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1. Introduction

Kernel principal component analysis (KPCA) (Schölkopf et al., 1998) has proven to be an ex-
ceedingly popular technique in the fields of machine learning and pattern recognition, and
is discussed at length in literature. KPCA is to perform linear PCA (Hotelling, 1933; Jol-
liffe, 2002) in a high- (and possibly infinite-) dimensional kernel-defined feature space that is
typically induced by a nonlinear mapping. In implementation, the so-called kernel trick is
employed. Namely, KPCA is expressed in terms of dot products between the mapped data
points, and the dot products are then evaluated by substituting an a priori kernel function.
KPCA has demonstrated to be an incredibly useful tool for many application areas includ-
ing handwritten digits recognition and de-noising (Schölkopf et al., 1998; Mika et al., 1999;
Schölkopf et al., 1999), nonlinear regression (Rosipal et al., 2001), face recognition (Kim et al.,
2002a; Yang, 2002; Kong et al., 2005), and complex image analysis (Kim et al., 2005; Li et al.,
2008).
In practice, however, we are often confronted with the situation that needs to process a large
number of data points. This raises a problem for KPCA, since KPCA has to store and di-
agonalize the kernel matrix (also known as Gram matrix), whose size is equal to the square
of the number of training samples. So, for large scale data set, KPCA would consume large
storage space and be computationally intensive (with time complexity O(n3), a cubic growth
with n, where n is the number of the training samples). Then it is impractical for KPCA to
be applied in some circumstances. Another attendant problem is that eig-decomposing large
matrix directly suffers from the issue of numerical accuracy. Some algorithms have been de-
veloped to address the drawbacks associated with KPCA. By considering KPCA from a prob-
abilistic point of view, Rosipal and Girolami (2001) presented an expectation maximization
(EM) (Dempster et al., 1977; McLachlan & Krishnan, 1997) method for carrying out KPCA.
Their algorithm is of computational complexity O(pn2) per iteration, where p is the number
of extracted components. Whereas the EM algorithm for KPCA does alleviate computational
demand, there exists a rotational ambiguity with the algorithm. To remove the obscurity, a
constrained EM algorithm for KPCA (and PCA) was formulated based on coupled probabil-
ity model (Ahn & Oh, 2003). Also, one deficiency of these EM-type algorithms is that the
kernel matrix still required to be stored. Kim et al. (2005) then derived the kernel Hebbian
algorithm (KHA), which was the counterpart of the generalized Hebbian algorithm (GHA)
(Sanger, 1989), to iteratively perform KPCA, where only linear order memory complexity was
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involved. However, the price one has to pay for this saving is that the time complexity is
not under control. Motivated by the idea “divide and rule”, Zheng et el. (2005) proposed
another improved algorithm for KPCA as follows. First, the entire data set was divided into
some smaller data sets, then the sample covariance matrix of each smaller data set was ap-
proximately computed, and finally kernel principal components were extracted by combin-
ing these approximate covariance matrices. With their method, the computational demand
and memory requirement are effectively relieved. However, the advantages relate with many
factors such as the required accuracy of extracted components, the number of the divided
smaller data sets (which is usually empirically set), and the data to be processed. As a generic
methodology, another thread of speeding up kernel machine learning is to seek a low-rank
approximation to the kernel matrix. Since, as noted by several researchers, the spectrum of
the kernel matrix tends to decay rapidly, the low-rank approximation often achieves sufficient
precision of the requirement. Williams and Seeger (2001) used Nyström method to compute
the approximate eigenvalue decomposition of the kernel matrix. Also, Smola and Schölkopf
(2000) presented a sparse greedy approximation technique. These two methods yield similar
forms and performances.
Another limitation of KPCA is that it defines only a global projection of the samples. When the
distribution of the data points is complex and non-convex, a global subspace based on KPCA
may fail to deliver good performance in terms of feature extraction and recognition. In input
space, Tipping and Bishop (1999) and Roweis and Ghahramani (1999) introduced mixture of
PCA to remedy the same shortcoming of PCA. Kim et al. (2002b) used mixture-of-eigenfaces
for face recognition. There are many other papers on face recognition using mixture method,
but as they do not focus on KPCA, references are omitted.
The contributions of this chaper are twofold: Firstly, viewing KPCA as a problem in primal
space with the “samples” created by using the incomplete Cholesky decomposition, we show
that KPCA is equivalent to performing linear PCA in the primal space using the created sam-
ples. So, the same kernel principal components as the standard KPCA are produced. Con-
sequently, all the improved methods dealing with linear PCA (such as the constrained EM
algorithm and the GHA method mentioned above), as well as directly diagonalizing the co-
variance matrix, could be applied to the created samples in the primal space to extract kernel
principal components. Theoretical analysis and experimental results on both artificial and real
data have shown the superiority of the proposed method for performing KPCA in terms of
computational efficiency and storage space, especially when the number of the data points is
large. Secondly, we extend KPCA to a mixture of local KPCA models by applying the mixture
model of the probabilistic PCA in the primal space. While KPCA uses one set of features to
model the data points, the mixture of KPCA uses more than one set of features. Therefore,
the mixture of KPCA is expected to represent data more effectively and has better recognition
performance than KPCA, which is also confirmed by the experiments.
The remainder of this chaper is organized as follows. The standard KPCA is briefly reviewed
in Section 2, and in Section 3, we formulate KPCA in the primal space using the incomplete
Cholesky decomposition. Next, we extend KPCA to its mixture model in Section 4. Experi-
mental results are presented in Section 5. In Section 6, we draw the conclusion.

2. Kernel Principal Component Analysis

Suppose xi ∈ R
l , i = 1, . . . ,n, are n observations. The basic idea of KPCA is as follows. First, the

samples are mapped into some potentially high- (and possibly infinite-) dimensional feature
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space F

φ : R
l →F , xi �→ φ(xi), (i = 1, . . . ,n) (1)

where φ is a typically nonlinear function. Then a standard linear PCA is performed in F using
the mapped samples. In evaluation, we don’t have to compute the mapping φ explicitly. The
mapped samples occur in the forms of dot products, say between φ(xi) and φ(xj), which are
computed by choosing a kernel function k:

k(xi,xj) = (φ(xi) · φ(xj)). (2)

The mapping φ into F such that (2) stands exists if k is a positive definite kernel, thanks to
Mercer’s theorem of functional analysis. So, the mapping φ and thus F are fixed implicitly
via the function k. The dth-order polynomial kernel, k(xi,xj) = (xi · xj)

d, Gaussian kernel with

width σ > 0, k(xi,xj) = exp(−‖xi − xj‖
2/2σ2), and sigmoid kernel k(xi,xj) = tanh(a(xi · xj) +

b) are commonly used Mercer kernels.
For notation simplicity, the mapped samples are assumed to be centered, i.e. ∑

n
i=1 φ(xi) = 0.

We wish to find eigenvalues λ > 0 and associated eigenvectors v ∈ F \ {0} of the covariance
matrix of the mapped samples φ(xi), given by

C
φ =

1

n

n

∑
i=1

φ(xi)φ(xi)
T, (3)

where T denotes the transpose of a vector or matrix. Since the mapping φ is implicit or C
φ

is very high dimensional, direct eigenvalue decomposition will be intractable. The difficulty
is circumvented by using the so-called kernel trick; that is, linear PCA in F is formulated
such that all the occurrences of φ are in the forms of dot products. And the dot products
are then replaced by the kernel function k. So, dealing with the φ-mapped data explicitly is
avoided. Specifically, since λv = C

φ
v, all solutions v with λ �= 0 fall in the subspace spanned

by {φ(x1), . . . ,φ(xn)}. Therefore, v could be linearly represented by φ(xi):

v =
n

∑
i=1

αiφ(xi), (4)

where αi (i = 1, . . . ,n) are coefficients. The eigenvalue problem is then reduced as the following
equivalent problem

λ(φ(xj) · v) = (φ(xj) · C
φ

v) for all j = 1, . . . ,n. (5)

Substituting (3) and (4) into (5), we arrive at the eigenvalue equation

nλKα = K
2α ⇒ nλα = Kα, (6)

where α denotes a column vector with entries α1, . . . ,αn, and K, called kernel matrix, is an
n × n matrix with elements defined as

Kij = k(xi,xj) = (φ(xi) · φ(xj)). (7)

Assume that t is a testing point whose φ-image is φ(t) in F . We calculate its kernel princi-
pal components by projecting φ(t) onto the kth eigenvectors v

k. Specifically, the kth kernel
principal components corresponding φ are

(vk · φ(t)) =
n

∑
i=1

αk
i (φ(xi) · φ(t)) =

n

∑
i=1

αk
i k(xi, t), (8)
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where αk has been normalized such that λk(α
k · αk) = 1. Note that centering the vectors φ(xi)

and t in F is realized by centering the corresponding kernel matrices (Schölkopf et al., 1998).

3. Kernel Principal Component Analysis in Primal Space

In this section, we will derive KPCA in the primal space with the samples created by us-
ing the incomplete Cholesky decomposition. Let φ(X) = [φ(x1), . . . ,φ(xn)] be the data matrix
containing all the φ-mapped training samples as columns. By partial Gram-Schmidt orthonor-
malization (Cristianini et al., 2002), we factorize the data matrix φ(X) as

φ(X) = QR, (9)

where Q has m orthonormal columns, R ∈ R
m×n is an upper triangular matrix with positive

diagonal elements, and m is the rank of φ(X). Note that the matrix R could be evaluated row
by row without computing φ explicitly. The partial Gram-Schmidt procedure pivots the sam-
ples and selects the linearly independent samples in the feature space F . The orthogonalized
version of the selected independent samples, i.e. the columns of Q, is thus used as a set of
basis. All φ-mapped data points could be linearly represented using the basis. Specifically,
the ith column of the matrix R are the coefficients for the linear representation of φ(xi) using
the columns of Q as the basis. So, the columns of R are, in fact, the new coordinates in the
feature space of the corresponding data points of φ(X) using the basis. By (9), the following
decomposition of the kernel matrix is yielded:

K = φ(X)Tφ(X) = RTQTQR = RTR, (10)

which is the incomplete Cholesky decomposition (Fine & Scheinberg, 2001; Bach & Jordan,
2002).
From (10), if defining a new mapping

φ̃ : F → R
m, φ(xi) �→ ri, (i = 1, . . . ,n) (11)

where ri is the ith column of R, then the n vectors {r1, . . . ,rn} give rise to the same Gram matrix
K (Shawe-Taylor & Cristianini, 2004); that is

(φ(xi) · φ(xj)) = k(xi,xj) = (ri · rj). (12)

The space R
m is referred to as the primal space, and ri (i = 1, . . . ,n) are viewed as “samples”.

From (9), we see that, if φ(xi) are centered, then ri are also centered. In other words, ri could
be centered by centering the kernel matrix K. By using the samples ri created in the primal
space R

m, we have the following
Theorem 1. Given observations xi (i = 1, . . . ,n) and kernel function k, KPCA is equivalent to per-
forming linear PCA in the primal space R

m using the created samples ri (i = 1, . . . ,n), both of which
produce the same kernel principal components.
Proof. It suffices to note that the dot products between the φ-mapped samples in the feature
space F are the same with that between the corresponding φ̃-mapped samples in the primal
space R

m, and linear PCA in both the feature space F (i.e., KPCA) and the primal space R
m

could be represented through the forms of dot products between samples. The equivalence
between KPCA and linear PCA in the primal space is schematically illustrated as follows:
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diagonalize Gram matrix K = φ(X)Tφ(X) ≡ diagonalize Gram matrix K = RTR

� through dot products � through dot products

KPCA, i.e., linear PCA in F with samples φ(xi) linear PCA in R
m with samples ri

The theorem is thus established. �

In the primal space, we could, of course, carry out linear PCA by using the dual expression
of dot products; but this obviously makes the motivation for creating the new samples in the
primal space useless. Considering the dimension of the primal space, m, is small, we perform
linear PCA by directly diagonalizing the m×m covariance matrix of the φ̃-mapped data points
ri, given by

Cφ̃ =
1

n

n

∑
i=1

rir
T

i =
1

n
RRT. (13)

Let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃m be the eigenvalues of Cφ̃, and ṽ1, . . . , ṽm the corresponding eigenvec-
tors. We proceed to compute the kernel principal components of the testing point t. Firstly, we
need to compute its φ̃-image. We carry out the projections of φ(t) onto the basis vectors, i.e.,
the columns of Q. This is achieved by calculating an extensional column of the matrix R in
the partial Gram-Schmidt procedure (Shawe-Taylor & Cristianini, 2004). The kernel principal
components corresponding to φ are then computed as

(ṽk · r̄) (14)

for k = 1, . . . , p, where r̄ is the φ̃-image of φ(t) and p (≤ m) is the number of components.
Alternatively, all improved methods dealing with linear PCA could be applied to R in the
primal space. For example, with the constrained EM algorithm for PCA (Ahn & Oh, 2003), we
obtain iterative formula

E step: Z = (L(ΓTΓ))−1ΓTR, (15)

M step: Γnew = RZT(U (ZZT))−1, (16)

where the element-wise lower operator L is defined such as L(wst) = wst for s ≥ t and is
zero otherwise, the upper operator U is defined such as U (wst) = wst for s ≤ t and is zero
otherwise, and Z denotes the p × n matrix of latent variables. The matrix Γ at convergence is

equal to Γ = VΛ, where the columns of V = [ṽ1, . . . , ṽp] are the first p eigenvectors of Cφ̃, with

corresponding eigenvalues λ̃1, . . . , λ̃p forming the diagonal matrix Λ. Another extensively
used iterative method for PCA is the generalized Hebbian algorithm (GHA) (Sanger, 1989).
Based on GHA, the m × p eigenvectors matrix V corresponding to the p largest eigenvalues is
updated according to the rule

V(t + 1) = V(t) + δ(t)
(

r(t)y(t)T − V(t)U (y(t)y(t)T)
)

, (17)

where y = VTr is the principal component of r, δ(t) is a learning rate parameter. Here, the
argument t denotes a discrete time when a sample r(t) is selected randomly from all the sam-
ples ri. It has been shown by Sanger (1989) that, for proper setting of learning rate δ(t) and

initialization V(0), the columns of V converge to the eigenvectors of Cφ̃ as t tends to infinity.
In summary, the procedure of the proposed algorithm for performing KPCA is outlined as
follows:
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1. Perform the incomplete Cholesky decomposition for the training points as well as test-
ing points to obtain R and r̄;

2. Compute the p leading eigenvectors corresponding to the first p largest eigenvalues of

the covariance matrix Cφ̃ (defined in (13)) by (a) directly diagonalizing Cφ̃, (b) using the
constrained EM algorithm (according to (15) and (16)), or (c) using the GHA algorithm
(according to (17));

3. Extract kernel principal components by projecting each testing point onto the eigenvec-
tors (according to (14)).

Complexity analysis. The computational complexity of performing the incomplete Cholesky
decomposition is of the order O(m2n), and the storage requirement is O(mn). Next, if one

explicitly evaluates the covariance matrix Cφ̃ followed by diagonalization to obtain the eigen-
vectors, the computational and storage complexity are O(m2n+m3) and O((p+m)m), respec-
tively. When p ≪ m, it is possible to obtain computational savings by using the constrained
EM algorithm, the time and storage complexity of which are respectively O(pmn) per itera-
tion and O(p(m + n)). If using the GHA method, the time complexity is O(p2m) per iteration
and storage complexity O(pm). The potential efficiency gains, nevertheless, depend on the
number of iterations needed to reach the required precision and the ratio of m to p. As one
has seen, the proposed method do not need to store the kernel matrix K, the storage of which
is O(n2), and its computational complexity compares favorably with that of the traditional
KPCA, which scales as O(n3).

4. Mixture of Kernel Principal Component Analysis Models

Single KPCA provides only a globally linear model for data representation in a low dimen-
sional subspace. It may be insufficient to model (heterogeneous) data with large variation.
One remedy method is to model the complex data with a mixture of local linear sub-models.
Considering KPCA in its equivalent form in the primal space, and using the mixture model
in the primal space (Tipping & Bishop, 1999), we extend KPCA to a mixture of local KPCA
models. While KPCA uses one set of features for the data points, the mixture of KPCA uses
more than one set of features. Mathematically, in the primal space, we suppose that r1, . . . ,rn

are generated independently from a mixture of g underlying populations with unknown pro-
portion π1, . . . ,πg

ri = µj + Γjzij + εij,with probability πj, (j = 1, . . . , g; i = 1, . . . ,m) (18)

where µj is a m-dimensional non-random vector, the m × p matrix Γj is known as the factor
loading matrix, zij are p-dimensional latent (unobservable) variables (also known as common
factors), εij are m-dimensional error variables, and πj is the corresponding mixing proportion

with πj > 0 and ∑
g
j=1 πj = 1. The generative model (18) assumes that z1j, . . . ,znj are indepen-

dently and identically distributed (i.i.d.) as Gaussian with zero mean and identity covariance,
ε1j, . . . , εnj i.i.d. as Gaussian with mean zero and covariance matrix σ2

j Im, and zij is indepen-

dent with εij and their joint distribution is Gaussian.
In the case of g = 1, it was shown by Tipping and Bishop (1999) and Roweis and Ghahramani
(1999) that, as the noise level σ2

1 becomes infinitesimal, the PCA model in the primal space
was recovered, which just is KPCA as shown in Section 3. So, model (18) is an extension to
KPCA. We refer to (18) as mixture of KPCA (MKPCA). Note that a separate mean vector µj is
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associated with each component of the g mixture model, therefore allowing each component
to model the data covariance structure in different regions of the primal space.
Since the true classification of ri into components are unknown, we use the marginal proba-
bility density function (p.d.f.) that is a g-component Gaussian mixture p.d.f.

f (ri;Θ) =
g

∑
j=1

πj ϕ(ri;µj,Σj) (19)

for the observations, where ϕ(ri;µj,Σj) is the Gaussian p.d.f. with mean µj

and variance Σj = ΓjΓ
T

j + σ2
j Im, the model parameters are given by Θ =

(µ1, . . . ,µg,Γ1, . . . ,Γg,σ2
1 , . . . ,σ2

g ,π1, . . . ,πg). For log-likelihood maximization, the model
parameters could be estimated via the EM algorithm as follows (Tipping & Bishop, 1999).
The E-step is

ẑ
(k)
ij =

π̂
(k)
j ϕ(ri; µ̂

(k)
j , Σ̂

(k)
j )

∑
g
i=1 π̂

(k)
i ϕ(ri; µ̂

(k)
i , Σ̂

(k)
i )

. (20)

In the M-step, the parameters are updated according to

π̂
(k+1)
j =

1

n

n

∑
i=1

ẑ
(k)
ij , (21)

µ̂
(k+1)
j =

∑
n
i=1 ẑ

(k)
ij ri

∑
n
i=1 ẑ

(k)
ij

, (22)

Γ̂
(k+1)
j = Ŝ

(k+1/2)
j Γ̂

(k)
j

(

σ̂
2(k)
j Im + (σ̂

2(k)
j Ip + Γ̂

(k)T
j Γ̂

(k)
j )−1Γ̂

(k)T
j Ŝ

(k+1/2)
j Γ̂

(k)
j

)−1
, (23)

σ̂
2(k+1)
j =

1

m
tr
(

Ŝ
(k+1/2)
j − Ŝ

(k+1/2)
j Γ̂

(k)
j (σ̂

2(k)
j Ip + Γ̂

(k)T
j Γ̂

(k)
j )−1Γ̂

(k+1)T
j

)

, (24)

where

Ŝ
(k+1/2)
j =

1

nπ̂
(k+1)
j

n

∑
i=1

ẑ
(k)
ij (ri − µ̂

(k+1)
j )(ri − µ̂

(k+1)
j )T. (25)

In the case σ2
j → 0, the converged Γ̂j contains the (scaled) eigenvectors of the local covariance

matrix Ŝj. Each component performs a local PCA weighted by the mixing proportion. And

the Γ̂j in the limit case are updated as

Γ̂
(k+1)
j = R̂

(k+1/2)
j Ẑ

(k)T
j (U (Ẑ

(k)
j Ẑ

(k)T
j ))−1, (26)

where
Ẑ
(k)
j = (L(Γ̂

(k)T
j Γ̂

(k)
j ))−1Γ̂

(k)T
j R̂

(k+1/2)
j ,

and

R̂
(k+1/2)
j =







√

√

√

√

√

ẑ
(k)
1j

nπ̂
(k+1)
j

(r1 − µ̂
(k+1)
j ), . . . ,

√

√

√

√

√

ẑ
(k)
nj

nπ̂
(k+1)
j

(rn − µ̂
(k+1)
j )






.
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Methods for Size of matrix needed Training time Storage space
performing KPCA to be diagonalized (seconds) (M bytes)

Standard KPCA 2000 × 2000 293 90
Proposed KPCA 233 × 233 36 2
MKPCA N.A. 63 5

Table 1. Comparison of training time and storage space on the toy example with 2000 data
points.

Number of Standard KPCA Proposed KPCA MKPCA
features d=2 3 4 d=2 3 4 d=2 3 4

32 93.6 93.6 92.5 93.5 93.6 92.4 94.5 94.3 93.5
64 94.3 93.1 93.0 94.2 93.0 93.0 95.2 94.2 94.1

128 94.4 93.7 93.2 94.4 93.5 93.1 95.0 94.1 94.0
256 94.5 93.5 92.9 94.4 93.8 92.9 94.9 94.4 94.0
512 94.3 93.9 92.8 N.A. 93.8 92.8 N.A. 94.1 93.6

1024 94.5 93.9 92.4 N.A. N.A. 92.4 N.A. N.A. 93.1

Table 2. Recognition rates of the 2007 testing points of the USPS handwritten digit database
using the standard KPCA, proposed KPCA and MKPCA methods with polynomial kernel of
degree two through four.

When the noise level becomes infinitesimal, the component p.d.f. ϕ(ri; µ̂
(k)
i , Σ̂

(k)
i ) in (20) is

singular. It, in probability 1, falls in the p-dimensional subspace span{Γ̂
(k)
j }, i.e.,

ϕ(ri; µ̂
(k)
i , Σ̂

(k)
i ) = (2π)−p/2

(

det(Γ̂
(k)T
j Γ̂

(k)
j )

)−1/2
exp

(

−â
(k)T

â
(k)/2

)

, (27)

where â
(k) = (Γ̂

(k)T
j Γ̂

(k)
j )−1

Γ̂
(k)T
j (ri − µ̂

(k)
j ).

As can be seen, by applying the KPCA mixture model, all the observations are softly divided
into g clusters each modelled by a local KPCA. We use the most appropriate local KPCA for
a given observation. Based on the probabilistic framework, a natural choice is to assign the
observation to the cluster belong to which its posterior probability is the largest.

5. Experiments

In this section, we will use both artificial and real data sets to compare the performance of the
proposed method with that of the standard KPCA (Schölkopf et al., 1998). In the first example,
we use toy data to visually compare the results by projecting testing points onto extracted
principal axes, and to show that the proposed method is superior to the standard KPCA in
terms of time and storage complexity. In the second example, we perform the experiment of
handwritten digital character recognition to further illustrate the effectiveness of the proposed
method. All these experiments are run with the settings of 3.06GHz CPU and 3.62GB RAM
using Matlab software.

−1 0 1

−1

0

1

(a)

S
ta

nd
ar

d 
K

P
C

A

−1 0 1

−1

0

1

(b)
−1 0 1

−1

0

1

(c)

−1 0 1

−1

0

1

(a)

P
ro

po
se

d 
K

P
C

A

−1 0 1

−1

0

1

(a)
−1 0 1

−1

0

1

(c)

−1 0 1

−1

0

1

(a)

M
K

P
C

A

−1 0 1

−1

0

1

(b)
−1 0 1

−1

0

1

(c)

www.intechopen.com



From Feature Space to Primal Space: KPCA and Its Mixture Model 113

−1 0 1

−1

0

1

(a)

S
ta

nd
ar

d 
K

P
C

A

−1 0 1

−1

0

1

(b)
−1 0 1

−1

0

1

(c)

−1 0 1

−1

0

1

(a)

P
ro

po
se

d 
K

P
C

A

−1 0 1

−1

0

1

(a)
−1 0 1

−1

0

1

(c)

−1 0 1

−1

0

1

(a)

M
K

P
C

A

−1 0 1

−1

0

1

(b)
−1 0 1

−1

0

1

(c)

Fig. 1. From left to right, the first three kernel principal components extracted by the standard
KPCA (top), proposed KPCA (middle), and MKPCA method with g= 2 (bottom), respectively,
using the Gaussian kernel k(xi,xj) = exp(−‖xi − xj‖

2/0.1). The feature values are illustrated
by shading and constant values are connected by contour lines.

5.1 Toy Example

The data are generated from four two-dimensional parabolic shape clusters that are verti-
cally and horizontally mirrored by the function y = x2 + ǫ, where x-values are uniformly
distributed within [−1, 1] and ǫ is Gaussian distributed noise having mean 0.6 and standard
deviation 0.1. We generate 500 data points for each parabolic shape, and use the Gaussian
kernel with σ2 = 0.05 through the experiment. The standard KPCA, proposed KPCA (by, in
this experiment, using the incomplete Cholesky decomposition followed by directly diagonal-

izing C
φ̃), and MKPCA methods are adopted to calculate the leading principal components of

the data set. In using the two proposed methods, we choose 233 linearly independent samples
from the entire 2000 samples, i.e., m = 233, during the incomplete Cholesky decomposition,
and set g = 2 for performing the MKPCA. Therefore, the proposed KPCA method consumes
much less time and storage space than that of the standard KPCA (to see table 1 for detailed
comparison). In Fig. 1, we depict the first three kernel principal components extracted by the
three methods. The features are indicated by shading and constant feature values are con-
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Fig. 2. Some digit images from the USPS database.

Methods for Size of matrix needed Training time Storage space
performing KPCA to be diagonalized (seconds) (M bytes)

Standard KPCA 5000 × 5000 6112 457
Proposed KPCA (d = 2) 371 × 371 114 41
Proposed KPCA (d = 3) 956 × 956 342 69
Proposed KPCA (d = 4) 1639 × 1639 634 118
MKPCA (d = 2) N.A. 321 68
MKPCA (d = 3) N.A. 901 115
MKPCA (d = 4) N.A. 2213 304

Table 3. Comparison of training time and storage space on the USPS handwritten digit
database with 5000 training points.

nected by contour lines. From Fig. 1, we see that the proposed KPCA method obtains almost
the same results with that of the standard KPCA method (ignoring the sign difference), and
both methods nicely separate the four clusters. For the data points, the average relative devi-
ation of the principal components found by the standard KPCA (by diagonalizing the kernel
matrix K) and by the proposed KPCA is less than 0.01. In this simple simulated experiment,
the toy data are compact in the feature space, and are well modelled by the KPCA method.
So, the MKPCA method doesn’t show its advantage; in fact, most of the toy data belong to
one component of the MKPCA model, since the estimated mixing proportions π̂1 = 0.9645
and π̂2 = 0.0355. As a result, the MKPCA method produces the similar result with that of the
KPCA method.

5.2 Handwritten Digit Character Recognition

In the second example, we consider the recognition problem of handwritten digital character.
The experiment is performed on the US Postal Service (USPS) handwritten digits database that
are collected from mail envelopes in Buffalo, New York. The database contains 7291 training
samples and 2007 testing samples for 10 numeral classes with dimensionality 256 (Schölkopf
et al., 1998). Some digit samples are shown in Fig. 2. With this database, 5000 training points
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are chosen as training data and all the 2007 testing points are used as testing data. The polyno-
mial kernel with various degree d is utilized in each trial to compute the kernel function. We
employ the nearest neighbor classifier for classification role. In using MKPCA, we set g = 2. The
recognition rates obtained by the three approaches are reported in Table 2, while the training
times and storage spaces consumed are listed in Table 3. From Table 2, we see that the MKPCA
method achieves the best recognition rate among the three systems. The standard KPCA and
the proposed approach to performing KPCA have similar recognition rates. Nevertheless, the
proposed KPCA reduces the time and storage complexity significantly.

6. Conclusion

We have presented an improved algorithm for performing KPCA especially when the size of
training samples is large. This is achieved by viewing KPCA as a primal space problem with
the “samples” produced via the incomplete Cholesky decomposition. Since the spectrum
of the kernel matrix tends to decay rapidly, the incomplete Cholesky decomposition, as an
elegant low-rank approximation to the kernel matrix, arrives at sufficient accuracy. Compared
with the standard KPCA method, the proposed KPCA method reduces the time and storage
requirement significantly for the case of large scale data set.
In order to provide a locally linear model for the data projection onto a low dimensional
subspace, we extend KPCA to a mixture of local KPCA models by applying mixture model
of PCA in the primal space. MKPCA supplies an alternative choice to model data with large
variation. The mixture model outperforms the standard KPCA in terms of recognition rate.
The methodology introduced in this chaper could be applied to other kernel-based algorithms,
provided the algorithm could be expressed through dot products.
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