server.
axis_move_flow: flow source MdlMotion.axis_move_flow -> MdltoHalConnector
 -> HalMotion.axis_move_flow -> HaltoServerConnector- > S_move_axis;

--following flow passes information received from an incoming port of the server to the HalMotion
--subcomponent through a connector, subsequently it connects a flow specification of the HalMotion
--to a flow specification of the MdlMotion by using another connector. Finally, it connects a
--MdlMotion flow specification to an out port of the server.
move_status_flow: flow path S_move_status -> ServertoHalConnector
 -> HalMotion.move_status_flow -> HaltoMdlConnector
 -> MdlMotion.move_status_flow ->MdltoServerConnector
 ->S_motion_status;

end motion_server.server_app;

Fig. 4. AADL Flow Implementation

An EtE flow latency analysis requires the specifications of EtE flows. An EtE flow represents
a logical flow of information from a source to destination passing through various system
components. It is defined in the component implementation (typically in the top level
component in the system hierarchy) and refers to the specifications of other flows in the
system.
An EtE flow specification consists of the flow specifications of the contributing components
connected through the AADL connector, Figure 5 contains the standard syntax for EtE flow
specification.

end_to_end_flow_spec::=defining_end_to_flow_identifier:end to end flow
 start_subcomponent_flow_identifier
 { -> connection_identifier ->
 flow_path_subcomponent_flow_identifier
 }*-> connection_identifier-> end_subcomponent_flow_identifier
 [{(property_association)+}][in_modes_and_transitions];

Fig. 5. Standard AADL EtE Flow Syntax

According to the standard specification, an EtE flow starts with a flow specification of the
starting subcomponent, connects it to a flow specification of the subsequent subcomponent
and so on, and finally connects to a flow specification of the last component in a flow. A
notable point in the EtE flow modelling is that each contributing flow specification is
connected to its adjacent flow specifications. The starting and ending flows are connected to
one flow each, all intermediate flows are connected to both the predecessor and successor
flows. This concept restricts EtE flow analysis only to those flow specifications that are

www.intechopen.com

Modelling Embedded Systems with AADL: A Practical Study 257

system motion_client
flows
start_motion_flow: flow source C_start_motion;
move_status_flow: flow sink C_motion_status;

end motion_client;

system motion_server
flows
start_motion_flow: flow sink S_start_motion;
axis_move_flow: flow source S_move_axis;
move_status_flow: flow path S_move_status ->

 S_motion_status;
end motion_server;

device motion_controller
flows
axis_move_flow: flow sink Ctr_move_axis;
move_status_flow: flow source Ctr_move_status;

end motion_controller;

Fig. 2. AADL Flow Specification

An example of both a flow specification and a flow implementation is given in Figures 2 and
4. The excerpts are taken from the electron microscope’s motion-subsystem that is
responsible for moving the specimen holder. The system consists of three major components
working in a client-server environment: the motion client, the motion server and the motion
controller. The motion server receives its stage movement commands from a client
application, processes it and moves the motion controller to the desired position. The
externally visible flow of the move command is shown in Figure 3, which corresponds with
the textual AADL representation in Figure 2.

Fig. 3. Motion-Subsystem Move Command Flow

system implementation motion_server.server_app

--following flow receives information at a sink port of the server and passes it to a flow specification
--of the MdlMotion subcomponent of the server through a connector.
start_motion_flow: flow sink S_start_motion -> ServertoMdlConnector
 -> MdlMotion.start_motion_flow;

--following flow connects a flow specification of the MdlMotion subcomponent to a flow specification
--of the HalMotion subcomponent through a connector and continues through another connector to
--an out port of the Server.
axis_move_flow: flow source MdlMotion.axis_move_flow -> MdltoHalConnector
 -> HalMotion.axis_move_flow -> HaltoServerConnector- > S_move_axis;

--following flow passes information received from an incoming port of the server to the HalMotion
--subcomponent through a connector, subsequently it connects a flow specification of the HalMotion
--to a flow specification of the MdlMotion by using another connector. Finally, it connects a
--MdlMotion flow specification to an out port of the server.
move_status_flow: flow path S_move_status -> ServertoHalConnector
 -> HalMotion.move_status_flow -> HaltoMdlConnector
 -> MdlMotion.move_status_flow ->MdltoServerConnector
 ->S_motion_status;

end motion_server.server_app;

Fig. 4. AADL Flow Implementation

An EtE flow latency analysis requires the specifications of EtE flows. An EtE flow represents
a logical flow of information from a source to destination passing through various system
components. It is defined in the component implementation (typically in the top level
component in the system hierarchy) and refers to the specifications of other flows in the
system.
An EtE flow specification consists of the flow specifications of the contributing components
connected through the AADL connector, Figure 5 contains the standard syntax for EtE flow
specification.

end_to_end_flow_spec::=defining_end_to_flow_identifier:end to end flow
 start_subcomponent_flow_identifier
 { -> connection_identifier ->
 flow_path_subcomponent_flow_identifier
 }*-> connection_identifier-> end_subcomponent_flow_identifier
 [{(property_association)+}][in_modes_and_transitions];

Fig. 5. Standard AADL EtE Flow Syntax

According to the standard specification, an EtE flow starts with a flow specification of the
starting subcomponent, connects it to a flow specification of the subsequent subcomponent
and so on, and finally connects to a flow specification of the last component in a flow. A
notable point in the EtE flow modelling is that each contributing flow specification is
connected to its adjacent flow specifications. The starting and ending flows are connected to
one flow each, all intermediate flows are connected to both the predecessor and successor
flows. This concept restricts EtE flow analysis only to those flow specifications that are

www.intechopen.com

 New, Advanced Technologies258

linked. AADL does not provide support for more abstract flows whose internal flows are
not linked. For clarity, we distinguish in our discussion between discrete EtE flows (in
which all sub-flows are connected) and composite EtE flows (that consists of unlinked sub-
flows).
In case of our motion-subsystem example, Move_Stage is a composite EtE flow: the flow
starts when a client application sends a move request to the server and ends when client gets
acknowledgement that stage has been moved to a desire position. Internally, Move_Stage
consists of three consecutive discrete (disconnected) EtE flows Start_motion_flow,
Axis_move_flow and Move_status_flow.
Start_motion_flow:
The flow starts with a move request from the client application and ends with the server.
Internally, the server simply places the command in a queue, therefore this flow ends here.
A part of the AADL textual representation given in Figure 2 specifies this behaviour of the
flow.
Axis_move_flow:
As soon as a move command is available in the queue, a component of the motion server
processes it and generates a new instruction for the motion controller. Upon receipt of the
instruction, the motion controller moves the stage to the desired position. The server
component involved in this task is different from the component involved in previous EtE
flow. More importantly, both are not connected with each other for this particular task. Since
the flow specifications of both components are not linked with each other, according to the
AADL specification they can not be a part of a single EtE flow. Hence, this results in another
EtE flow starting from the motion server and ending with the motion controller. The
specification of this flow can be seen in Figure 2.
Move_status_flow:
As soon as the stage is moved to its position, the motion controller sends a motion
completion acknowledgement back to the server which subsequently dispatches it to the
client application. Internally, two different subcomponents of the motion controller are
responsible for stage movement and acknowledgement generation. As such, the flow
specifications of both components are not connected with each other. Therefore, sending
acknowledgement back to the server is the start of a separate EtE flow with the motion
controller as its starting point and the client as its ending point. The specification of this flow
is shown in Figure 2 as well.
AADL’s incapability to model composite EtE flows exists at any level of abstraction in
AADL models, although chances of having such flow specifications increase with higher
level of abstraction. Therefore, need for modelling and analysis of such EtE flows is
significant at higher abstraction (system architecture) levels. Providing modelling support
for composite EtE flows will also enhance flow latency analysis. The capabilities will enable
system architects to analyse system flows at higher abstraction.
The incapability, as we described earlier, exists because AADL does not provide any
support for linking disconnected flow specifications. Bridging such flow specifications can
enable modelling and analysis of composite EtE flows. We will introduce a new property
that will serve as a bridge between disconnected flow specifications.
Property Based Extenstion
An AADL property provides descriptive information about components, subcomponents,
features, connections, modes, subprogram calls and flows (Feiler et al., 2006). A property
consists of an associated value and type; the AADL standard consists of a set of predefined

properties. However, new properties can be introduced in order to add additional
information about the above mentioned architectural elements. The standard properties for
EtE flows are:

Expected_Latency: Time
Actual_Latency: Time
Expected_Throughput: Data_Volume
Actual_Throughput: Data_Volume

We introduce a new property called Link_Flow to the existing properties. The new property
holds a string value representing the identifier of the EtE flow that is to be linked. As new
properties are defined in the AADL property sets, we declare the new property in the
FLOWCONN property set. The declaration of the property is:

property set FLOWCONN is
Link_Flow: aadlstring applies to (flow);
end FLOWCONN;

Afterwards, the Link_Flow property can be used in the EtE flow declaration, in which it is
assigned the identifier of the EtE flow to be linked.
While linking discrete EtE flows by using a property we assume that the delay between
adjacent EtE flows is zero. Although this is the case in the motion subsystem (information is
passed on through shared memory), many scenarios can be thought of in which this is not
the case (such as the presence of a queue). Although not addressed in depth here, the
solution remains applicable for those cases as well by including the delay in the model as a
connector-like construct and applying a statistical model to them. The resulting latency of
the EtE flow will also be a statistical distribution.
The introduction of properties allows us to attach additional information to the different
elements of the AADL model. Subsequently this information can be inspected and/or
manipulated by the accompanying tools that carry out the EtE flow latency analysis.

5.2 Applying Our Solution
In the previous section we defined a new property Link_Flow to connect discrete EtE flows.
Now, we apply the proposed solution on the motion-subsystem, by using the property to
connect internal discrete EtE flows of the Move_Stage flow. The use of our property within
the standard AADL syntax is shown in Figure 6.

end_to_end_flow_spec::=defining_end_to_flow_identifier:end to end flow
 start_subcomponent_flow_identifier
 { -> connection_identifier ->
 flow_path_subcomponent_flow_identifier
 }* -> connection_identifier -> end_subcomponent_flow_identifier
[{(FLOWCON::Link_Flow=>”identifier_of_subsequent_EtE_flow”) |
 (property_association)+}][in_modes_and_transitions];

Fig. 6. EtE Flow Syntax with Link_Flow Property

www.intechopen.com

Modelling Embedded Systems with AADL: A Practical Study 259

linked. AADL does not provide support for more abstract flows whose internal flows are
not linked. For clarity, we distinguish in our discussion between discrete EtE flows (in
which all sub-flows are connected) and composite EtE flows (that consists of unlinked sub-
flows).
In case of our motion-subsystem example, Move_Stage is a composite EtE flow: the flow
starts when a client application sends a move request to the server and ends when client gets
acknowledgement that stage has been moved to a desire position. Internally, Move_Stage
consists of three consecutive discrete (disconnected) EtE flows Start_motion_flow,
Axis_move_flow and Move_status_flow.
Start_motion_flow:
The flow starts with a move request from the client application and ends with the server.
Internally, the server simply places the command in a queue, therefore this flow ends here.
A part of the AADL textual representation given in Figure 2 specifies this behaviour of the
flow.
Axis_move_flow:
As soon as a move command is available in the queue, a component of the motion server
processes it and generates a new instruction for the motion controller. Upon receipt of the
instruction, the motion controller moves the stage to the desired position. The server
component involved in this task is different from the component involved in previous EtE
flow. More importantly, both are not connected with each other for this particular task. Since
the flow specifications of both components are not linked with each other, according to the
AADL specification they can not be a part of a single EtE flow. Hence, this results in another
EtE flow starting from the motion server and ending with the motion controller. The
specification of this flow can be seen in Figure 2.
Move_status_flow:
As soon as the stage is moved to its position, the motion controller sends a motion
completion acknowledgement back to the server which subsequently dispatches it to the
client application. Internally, two different subcomponents of the motion controller are
responsible for stage movement and acknowledgement generation. As such, the flow
specifications of both components are not connected with each other. Therefore, sending
acknowledgement back to the server is the start of a separate EtE flow with the motion
controller as its starting point and the client as its ending point. The specification of this flow
is shown in Figure 2 as well.
AADL’s incapability to model composite EtE flows exists at any level of abstraction in
AADL models, although chances of having such flow specifications increase with higher
level of abstraction. Therefore, need for modelling and analysis of such EtE flows is
significant at higher abstraction (system architecture) levels. Providing modelling support
for composite EtE flows will also enhance flow latency analysis. The capabilities will enable
system architects to analyse system flows at higher abstraction.
The incapability, as we described earlier, exists because AADL does not provide any
support for linking disconnected flow specifications. Bridging such flow specifications can
enable modelling and analysis of composite EtE flows. We will introduce a new property
that will serve as a bridge between disconnected flow specifications.
Property Based Extenstion
An AADL property provides descriptive information about components, subcomponents,
features, connections, modes, subprogram calls and flows (Feiler et al., 2006). A property
consists of an associated value and type; the AADL standard consists of a set of predefined

properties. However, new properties can be introduced in order to add additional
information about the above mentioned architectural elements. The standard properties for
EtE flows are:

Expected_Latency: Time
Actual_Latency: Time
Expected_Throughput: Data_Volume
Actual_Throughput: Data_Volume

We introduce a new property called Link_Flow to the existing properties. The new property
holds a string value representing the identifier of the EtE flow that is to be linked. As new
properties are defined in the AADL property sets, we declare the new property in the
FLOWCONN property set. The declaration of the property is:

property set FLOWCONN is
Link_Flow: aadlstring applies to (flow);
end FLOWCONN;

Afterwards, the Link_Flow property can be used in the EtE flow declaration, in which it is
assigned the identifier of the EtE flow to be linked.
While linking discrete EtE flows by using a property we assume that the delay between
adjacent EtE flows is zero. Although this is the case in the motion subsystem (information is
passed on through shared memory), many scenarios can be thought of in which this is not
the case (such as the presence of a queue). Although not addressed in depth here, the
solution remains applicable for those cases as well by including the delay in the model as a
connector-like construct and applying a statistical model to them. The resulting latency of
the EtE flow will also be a statistical distribution.
The introduction of properties allows us to attach additional information to the different
elements of the AADL model. Subsequently this information can be inspected and/or
manipulated by the accompanying tools that carry out the EtE flow latency analysis.

5.2 Applying Our Solution
In the previous section we defined a new property Link_Flow to connect discrete EtE flows.
Now, we apply the proposed solution on the motion-subsystem, by using the property to
connect internal discrete EtE flows of the Move_Stage flow. The use of our property within
the standard AADL syntax is shown in Figure 6.

end_to_end_flow_spec::=defining_end_to_flow_identifier:end to end flow
 start_subcomponent_flow_identifier
 { -> connection_identifier ->
 flow_path_subcomponent_flow_identifier
 }* -> connection_identifier -> end_subcomponent_flow_identifier
[{(FLOWCON::Link_Flow=>”identifier_of_subsequent_EtE_flow”) |
 (property_association)+}][in_modes_and_transitions];

Fig. 6. EtE Flow Syntax with Link_Flow Property

www.intechopen.com

 New, Advanced Technologies260

As stated earlier the Move_Stage EtE flow is composed of Start_motion_flow, Axis_move_flow
and Move_status_flow in sequence. By using the Link_Flow property we will link
Start_motion_flow to Axis_move_flow, and Axis_move_flow to Move_status_flow. An AADL
textual description of the linkage is given in subfigures 7(a) and 7(b).

Start_motion_flow:end to end flow
MotionClient.move_request_flow ->
 ClienttoServerMotionConnection ->
 MotionServer.move_request_flow
{ FLOWCONN::Link_Flow =>”Axis_move_flow”;};
 (a)

Axis_move_flow: end to end flow
 MotionServer.axis_request_flow ->
 ServertoControllerAxisConnection ->
 MotionController.axis_request_flow
{FLOWCONN::Link_Flow =>”Move_status_flow”;};
 (b)

Move_status_flow: end to end flow
 MotionController.status_flow ->
 ControllertoServerStatusConnection ->
 MotionServer.status_flow ->
 ServertoClientStatusConnection ->
 MotionClient.status_flow;
 (c)

Fig. 7. Link_Flow Property for Move_Stage Composite EtE flow

Since Move_status_flow is the last EtE flow in the composition it is not linked further, as
shown in subfigure 7(c).
Using our technique, any number of EtE flows in a composition can be linked. Afterwards,
the value of the defined property can be used during analysis to calculate the total flow
latency of the Move_stage EtE flow. The calculation starts with the latency of the first flow,
 subsequently adding the latency of the EtE flow given in the Link_Flow property value. The
addition continues until an EtE flow without Link_Flow property (or with empty value) is
found.
We developed an OSATE-plugin that analyzes AADL models for composite EtE flows.
OSATE is built on top of the Eclipse platform and is very well suited as a basis for the
development of tools that operate on AADL models. OSATE’s extensible plug-in
architecture provides a wide range of methods and services generated from the AADL
meta-model that can be used by plug-ins to manipulate AADL models.
By using the proposed property Link_Flow the developed plug-in differentiates composite
flows from distinct flows, counts them, identifies their compositions (list of the contributing
discrete EtE flows) and calculates their latencies (total time consumed by the composite EtE
flow).The results of the analysis on the motion-subsystem is shown in Figure 8.

Fig. 8. Composite End-to-End Flow Analysis

The analysis shows that the motions-subsystem contains 31 flow specifications, 7 discrete
and 2 composite EtE flows. The Move_stage composite EtE flow that we are discussing in our
example is among the two identified by the tool. The encircled part of the Figure contains its
composition and latency.

6. Summary

In this chapter we highlighted the design needs for embedded systems and discussed the
formalisms available to address those needs. We found that development of embedded
systems is more complex than that of general IT systems because of the constraints
associated to them. In spite of the development complexity their use is increasing
significantly and their rapid growth imposes challenges to the current development
methodologies. Sophisticated and formal approaches are required to tackle their growing
complexity throughout their development life cycle in general and for their design in
particular.
We also discussed how the magnitude of constraints on requirements of embedded systems
categorizes them in non-real time, hard and soft real-time embedded systems.
Quality attributes are the driving force for embedded system design as they have great
impact on design decisions. During our discussions we identified some quality attributes
specific for embedded systems and highlighted the needs for modelling those attributes.
Architecture description languages with their formal notations and analysis capabilities can
reduce design complexities for embedded systems. In this chapter we gave a brief overview

www.intechopen.com

Modelling Embedded Systems with AADL: A Practical Study 261

As stated earlier the Move_Stage EtE flow is composed of Start_motion_flow, Axis_move_flow
and Move_status_flow in sequence. By using the Link_Flow property we will link
Start_motion_flow to Axis_move_flow, and Axis_move_flow to Move_status_flow. An AADL
textual description of the linkage is given in subfigures 7(a) and 7(b).

Start_motion_flow:end to end flow
MotionClient.move_request_flow ->
 ClienttoServerMotionConnection ->
 MotionServer.move_request_flow
{ FLOWCONN::Link_Flow =>”Axis_move_flow”;};
 (a)

Axis_move_flow: end to end flow
 MotionServer.axis_request_flow ->
 ServertoControllerAxisConnection ->
 MotionController.axis_request_flow
{FLOWCONN::Link_Flow =>”Move_status_flow”;};
 (b)

Move_status_flow: end to end flow
 MotionController.status_flow ->
 ControllertoServerStatusConnection ->
 MotionServer.status_flow ->
 ServertoClientStatusConnection ->
 MotionClient.status_flow;
 (c)

Fig. 7. Link_Flow Property for Move_Stage Composite EtE flow

Since Move_status_flow is the last EtE flow in the composition it is not linked further, as
shown in subfigure 7(c).
Using our technique, any number of EtE flows in a composition can be linked. Afterwards,
the value of the defined property can be used during analysis to calculate the total flow
latency of the Move_stage EtE flow. The calculation starts with the latency of the first flow,
 subsequently adding the latency of the EtE flow given in the Link_Flow property value. The
addition continues until an EtE flow without Link_Flow property (or with empty value) is
found.
We developed an OSATE-plugin that analyzes AADL models for composite EtE flows.
OSATE is built on top of the Eclipse platform and is very well suited as a basis for the
development of tools that operate on AADL models. OSATE’s extensible plug-in
architecture provides a wide range of methods and services generated from the AADL
meta-model that can be used by plug-ins to manipulate AADL models.
By using the proposed property Link_Flow the developed plug-in differentiates composite
flows from distinct flows, counts them, identifies their compositions (list of the contributing
discrete EtE flows) and calculates their latencies (total time consumed by the composite EtE
flow).The results of the analysis on the motion-subsystem is shown in Figure 8.

Fig. 8. Composite End-to-End Flow Analysis

The analysis shows that the motions-subsystem contains 31 flow specifications, 7 discrete
and 2 composite EtE flows. The Move_stage composite EtE flow that we are discussing in our
example is among the two identified by the tool. The encircled part of the Figure contains its
composition and latency.

6. Summary

In this chapter we highlighted the design needs for embedded systems and discussed the
formalisms available to address those needs. We found that development of embedded
systems is more complex than that of general IT systems because of the constraints
associated to them. In spite of the development complexity their use is increasing
significantly and their rapid growth imposes challenges to the current development
methodologies. Sophisticated and formal approaches are required to tackle their growing
complexity throughout their development life cycle in general and for their design in
particular.
We also discussed how the magnitude of constraints on requirements of embedded systems
categorizes them in non-real time, hard and soft real-time embedded systems.
Quality attributes are the driving force for embedded system design as they have great
impact on design decisions. During our discussions we identified some quality attributes
specific for embedded systems and highlighted the needs for modelling those attributes.
Architecture description languages with their formal notations and analysis capabilities can
reduce design complexities for embedded systems. In this chapter we gave a brief overview

www.intechopen.com

 New, Advanced Technologies262

of some of the existing ADLs with a brief description of their scope. Although a significant
number of ADLs exists, many of those only operate in an academic setting or are no longer
actively used and maintained. AADL is one of the best known and most actively used
architecture description language for embedded systems. With a rich set of architectural
elements for describing both software and hardware elements of embedded systems it is
quite useful for designing their soft and hard real-time properties. Furthermore AADL
provides support for analyzing and fixing those properties. Since most ADLs are domain
specific, no single ADL can serve for all domains. AADL, although designed for the avionics
domain, is an extensible language that makes it possible to enhance its applicability to other
domains. In this chapter we presented an introduction to AADL and showed with an
example how it can be extended for custom needs. We extended its EtE flows to include
support for modelling and analysis of composite flows. We applied the proposed solution to
an industrial case of the motion-control subsystem of an electron microscope. The
application included modelling a composite EtE flow of the motion-subsystem, which is
composed of three discrete EtE flows. With the help of a new AADL property we
successfully linked the discrete EtE flows to model them as a single abstract EtE flow. In
addition, we presented the results of the extended EtE flow analysis which we performed
with the help of an analysis tool (an OSATE plug-in) that we developed for this purpose.

Acknowledgment

This work has been carried out as a part of the Condor project (http://www.esi.nl/
Projects->Condor) at FEI company under the responsibilities of the Embedded Systems
Institute (ESI). This project is partially supported by the Dutch Ministry of Economic Affairs
under the BSIK program

7. References

Bouyssounouse, B. and Sifakis, J. 2005 Embedded Systems Design: the ARTIST Roadmap for
Research and Development (Lecture Notes in Computer Science). Springer-Verlag
New York, Inc.

Christof Ebert, Capers Jones, "Embedded Software: Facts, Figures, and Future," Computer,
vol. 42, no. 4, pp. 42-52, Apr. 2009, doi:10.1109/MC.2009.118

Feiler, P.H.; J. Hansson, “Flow Latency Analysis with the Architecture Analysis and Design
Language (AADL),” Technical Note CMU/SEI-2007-TN-010, Software Engineering
Institute, 2007

Feiler, P.H.; Lewis, B.A.; Vestal, S., "The SAE Architecture Analysis & Design Language
(AADL) A Standard for Engineering Performance Critical Systems," Computer-
Aided Control Systems Design, 2006 IEEE International Symposium on, pp.1206-
1211, 4-6 Oct. 2006

Feiler, P.H., Gluch, D.P., and Hudak, J.J., “The architecture analysis & design language
(AADL): An introduction,” Technical Report CMU/SEI-2006-TN-011, Software
Engineering Institute, 2006

Frana, R.B.; Bodeveix, J.-P.; Filali, M.; Rolland, J.-F., "The AADL behaviour annex --
experiments and roadmap," Engineering Complex Computer Systems, 2007. 12th
IEEE International Conference on, pp.377-382, 11-14 July 2007

Medvidovic, N.; Taylor, R.N., "A classification and comparison framework for software
architecture description languages," Software Engineering, IEEE Transactions on ,
vol.26, no.1, pp.70-93, Jan 2000

Prasad, V.; Ting Yan; Jayachandran, P.; Zengzhong Li; Son, S.H.; Stankovic, J.A.; Hansson, J.;
Abdelzaher, T., "ANDES: An ANalysis-Based DEsign Tool for Wireless Sensor
Networks," Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE
International , pp.203-213, 3-6 Dec. 2007

Singhoff, F. and Plantec, A., “AADL modeling and analysis of hierarchical schedulers,” In
Proceedings of the 2007 ACM international Conference on Sigada Annual
international Conference, pp. 41-50, 4- 8 Nov. 2007

Sherman, Trudy: Quality Attributes for Embedded Systems. Springer (2007), S. 536-539.
Talarico, C.; Aseem Gupta; Peter, E.; Rozenblit, J.W., "Embedded system engineering using

C/C++ based design methodologies," Engineering of Computer-Based Systems,
2005. ECBS '05. 12th IEEE International Conference and Workshops on the , vol.,
no., pp. 81-88, 4-7 April 2005

AXLOG. ADeS: A Simulator for AADL http://www.axlog.fr/aadl/ades_en.html, 2009

www.intechopen.com

Modelling Embedded Systems with AADL: A Practical Study 263

of some of the existing ADLs with a brief description of their scope. Although a significant
number of ADLs exists, many of those only operate in an academic setting or are no longer
actively used and maintained. AADL is one of the best known and most actively used
architecture description language for embedded systems. With a rich set of architectural
elements for describing both software and hardware elements of embedded systems it is
quite useful for designing their soft and hard real-time properties. Furthermore AADL
provides support for analyzing and fixing those properties. Since most ADLs are domain
specific, no single ADL can serve for all domains. AADL, although designed for the avionics
domain, is an extensible language that makes it possible to enhance its applicability to other
domains. In this chapter we presented an introduction to AADL and showed with an
example how it can be extended for custom needs. We extended its EtE flows to include
support for modelling and analysis of composite flows. We applied the proposed solution to
an industrial case of the motion-control subsystem of an electron microscope. The
application included modelling a composite EtE flow of the motion-subsystem, which is
composed of three discrete EtE flows. With the help of a new AADL property we
successfully linked the discrete EtE flows to model them as a single abstract EtE flow. In
addition, we presented the results of the extended EtE flow analysis which we performed
with the help of an analysis tool (an OSATE plug-in) that we developed for this purpose.

Acknowledgment

This work has been carried out as a part of the Condor project (http://www.esi.nl/
Projects->Condor) at FEI company under the responsibilities of the Embedded Systems
Institute (ESI). This project is partially supported by the Dutch Ministry of Economic Affairs
under the BSIK program

7. References

Bouyssounouse, B. and Sifakis, J. 2005 Embedded Systems Design: the ARTIST Roadmap for
Research and Development (Lecture Notes in Computer Science). Springer-Verlag
New York, Inc.

Christof Ebert, Capers Jones, "Embedded Software: Facts, Figures, and Future," Computer,
vol. 42, no. 4, pp. 42-52, Apr. 2009, doi:10.1109/MC.2009.118

Feiler, P.H.; J. Hansson, “Flow Latency Analysis with the Architecture Analysis and Design
Language (AADL),” Technical Note CMU/SEI-2007-TN-010, Software Engineering
Institute, 2007

Feiler, P.H.; Lewis, B.A.; Vestal, S., "The SAE Architecture Analysis & Design Language
(AADL) A Standard for Engineering Performance Critical Systems," Computer-
Aided Control Systems Design, 2006 IEEE International Symposium on, pp.1206-
1211, 4-6 Oct. 2006

Feiler, P.H., Gluch, D.P., and Hudak, J.J., “The architecture analysis & design language
(AADL): An introduction,” Technical Report CMU/SEI-2006-TN-011, Software
Engineering Institute, 2006

Frana, R.B.; Bodeveix, J.-P.; Filali, M.; Rolland, J.-F., "The AADL behaviour annex --
experiments and roadmap," Engineering Complex Computer Systems, 2007. 12th
IEEE International Conference on, pp.377-382, 11-14 July 2007

Medvidovic, N.; Taylor, R.N., "A classification and comparison framework for software
architecture description languages," Software Engineering, IEEE Transactions on ,
vol.26, no.1, pp.70-93, Jan 2000

Prasad, V.; Ting Yan; Jayachandran, P.; Zengzhong Li; Son, S.H.; Stankovic, J.A.; Hansson, J.;
Abdelzaher, T., "ANDES: An ANalysis-Based DEsign Tool for Wireless Sensor
Networks," Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE
International , pp.203-213, 3-6 Dec. 2007

Singhoff, F. and Plantec, A., “AADL modeling and analysis of hierarchical schedulers,” In
Proceedings of the 2007 ACM international Conference on Sigada Annual
international Conference, pp. 41-50, 4- 8 Nov. 2007

Sherman, Trudy: Quality Attributes for Embedded Systems. Springer (2007), S. 536-539.
Talarico, C.; Aseem Gupta; Peter, E.; Rozenblit, J.W., "Embedded system engineering using

C/C++ based design methodologies," Engineering of Computer-Based Systems,
2005. ECBS '05. 12th IEEE International Conference and Workshops on the , vol.,
no., pp. 81-88, 4-7 April 2005

AXLOG. ADeS: A Simulator for AADL http://www.axlog.fr/aadl/ades_en.html, 2009

www.intechopen.com

 New, Advanced Technologies264

www.intechopen.com

New Advanced Technologies

Edited by Aleksandar Lazinica

ISBN 978-953-307-067-4

Hard cover, 350 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book collects original and innovative research studies concerning advanced technologies in a very wide

range of applications. The book is compiled of 22 chapters written by researchers from different areas and

different parts of the world. The book will therefore have an international readership of a wide spectrum.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Naeem Muhammad, Yves Vandewoude, Yolande Berbers and Sjir van Loo (2010). Modelling Embedded

Systems with AADL: A Practical Study, New Advanced Technologies, Aleksandar Lazinica (Ed.), ISBN: 978-

953-307-067-4, InTech, Available from: http://www.intechopen.com/books/new-advanced-

technologies/modelling-embedded-systems-with-aadl-a-practical-study

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

