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1. Introduction 

The following FPGA-based (Field Programmable Gate Array) experiences stem from a broader 
line of research investigating methodologies for scaling cognitive/intelligent architectures 
into limited-resource implementations. Some of these architectures were designed for 
solving problems involving abstract concepts and uncertain environments, without 
regarding resource requirements: their original implementations are cluster-based, PC-
based or other.  
Commercial, embedded applications have afforded being independent from them for years. 
However, today there exists a drive towards new functionalities which put conventional 
technologies to their limit. From the point of view of the user, these functionalities stand, for 
instance, for HMI capable of interacting with the user in natural language, perception 
systems capable of detecting objects in the environment and reacting to their presence and 
automatic control systems capable of replacing human operation in complex scenarios. 
A representative field of application of these functionalities is the automotive industry. 
Active research is being carried out to develop highly dependable, low-cost real-time 
systems that may predict forthcoming accidents, may assess risk situations when driving or 
that may take control of the vehicle when collision is detected as inevitable (for example 
some PSSIS: Primary and Secondary Interaction Systems). 
From the point of view of the engineer, many of these functionalities involve complex tasks 
as object recognition, decision making and action planning, supported by enriched models 
of the environment and the system itself, capable of representing concepts, abstract 
properties and uncertainty. All of these tasks are carried out as part of the operation of 
existing cognitive architecture-based systems. 

 
2. What are cognitive or intelligent architectures? 

Although there exists certain debate regarding the meaning of cognitive architectures, we 
can accept two main senses of the term: 

� Architectures which base their operation in exploiting knowledge. 

� Architectures that are designed to operate depending on their recognition of the 
environment. 
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What is done with that recognition that the system gathers from its environment? The 
representation of information fluxes and processes from sensors to actuators is the definition 
of a cognitive architecture. Given the broadness of these definitions, we may revise 
techniques and grossly categorize cognitive architectures as follows: 

 Control architectures: An elementary type of architecture is the classical feedback 
control loop, from the basic PID implementation, including the wide varieties of 
topologies derived from it. The basic idea is that the controller tries to maintain the 
difference between a required variable value and the actual measured one null. 

 Reactive and behaviour-based architectures: Control architectures are adequate to 
operate executing simple, well defined tasks in environments with limited 
uncertainty and limited sources of perturbance, as the controlled environments in 
industrial settings. However, other systems such as those designed to move 
autonomously in an unknown, dynamic environment require more complex 
control schemes. Reactive architectures are designed to make systems act in 
response to their environment in such a way that the action of the system appears 
as a direct reaction to a certain combination of input values. Entire sequences of 
tasks may be executed as a reaction to a certain input pattern. When the inputs 
change, ongoing tasks may be interrupted and replaced by new ones, according to 
a task allocation hierarchy which is also pre-designed in the system architecture as 
a function of the system inputs. This combination of task sequences and allocation 
hierarchies allow reactive architectures to operate within a range of conditions 
suitable for some basic functionalities (explorer robots, automatic hoovers). A 
system out of this range, due to inadequate design or to unexpected environmental 
events would lead to undetermined or undesired actions. 

 Goal-driven architectures: This type of architectures are designed to operate in 
highly uncertain environments, typically where some kind of analysis is required 
to assess the conditions of operation, prior to the system executing any action. 
Uncertainty emerges from a mismatch between the system and its scenario of 
operation: the system not being configured for a particular environment, so that it 
ignores what may happen next and therefore the consequences of a potential 
action. Goal–driven architectures are designed to achieve their objectives in these 
circumstances by first analyzing the situation, then building a model, and finally 
designing and executing the appropriate actions. The major difference from the 
other types of architecture is that environment models and possible actions, which 
are static in control and in reactive architectures, are built in run time and changed 
by the system itself. In general, goal driven architectures operate following a 
common, basic sequence of processes executed in cycles: a) Build an objective, b) 
Analyze the environment, c) Design a task to achieve the objective within the given 
environment. If this cannot be done, build a sequence of lower level targets aimed 
at progressing toward the higher level objective. 
These processes may imply highly developed perceptive, deliberative and 
actuation functions. In parallel to them, these architectures may implement 
learning algorithms that help optimize the system for future or eventual conditions 
of operation. As a result, these architectures may achieve high levels of autonomy. 
However, some limitations have been met when implementing them in actual 
systems, relative to resource consumption. Some deliberative, learning and 

perceptive processes would require extremely large memory and computational 
resources for real time operation, especially in fast-evolving environments, or when 
dealing with highly abstract tasks. 

There exist hybrid approaches which combine and integrate devices and elements of the 
three categories above. In particular, PID controllers are used by the majority of 
implementations dealing with mechanical systems, although they may be reconfigured in 
real time by complex goal-driven architectures. 
The ultimate goal of the research line which will be illustrated by the FPGA experiences 
described in subsequent sections is to build systematic methodologies in order to engineer 
all aspects of scaling high level goal architectures to low cost, real time devices.  

 
3. Scaling high level architectures to low-cost FPGAs 

We may realize that the process of designing a low cost, embedded cognitive architecture 
implies a wide range of problems motivated by two major properties of the triad system-
environment-desired functionality: 

 Complexity of the desired functionality, the given system and especially the 
environment in which it will be operating. 

 Uncertainty, derived from the vast range of possible scenarios of operation that 
may emerge. 

 
3.1 Managing complexity 
There exist two main techniques for reducing model complexity:  

 Excluding or ignoring variables: Not measuring or evaluating them. 
 Coarsening measurement: Reducing resolution enough to be representative but 

avoiding unnecessary detail. 
These two techniques must be applied repeatedly until a reasonable degree of 
representativeness is reached.  
In practice, eliminating uncertainty completely from an environmental model is either 
impossible or would make the system useless. We have to bear in mind that many of the 
functionalities that we shall be trying to implement have to do with making the system 
predict events or analyze scenarios, in which it is difficult to know precisely what is going to 
happen or how intense it will be. In other words: uncertainty will be intrinsic to our own 
application, so our model should be able to represent it in some way. In conclusion, when a 
certain optimal is achieved in complexity, uncertainty may and must not be completely 
eliminated from the model of the environment. The problem now is managing uncertainty. 

 
3.2 Managing uncertainty 
As it has been pointed out, uncertainty may appear in two ways: not knowing what is going 
to happen or not knowing how intense it will be. More formally, we can say that there are 
two types of uncertainty: 

 Qualitative uncertainty: Ignoring the nature of the actual event that may occur or 
that is already taking place. This type of uncertainty is the specialty of goal driven 
architectures. 
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What is done with that recognition that the system gathers from its environment? The 
representation of information fluxes and processes from sensors to actuators is the definition 
of a cognitive architecture. Given the broadness of these definitions, we may revise 
techniques and grossly categorize cognitive architectures as follows: 

 Control architectures: An elementary type of architecture is the classical feedback 
control loop, from the basic PID implementation, including the wide varieties of 
topologies derived from it. The basic idea is that the controller tries to maintain the 
difference between a required variable value and the actual measured one null. 

 Reactive and behaviour-based architectures: Control architectures are adequate to 
operate executing simple, well defined tasks in environments with limited 
uncertainty and limited sources of perturbance, as the controlled environments in 
industrial settings. However, other systems such as those designed to move 
autonomously in an unknown, dynamic environment require more complex 
control schemes. Reactive architectures are designed to make systems act in 
response to their environment in such a way that the action of the system appears 
as a direct reaction to a certain combination of input values. Entire sequences of 
tasks may be executed as a reaction to a certain input pattern. When the inputs 
change, ongoing tasks may be interrupted and replaced by new ones, according to 
a task allocation hierarchy which is also pre-designed in the system architecture as 
a function of the system inputs. This combination of task sequences and allocation 
hierarchies allow reactive architectures to operate within a range of conditions 
suitable for some basic functionalities (explorer robots, automatic hoovers). A 
system out of this range, due to inadequate design or to unexpected environmental 
events would lead to undetermined or undesired actions. 

 Goal-driven architectures: This type of architectures are designed to operate in 
highly uncertain environments, typically where some kind of analysis is required 
to assess the conditions of operation, prior to the system executing any action. 
Uncertainty emerges from a mismatch between the system and its scenario of 
operation: the system not being configured for a particular environment, so that it 
ignores what may happen next and therefore the consequences of a potential 
action. Goal–driven architectures are designed to achieve their objectives in these 
circumstances by first analyzing the situation, then building a model, and finally 
designing and executing the appropriate actions. The major difference from the 
other types of architecture is that environment models and possible actions, which 
are static in control and in reactive architectures, are built in run time and changed 
by the system itself. In general, goal driven architectures operate following a 
common, basic sequence of processes executed in cycles: a) Build an objective, b) 
Analyze the environment, c) Design a task to achieve the objective within the given 
environment. If this cannot be done, build a sequence of lower level targets aimed 
at progressing toward the higher level objective. 
These processes may imply highly developed perceptive, deliberative and 
actuation functions. In parallel to them, these architectures may implement 
learning algorithms that help optimize the system for future or eventual conditions 
of operation. As a result, these architectures may achieve high levels of autonomy. 
However, some limitations have been met when implementing them in actual 
systems, relative to resource consumption. Some deliberative, learning and 

perceptive processes would require extremely large memory and computational 
resources for real time operation, especially in fast-evolving environments, or when 
dealing with highly abstract tasks. 

There exist hybrid approaches which combine and integrate devices and elements of the 
three categories above. In particular, PID controllers are used by the majority of 
implementations dealing with mechanical systems, although they may be reconfigured in 
real time by complex goal-driven architectures. 
The ultimate goal of the research line which will be illustrated by the FPGA experiences 
described in subsequent sections is to build systematic methodologies in order to engineer 
all aspects of scaling high level goal architectures to low cost, real time devices.  

 
3. Scaling high level architectures to low-cost FPGAs 

We may realize that the process of designing a low cost, embedded cognitive architecture 
implies a wide range of problems motivated by two major properties of the triad system-
environment-desired functionality: 

 Complexity of the desired functionality, the given system and especially the 
environment in which it will be operating. 

 Uncertainty, derived from the vast range of possible scenarios of operation that 
may emerge. 

 
3.1 Managing complexity 
There exist two main techniques for reducing model complexity:  

 Excluding or ignoring variables: Not measuring or evaluating them. 
 Coarsening measurement: Reducing resolution enough to be representative but 

avoiding unnecessary detail. 
These two techniques must be applied repeatedly until a reasonable degree of 
representativeness is reached.  
In practice, eliminating uncertainty completely from an environmental model is either 
impossible or would make the system useless. We have to bear in mind that many of the 
functionalities that we shall be trying to implement have to do with making the system 
predict events or analyze scenarios, in which it is difficult to know precisely what is going to 
happen or how intense it will be. In other words: uncertainty will be intrinsic to our own 
application, so our model should be able to represent it in some way. In conclusion, when a 
certain optimal is achieved in complexity, uncertainty may and must not be completely 
eliminated from the model of the environment. The problem now is managing uncertainty. 

 
3.2 Managing uncertainty 
As it has been pointed out, uncertainty may appear in two ways: not knowing what is going 
to happen or not knowing how intense it will be. More formally, we can say that there are 
two types of uncertainty: 

 Qualitative uncertainty: Ignoring the nature of the actual event that may occur or 
that is already taking place. This type of uncertainty is the specialty of goal driven 
architectures. 
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 Quantitative/intensive uncertainty: Given a certain event, ignoring its intensity. A 
typical example of this is ignoring the actual value that will be measured the next 
instant. 

There exist well known, established techniques which allow dealing with both types of 
uncertainty. Knowing which variable to measure and how to act upon it, it is only a matter 
of estimating how intense the action must be. This problem can be successfully managed by 
classical control. Enhancements of the classical PID loop such as some non-linear controllers 
or model reference adaptive control (MRAC) even achieve a limited range of reaction to 
qualitative uncertainty.  
In general, managing qualitative uncertainty is a much deeper and broader problem. 
Classical artificial intelligence techniques as neural networks, fuzzy logic and expert systems 
offer basic tools. Expert systems and fuzzy logic in combination may analyze uncertain 
scenarios provided that their dynamics fall within the range covered by the rule databases, 
variables and member functions are well designed. Neural networks may analyze sensor 
readings in raw and extract patterns within the limitations of their own type (ie. perceptron, 
cognitron), number of neurons, etc. 
However, some new functionalities require wider ranges of qualitative uncertainty 
management than those provided by these techniques. Complex environmental analysis, 
complex action selection processes and advanced learning mechanisms, exceeding typical 
neural network ones, are some examples. This is the use of cognitive architectures. 
The role of a cognitive architecture is to define a sequence of operation and to assign roles to 
the resources of the system, these resources and processes being implemented by expert 
systems, neural networks, PIDs or whatever other technique, hardware or software. Scaling 
cognitive architectures equals to selecting which parts of their original specification are 
really needed and how could they be simplified, which stages of the operating cycles are 
indispensable and how to integrate both while preserving functionality. 

 
3.3 Perception, deliberation, action 
The operation of any system, can, in general, be explained in terms of perceptive, 
deliberative and actuating processes. Sometimes the processes are not designed thinking of 
any of those three roles, though inevitably they end up performing one when functioning. 
Complex realizations of any of them may rely on the use of extensive memory resources, 
which may also be classified in roles: long-term memory and short-term memory. While the 
first contains information that may stay in the system during long periods of activity, short 
term memory contains transiting variable values or sensory measurements as such. It can be 
observed that, as a general rule, goal-driven architectures tend to exploit long term memory 
(which stores knowledge) as intensely as short term memory, while reactive architectures, 
with simpler design, may even have none. 
For scaling cognitive architectures (Albus, 1995), it is useful to have a clear idea of the 
character of the system to be designed: whether it will be mainly perceptive, deliberative or 
actuating. This will allow a gross idea of the necessary resources. In general, systems 
centered in action processes will demand little or none deliberative processing (action 
selection, planning, decision making), while problem solving systems will demand little 
action processes.  
Of course, it is not only the type of processing we are interested, but mainly the type and 
quantity of resources each type of process has associated. Sometimes, the designer is able to 

choose the nature of the system, or it is given by the application itself. For example, in the 
case of ADAS (Advanced Driver Assistance System), the target is to warn or inform the 
driver about a variety of risks, options for driving, etc. This case is expected to require little 
or none actuating functions except, perhaps, some kind of HMI. On the contrary, perceptive 
functions are expected to become quite developed, if analyzing risk for example. On the 
other hand, an autonomous driving vehicle may rely on extensive perceptive and 
deliberation processes for analyzing the environment, possible action and tradeoffs. 

 
4. The process of scaling an architecture 

Scaling a cognitive architecture adds up to finding a match between functionality, 
architecture and implementation. The process is simple: given a certain functionality, a 
certain architecture must be designed, by iteration, coupling capacities and resources with 
the implementation design. During the process, the engineer must continuously work for 
optimization of resource use. There is no general formula as to how to optimize. The two 
ways of dealing with complexity which were mentioned above apply, however: first, to 
eliminate any parts, elements or functions of the architecture that are not strictly needed to 
achieve the desired functionality. Second, to eliminate any excess of resolution in 
measurements, calculations and precision. 
Exaggerated examples of these rules help to understand their meaning. If you have the 
necessary information to make your application work by only adding and subtracting, do 
not build a cognitive architecture to do the same job. It will consume more resources and 
take more time, and may even do it wrong sometimes. If your artificial vision system must 
detect spots between 1 and 2 cm2 at 1 m distance, do not spend money in 1920x1200 
resolution cameras and image processing algorithms. A low resolution camera will do the 
filtering for free, quicker and cheaper. If your system will always operate with objects A, B 
and C, you may spare designing learning algorithms that will enable it recognizing any new 
object around. 
Naturally, there might not always exist a solution to a scaling problem, due either to an 
exceedingly complex functionality or to insufficient resources. Logically, the more strict the 
functionality specifications or the higher the system flexibility they demand, the more 
difficult it will be to simplify any architecture into low cost hardware. Any scaling process 
should begin with dividing functionality specifications, to ensure that parts may be 
achieved progressively in spite of possible overall failure. 
When a solution is possible, however, a good approach is to start assuming the best of cases, 
when resources are unlimited, designing the basic architecture for it, and proceed 
simplifying the design in each iteration. The process ends when a certain match is achieved 
between the three. That is, when the desired functionality has yielded a simplified 
architecture that can be implemented in the available resources. Over-optimizing the 
architecture is, nevertheless, good for two reasons. First, it may allow implementing the 
system in lower cost hardware, or may leave free resources in your board for other 
purposes. Second, it reduces the probability of errors. In general, the bigger the system –and 
therefore, its architecture- the higher its probability of failure; so keep it as small as possible. 
While resource optimization derives from minimizing architectural complexity, there are 
overall factors to be taken into account during the design stage. A basic collection of criteria 
could be: 
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 Quantitative/intensive uncertainty: Given a certain event, ignoring its intensity. A 
typical example of this is ignoring the actual value that will be measured the next 
instant. 

There exist well known, established techniques which allow dealing with both types of 
uncertainty. Knowing which variable to measure and how to act upon it, it is only a matter 
of estimating how intense the action must be. This problem can be successfully managed by 
classical control. Enhancements of the classical PID loop such as some non-linear controllers 
or model reference adaptive control (MRAC) even achieve a limited range of reaction to 
qualitative uncertainty.  
In general, managing qualitative uncertainty is a much deeper and broader problem. 
Classical artificial intelligence techniques as neural networks, fuzzy logic and expert systems 
offer basic tools. Expert systems and fuzzy logic in combination may analyze uncertain 
scenarios provided that their dynamics fall within the range covered by the rule databases, 
variables and member functions are well designed. Neural networks may analyze sensor 
readings in raw and extract patterns within the limitations of their own type (ie. perceptron, 
cognitron), number of neurons, etc. 
However, some new functionalities require wider ranges of qualitative uncertainty 
management than those provided by these techniques. Complex environmental analysis, 
complex action selection processes and advanced learning mechanisms, exceeding typical 
neural network ones, are some examples. This is the use of cognitive architectures. 
The role of a cognitive architecture is to define a sequence of operation and to assign roles to 
the resources of the system, these resources and processes being implemented by expert 
systems, neural networks, PIDs or whatever other technique, hardware or software. Scaling 
cognitive architectures equals to selecting which parts of their original specification are 
really needed and how could they be simplified, which stages of the operating cycles are 
indispensable and how to integrate both while preserving functionality. 

 
3.3 Perception, deliberation, action 
The operation of any system, can, in general, be explained in terms of perceptive, 
deliberative and actuating processes. Sometimes the processes are not designed thinking of 
any of those three roles, though inevitably they end up performing one when functioning. 
Complex realizations of any of them may rely on the use of extensive memory resources, 
which may also be classified in roles: long-term memory and short-term memory. While the 
first contains information that may stay in the system during long periods of activity, short 
term memory contains transiting variable values or sensory measurements as such. It can be 
observed that, as a general rule, goal-driven architectures tend to exploit long term memory 
(which stores knowledge) as intensely as short term memory, while reactive architectures, 
with simpler design, may even have none. 
For scaling cognitive architectures (Albus, 1995), it is useful to have a clear idea of the 
character of the system to be designed: whether it will be mainly perceptive, deliberative or 
actuating. This will allow a gross idea of the necessary resources. In general, systems 
centered in action processes will demand little or none deliberative processing (action 
selection, planning, decision making), while problem solving systems will demand little 
action processes.  
Of course, it is not only the type of processing we are interested, but mainly the type and 
quantity of resources each type of process has associated. Sometimes, the designer is able to 

choose the nature of the system, or it is given by the application itself. For example, in the 
case of ADAS (Advanced Driver Assistance System), the target is to warn or inform the 
driver about a variety of risks, options for driving, etc. This case is expected to require little 
or none actuating functions except, perhaps, some kind of HMI. On the contrary, perceptive 
functions are expected to become quite developed, if analyzing risk for example. On the 
other hand, an autonomous driving vehicle may rely on extensive perceptive and 
deliberation processes for analyzing the environment, possible action and tradeoffs. 

 
4. The process of scaling an architecture 

Scaling a cognitive architecture adds up to finding a match between functionality, 
architecture and implementation. The process is simple: given a certain functionality, a 
certain architecture must be designed, by iteration, coupling capacities and resources with 
the implementation design. During the process, the engineer must continuously work for 
optimization of resource use. There is no general formula as to how to optimize. The two 
ways of dealing with complexity which were mentioned above apply, however: first, to 
eliminate any parts, elements or functions of the architecture that are not strictly needed to 
achieve the desired functionality. Second, to eliminate any excess of resolution in 
measurements, calculations and precision. 
Exaggerated examples of these rules help to understand their meaning. If you have the 
necessary information to make your application work by only adding and subtracting, do 
not build a cognitive architecture to do the same job. It will consume more resources and 
take more time, and may even do it wrong sometimes. If your artificial vision system must 
detect spots between 1 and 2 cm2 at 1 m distance, do not spend money in 1920x1200 
resolution cameras and image processing algorithms. A low resolution camera will do the 
filtering for free, quicker and cheaper. If your system will always operate with objects A, B 
and C, you may spare designing learning algorithms that will enable it recognizing any new 
object around. 
Naturally, there might not always exist a solution to a scaling problem, due either to an 
exceedingly complex functionality or to insufficient resources. Logically, the more strict the 
functionality specifications or the higher the system flexibility they demand, the more 
difficult it will be to simplify any architecture into low cost hardware. Any scaling process 
should begin with dividing functionality specifications, to ensure that parts may be 
achieved progressively in spite of possible overall failure. 
When a solution is possible, however, a good approach is to start assuming the best of cases, 
when resources are unlimited, designing the basic architecture for it, and proceed 
simplifying the design in each iteration. The process ends when a certain match is achieved 
between the three. That is, when the desired functionality has yielded a simplified 
architecture that can be implemented in the available resources. Over-optimizing the 
architecture is, nevertheless, good for two reasons. First, it may allow implementing the 
system in lower cost hardware, or may leave free resources in your board for other 
purposes. Second, it reduces the probability of errors. In general, the bigger the system –and 
therefore, its architecture- the higher its probability of failure; so keep it as small as possible. 
While resource optimization derives from minimizing architectural complexity, there are 
overall factors to be taken into account during the design stage. A basic collection of criteria 
could be: 
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 The automatic process admits drastic optimization in time and resources. When 
possible, make things automatic. 

 The higher the uncertainty in the environment, the more flexible the system, the 
less automatic it can be, the more resources necessary. The better the modeling of 
the environment, the lesser the uncertainty. 

 There is a tradeoff between memory and computational power: in general 
designing memory-based processes may simplify run time computation and vice 
versa. If you have enough memory and information to store, use it. It makes things 
more automatic.  

 In general, there is also a tradeoff between deliberation and perception: the more 
developed the perceptive processes, the simpler the deliberative processes may be 
and vice versa. But here there is no general rule, for perceptive processes may be as 
complex and demanding as purely deliberative ones. 

 
Fig. 0. General process of scaling cognitive architectures 

 
5. A low-cost Real-Time FPGA solution for driver drowsiness detection 

In this work some of the most recent advances in digital image processing techniques have 
been used to make vehicle drivers face analysis by detecting symptoms of tiredness and 
distraction in order to prevent sudden risk situations. 
The results of the experiments show (Moreno et al., 2003) that a large number of car or 
trucks accidents can be avoided by detecting real-time physical and psychological states of 
the drivers in normal driving conditions. There are three main objectives in this design: To 

detect the driver eyelid movements, to detect the number of frames the driver has his eyes 
closed and to detect when the driver turns right or left (or bows) his head for a long time. 
Thus, several well known algorithms have been used and optimized for this field of 
application, such as spatial and temporal filtering, motion detection, optical flow analysis, 
etc. 
Digital signal and image processing techniques have been used together. Furthermore, a 
low-cost Real-Time solution based upon both FPGA (ALTERA FLEX 10K30 and ALTERA 
Cyclone Device EP1C3) have been achieved. 
Figure 1 shows the flexibility of the system, because it can be used for driver drowsiness 
detection or road lane markers, both in real-time. 

Fig. 1. FPGA architecture 
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 The automatic process admits drastic optimization in time and resources. When 
possible, make things automatic. 

 The higher the uncertainty in the environment, the more flexible the system, the 
less automatic it can be, the more resources necessary. The better the modeling of 
the environment, the lesser the uncertainty. 

 There is a tradeoff between memory and computational power: in general 
designing memory-based processes may simplify run time computation and vice 
versa. If you have enough memory and information to store, use it. It makes things 
more automatic.  

 In general, there is also a tradeoff between deliberation and perception: the more 
developed the perceptive processes, the simpler the deliberative processes may be 
and vice versa. But here there is no general rule, for perceptive processes may be as 
complex and demanding as purely deliberative ones. 
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application, such as spatial and temporal filtering, motion detection, optical flow analysis, 
etc. 
Digital signal and image processing techniques have been used together. Furthermore, a 
low-cost Real-Time solution based upon both FPGA (ALTERA FLEX 10K30 and ALTERA 
Cyclone Device EP1C3) have been achieved. 
Figure 1 shows the flexibility of the system, because it can be used for driver drowsiness 
detection or road lane markers, both in real-time. 

Fig. 1. FPGA architecture 
 
Median filtering is used to minimize the effect of the Gaussian noise. It is very well suited 
for this type of application; however, the trade-off between the number of gates (FPGA logic 
elements, LE) used and the benefit obtained is very poor. For this reason, and in order to get 
a very low-cost solution, removal from the final design must be considered; at the same time 
a high quality digital video signal coming from a CCD camera must be employed containing 
an infrared system suitable for low-light conditions (0 lux) must be employed. Some 
experiments were carried out with very low-cost CMOS cameras; but, unfortunately they do 
not work properly in low-light situations. 
Next, the 2D Sobel filtering uses two matrices applied sequentially over 9x9 pels (picture 
element) blocks: 
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Then, the final result is calculated by the equation: 
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Finally, Ysob is compared to a configurable threshold value (UMB_SBL): 
 

If  Ysob > UMB_SBL then 
Ypel = White_value (235d); 

 else 
       Ypel = Black_value(16d); 
 end if; 

This pseudo-code is not exactly a Sobel algorithm because we assign the White_value or 
Black_value instead the |Ysob| (Sobel parameter/luminance_pel). This allows us to 
simplify the calculations just suitable for the case of the driver drowsiness detection or road 
lane markers detection, without introducing a noticeable error. It also allows us to save a 
large amount of FPGA logic elements (making the fitter process much easier) and as a result 
of that we get a significant speed up (in terms of logic depth reduction). 
Once the image has been filtered (median and 2D Sobel filtering), Maximum filtering is used 
usually to enlarge the edges of the objects detected by the Sobel filtering. However, this is 
not really necessary, because the algorithm for driver drowsiness detection and the 
algorithm for road lane markers detection are both based upon differential optical flow 
analysis, instead of traditional motion estimation algorithms. 
The algorithm designed is able to detect: driver eyelid movements, number of frames the 
driver has his eyes closed and when the driver turns right or left (or bows) his head for a 
long time (this is a configurable parameter). In our system, a long time means 12 frames 
because at 25 frames/sec (PAL video rate) the elapsed time is 480msec. So, if the car speed 
were 120km/h, the distance covered would be 16 meters. 
The implemented algorithm consists in comparing the number of white pels in the current 
frame with two parameters (maximum and minimum white pels values) previously 
calculated. When the current number of white pels is greater than the maximum value or 
smaller than the minimum one, the algorithm automatically calculates those new 
parameters over the next 12 frames, and the process would start again. This is very useful in 
order to adapt system sensitivity to light conditions. 
According to ITU-R 601 Recommendation for PAL systems, each frame is formed by 
720x576pels, which produces a very large amount of luminance information to be processed 
(414,720 pels/frame). The key factor of our system is to process only the area where the 
driver eyes would be located. We have tested algorithms for eyes detection but  the trade-off 
between cost and performance is very poor. We propose to adjust the camera to the 
drivers’head in a comfortable driving position previously and to set the image area to be 
processed (configurable parameter) at the beginning (Figure 2 shows the result when 
processing the whole frame, no real-time and Figure 3 shows the result when processing 
only a specific frame area, in real-time). 
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Fig. 2. Drowsiness detection  

 
Fig. 3. Real-time drowsiness detection 
 
The reduction of the number of pels to be processed is very significant: 20,400pels for 100 
lines x 204 pels area (see Figure 3). Nevertheless, Median and Sobel filtering work over 
9x9pels blocks in order to yield a processed pel; so only by means of a pipeline architecture 
would real-time processing be achieved. 
In the case of road lane markers detection algorithm only the 24 lines of the bottom of each 
frame are processed, because only those lines are really relevant to detect  if a car is leaving 
its tracks due to a  driver distraction. On the other hand, in our system only one video 
camera is employed, so, no 3D image analysis algorithm can be used at all. We have used a 
very simple approach that consists on fitting the camera zoom to the car width. In this way, 
while driving along, the lane markers “disappear” just through the right side and/or the left 
side of the image. In case of the car is out of the track, the lane markers would “disappear” 
through the bottom side of the image and the system would warn the driver (see Figure 4). 
Some experiments have been carried out on real roads and we have obtained very 
satisfactory results. 
The algorithm consists in obtaining the difference between the present frame and the frame 
immediately before. The difference is calculated over all the pels belonging to the last 24 
bottom lines of each frame. If the result is zero and the pel processed is a White_pel, this 
means that a lane marker probably starts in this frame. The process continues over the next 
frames. The algorithm is able to detect if the object detected is really a lane marker or just a 
shadow or other disturbance on the road. 
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Fig. 5. Road line tracks detection 

 
6. A new Real-Time Hardware Architecture for Road Line Tracking Using a 
Particle Filter 

In this work a new real-time hardware architecture based on real time image processing and 
the use of a Particle Filter, as the fundamental element for tracking lines of a road, is 
presented. To this end a hardware system has been designed based on the use of low-cost 
high-reliability FPGA integrated circuits (ALTERA-Cyclone and ALTERA-Cyclone II). For 
this purpose, a multilevel pipeline architecture (at pixel block - 3x3- and pixel level), which 
aims to guarantee the processing of the 8-bit digitized images obtained from a single video 
camera (SONY in PAL format, ITU-R 601, ITU-R 656), has been developed. The entire 
processing and prediction system has been developed in VHDL-93, simulated and 
synthesized with ModelSim and Quartus-II respectively (Alarcon et al., 2006). 
Although many systems have been proposed for detecting involuntary lane departure of 
motor vehicles, based on vision systems (or based on other technologies), they have not had 
the expected success. System reliability is limited by weather conditions and visibility, as 
well as those imposed by the state of the highway. In general, it can be said that these 
systems basically perform three functions: 1) image feature extraction, 2) matching and 3) 
taking decisions. Moreover, all of them should be considered deterministic functions, except 
in some approaches, real time in most cases and, to a lesser extent, implemented in 
application specific hardware.  
A new model to represent lane lines and the relative position of the vehicle with respect to 
the lane boundaries is proposed. The position of the lane lines is tracked on the successive 
images obtained from the camera (25 fps, PAL frame rate), by projecting the model. Model 
parameters are updated by superimposing the image, with the projection of the model on 
the following image. In the model, a search area of the lane boundaries is defined on the 
image, which allows processing time to be reduced, and the problems caused by false lane 
detections resulting from the inherent noise in the images to be reduced or eliminated. The 
parameters of the model are processed and updated by means of the Particle Filter. 
A robust, artificial vision based system for detecting involuntary lane departure which 
depends only on the processing speed and the frame rate of the camera has been developed. 
This system allows road line position to be predicted with a bounded error. 
The Particle Filter, in Artificial Vision applications, is used for tracking objects in an image 
sequence. The Particle Filter models the probability function a posteriori of a stochastic 

process, by means of an N particle distribution and their associated probabilities in State 
Space. This type of filter needs a dispersed search to properly track the features sought in 
the image sequence. It is a model used to calculate the state of a time-variant system or, in 
other words, a sequential estimation algorithm.  
In this study, artificial vision techniques have been applied with no restriction on the 
incoming images. Hence no type of marker is used on the highway. So the system, after the 
acquisition of the monochrome images of a camera, is able to process the information and to 
track the lane lines in a reliable and robust manner. 
The VHDL implementation of the proposed system, shown in Figure 6, required an image 
preprocessing stage. Median filtering, a non linear filter, is used to minimize the effect of 
Gaussian noise, and Sobel filter is used to detect edges in the image. 
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Fig. 6. System architecture 
 
For the system to work optimally, several morphological operations must be carried out on 
binary images to obtain the necessary information in filter processing. The reason for this is 
based on the computational load reduction necessary for the hardware implementation, 
since not all the information in the image is pertinent for the reference application. As it has 
been mentioned, only the bottom part of the image is relevant, as shown in Figure 7; and, 
inside that part, the image has been segmented into three regions, left, center and right, of 
37x102 (rows x columns) pixels, corresponding to the Regions of Interest (RoI), where the 
corresponding lanes are located. 

 
Fig. 7. Image Segmentation 
 
From an algorithmic point of view, the Particle Filter (Arulampalam et al., 2002) is detailed 
in Figure 8. The Line Model Detection (L_M_D) carries out line detection in the image by 
means of a morphological line model. Next, particle weights computation is done in the 
Survival Model (S_M), checking if the error made in the prediction of the Center of Mass 
done in the previous image, is delimited as explained in Hardware Architecture section. At 
the same time, in Particle Displacement (P_D), the displacement speed of the particles is 
computed. By means of the Movement Model (explained in Hardware Architecture section) 
in Prediction Update (P_U), the position of the new particles is predicted and updated. 
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Fig. 8. Diagram of the Particle Filter designed 
 
Some of the results obtained with the proposed architecture are shown in Figure 9. It can be 
observed that the 12 initially generated particles (Figure 9.a) predict the position of the lane 
line in accordance with the established deviation parameters (deviation = 0.1) (see Figure 
9.b), and how they converge in the last 2 images (Figure 9.c and 9.d) toward the real position 
of the Center of Mass of the line. 
One of the essential objectives of the hardware implementation of the algorithms was to 
achieve a high processing speed to get a real-time low-cost system. The hardware system 
implemented in the FPGA, Figure 6, corresponds to a linear multilevel pipeline architecture. 
These hardware modules implement the first pipeline level of the architecture adapting 
perfectly to the requirements of the image prefiltering algorithms:  
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Fig. 9. Prediction of the lane line using 12 particles 
 
a) Median Filter, to suppress the Gaussian noise and b) Sobel Filter, to extract the 
boundaries. Furthermore, all the submodules that constitute the complete system are also 
based on a pipeline architecture and are capable of delivering a valid result in each clock 
cycle during their stable operating cycle. The hardware design methodology employed in 
the second module, Preprocessing, is directed to minimizing both the use of large memory 
banks for storage of complete frames and the complexity of the control system. Figure 10 
shows a more detailed design of the 3 submodules that make up this Preprocessing Block. 
The use of FIFO buffers allows a relaxation in memory restrictions, by not having to store a 
whole image. In short, it is only necessary to store two lines of an image in the 
corresponding FIFO. The Filter Control, implemented in a distributed manner, together with 
the adaptation of the information obtained from the camera via the Camera Interface and 
Frame Conformer blocks, Figure 6, guarantees a minimum use of hardware resources, at the 
same time as total independence of the camera and of the Particle Filter model used 
respectively. This is possible by adding a header (sync embedded bits) to each of the pixels 

coming from the camera, which indicates the type of pixel being handled at all times: SoFrm 
(Start of Frame), SoLn (Start of Line), PoLn (Pixel of Line), EoFrm (End of Frame) and NoPix 
(No Pixel). At the same time some discrete synchronization signals are created in the system. 
This results in a Datapath width of 11 bits. 
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Fig. 10. Preprocessing Module 
 
The data frame so formed has allowed each of the filters to be structured in two major 
submodules: the filter Kernel and the filter Control, respectively, both in the Median and in 
the Sobel filter. The Kernel responds to a linear pipeline structure at pixel level and 3x3 pixel 
block whilst the Distributed Control in each of the blocks guarantees a maximum 
throughput for a minimum consumption of logic. 
As for the most important module in the system, the Particle Filter, Figure 11 shows the 
hardware implementation of the architecture which, written in VHDL, operates over the 
RoI, Figures 6 and 7. 
In each image the presence of lane lines is established and their Center of Mass is calculated, 
thereafter predicting their position by application of the Movement Model which can be 
seen before. Until all terms present in this equation are available, three consecutive images 
(frame0, frame1 and frame2) are needed for prediction and full tracking. 
To functionally explain the hardware implementation of the algorithm, it must be assumed 
that the Centers of Mass of the lane lines for the initial and successive frames have been 
found, and that the predictions are correct. In such a case, the algorithm is processed as 
indicated previously. The procedure, in other case, will be explained later. 

0t  initRNDMCX 1   

1t   RNDXX  12   

2t  
2t  

  RNDXXXX  1223  

  RNDXXXX tttt   11  
 

where    110 ,...,,  nxxxX  is the set of all the particles, MC the centers of mass detected, 
RNDinit the initialization random function, and RNDσ the random function that represents 
the variance term of the Particle Filter. Each increment of t is assumed to be in whole 
multiples of TFrame (TF, 40 ms, PAL rate). The design of the architecture has been carried 
out so that each particle is evaluated and appropriately updated, independently of the rest. 
This allows each of them to be found in one of the three states described before, and which 
are explained below. 
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where    110 ,...,,  nxxxX  is the set of all the particles, MC the centers of mass detected, 
RNDinit the initialization random function, and RNDσ the random function that represents 
the variance term of the Particle Filter. Each increment of t is assumed to be in whole 
multiples of TFrame (TF, 40 ms, PAL rate). The design of the architecture has been carried 
out so that each particle is evaluated and appropriately updated, independently of the rest. 
This allows each of them to be found in one of the three states described before, and which 
are explained below. 

(3) 
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Fig. 11. Functional Description of the Particle Filter Hardware Implementation 
 
The equation shown below, which represents the so called Movement Model, governs the 
overall behavior of the filter: 

  RNDXXXX tttt   11  
1) init_state → t = 0. frame0 is analyzed, so there is no initial information at all. After 

finding the Centers of Mass of the line, the particles are distributed around the 
same with a dispersion given by RNDinit, the latter constituting the prediction of 
the position of the Center of Mass in the following image made from that detected 
in the current image. 

2) transitory_state → t = 1. The prediction consists on applying the variance term to 
the prediction made in the previous image. 

3) steady_state → t ≥ 2. All data is now available to apply the equation of the filter 
completely, that is, the previous prediction Xt, the particle displacement term (Xt – 
Xt-1), which represents the speed at which the lines are moving in the real scenario, 
and the variance RNDσ. 

This routine is followed for the case in which the error committed in the prediction,  
measured with respect to the Center of Mass of the current image, is delimited within a 
margin of error defined by the maximum value of RNDinit. At this point, steady_state, two 
situations can arise: 

1. A new line is detected. Depending on the error made, two further situations can 
arise.  

 The error is bounded. This is the general case, steady_state, which 
operation process has been explained above, (1).  

 The error is not bounded. The calculation sequence begins again for the 
three following frames, considering this as init_state, t = 0.  

2. It is in the case where no line is detected that the prediction makes most sense, 
being the prediction validated when a new line is found in the following frames. 
Thus, when the line appears again, its position will have been predicted, and it will 
be possible to evaluate the correctness thereof, proceeding again as in point 1. 

The Particle Filter subsystem implemented uses 4 particles for each video line analyzed, 
resulting a total of 12 particles, operating only on the horizontal axis of the image. The 

dynamic margin (range) of the pseudo random numbers generated, RNDinit (4-bit LFSR) 
and RNDσ (3-bit LFSR), as well as the number of particles and the number of bits used for 
their encoding, are closely related to the number of video lines used for detecting the lane 
lines, the width of the RoI and the number of frames necessary to establish a good 
prediction in real time (PAL frame rate = 25 fps). The impact in dimensioning the DataPath 
of the pipeline architecture and its control, have constituted one of the main challenges in 
implementing the total system. The number of bits used to encode the particles is 10, 
representing integers with sign, whereby this coding could be employed for RoIs of up to 
512 pixels in width. 
Synthesis results for different low-cost FPGAs were obtained, trying to compare the 
different architectures. This Module is composed of two FIFO memories that store 2 video 
lines for the implementation of the Median and Sobel Filters respectively. The Distributed 
Control of this Module has the responsibility of ensuring that the information at pixel level 
reaches the Particle Filter Module, Figure 11, in optimum conditions. A Cyclone 
EP1C20F400C7 FPGA has been taken as the reference low-cost development system.  
The FIFO memories were implemented making use of internal RAM resources available in 
the FPGA (294912 bits distributed in 64 blocks of 4608 bits, known as M4Ks). The results 
obtained with Quartus II “MegaWizard Plug-in Manager”, an assistant that helps in the 
instantiation of architecture-specific resources, have been compared with the direct 
instantiation of the scfifo lybrary component. This has been the design decision made since 
errors were detected in the assistant that made the creation of the desired FIFO memory 
impossible. 
The Median and Sobel Filters FIFOs -11 bits per word- (Figure 10) differ in two positions. It 
must be pointed out that, as far as synthesis is concerned, this has a relative importance. 
After several synthesis tests, it was observed that the design of the LPM component of 
Altera scfifo (single-clock fifo) and the mapping process of the memory in HW, always 
produce a FIFO with a power of two number of positions. Thus, a FIFO of 126 positions 
would occupy the same resources (memory and LEs) as one of 128. On the other hand, one 
of 129 positions will occupy the same as one of 256. The difference probably rest in the 
generation of the FIFO control signals. Besides, it also must be pointed out that the proposed 
architecture for both the Sobel and the Median filter, as regards the number of FPGA 
resources employed, is completely independent of the size of the image to be processed. The 
key point in the architecture that makes such synthesis results possible is the series 
communication protocol implemented at pixel level. This protocol makes that the 
Submodules that implement the filters do not need to know the RoI size. This information is 
managed by the Frame Conformer block, being the insignificant increase in the size of the 
Preprocessing Module due to this submodule, as well as to the FIFOs.The synthesis of the 
Particle Filter, as well as its fitting in different types of FPGA with a different architecture, 
number of logic elements (LE), availability of internal RAM memory, etc., have allowed a 
comparison to be carried out among all of them and some final conclusions to be reached. 
This Filter is the module in the architecture of the system developed that consumes most 
logic element (LE) resources. 
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Fig. 12. System Pipeline Processing 

 
7. FPGA Implementation of an Image Recognition System based on Tiny 
Neural Networks and on-line Reconfiguration 

Neural networks are widely used in pattern recognition, security applications and robot 
control. We propose a hardware architecture system; using Tiny Neural Networks (TNN) 
specialized in image recognition. The generic TNN architecture allows expandability by 
means of mapping several Basic units (layers) and dynamic reconfiguration; depending on 
the application specific demands. One of the most important features of Tiny Neural 
Networks (TNN) is their learning ability. Weight modification and architecture 
reconfiguration can be carried out in run time. Our system performs shape identification by 
the interpretation of their singularities. This is achieved by interconnecting several 
specialized TNN (López et al., 2007). 
There are several levels of parallelism in the neural network recognition system that we are 
proposing: Parallelism among networks, among the layers of a network, among neurons 
and among connections. All of them are shown on the General Architecture of the system 
(Figure 13).  
We can classify the ANN hardware implementation in two main categories: that based on 
microprocessors by using Digital Signal Processors (DSP) or general purpose processors, 
and that using an Application Specific Integrated Circuit (ASIC) or Field Programmable 
Gate Array (FPGA). 
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Fig. 13.  System Architecture 
 

The first one based on microprocessors, is more flexible and relatively easy to implement. 
However, when the network becomes larger (for example, in a fully connected network), it 
is not the best option: general purpose computers are required, and the usage and 
application depend on power and area characteristics available. 
The number of “synapses” and multipliers included in a fully interconnected network is 
proportional to the squared total number of neurons. The speed slows down due to the 
increase in the number of multipliers, and the chip size or chip area increases significantly, 
which becomes one of the critical points in ANN design. In order to solve this problem, the 
use of hardware multipliers seems to be an option to resolve the chip size problem; as well 
as the design of neural networks without multipliers or reusable ones. Our work explores 
multiplier re-usability based on an internal bus structure. Taking into account the 
parallelism of the neural network model, it is possible to map the architecture on array 
processors, obtaining a linear growth in the number of multipliers. Figure 14 shows a 
network interconnected by mean of an array processor model. 
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Fig. 14.  Network Example 
 
The main objective of this research is the design of a reconfigurable, efficient, low cost 
architecture for shape recognition. Robust methods for the analysis of images, and the 
implementation of a system based on specialized TNN have been developed for shape 
recognition by means of the analysis of some characteristics of the image (singularities). 
Traffic signal recognition and/or pedestrian recognition are two of the most relevant 
applications. These networks work cooperatively to obtain the classification of the image. 
The main restriction comes with the complexity of the information contained in the image 
data, because they are sensible to changes of the environment. It is then necessary to have a 
recognition system that allows dynamic reconfiguration. It is necessary to develop an 
architecture that allows optimum usage of hardware resources, due to the limitations in 
power and available area. The suggested system is formed by small Perceptron multilevel 
networks, and it was implemented in an Altera Cyclone II FPGA. 
The requirements of recurrent learning processes can be satisfied by the reconfiguration and 
flexibility of FPGAs. Weight modification and architecture reconfiguration can be carried 
out during run time. 
When talking about ANN implementation, the following considerations should be taken 
into account: frequency, precision, configuration issues, and ANN parallelism. In order to 
improve general design characteristics, there are two units: Basic units and Control units. 
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The first one based on microprocessors, is more flexible and relatively easy to implement. 
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The main objective of this research is the design of a reconfigurable, efficient, low cost 
architecture for shape recognition. Robust methods for the analysis of images, and the 
implementation of a system based on specialized TNN have been developed for shape 
recognition by means of the analysis of some characteristics of the image (singularities). 
Traffic signal recognition and/or pedestrian recognition are two of the most relevant 
applications. These networks work cooperatively to obtain the classification of the image. 
The main restriction comes with the complexity of the information contained in the image 
data, because they are sensible to changes of the environment. It is then necessary to have a 
recognition system that allows dynamic reconfiguration. It is necessary to develop an 
architecture that allows optimum usage of hardware resources, due to the limitations in 
power and available area. The suggested system is formed by small Perceptron multilevel 
networks, and it was implemented in an Altera Cyclone II FPGA. 
The requirements of recurrent learning processes can be satisfied by the reconfiguration and 
flexibility of FPGAs. Weight modification and architecture reconfiguration can be carried 
out during run time. 
When talking about ANN implementation, the following considerations should be taken 
into account: frequency, precision, configuration issues, and ANN parallelism. In order to 
improve general design characteristics, there are two units: Basic units and Control units. 
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Basic units (specialized neural networks) are in charge of signal processing and weight and 
bias data storage, including the multiplication of the weights by the inputs, the 
accumulation and the nonlinear function activation. Control units work on the basic of 
signal transmission including parallel processing and the algorithm work. By considering 
those units, the proposed design (as shown in Figure 15) has an efficient architecture based 
on specialized neural networks by recognition, to be implemented in FPGAs. 

 
Fig. 15.  System Architecture 
 
For achieving the learning operation the algorithm is divided in three phases, known as: 
feed-forward, back-propagation and up-date. In the feed-forward phase the input signals 
propagate through the network layer by layer, eventually producing some response at the 
output of the network. This response is compared with the desired (target) response, 
generating error signals that are propagated in backward direction through the network. In 
this backward phase of operation, the free parameters of the network are adjusted so as to 
minimize the sum of square error. Finally, weights and biases are updated using the data 
obtained in the previous phase. The process is repeated as many times as necessary in order 
to have a trained network. The three phases of algorithm are shown in Figure 16. 
Since the proposed architecture is auto-reconfigurable during the execution time, separated 
modules where developed. So that the system carries out an on-line reconfiguration, the 
same learning rules should be applied concurrently over a new pattern. When the network 
is reconfigured, the Control unit executes the learning process concurrently, using the 
training patterns stored along with the new pattern to be recognized. 
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When the learning processes finishes, collected data are transmitted to the weights and bias 
network memories, by means of the control unit and pass through the backpropagation 
level, which checks the reconfiguration and learning of it.  
 

Update
Module

Feedforward
Module

Backpropagation
Module

Reconfiguration

Foreground
Process

Background
Process

Update
Module
Update
Module

Feedforward
Module

Feedforward
Module

Backpropagation
Module

Backpropagation
Module

Reconfiguration

Foreground
Process

Background
Process

 
Fig. 17.  Algorithms Segmentation for Learning Operation 
 
Figure 17 shows the implementation of the different levels of the learning algorithm. The 
feed-forward and update modules corresponding to the Basic unit were implemented 
directly in the same FPGA (Altera Cyclone II), and they are executed concurrently in a 
foreground Process.  
At that moment, the uncertainty module determines if there is a new pattern and sends a 
request to the control unit to reconfigure the network. The backpropagation module 
corresponding to on line learning was implemented in the PowerPC processor XILINX 
(Virtex II), background process. By means of a state machine, three modes of operation of 
the system were defined. In the Initialization mode, the system loads the initial values of the 
weights and biases, and begins the Classification mode. In this mode, the network works in 
feed-forward, and when it detects that a new pattern has arrived it changes to the 
Reconfiguration mode. When this mode finished, the update is carried out in other to begin 
again with the classification mode. The different modes of operation and the states machine 
will be explained later. 
Considering the problems of size and scalability, we propose a design based on the 
mathematical model of the neural networks, similar to the model shown in figure 18(a).  
As explained above, the synapse number is limited (network size) by the size of the internal 
memory of FPGA. In addition, the network architecture (number of neurons and number of 
layers) is also limited by the hardware resources. In order to avoid these difficulties, a Basic 
Processing Unit is suggested as the central component of the network. This unit is called the 
Knowledge Unit (KWU) and can be modified to configure a neuron or a number of them in 
order to create one of the layers of the network, obtaining different topologies according to 
the programming of the internal registers of the system. 
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Figure 17 shows the implementation of the different levels of the learning algorithm. The 
feed-forward and update modules corresponding to the Basic unit were implemented 
directly in the same FPGA (Altera Cyclone II), and they are executed concurrently in a 
foreground Process.  
At that moment, the uncertainty module determines if there is a new pattern and sends a 
request to the control unit to reconfigure the network. The backpropagation module 
corresponding to on line learning was implemented in the PowerPC processor XILINX 
(Virtex II), background process. By means of a state machine, three modes of operation of 
the system were defined. In the Initialization mode, the system loads the initial values of the 
weights and biases, and begins the Classification mode. In this mode, the network works in 
feed-forward, and when it detects that a new pattern has arrived it changes to the 
Reconfiguration mode. When this mode finished, the update is carried out in other to begin 
again with the classification mode. The different modes of operation and the states machine 
will be explained later. 
Considering the problems of size and scalability, we propose a design based on the 
mathematical model of the neural networks, similar to the model shown in figure 18(a).  
As explained above, the synapse number is limited (network size) by the size of the internal 
memory of FPGA. In addition, the network architecture (number of neurons and number of 
layers) is also limited by the hardware resources. In order to avoid these difficulties, a Basic 
Processing Unit is suggested as the central component of the network. This unit is called the 
Knowledge Unit (KWU) and can be modified to configure a neuron or a number of them in 
order to create one of the layers of the network, obtaining different topologies according to 
the programming of the internal registers of the system. 
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Fig. 18. Specialized Tiny Neural Networks Model 
 
Figure 18b shows the model of a Basic Learning Unit. The hardware architecture is obtained 
by mapping the high level algorithmic model of the Perceptron neural network into the 
equivalent module hardware. A data input vector (coming from the acquisition and pre-
processing levels) and the external buses system (address, data and control) is used to 
interconnect the knowledge units with the general control of the system. 
According to our research it is necessary to know the degree of parallelism (taking into 
account the hardware resources) of the algorithm, in order to trade off the development and 
hardware resources consumption when implemented. With the suggested model, the Basic 
Learning Unit architecture has an almost complete parallel functionality, providing the best 
development with the minimum resources. 
All hardware neurons (Basic Units), are formed by a MAC Unit (multiplier and 
accumulator), a Serial Unit (multiplexer), and the Non-lineal Functions calculator, all of 
them interconnected by a parallel system bus as shown on figure 18b. 
MAC Units are connected through the internal data bus to their weight memories and to the 
series of input data (input vector). Let us suppose that we have an input layer of N neurons. 
By means of this architecture it is possible to carry out N operations in parallel with serial 
input data because of the simultaneous access of the memories, through the internal 
structure of bus. Therefore, the weight and bias memories have been implemented in the 
RAM modules embedded in the FPGA. These modules allow being accessed independently, 
so faster memory accesses are achieved thanks to this distributed memory scheme.  
The design of the Basic Unit should include a level in which output data are obtained 
(output vector) in order to balance cost and development. This internal output contains the 
results of the first layer neurons and it is used as an input vector on the network’s hidden or 
the output layers.  

All of the MAC units makes parallel calculations ending up into an architecture with a high 
hardware resources consumption, so resources are optimized by an adder and a block 
which activates the non-lineal function used into the Basic Unit design; this way, the 
Learning Unit architecture has an input vector and an output vector for the information 
transfer (feed-forward), through the different network layers, being able to implement 
several neural networks, Perceptron Multilayer (PM).  
As a special case, when talking about a Perceptron Multilayer network and due to the little 
number of neurons on the exit layer, it is not necessary to use a Serial Unit because cost and 
development trade off does not have a negative impact on the architecture. There is an 
adder and an activation function by output neuron; the bias memory has been implemented 
with registers in the same adder, reducing the RAM cost and achieving resource 
optimization. We can see the architecture of an exit layer unit on figure 19. 
Having the Learning Unit, it is easy to have a neural network interconnecting two or more 
Basic Units; depending on the number of layers those neurons have (Modular and Scalable 
features of the Architecture). The interconnection is performed by an internal bus that 
transfers the data vectors of the previous stage. The data flow is controlled by a control unit 
through a protocol which indicates to the next layer on the network, the beginning and end 
of the information vector. 
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Fig. 19. Basic Unit Output Layer 
 
With the Basic and Control units designed, a new layer of the neural network, which we will 
call the Learning Generic Unit can be designed. This is the basic module in the network and 
gives the modular characteristic to the system, which enables the Perceptron networks with 
several neurons and layers to be implemented. 
These units are also the basic modules on the huge architectures on FPGAs platforms, 
having a growing system on internal networks and the whole one. A growing and modular 
system is achieved when the modular control unit is designed. 
The modular design of the Control unit of the network layers avoids the need for global 
control and a completely modular and scalable system is obtained. The main activities 
carried out by the Control Unit are signal transmission and learning algorithm execution. 
The state machine of the Control Unit has been designed to improve the system 
performance. This state machine has been carefully created and has three different ways of 
implementing the algorithm (figure 20) as explained previously. 
The characteristics of the design allow that several networks execute the classification 
process in parallel, and meanwhile concurrently the training process could be executed in 
another one TNN. 
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Fig. 18. Specialized Tiny Neural Networks Model 
 
Figure 18b shows the model of a Basic Learning Unit. The hardware architecture is obtained 
by mapping the high level algorithmic model of the Perceptron neural network into the 
equivalent module hardware. A data input vector (coming from the acquisition and pre-
processing levels) and the external buses system (address, data and control) is used to 
interconnect the knowledge units with the general control of the system. 
According to our research it is necessary to know the degree of parallelism (taking into 
account the hardware resources) of the algorithm, in order to trade off the development and 
hardware resources consumption when implemented. With the suggested model, the Basic 
Learning Unit architecture has an almost complete parallel functionality, providing the best 
development with the minimum resources. 
All hardware neurons (Basic Units), are formed by a MAC Unit (multiplier and 
accumulator), a Serial Unit (multiplexer), and the Non-lineal Functions calculator, all of 
them interconnected by a parallel system bus as shown on figure 18b. 
MAC Units are connected through the internal data bus to their weight memories and to the 
series of input data (input vector). Let us suppose that we have an input layer of N neurons. 
By means of this architecture it is possible to carry out N operations in parallel with serial 
input data because of the simultaneous access of the memories, through the internal 
structure of bus. Therefore, the weight and bias memories have been implemented in the 
RAM modules embedded in the FPGA. These modules allow being accessed independently, 
so faster memory accesses are achieved thanks to this distributed memory scheme.  
The design of the Basic Unit should include a level in which output data are obtained 
(output vector) in order to balance cost and development. This internal output contains the 
results of the first layer neurons and it is used as an input vector on the network’s hidden or 
the output layers.  

All of the MAC units makes parallel calculations ending up into an architecture with a high 
hardware resources consumption, so resources are optimized by an adder and a block 
which activates the non-lineal function used into the Basic Unit design; this way, the 
Learning Unit architecture has an input vector and an output vector for the information 
transfer (feed-forward), through the different network layers, being able to implement 
several neural networks, Perceptron Multilayer (PM).  
As a special case, when talking about a Perceptron Multilayer network and due to the little 
number of neurons on the exit layer, it is not necessary to use a Serial Unit because cost and 
development trade off does not have a negative impact on the architecture. There is an 
adder and an activation function by output neuron; the bias memory has been implemented 
with registers in the same adder, reducing the RAM cost and achieving resource 
optimization. We can see the architecture of an exit layer unit on figure 19. 
Having the Learning Unit, it is easy to have a neural network interconnecting two or more 
Basic Units; depending on the number of layers those neurons have (Modular and Scalable 
features of the Architecture). The interconnection is performed by an internal bus that 
transfers the data vectors of the previous stage. The data flow is controlled by a control unit 
through a protocol which indicates to the next layer on the network, the beginning and end 
of the information vector. 
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Fig. 19. Basic Unit Output Layer 
 
With the Basic and Control units designed, a new layer of the neural network, which we will 
call the Learning Generic Unit can be designed. This is the basic module in the network and 
gives the modular characteristic to the system, which enables the Perceptron networks with 
several neurons and layers to be implemented. 
These units are also the basic modules on the huge architectures on FPGAs platforms, 
having a growing system on internal networks and the whole one. A growing and modular 
system is achieved when the modular control unit is designed. 
The modular design of the Control unit of the network layers avoids the need for global 
control and a completely modular and scalable system is obtained. The main activities 
carried out by the Control Unit are signal transmission and learning algorithm execution. 
The state machine of the Control Unit has been designed to improve the system 
performance. This state machine has been carefully created and has three different ways of 
implementing the algorithm (figure 20) as explained previously. 
The characteristics of the design allow that several networks execute the classification 
process in parallel, and meanwhile concurrently the training process could be executed in 
another one TNN. 
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In order to maintain the processing speed of a TNN in hardware and its versatility in 
simulations, the reconfiguration of the neural network on its different hardware levels has 
to be possible (Reconfiguration features). Different researches have revealed that general 
purpose processors can be used in order to reprogram the neural network. We could also 
use FPGAs to modify the bus structure and the Basic Unit possessing by means of the 
change in the configuration registers. 
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Fig. 20. System Operation 
 
The characteristics of the design allow that several networks execute the classification 
process in parallel, and meanwhile concurrently the training process could be executed in 
another one TNN. 
In order to maintain the processing speed of a TNN in hardware and its versatility in 
simulations, the reconfiguration of the neural network on its different hardware levels has 
to be possible (Reconfiguration features). Different researches have revealed that general 
purpose processors can be used in order to reprogram the neural network. 
The way in which general purpose processors are used is better although it is not 
completely successful with regard a the processing speed and required areas; in any case, 
the reconfigurable hardware networks are limited when programming but they have more 
processing speed, they use a smaller area and they can be included in an integrated circuit 
(system on-chip). Due to the characteristics of the suggested system, it can be considerate to 
be a heterogeneous architecture, combining the activities from the general purpose 
processors (programming availability) and those of the FPGAs (parallel processing and 
execution speed).  
The specialized network design has an Uncertainty stage (module). The basic function of the 
module is to determine if the output data sequence corresponds to the training pattern or if 
it is similar to it, generating a valid signal for the recognition. On the other hand, if the 
Uncertainty module detects similar points on a probability range between 50% and 75%, a 
signal for reconfiguration is produced. Uncertainty stages are visible on Figure 21. 
When the reconfiguration takes place, the global control system executes several processes 
concurrently: input vector acquisition, data attachment to training memory, new training 
vectors (target) and on-line training execution (including the new learning pattern). When 
training is finished, the hardware stages have been reconfigured: training memories (content 
and dimensions), and weight and bias memories have been updated, with new values 
obtained at the end of the process. 
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Fig. 21. Uncertainty Module 
 
The system designed is highly parallel and able to execute several tasks at the same time. 
The networks in our system are also cooperative in order to solve complex issues through 
small networks. As an example of the system application, the networks can be trained to 
identify special points on an image. These points are characteristic elements of shape 
(singularities) such as right-angled corners, round segments and acute-angled corners. 
These singularities are used for the recognition of rectangular, circular and triangular 
shapes. Autonomous robots or intelligent systems for cars use this kind of system.  
The decision to have the communication of the global control system through a bus 
structure was taken after consideration of the efficiency level that we wanted to achieve. In 
this way the memory blocks share the same space on the system and can be accessed with a 
logic address, having as a result a distributed system of the memories on the networks with 
a centralized control. The addressing mode was considered to be the optimum model 
because it does not require a redundant memory for the networks, and only during the 
reconfiguration process can exists a redundancy in the network memories that have to be 
reconfigured, achieving a more rapid convergence of the algorithm. See figure 22, for the 
networks interconnection to the global control. 
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Fig. 22. System Memory Map 
 
The reconfiguration takes place at the moment at which a new image must be recognized. 
Therefore, the architecture has to be modified, and the new training patterns and the targets 
added to the memory. When the training process ends, the memories are updated and the 
network has the recognition connections. 
According to the research, there are different forms of reconfiguration on a neural network. 
During the execution time, the number of neurons on the input layer can be modified or we 
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In order to maintain the processing speed of a TNN in hardware and its versatility in 
simulations, the reconfiguration of the neural network on its different hardware levels has 
to be possible (Reconfiguration features). Different researches have revealed that general 
purpose processors can be used in order to reprogram the neural network. We could also 
use FPGAs to modify the bus structure and the Basic Unit possessing by means of the 
change in the configuration registers. 
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Fig. 20. System Operation 
 
The characteristics of the design allow that several networks execute the classification 
process in parallel, and meanwhile concurrently the training process could be executed in 
another one TNN. 
In order to maintain the processing speed of a TNN in hardware and its versatility in 
simulations, the reconfiguration of the neural network on its different hardware levels has 
to be possible (Reconfiguration features). Different researches have revealed that general 
purpose processors can be used in order to reprogram the neural network. 
The way in which general purpose processors are used is better although it is not 
completely successful with regard a the processing speed and required areas; in any case, 
the reconfigurable hardware networks are limited when programming but they have more 
processing speed, they use a smaller area and they can be included in an integrated circuit 
(system on-chip). Due to the characteristics of the suggested system, it can be considerate to 
be a heterogeneous architecture, combining the activities from the general purpose 
processors (programming availability) and those of the FPGAs (parallel processing and 
execution speed).  
The specialized network design has an Uncertainty stage (module). The basic function of the 
module is to determine if the output data sequence corresponds to the training pattern or if 
it is similar to it, generating a valid signal for the recognition. On the other hand, if the 
Uncertainty module detects similar points on a probability range between 50% and 75%, a 
signal for reconfiguration is produced. Uncertainty stages are visible on Figure 21. 
When the reconfiguration takes place, the global control system executes several processes 
concurrently: input vector acquisition, data attachment to training memory, new training 
vectors (target) and on-line training execution (including the new learning pattern). When 
training is finished, the hardware stages have been reconfigured: training memories (content 
and dimensions), and weight and bias memories have been updated, with new values 
obtained at the end of the process. 
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Fig. 21. Uncertainty Module 
 
The system designed is highly parallel and able to execute several tasks at the same time. 
The networks in our system are also cooperative in order to solve complex issues through 
small networks. As an example of the system application, the networks can be trained to 
identify special points on an image. These points are characteristic elements of shape 
(singularities) such as right-angled corners, round segments and acute-angled corners. 
These singularities are used for the recognition of rectangular, circular and triangular 
shapes. Autonomous robots or intelligent systems for cars use this kind of system.  
The decision to have the communication of the global control system through a bus 
structure was taken after consideration of the efficiency level that we wanted to achieve. In 
this way the memory blocks share the same space on the system and can be accessed with a 
logic address, having as a result a distributed system of the memories on the networks with 
a centralized control. The addressing mode was considered to be the optimum model 
because it does not require a redundant memory for the networks, and only during the 
reconfiguration process can exists a redundancy in the network memories that have to be 
reconfigured, achieving a more rapid convergence of the algorithm. See figure 22, for the 
networks interconnection to the global control. 
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Fig. 22. System Memory Map 
 
The reconfiguration takes place at the moment at which a new image must be recognized. 
Therefore, the architecture has to be modified, and the new training patterns and the targets 
added to the memory. When the training process ends, the memories are updated and the 
network has the recognition connections. 
According to the research, there are different forms of reconfiguration on a neural network. 
During the execution time, the number of neurons on the input layer can be modified or we 
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can give enough knowledge to the network by changing the training memory content. The 
either of both methods leads us to the image recognition. 
Depending on available hardware resources and the applications of the system, a dynamic 
reconfiguration is possible when the image is part of the same group. Specialized 
cooperative networks, where installed for reconfiguration to be held in the control section, 
acquire more knowledge as new images are recognized. 
The weight and bias data stored in the memory modules were obtained by the previous off-
line learning, using a backpropagation algorithm. Simulation software was developed using 
Matlab and Simulink, Neural Network Toolbox. In order to obtain the data of the memories 
of weights, 450 patterns of training with different characteristics have been used, taking into 
account the fact that all correspond to an image of the same class (rectangular, circular and 
triangular shapes) 
The training method works in batch mode, which means that once all the entries were 
presented, the learning stage updates the weights and bias according to the decreasing 
moment of the gradient and an adaptive learning scale. 
A region of 6x5 (columns*rows) pixels has been used to detect the singularities. The 
classification mode has been implemented as a series of regions processing. First, the ROI 
extractor detects the RoI (Region of Interest), figure 23, sized 60x45 pixels, and stores it in 
the internal embedded RAM memory. Then, successive vector of characteristic are extracted 
from the RoI, and sent to the TNN to be processed. So, dividing the RoI in 6x5 sized-regions, 
results in 10x9 data input vector in one RoI. This is the actual amount of data being 
processed in each image field, resulting in 90 vectors of 30 pixels each one. This has been 
accomplished by sweeping the RoI, and by sending each vector of characteristics to the 
TNN, and by storing the result associated to each region. In this way, probability maps of 
possible detected singularities are obtained so that the uncertainty stage can decide whether 
a signal has been detected or not. 
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Fig. 23. Traffic Sign Recognition 
 
In addition, further simulations in MATLAB, have established that a Q8.16 format is 
accurate enough to quantify weights and biases. This reduction in the bit width leads to a 
reduction in the resources consumed by the network. But more importantly, a great increase 
in the maximum operating frequency is also achieved. This is a key factor if we want to 
enhance the system. 
As a design premise we have always had in mind a design for reuse methodology. 
Therefore, a big effort has been made to specify as many generic hardware modules as 
possible. For this reason, the architecture and VHDL description of the TNN has been 
improved so that later versions, apart from the basic functionality mentioned above, make 
possible their building N-layer, m-output perceptrons in the easiest and most-automated 

way possible. These features have been incorporated so that we shall be able, in the future, 
to test the system architecture on larger FPGAs. 
Preliminary synthesis (no synthesis effort or optimizations directed to the synthesizer) 
results for Altera CYCLONE EP1C20F400C6 and CYCLONE-II EP2C35F672C6 devices have 
been obtained with the Altera Quartus II (v. 6.0) software package. The proposed 
architecture (Q8.16) fits in one CYCLONE device, but remaining resources, mainly memory, 
are a bit scarce. Therefore, the system has also been implemented in the CYCLONE-II 
device. Functional and post-fitting simulations with  Mentor Graphics ModelSim simulation 
environment show how the real-time restrictions imposed on the system and the functional 
specifications are met. 

 
8. Dynamic reconfigurability for scalability in multimedia environments 

Multimedia products and services (Alsolaim et al., 2000) must face nowadays to different 
situations in terms of variable parameters like the available bandwidth, Quality of service 
(QoS), display size, or battery life, among others. In order to deal with these new scenarios, 
the standardization committee known as Joint Video Team (JVT), initiated in 2003 the 
development of a new video coding standard named Scalable Video Coding (SVC), 
conceived as a scalable solution for different users that may have different needs. The SVC 
standard represents an extension of the successful H.264/AVC (Advanced Video Coding) 
standard, as it maintains the video coding techniques introduced in the H.264/AVC 
encoding loop but incorporating a set of novel tools in order to provide video encoders and 
decoders with three levels of scalability: temporal scalability, spatial scalability, and video 
quality scalability. The use of dynamic reconfiguration technology is the main key factor to 
deal with these exigent characteristics, even more stringent for real-time applications. In 
particular, the use of an ad-hoc scalable network of reconfigurable nodes able to cope with 
the requirements imposed by the SVC standard will be proposed. The reconfigurability 
concept is envisioned within the scope of this research project in a threefold manner: 
a) The nodes are composed by a set of reconfigurable Processing Elements (PEs) in charge of 
performing the computations demanded by the SVC standard. b) PEs communicate among 
them throughout a reconfigurable Network-on-Chip (NoC); and c) These nodes are 
communicated by a reconfigurable off-chip wireless network. 
Reconfigurable architectures offer a good balance between implementation efficiency and 
flexibility because they combine post-fabrication programmability with the spatial (parallel) 
computation style of ASIC platforms and the flexibility of the GPPs (General Purpose 
Processors). 
Embedded and networked systems must perform progressively more complex functions, 
which require a high level of embedded intelligence. This rise in intelligence force an 
increase in the level of information processing that the embedded systems carry out, giving 
as result a significant increase in the complexity of the hardware and software. Due to this, 
the conception and design of embedded systems for digital signal (video) processing 
applications in real-time have to face two major points, in many cases opposed one to each 
other. On one side, a higher level of intelligence is demanded day by day to the systems, 
and, on the other side, these systems have requirements of real-time operation and 
reliability, which are difficult to meet in complex systems. The way to be explored in 
whatever research activity is a) to exploit high-level cognitive architectures in embedded 
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can give enough knowledge to the network by changing the training memory content. The 
either of both methods leads us to the image recognition. 
Depending on available hardware resources and the applications of the system, a dynamic 
reconfiguration is possible when the image is part of the same group. Specialized 
cooperative networks, where installed for reconfiguration to be held in the control section, 
acquire more knowledge as new images are recognized. 
The weight and bias data stored in the memory modules were obtained by the previous off-
line learning, using a backpropagation algorithm. Simulation software was developed using 
Matlab and Simulink, Neural Network Toolbox. In order to obtain the data of the memories 
of weights, 450 patterns of training with different characteristics have been used, taking into 
account the fact that all correspond to an image of the same class (rectangular, circular and 
triangular shapes) 
The training method works in batch mode, which means that once all the entries were 
presented, the learning stage updates the weights and bias according to the decreasing 
moment of the gradient and an adaptive learning scale. 
A region of 6x5 (columns*rows) pixels has been used to detect the singularities. The 
classification mode has been implemented as a series of regions processing. First, the ROI 
extractor detects the RoI (Region of Interest), figure 23, sized 60x45 pixels, and stores it in 
the internal embedded RAM memory. Then, successive vector of characteristic are extracted 
from the RoI, and sent to the TNN to be processed. So, dividing the RoI in 6x5 sized-regions, 
results in 10x9 data input vector in one RoI. This is the actual amount of data being 
processed in each image field, resulting in 90 vectors of 30 pixels each one. This has been 
accomplished by sweeping the RoI, and by sending each vector of characteristics to the 
TNN, and by storing the result associated to each region. In this way, probability maps of 
possible detected singularities are obtained so that the uncertainty stage can decide whether 
a signal has been detected or not. 
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Fig. 23. Traffic Sign Recognition 
 
In addition, further simulations in MATLAB, have established that a Q8.16 format is 
accurate enough to quantify weights and biases. This reduction in the bit width leads to a 
reduction in the resources consumed by the network. But more importantly, a great increase 
in the maximum operating frequency is also achieved. This is a key factor if we want to 
enhance the system. 
As a design premise we have always had in mind a design for reuse methodology. 
Therefore, a big effort has been made to specify as many generic hardware modules as 
possible. For this reason, the architecture and VHDL description of the TNN has been 
improved so that later versions, apart from the basic functionality mentioned above, make 
possible their building N-layer, m-output perceptrons in the easiest and most-automated 

way possible. These features have been incorporated so that we shall be able, in the future, 
to test the system architecture on larger FPGAs. 
Preliminary synthesis (no synthesis effort or optimizations directed to the synthesizer) 
results for Altera CYCLONE EP1C20F400C6 and CYCLONE-II EP2C35F672C6 devices have 
been obtained with the Altera Quartus II (v. 6.0) software package. The proposed 
architecture (Q8.16) fits in one CYCLONE device, but remaining resources, mainly memory, 
are a bit scarce. Therefore, the system has also been implemented in the CYCLONE-II 
device. Functional and post-fitting simulations with  Mentor Graphics ModelSim simulation 
environment show how the real-time restrictions imposed on the system and the functional 
specifications are met. 

 
8. Dynamic reconfigurability for scalability in multimedia environments 

Multimedia products and services (Alsolaim et al., 2000) must face nowadays to different 
situations in terms of variable parameters like the available bandwidth, Quality of service 
(QoS), display size, or battery life, among others. In order to deal with these new scenarios, 
the standardization committee known as Joint Video Team (JVT), initiated in 2003 the 
development of a new video coding standard named Scalable Video Coding (SVC), 
conceived as a scalable solution for different users that may have different needs. The SVC 
standard represents an extension of the successful H.264/AVC (Advanced Video Coding) 
standard, as it maintains the video coding techniques introduced in the H.264/AVC 
encoding loop but incorporating a set of novel tools in order to provide video encoders and 
decoders with three levels of scalability: temporal scalability, spatial scalability, and video 
quality scalability. The use of dynamic reconfiguration technology is the main key factor to 
deal with these exigent characteristics, even more stringent for real-time applications. In 
particular, the use of an ad-hoc scalable network of reconfigurable nodes able to cope with 
the requirements imposed by the SVC standard will be proposed. The reconfigurability 
concept is envisioned within the scope of this research project in a threefold manner: 
a) The nodes are composed by a set of reconfigurable Processing Elements (PEs) in charge of 
performing the computations demanded by the SVC standard. b) PEs communicate among 
them throughout a reconfigurable Network-on-Chip (NoC); and c) These nodes are 
communicated by a reconfigurable off-chip wireless network. 
Reconfigurable architectures offer a good balance between implementation efficiency and 
flexibility because they combine post-fabrication programmability with the spatial (parallel) 
computation style of ASIC platforms and the flexibility of the GPPs (General Purpose 
Processors). 
Embedded and networked systems must perform progressively more complex functions, 
which require a high level of embedded intelligence. This rise in intelligence force an 
increase in the level of information processing that the embedded systems carry out, giving 
as result a significant increase in the complexity of the hardware and software. Due to this, 
the conception and design of embedded systems for digital signal (video) processing 
applications in real-time have to face two major points, in many cases opposed one to each 
other. On one side, a higher level of intelligence is demanded day by day to the systems, 
and, on the other side, these systems have requirements of real-time operation and 
reliability, which are difficult to meet in complex systems. The way to be explored in 
whatever research activity is a) to exploit high-level cognitive architectures in embedded 
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systems, b) to develop systems by model-based processes and c) to develop scalable 
architectural models that allow maintaining properties of intelligence and reliability across a 
wide spectrum of implementation platforms. This drives our work necessarily to evolvable 
hardware. We are carrying on some preliminary studies for using discrete wavelets 
implemented in hardware in order to achieve embedded intelligence on chip for dynamic 
reconfigurability for scalability in multimedia environments. 
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