
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

, Ricardo Sanz3, Ruben Salvador4 and Jaime Alarcon5

Embedded Intelligence on Chip: Some FPGA-based design experiences 379

X

Embedded Intelligence on Chip: Some FPGA-

based design experiences

Félix Moreno1, Ignacio López2
(1CEI, 2TAII , 3ASLab) Universidad Politécnica de Madrid, Spain

1. Introduction

The following FPGA-based (Field Programmable Gate Array) experiences stem from a broader
line of research investigating methodologies for scaling cognitive/intelligent architectures
into limited-resource implementations. Some of these architectures were designed for
solving problems involving abstract concepts and uncertain environments, without
regarding resource requirements: their original implementations are cluster-based, PC-
based or other.
Commercial, embedded applications have afforded being independent from them for years.
However, today there exists a drive towards new functionalities which put conventional
technologies to their limit. From the point of view of the user, these functionalities stand, for
instance, for HMI capable of interacting with the user in natural language, perception
systems capable of detecting objects in the environment and reacting to their presence and
automatic control systems capable of replacing human operation in complex scenarios.
A representative field of application of these functionalities is the automotive industry.
Active research is being carried out to develop highly dependable, low-cost real-time
systems that may predict forthcoming accidents, may assess risk situations when driving or
that may take control of the vehicle when collision is detected as inevitable (for example
some PSSIS: Primary and Secondary Interaction Systems).
From the point of view of the engineer, many of these functionalities involve complex tasks
as object recognition, decision making and action planning, supported by enriched models
of the environment and the system itself, capable of representing concepts, abstract
properties and uncertainty. All of these tasks are carried out as part of the operation of
existing cognitive architecture-based systems.

2. What are cognitive or intelligent architectures?

Although there exists certain debate regarding the meaning of cognitive architectures, we
can accept two main senses of the term:

� Architectures which base their operation in exploiting knowledge.

� Architectures that are designed to operate depending on their recognition of the
environment.

19

(4CEI) ETSI Industriales - UPM, Spain
5Tec. de Monterrey Campus Toluca, Departamento de Mecatronica, Mexico

www.intechopen.com

Pattern Recognition, Recent Advances380

What is done with that recognition that the system gathers from its environment? The
representation of information fluxes and processes from sensors to actuators is the definition
of a cognitive architecture. Given the broadness of these definitions, we may revise
techniques and grossly categorize cognitive architectures as follows:

 Control architectures: An elementary type of architecture is the classical feedback
control loop, from the basic PID implementation, including the wide varieties of
topologies derived from it. The basic idea is that the controller tries to maintain the
difference between a required variable value and the actual measured one null.

 Reactive and behaviour-based architectures: Control architectures are adequate to
operate executing simple, well defined tasks in environments with limited
uncertainty and limited sources of perturbance, as the controlled environments in
industrial settings. However, other systems such as those designed to move
autonomously in an unknown, dynamic environment require more complex
control schemes. Reactive architectures are designed to make systems act in
response to their environment in such a way that the action of the system appears
as a direct reaction to a certain combination of input values. Entire sequences of
tasks may be executed as a reaction to a certain input pattern. When the inputs
change, ongoing tasks may be interrupted and replaced by new ones, according to
a task allocation hierarchy which is also pre-designed in the system architecture as
a function of the system inputs. This combination of task sequences and allocation
hierarchies allow reactive architectures to operate within a range of conditions
suitable for some basic functionalities (explorer robots, automatic hoovers). A
system out of this range, due to inadequate design or to unexpected environmental
events would lead to undetermined or undesired actions.

 Goal-driven architectures: This type of architectures are designed to operate in
highly uncertain environments, typically where some kind of analysis is required
to assess the conditions of operation, prior to the system executing any action.
Uncertainty emerges from a mismatch between the system and its scenario of
operation: the system not being configured for a particular environment, so that it
ignores what may happen next and therefore the consequences of a potential
action. Goal–driven architectures are designed to achieve their objectives in these
circumstances by first analyzing the situation, then building a model, and finally
designing and executing the appropriate actions. The major difference from the
other types of architecture is that environment models and possible actions, which
are static in control and in reactive architectures, are built in run time and changed
by the system itself. In general, goal driven architectures operate following a
common, basic sequence of processes executed in cycles: a) Build an objective, b)
Analyze the environment, c) Design a task to achieve the objective within the given
environment. If this cannot be done, build a sequence of lower level targets aimed
at progressing toward the higher level objective.
These processes may imply highly developed perceptive, deliberative and
actuation functions. In parallel to them, these architectures may implement
learning algorithms that help optimize the system for future or eventual conditions
of operation. As a result, these architectures may achieve high levels of autonomy.
However, some limitations have been met when implementing them in actual
systems, relative to resource consumption. Some deliberative, learning and

perceptive processes would require extremely large memory and computational
resources for real time operation, especially in fast-evolving environments, or when
dealing with highly abstract tasks.

There exist hybrid approaches which combine and integrate devices and elements of the
three categories above. In particular, PID controllers are used by the majority of
implementations dealing with mechanical systems, although they may be reconfigured in
real time by complex goal-driven architectures.
The ultimate goal of the research line which will be illustrated by the FPGA experiences
described in subsequent sections is to build systematic methodologies in order to engineer
all aspects of scaling high level goal architectures to low cost, real time devices.

3. Scaling high level architectures to low-cost FPGAs

We may realize that the process of designing a low cost, embedded cognitive architecture
implies a wide range of problems motivated by two major properties of the triad system-
environment-desired functionality:

 Complexity of the desired functionality, the given system and especially the
environment in which it will be operating.

 Uncertainty, derived from the vast range of possible scenarios of operation that
may emerge.

3.1 Managing complexity
There exist two main techniques for reducing model complexity:

 Excluding or ignoring variables: Not measuring or evaluating them.
 Coarsening measurement: Reducing resolution enough to be representative but

avoiding unnecessary detail.
These two techniques must be applied repeatedly until a reasonable degree of
representativeness is reached.
In practice, eliminating uncertainty completely from an environmental model is either
impossible or would make the system useless. We have to bear in mind that many of the
functionalities that we shall be trying to implement have to do with making the system
predict events or analyze scenarios, in which it is difficult to know precisely what is going to
happen or how intense it will be. In other words: uncertainty will be intrinsic to our own
application, so our model should be able to represent it in some way. In conclusion, when a
certain optimal is achieved in complexity, uncertainty may and must not be completely
eliminated from the model of the environment. The problem now is managing uncertainty.

3.2 Managing uncertainty
As it has been pointed out, uncertainty may appear in two ways: not knowing what is going
to happen or not knowing how intense it will be. More formally, we can say that there are
two types of uncertainty:

 Qualitative uncertainty: Ignoring the nature of the actual event that may occur or
that is already taking place. This type of uncertainty is the specialty of goal driven
architectures.

www.intechopen.com

Embedded Intelligence on Chip: Some FPGA-based design experiences 381

What is done with that recognition that the system gathers from its environment? The
representation of information fluxes and processes from sensors to actuators is the definition
of a cognitive architecture. Given the broadness of these definitions, we may revise
techniques and grossly categorize cognitive architectures as follows:

 Control architectures: An elementary type of architecture is the classical feedback
control loop, from the basic PID implementation, including the wide varieties of
topologies derived from it. The basic idea is that the controller tries to maintain the
difference between a required variable value and the actual measured one null.

 Reactive and behaviour-based architectures: Control architectures are adequate to
operate executing simple, well defined tasks in environments with limited
uncertainty and limited sources of perturbance, as the controlled environments in
industrial settings. However, other systems such as those designed to move
autonomously in an unknown, dynamic environment require more complex
control schemes. Reactive architectures are designed to make systems act in
response to their environment in such a way that the action of the system appears
as a direct reaction to a certain combination of input values. Entire sequences of
tasks may be executed as a reaction to a certain input pattern. When the inputs
change, ongoing tasks may be interrupted and replaced by new ones, according to
a task allocation hierarchy which is also pre-designed in the system architecture as
a function of the system inputs. This combination of task sequences and allocation
hierarchies allow reactive architectures to operate within a range of conditions
suitable for some basic functionalities (explorer robots, automatic hoovers). A
system out of this range, due to inadequate design or to unexpected environmental
events would lead to undetermined or undesired actions.

 Goal-driven architectures: This type of architectures are designed to operate in
highly uncertain environments, typically where some kind of analysis is required
to assess the conditions of operation, prior to the system executing any action.
Uncertainty emerges from a mismatch between the system and its scenario of
operation: the system not being configured for a particular environment, so that it
ignores what may happen next and therefore the consequences of a potential
action. Goal–driven architectures are designed to achieve their objectives in these
circumstances by first analyzing the situation, then building a model, and finally
designing and executing the appropriate actions. The major difference from the
other types of architecture is that environment models and possible actions, which
are static in control and in reactive architectures, are built in run time and changed
by the system itself. In general, goal driven architectures operate following a
common, basic sequence of processes executed in cycles: a) Build an objective, b)
Analyze the environment, c) Design a task to achieve the objective within the given
environment. If this cannot be done, build a sequence of lower level targets aimed
at progressing toward the higher level objective.
These processes may imply highly developed perceptive, deliberative and
actuation functions. In parallel to them, these architectures may implement
learning algorithms that help optimize the system for future or eventual conditions
of operation. As a result, these architectures may achieve high levels of autonomy.
However, some limitations have been met when implementing them in actual
systems, relative to resource consumption. Some deliberative, learning and

perceptive processes would require extremely large memory and computational
resources for real time operation, especially in fast-evolving environments, or when
dealing with highly abstract tasks.

There exist hybrid approaches which combine and integrate devices and elements of the
three categories above. In particular, PID controllers are used by the majority of
implementations dealing with mechanical systems, although they may be reconfigured in
real time by complex goal-driven architectures.
The ultimate goal of the research line which will be illustrated by the FPGA experiences
described in subsequent sections is to build systematic methodologies in order to engineer
all aspects of scaling high level goal architectures to low cost, real time devices.

3. Scaling high level architectures to low-cost FPGAs

We may realize that the process of designing a low cost, embedded cognitive architecture
implies a wide range of problems motivated by two major properties of the triad system-
environment-desired functionality:

 Complexity of the desired functionality, the given system and especially the
environment in which it will be operating.

 Uncertainty, derived from the vast range of possible scenarios of operation that
may emerge.

3.1 Managing complexity
There exist two main techniques for reducing model complexity:

 Excluding or ignoring variables: Not measuring or evaluating them.
 Coarsening measurement: Reducing resolution enough to be representative but

avoiding unnecessary detail.
These two techniques must be applied repeatedly until a reasonable degree of
representativeness is reached.
In practice, eliminating uncertainty completely from an environmental model is either
impossible or would make the system useless. We have to bear in mind that many of the
functionalities that we shall be trying to implement have to do with making the system
predict events or analyze scenarios, in which it is difficult to know precisely what is going to
happen or how intense it will be. In other words: uncertainty will be intrinsic to our own
application, so our model should be able to represent it in some way. In conclusion, when a
certain optimal is achieved in complexity, uncertainty may and must not be completely
eliminated from the model of the environment. The problem now is managing uncertainty.

3.2 Managing uncertainty
As it has been pointed out, uncertainty may appear in two ways: not knowing what is going
to happen or not knowing how intense it will be. More formally, we can say that there are
two types of uncertainty:

 Qualitative uncertainty: Ignoring the nature of the actual event that may occur or
that is already taking place. This type of uncertainty is the specialty of goal driven
architectures.

www.intechopen.com

Pattern Recognition, Recent Advances382

 Quantitative/intensive uncertainty: Given a certain event, ignoring its intensity. A
typical example of this is ignoring the actual value that will be measured the next
instant.

There exist well known, established techniques which allow dealing with both types of
uncertainty. Knowing which variable to measure and how to act upon it, it is only a matter
of estimating how intense the action must be. This problem can be successfully managed by
classical control. Enhancements of the classical PID loop such as some non-linear controllers
or model reference adaptive control (MRAC) even achieve a limited range of reaction to
qualitative uncertainty.
In general, managing qualitative uncertainty is a much deeper and broader problem.
Classical artificial intelligence techniques as neural networks, fuzzy logic and expert systems
offer basic tools. Expert systems and fuzzy logic in combination may analyze uncertain
scenarios provided that their dynamics fall within the range covered by the rule databases,
variables and member functions are well designed. Neural networks may analyze sensor
readings in raw and extract patterns within the limitations of their own type (ie. perceptron,
cognitron), number of neurons, etc.
However, some new functionalities require wider ranges of qualitative uncertainty
management than those provided by these techniques. Complex environmental analysis,
complex action selection processes and advanced learning mechanisms, exceeding typical
neural network ones, are some examples. This is the use of cognitive architectures.
The role of a cognitive architecture is to define a sequence of operation and to assign roles to
the resources of the system, these resources and processes being implemented by expert
systems, neural networks, PIDs or whatever other technique, hardware or software. Scaling
cognitive architectures equals to selecting which parts of their original specification are
really needed and how could they be simplified, which stages of the operating cycles are
indispensable and how to integrate both while preserving functionality.

3.3 Perception, deliberation, action
The operation of any system, can, in general, be explained in terms of perceptive,
deliberative and actuating processes. Sometimes the processes are not designed thinking of
any of those three roles, though inevitably they end up performing one when functioning.
Complex realizations of any of them may rely on the use of extensive memory resources,
which may also be classified in roles: long-term memory and short-term memory. While the
first contains information that may stay in the system during long periods of activity, short
term memory contains transiting variable values or sensory measurements as such. It can be
observed that, as a general rule, goal-driven architectures tend to exploit long term memory
(which stores knowledge) as intensely as short term memory, while reactive architectures,
with simpler design, may even have none.
For scaling cognitive architectures (Albus, 1995), it is useful to have a clear idea of the
character of the system to be designed: whether it will be mainly perceptive, deliberative or
actuating. This will allow a gross idea of the necessary resources. In general, systems
centered in action processes will demand little or none deliberative processing (action
selection, planning, decision making), while problem solving systems will demand little
action processes.
Of course, it is not only the type of processing we are interested, but mainly the type and
quantity of resources each type of process has associated. Sometimes, the designer is able to

choose the nature of the system, or it is given by the application itself. For example, in the
case of ADAS (Advanced Driver Assistance System), the target is to warn or inform the
driver about a variety of risks, options for driving, etc. This case is expected to require little
or none actuating functions except, perhaps, some kind of HMI. On the contrary, perceptive
functions are expected to become quite developed, if analyzing risk for example. On the
other hand, an autonomous driving vehicle may rely on extensive perceptive and
deliberation processes for analyzing the environment, possible action and tradeoffs.

4. The process of scaling an architecture

Scaling a cognitive architecture adds up to finding a match between functionality,
architecture and implementation. The process is simple: given a certain functionality, a
certain architecture must be designed, by iteration, coupling capacities and resources with
the implementation design. During the process, the engineer must continuously work for
optimization of resource use. There is no general formula as to how to optimize. The two
ways of dealing with complexity which were mentioned above apply, however: first, to
eliminate any parts, elements or functions of the architecture that are not strictly needed to
achieve the desired functionality. Second, to eliminate any excess of resolution in
measurements, calculations and precision.
Exaggerated examples of these rules help to understand their meaning. If you have the
necessary information to make your application work by only adding and subtracting, do
not build a cognitive architecture to do the same job. It will consume more resources and
take more time, and may even do it wrong sometimes. If your artificial vision system must
detect spots between 1 and 2 cm2 at 1 m distance, do not spend money in 1920x1200
resolution cameras and image processing algorithms. A low resolution camera will do the
filtering for free, quicker and cheaper. If your system will always operate with objects A, B
and C, you may spare designing learning algorithms that will enable it recognizing any new
object around.
Naturally, there might not always exist a solution to a scaling problem, due either to an
exceedingly complex functionality or to insufficient resources. Logically, the more strict the
functionality specifications or the higher the system flexibility they demand, the more
difficult it will be to simplify any architecture into low cost hardware. Any scaling process
should begin with dividing functionality specifications, to ensure that parts may be
achieved progressively in spite of possible overall failure.
When a solution is possible, however, a good approach is to start assuming the best of cases,
when resources are unlimited, designing the basic architecture for it, and proceed
simplifying the design in each iteration. The process ends when a certain match is achieved
between the three. That is, when the desired functionality has yielded a simplified
architecture that can be implemented in the available resources. Over-optimizing the
architecture is, nevertheless, good for two reasons. First, it may allow implementing the
system in lower cost hardware, or may leave free resources in your board for other
purposes. Second, it reduces the probability of errors. In general, the bigger the system –and
therefore, its architecture- the higher its probability of failure; so keep it as small as possible.
While resource optimization derives from minimizing architectural complexity, there are
overall factors to be taken into account during the design stage. A basic collection of criteria
could be:

www.intechopen.com

Embedded Intelligence on Chip: Some FPGA-based design experiences 383

 Quantitative/intensive uncertainty: Given a certain event, ignoring its intensity. A
typical example of this is ignoring the actual value that will be measured the next
instant.

There exist well known, established techniques which allow dealing with both types of
uncertainty. Knowing which variable to measure and how to act upon it, it is only a matter
of estimating how intense the action must be. This problem can be successfully managed by
classical control. Enhancements of the classical PID loop such as some non-linear controllers
or model reference adaptive control (MRAC) even achieve a limited range of reaction to
qualitative uncertainty.
In general, managing qualitative uncertainty is a much deeper and broader problem.
Classical artificial intelligence techniques as neural networks, fuzzy logic and expert systems
offer basic tools. Expert systems and fuzzy logic in combination may analyze uncertain
scenarios provided that their dynamics fall within the range covered by the rule databases,
variables and member functions are well designed. Neural networks may analyze sensor
readings in raw and extract patterns within the limitations of their own type (ie. perceptron,
cognitron), number of neurons, etc.
However, some new functionalities require wider ranges of qualitative uncertainty
management than those provided by these techniques. Complex environmental analysis,
complex action selection processes and advanced learning mechanisms, exceeding typical
neural network ones, are some examples. This is the use of cognitive architectures.
The role of a cognitive architecture is to define a sequence of operation and to assign roles to
the resources of the system, these resources and processes being implemented by expert
systems, neural networks, PIDs or whatever other technique, hardware or software. Scaling
cognitive architectures equals to selecting which parts of their original specification are
really needed and how could they be simplified, which stages of the operating cycles are
indispensable and how to integrate both while preserving functionality.

3.3 Perception, deliberation, action
The operation of any system, can, in general, be explained in terms of perceptive,
deliberative and actuating processes. Sometimes the processes are not designed thinking of
any of those three roles, though inevitably they end up performing one when functioning.
Complex realizations of any of them may rely on the use of extensive memory resources,
which may also be classified in roles: long-term memory and short-term memory. While the
first contains information that may stay in the system during long periods of activity, short
term memory contains transiting variable values or sensory measurements as such. It can be
observed that, as a general rule, goal-driven architectures tend to exploit long term memory
(which stores knowledge) as intensely as short term memory, while reactive architectures,
with simpler design, may even have none.
For scaling cognitive architectures (Albus, 1995), it is useful to have a clear idea of the
character of the system to be designed: whether it will be mainly perceptive, deliberative or
actuating. This will allow a gross idea of the necessary resources. In general, systems
centered in action processes will demand little or none deliberative processing (action
selection, planning, decision making), while problem solving systems will demand little
action processes.
Of course, it is not only the type of processing we are interested, but mainly the type and
quantity of resources each type of process has associated. Sometimes, the designer is able to

choose the nature of the system, or it is given by the application itself. For example, in the
case of ADAS (Advanced Driver Assistance System), the target is to warn or inform the
driver about a variety of risks, options for driving, etc. This case is expected to require little
or none actuating functions except, perhaps, some kind of HMI. On the contrary, perceptive
functions are expected to become quite developed, if analyzing risk for example. On the
other hand, an autonomous driving vehicle may rely on extensive perceptive and
deliberation processes for analyzing the environment, possible action and tradeoffs.

4. The process of scaling an architecture

Scaling a cognitive architecture adds up to finding a match between functionality,
architecture and implementation. The process is simple: given a certain functionality, a
certain architecture must be designed, by iteration, coupling capacities and resources with
the implementation design. During the process, the engineer must continuously work for
optimization of resource use. There is no general formula as to how to optimize. The two
ways of dealing with complexity which were mentioned above apply, however: first, to
eliminate any parts, elements or functions of the architecture that are not strictly needed to
achieve the desired functionality. Second, to eliminate any excess of resolution in
measurements, calculations and precision.
Exaggerated examples of these rules help to understand their meaning. If you have the
necessary information to make your application work by only adding and subtracting, do
not build a cognitive architecture to do the same job. It will consume more resources and
take more time, and may even do it wrong sometimes. If your artificial vision system must
detect spots between 1 and 2 cm2 at 1 m distance, do not spend money in 1920x1200
resolution cameras and image processing algorithms. A low resolution camera will do the
filtering for free, quicker and cheaper. If your system will always operate with objects A, B
and C, you may spare designing learning algorithms that will enable it recognizing any new
object around.
Naturally, there might not always exist a solution to a scaling problem, due either to an
exceedingly complex functionality or to insufficient resources. Logically, the more strict the
functionality specifications or the higher the system flexibility they demand, the more
difficult it will be to simplify any architecture into low cost hardware. Any scaling process
should begin with dividing functionality specifications, to ensure that parts may be
achieved progressively in spite of possible overall failure.
When a solution is possible, however, a good approach is to start assuming the best of cases,
when resources are unlimited, designing the basic architecture for it, and proceed
simplifying the design in each iteration. The process ends when a certain match is achieved
between the three. That is, when the desired functionality has yielded a simplified
architecture that can be implemented in the available resources. Over-optimizing the
architecture is, nevertheless, good for two reasons. First, it may allow implementing the
system in lower cost hardware, or may leave free resources in your board for other
purposes. Second, it reduces the probability of errors. In general, the bigger the system –and
therefore, its architecture- the higher its probability of failure; so keep it as small as possible.
While resource optimization derives from minimizing architectural complexity, there are
overall factors to be taken into account during the design stage. A basic collection of criteria
could be:

www.intechopen.com

Pattern Recognition, Recent Advances384

 The automatic process admits drastic optimization in time and resources. When
possible, make things automatic.

 The higher the uncertainty in the environment, the more flexible the system, the
less automatic it can be, the more resources necessary. The better the modeling of
the environment, the lesser the uncertainty.

 There is a tradeoff between memory and computational power: in general
designing memory-based processes may simplify run time computation and vice
versa. If you have enough memory and information to store, use it. It makes things
more automatic.

 In general, there is also a tradeoff between deliberation and perception: the more
developed the perceptive processes, the simpler the deliberative processes may be
and vice versa. But here there is no general rule, for perceptive processes may be as
complex and demanding as purely deliberative ones.

Fig. 0. General process of scaling cognitive architectures

5. A low-cost Real-Time FPGA solution for driver drowsiness detection

In this work some of the most recent advances in digital image processing techniques have
been used to make vehicle drivers face analysis by detecting symptoms of tiredness and
distraction in order to prevent sudden risk situations.
The results of the experiments show (Moreno et al., 2003) that a large number of car or
trucks accidents can be avoided by detecting real-time physical and psychological states of
the drivers in normal driving conditions. There are three main objectives in this design: To

detect the driver eyelid movements, to detect the number of frames the driver has his eyes
closed and to detect when the driver turns right or left (or bows) his head for a long time.
Thus, several well known algorithms have been used and optimized for this field of
application, such as spatial and temporal filtering, motion detection, optical flow analysis,
etc.
Digital signal and image processing techniques have been used together. Furthermore, a
low-cost Real-Time solution based upon both FPGA (ALTERA FLEX 10K30 and ALTERA
Cyclone Device EP1C3) have been achieved.
Figure 1 shows the flexibility of the system, because it can be used for driver drowsiness
detection or road lane markers, both in real-time.

Fig. 1. FPGA architecture

Median filtering is used to minimize the effect of the Gaussian noise. It is very well suited
for this type of application; however, the trade-off between the number of gates (FPGA logic
elements, LE) used and the benefit obtained is very poor. For this reason, and in order to get
a very low-cost solution, removal from the final design must be considered; at the same time
a high quality digital video signal coming from a CCD camera must be employed containing
an infrared system suitable for low-light conditions (0 lux) must be employed. Some
experiments were carried out with very low-cost CMOS cameras; but, unfortunately they do
not work properly in low-light situations.
Next, the 2D Sobel filtering uses two matrices applied sequentially over 9x9 pels (picture
element) blocks:

12,1,
00,0,
12,1,

1,0,1
2,0,2

1,0,1

Then, the final result is calculated by the equation:

Alarms

Road
lane

markers
detection

Drowsiness
detection

Median
Filter

2D

Sobel
Filter

Digital video (Y).
CCD camera

Max.
Filter

(1)

www.intechopen.com

Embedded Intelligence on Chip: Some FPGA-based design experiences 385

 The automatic process admits drastic optimization in time and resources. When
possible, make things automatic.

 The higher the uncertainty in the environment, the more flexible the system, the
less automatic it can be, the more resources necessary. The better the modeling of
the environment, the lesser the uncertainty.

 There is a tradeoff between memory and computational power: in general
designing memory-based processes may simplify run time computation and vice
versa. If you have enough memory and information to store, use it. It makes things
more automatic.

 In general, there is also a tradeoff between deliberation and perception: the more
developed the perceptive processes, the simpler the deliberative processes may be
and vice versa. But here there is no general rule, for perceptive processes may be as
complex and demanding as purely deliberative ones.

Fig. 0. General process of scaling cognitive architectures

5. A low-cost Real-Time FPGA solution for driver drowsiness detection

In this work some of the most recent advances in digital image processing techniques have
been used to make vehicle drivers face analysis by detecting symptoms of tiredness and
distraction in order to prevent sudden risk situations.
The results of the experiments show (Moreno et al., 2003) that a large number of car or
trucks accidents can be avoided by detecting real-time physical and psychological states of
the drivers in normal driving conditions. There are three main objectives in this design: To

detect the driver eyelid movements, to detect the number of frames the driver has his eyes
closed and to detect when the driver turns right or left (or bows) his head for a long time.
Thus, several well known algorithms have been used and optimized for this field of
application, such as spatial and temporal filtering, motion detection, optical flow analysis,
etc.
Digital signal and image processing techniques have been used together. Furthermore, a
low-cost Real-Time solution based upon both FPGA (ALTERA FLEX 10K30 and ALTERA
Cyclone Device EP1C3) have been achieved.
Figure 1 shows the flexibility of the system, because it can be used for driver drowsiness
detection or road lane markers, both in real-time.

Fig. 1. FPGA architecture

Median filtering is used to minimize the effect of the Gaussian noise. It is very well suited
for this type of application; however, the trade-off between the number of gates (FPGA logic
elements, LE) used and the benefit obtained is very poor. For this reason, and in order to get
a very low-cost solution, removal from the final design must be considered; at the same time
a high quality digital video signal coming from a CCD camera must be employed containing
an infrared system suitable for low-light conditions (0 lux) must be employed. Some
experiments were carried out with very low-cost CMOS cameras; but, unfortunately they do
not work properly in low-light situations.
Next, the 2D Sobel filtering uses two matrices applied sequentially over 9x9 pels (picture
element) blocks:

12,1,
00,0,
12,1,

1,0,1
2,0,2

1,0,1

Then, the final result is calculated by the equation:

Alarms

Road
lane

markers
detection

Drowsiness
detection

Median
Filter

2D

Sobel
Filter

Digital video (Y).
CCD camera

Max.
Filter

(1)

www.intechopen.com

Pattern Recognition, Recent Advances386

|2
2

2
1| dydyYsob

Finally, Ysob is compared to a configurable threshold value (UMB_SBL):

If Ysob > UMB_SBL then
Ypel = White_value (235d);

 else
 Ypel = Black_value(16d);
 end if;

This pseudo-code is not exactly a Sobel algorithm because we assign the White_value or
Black_value instead the |Ysob| (Sobel parameter/luminance_pel). This allows us to
simplify the calculations just suitable for the case of the driver drowsiness detection or road
lane markers detection, without introducing a noticeable error. It also allows us to save a
large amount of FPGA logic elements (making the fitter process much easier) and as a result
of that we get a significant speed up (in terms of logic depth reduction).
Once the image has been filtered (median and 2D Sobel filtering), Maximum filtering is used
usually to enlarge the edges of the objects detected by the Sobel filtering. However, this is
not really necessary, because the algorithm for driver drowsiness detection and the
algorithm for road lane markers detection are both based upon differential optical flow
analysis, instead of traditional motion estimation algorithms.
The algorithm designed is able to detect: driver eyelid movements, number of frames the
driver has his eyes closed and when the driver turns right or left (or bows) his head for a
long time (this is a configurable parameter). In our system, a long time means 12 frames
because at 25 frames/sec (PAL video rate) the elapsed time is 480msec. So, if the car speed
were 120km/h, the distance covered would be 16 meters.
The implemented algorithm consists in comparing the number of white pels in the current
frame with two parameters (maximum and minimum white pels values) previously
calculated. When the current number of white pels is greater than the maximum value or
smaller than the minimum one, the algorithm automatically calculates those new
parameters over the next 12 frames, and the process would start again. This is very useful in
order to adapt system sensitivity to light conditions.
According to ITU-R 601 Recommendation for PAL systems, each frame is formed by
720x576pels, which produces a very large amount of luminance information to be processed
(414,720 pels/frame). The key factor of our system is to process only the area where the
driver eyes would be located. We have tested algorithms for eyes detection but the trade-off
between cost and performance is very poor. We propose to adjust the camera to the
drivers’head in a comfortable driving position previously and to set the image area to be
processed (configurable parameter) at the beginning (Figure 2 shows the result when
processing the whole frame, no real-time and Figure 3 shows the result when processing
only a specific frame area, in real-time).

(2)

Fig. 2. Drowsiness detection

Fig. 3. Real-time drowsiness detection

The reduction of the number of pels to be processed is very significant: 20,400pels for 100
lines x 204 pels area (see Figure 3). Nevertheless, Median and Sobel filtering work over
9x9pels blocks in order to yield a processed pel; so only by means of a pipeline architecture
would real-time processing be achieved.
In the case of road lane markers detection algorithm only the 24 lines of the bottom of each
frame are processed, because only those lines are really relevant to detect if a car is leaving
its tracks due to a driver distraction. On the other hand, in our system only one video
camera is employed, so, no 3D image analysis algorithm can be used at all. We have used a
very simple approach that consists on fitting the camera zoom to the car width. In this way,
while driving along, the lane markers “disappear” just through the right side and/or the left
side of the image. In case of the car is out of the track, the lane markers would “disappear”
through the bottom side of the image and the system would warn the driver (see Figure 4).
Some experiments have been carried out on real roads and we have obtained very
satisfactory results.
The algorithm consists in obtaining the difference between the present frame and the frame
immediately before. The difference is calculated over all the pels belonging to the last 24
bottom lines of each frame. If the result is zero and the pel processed is a White_pel, this
means that a lane marker probably starts in this frame. The process continues over the next
frames. The algorithm is able to detect if the object detected is really a lane marker or just a
shadow or other disturbance on the road.

(2)

www.intechopen.com

Embedded Intelligence on Chip: Some FPGA-based design experiences 387

|2
2

2
1| dydyYsob

Finally, Ysob is compared to a configurable threshold value (UMB_SBL):

If Ysob > UMB_SBL then
Ypel = White_value (235d);

 else
 Ypel = Black_value(16d);
 end if;

This pseudo-code is not exactly a Sobel algorithm because we assign the White_value or
Black_value instead the |Ysob| (Sobel parameter/luminance_pel). This allows us to
simplify the calculations just suitable for the case of the driver drowsiness detection or road
lane markers detection, without introducing a noticeable error. It also allows us to save a
large amount of FPGA logic elements (making the fitter process much easier) and as a result
of that we get a significant speed up (in terms of logic depth reduction).
Once the image has been filtered (median and 2D Sobel filtering), Maximum filtering is used
usually to enlarge the edges of the objects detected by the Sobel filtering. However, this is
not really necessary, because the algorithm for driver drowsiness detection and the
algorithm for road lane markers detection are both based upon differential optical flow
analysis, instead of traditional motion estimation algorithms.
The algorithm designed is able to detect: driver eyelid movements, number of frames the
driver has his eyes closed and when the driver turns right or left (or bows) his head for a
long time (this is a configurable parameter). In our system, a long time means 12 frames
because at 25 frames/sec (PAL video rate) the elapsed time is 480msec. So, if the car speed
were 120km/h, the distance covered would be 16 meters.
The implemented algorithm consists in comparing the number of white pels in the current
frame with two parameters (maximum and minimum white pels values) previously
calculated. When the current number of white pels is greater than the maximum value or
smaller than the minimum one, the algorithm automatically calculates those new
parameters over the next 12 frames, and the process would start again. This is very useful in
order to adapt system sensitivity to light conditions.
According to ITU-R 601 Recommendation for PAL systems, each frame is formed by
720x576pels, which produces a very large amount of luminance information to be processed
(414,720 pels/frame). The key factor of our system is to process only the area where the
driver eyes would be located. We have tested algorithms for eyes detection but the trade-off
between cost and performance is very poor. We propose to adjust the camera to the
drivers’head in a comfortable driving position previously and to set the image area to be
processed (configurable parameter) at the beginning (Figure 2 shows the result when
processing the whole frame, no real-time and Figure 3 shows the result when processing
only a specific frame area, in real-time).

(2)

Fig. 2. Drowsiness detection

Fig. 3. Real-time drowsiness detection

The reduction of the number of pels to be processed is very significant: 20,400pels for 100
lines x 204 pels area (see Figure 3). Nevertheless, Median and Sobel filtering work over
9x9pels blocks in order to yield a processed pel; so only by means of a pipeline architecture
would real-time processing be achieved.
In the case of road lane markers detection algorithm only the 24 lines of the bottom of each
frame are processed, because only those lines are really relevant to detect if a car is leaving
its tracks due to a driver distraction. On the other hand, in our system only one video
camera is employed, so, no 3D image analysis algorithm can be used at all. We have used a
very simple approach that consists on fitting the camera zoom to the car width. In this way,
while driving along, the lane markers “disappear” just through the right side and/or the left
side of the image. In case of the car is out of the track, the lane markers would “disappear”
through the bottom side of the image and the system would warn the driver (see Figure 4).
Some experiments have been carried out on real roads and we have obtained very
satisfactory results.
The algorithm consists in obtaining the difference between the present frame and the frame
immediately before. The difference is calculated over all the pels belonging to the last 24
bottom lines of each frame. If the result is zero and the pel processed is a White_pel, this
means that a lane marker probably starts in this frame. The process continues over the next
frames. The algorithm is able to detect if the object detected is really a lane marker or just a
shadow or other disturbance on the road.

(2)

www.intechopen.com

Pattern Recognition, Recent Advances388

Fig. 5. Road line tracks detection

6. A new Real-Time Hardware Architecture for Road Line Tracking Using a
Particle Filter

In this work a new real-time hardware architecture based on real time image processing and
the use of a Particle Filter, as the fundamental element for tracking lines of a road, is
presented. To this end a hardware system has been designed based on the use of low-cost
high-reliability FPGA integrated circuits (ALTERA-Cyclone and ALTERA-Cyclone II). For
this purpose, a multilevel pipeline architecture (at pixel block - 3x3- and pixel level), which
aims to guarantee the processing of the 8-bit digitized images obtained from a single video
camera (SONY in PAL format, ITU-R 601, ITU-R 656), has been developed. The entire
processing and prediction system has been developed in VHDL-93, simulated and
synthesized with ModelSim and Quartus-II respectively (Alarcon et al., 2006).
Although many systems have been proposed for detecting involuntary lane departure of
motor vehicles, based on vision systems (or based on other technologies), they have not had
the expected success. System reliability is limited by weather conditions and visibility, as
well as those imposed by the state of the highway. In general, it can be said that these
systems basically perform three functions: 1) image feature extraction, 2) matching and 3)
taking decisions. Moreover, all of them should be considered deterministic functions, except
in some approaches, real time in most cases and, to a lesser extent, implemented in
application specific hardware.
A new model to represent lane lines and the relative position of the vehicle with respect to
the lane boundaries is proposed. The position of the lane lines is tracked on the successive
images obtained from the camera (25 fps, PAL frame rate), by projecting the model. Model
parameters are updated by superimposing the image, with the projection of the model on
the following image. In the model, a search area of the lane boundaries is defined on the
image, which allows processing time to be reduced, and the problems caused by false lane
detections resulting from the inherent noise in the images to be reduced or eliminated. The
parameters of the model are processed and updated by means of the Particle Filter.
A robust, artificial vision based system for detecting involuntary lane departure which
depends only on the processing speed and the frame rate of the camera has been developed.
This system allows road line position to be predicted with a bounded error.
The Particle Filter, in Artificial Vision applications, is used for tracking objects in an image
sequence. The Particle Filter models the probability function a posteriori of a stochastic

process, by means of an N particle distribution and their associated probabilities in State
Space. This type of filter needs a dispersed search to properly track the features sought in
the image sequence. It is a model used to calculate the state of a time-variant system or, in
other words, a sequential estimation algorithm.
In this study, artificial vision techniques have been applied with no restriction on the
incoming images. Hence no type of marker is used on the highway. So the system, after the
acquisition of the monochrome images of a camera, is able to process the information and to
track the lane lines in a reliable and robust manner.
The VHDL implementation of the proposed system, shown in Figure 6, required an image
preprocessing stage. Median filtering, a non linear filter, is used to minimize the effect of
Gaussian noise, and Sobel filter is used to detect edges in the image.

CAMERA

INTERFACE

ITU-R 601
ITU-R 656

ROAD

LINES

TRACKING

Digital video (Y)
CCD Camera

PREPROCESSING

FRAME

CONFORMER

MEDIAN

FILTER

SOBEL

FILTER

Alarm

CAMERA

INTERFACE

ITU-R 601
ITU-R 656

ROAD

LINES

TRACKING

Digital video (Y)
CCD Camera

PREPROCESSING

FRAME

CONFORMER

MEDIAN

FILTER

SOBEL

FILTER

Alarm

Fig. 6. System architecture

For the system to work optimally, several morphological operations must be carried out on
binary images to obtain the necessary information in filter processing. The reason for this is
based on the computational load reduction necessary for the hardware implementation,
since not all the information in the image is pertinent for the reference application. As it has
been mentioned, only the bottom part of the image is relevant, as shown in Figure 7; and,
inside that part, the image has been segmented into three regions, left, center and right, of
37x102 (rows x columns) pixels, corresponding to the Regions of Interest (RoI), where the
corresponding lanes are located.

Fig. 7. Image Segmentation

From an algorithmic point of view, the Particle Filter (Arulampalam et al., 2002) is detailed
in Figure 8. The Line Model Detection (L_M_D) carries out line detection in the image by
means of a morphological line model. Next, particle weights computation is done in the
Survival Model (S_M), checking if the error made in the prediction of the Center of Mass
done in the previous image, is delimited as explained in Hardware Architecture section. At
the same time, in Particle Displacement (P_D), the displacement speed of the particles is
computed. By means of the Movement Model (explained in Hardware Architecture section)
in Prediction Update (P_U), the position of the new particles is predicted and updated.

www.intechopen.com

Embedded Intelligence on Chip: Some FPGA-based design experiences 389

Fig. 5. Road line tracks detection

6. A new Real-Time Hardware Architecture for Road Line Tracking Using a
Particle Filter

In this work a new real-time hardware architecture based on real time image processing and
the use of a Particle Filter, as the fundamental element for tracking lines of a road, is
presented. To this end a hardware system has been designed based on the use of low-cost
high-reliability FPGA integrated circuits (ALTERA-Cyclone and ALTERA-Cyclone II). For
this purpose, a multilevel pipeline architecture (at pixel block - 3x3- and pixel level), which
aims to guarantee the processing of the 8-bit digitized images obtained from a single video
camera (SONY in PAL format, ITU-R 601, ITU-R 656), has been developed. The entire
processing and prediction system has been developed in VHDL-93, simulated and
synthesized with ModelSim and Quartus-II respectively (Alarcon et al., 2006).
Although many systems have been proposed for detecting involuntary lane departure of
motor vehicles, based on vision systems (or based on other technologies), they have not had
the expected success. System reliability is limited by weather conditions and visibility, as
well as those imposed by the state of the highway. In general, it can be said that these
systems basically perform three functions: 1) image feature extraction, 2) matching and 3)
taking decisions. Moreover, all of them should be considered deterministic functions, except
in some approaches, real time in most cases and, to a lesser extent, implemented in
application specific hardware.
A new model to represent lane lines and the relative position of the vehicle with respect to
the lane boundaries is proposed. The position of the lane lines is tracked on the successive
images obtained from the camera (25 fps, PAL frame rate), by projecting the model. Model
parameters are updated by superimposing the image, with the projection of the model on
the following image. In the model, a search area of the lane boundaries is defined on the
image, which allows processing time to be reduced, and the problems caused by false lane
detections resulting from the inherent noise in the images to be reduced or eliminated. The
parameters of the model are processed and updated by means of the Particle Filter.
A robust, artificial vision based system for detecting involuntary lane departure which
depends only on the processing speed and the frame rate of the camera has been developed.
This system allows road line position to be predicted with a bounded error.
The Particle Filter, in Artificial Vision applications, is used for tracking objects in an image
sequence. The Particle Filter models the probability function a posteriori of a stochastic

process, by means of an N particle distribution and their associated probabilities in State
Space. This type of filter needs a dispersed search to properly track the features sought in
the image sequence. It is a model used to calculate the state of a time-variant system or, in
other words, a sequential estimation algorithm.
In this study, artificial vision techniques have been applied with no restriction on the
incoming images. Hence no type of marker is used on the highway. So the system, after the
acquisition of the monochrome images of a camera, is able to process the information and to
track the lane lines in a reliable and robust manner.
The VHDL implementation of the proposed system, shown in Figure 6, required an image
preprocessing stage. Median filtering, a non linear filter, is used to minimize the effect of
Gaussian noise, and Sobel filter is used to detect edges in the image.

CAMERA

INTERFACE

ITU-R 601
ITU-R 656

ROAD

LINES

TRACKING

Digital video (Y)
CCD Camera

PREPROCESSING

FRAME

CONFORMER

MEDIAN

FILTER

SOBEL

FILTER

Alarm

CAMERA

INTERFACE

ITU-R 601
ITU-R 656

ROAD

LINES

TRACKING

Digital video (Y)
CCD Camera

PREPROCESSING

FRAME

CONFORMER

MEDIAN

FILTER

SOBEL

FILTER

Alarm

Fig. 6. System architecture

For the system to work optimally, several morphological operations must be carried out on
binary images to obtain the necessary information in filter processing. The reason for this is
based on the computational load reduction necessary for the hardware implementation,
since not all the information in the image is pertinent for the reference application. As it has
been mentioned, only the bottom part of the image is relevant, as shown in Figure 7; and,
inside that part, the image has been segmented into three regions, left, center and right, of
37x102 (rows x columns) pixels, corresponding to the Regions of Interest (RoI), where the
corresponding lanes are located.

Fig. 7. Image Segmentation

From an algorithmic point of view, the Particle Filter (Arulampalam et al., 2002) is detailed
in Figure 8. The Line Model Detection (L_M_D) carries out line detection in the image by
means of a morphological line model. Next, particle weights computation is done in the
Survival Model (S_M), checking if the error made in the prediction of the Center of Mass
done in the previous image, is delimited as explained in Hardware Architecture section. At
the same time, in Particle Displacement (P_D), the displacement speed of the particles is
computed. By means of the Movement Model (explained in Hardware Architecture section)
in Prediction Update (P_U), the position of the new particles is predicted and updated.

www.intechopen.com

Pattern Recognition, Recent Advances390

LINE MODEL
DETECTION

SURVIVAL
MODEL

PARTICLE
DISPLACEMENT

PREDICTION
UPDATE

(MOVEMENT
MODEL)

Fig. 8. Diagram of the Particle Filter designed

Some of the results obtained with the proposed architecture are shown in Figure 9. It can be
observed that the 12 initially generated particles (Figure 9.a) predict the position of the lane
line in accordance with the established deviation parameters (deviation = 0.1) (see Figure
9.b), and how they converge in the last 2 images (Figure 9.c and 9.d) toward the real position
of the Center of Mass of the line.
One of the essential objectives of the hardware implementation of the algorithms was to
achieve a high processing speed to get a real-time low-cost system. The hardware system
implemented in the FPGA, Figure 6, corresponds to a linear multilevel pipeline architecture.
These hardware modules implement the first pipeline level of the architecture adapting
perfectly to the requirements of the image prefiltering algorithms:

a b

c d

Fig. 9. Prediction of the lane line using 12 particles

a) Median Filter, to suppress the Gaussian noise and b) Sobel Filter, to extract the
boundaries. Furthermore, all the submodules that constitute the complete system are also
based on a pipeline architecture and are capable of delivering a valid result in each clock
cycle during their stable operating cycle. The hardware design methodology employed in
the second module, Preprocessing, is directed to minimizing both the use of large memory
banks for storage of complete frames and the complexity of the control system. Figure 10
shows a more detailed design of the 3 submodules that make up this Preprocessing Block.
The use of FIFO buffers allows a relaxation in memory restrictions, by not having to store a
whole image. In short, it is only necessary to store two lines of an image in the
corresponding FIFO. The Filter Control, implemented in a distributed manner, together with
the adaptation of the information obtained from the camera via the Camera Interface and
Frame Conformer blocks, Figure 6, guarantees a minimum use of hardware resources, at the
same time as total independence of the camera and of the Particle Filter model used
respectively. This is possible by adding a header (sync embedded bits) to each of the pixels

coming from the camera, which indicates the type of pixel being handled at all times: SoFrm
(Start of Frame), SoLn (Start of Line), PoLn (Pixel of Line), EoFrm (End of Frame) and NoPix
(No Pixel). At the same time some discrete synchronization signals are created in the system.
This results in a Datapath width of 11 bits.

FIFO_SOB

Data

Control

MEDIAN

median_krnl

median_ctrl

SOBEL

sobel_krnl

sobel_ctrl

FIFO_MED

FRAME
CONFORMER

Fig. 10. Preprocessing Module

The data frame so formed has allowed each of the filters to be structured in two major
submodules: the filter Kernel and the filter Control, respectively, both in the Median and in
the Sobel filter. The Kernel responds to a linear pipeline structure at pixel level and 3x3 pixel
block whilst the Distributed Control in each of the blocks guarantees a maximum
throughput for a minimum consumption of logic.
As for the most important module in the system, the Particle Filter, Figure 11 shows the
hardware implementation of the architecture which, written in VHDL, operates over the
RoI, Figures 6 and 7.
In each image the presence of lane lines is established and their Center of Mass is calculated,
thereafter predicting their position by application of the Movement Model which can be
seen before. Until all terms present in this equation are available, three consecutive images
(frame0, frame1 and frame2) are needed for prediction and full tracking.
To functionally explain the hardware implementation of the algorithm, it must be assumed
that the Centers of Mass of the lane lines for the initial and successive frames have been
found, and that the predictions are correct. In such a case, the algorithm is processed as
indicated previously. The procedure, in other case, will be explained later.

0t initRNDMCX 1

1t RNDXX 12

2t
2t

 RNDXXXX 1223

 RNDXXXX tttt 11

where 110 ,...,, nxxxX is the set of all the particles, MC the centers of mass detected,
RNDinit the initialization random function, and RNDσ the random function that represents
the variance term of the Particle Filter. Each increment of t is assumed to be in whole
multiples of TFrame (TF, 40 ms, PAL rate). The design of the architecture has been carried
out so that each particle is evaluated and appropriately updated, independently of the rest.
This allows each of them to be found in one of the three states described before, and which
are explained below.

(3)

www.intechopen.com

Embedded Intelligence on Chip: Some FPGA-based design experiences 391

LINE MODEL
DETECTION

SURVIVAL
MODEL

PARTICLE
DISPLACEMENT

PREDICTION
UPDATE

(MOVEMENT
MODEL)

Fig. 8. Diagram of the Particle Filter designed

Some of the results obtained with the proposed architecture are shown in Figure 9. It can be
observed that the 12 initially generated particles (Figure 9.a) predict the position of the lane
line in accordance with the established deviation parameters (deviation = 0.1) (see Figure
9.b), and how they converge in the last 2 images (Figure 9.c and 9.d) toward the real position
of the Center of Mass of the line.
One of the essential objectives of the hardware implementation of the algorithms was to
achieve a high processing speed to get a real-time low-cost system. The hardware system
implemented in the FPGA, Figure 6, corresponds to a linear multilevel pipeline architecture.
These hardware modules implement the first pipeline level of the architecture adapting
perfectly to the requirements of the image prefiltering algorithms:

a b

c d

Fig. 9. Prediction of the lane line using 12 particles

a) Median Filter, to suppress the Gaussian noise and b) Sobel Filter, to extract the
boundaries. Furthermore, all the submodules that constitute the complete system are also
based on a pipeline architecture and are capable of delivering a valid result in each clock
cycle during their stable operating cycle. The hardware design methodology employed in
the second module, Preprocessing, is directed to minimizing both the use of large memory
banks for storage of complete frames and the complexity of the control system. Figure 10
shows a more detailed design of the 3 submodules that make up this Preprocessing Block.
The use of FIFO buffers allows a relaxation in memory restrictions, by not having to store a
whole image. In short, it is only necessary to store two lines of an image in the
corresponding FIFO. The Filter Control, implemented in a distributed manner, together with
the adaptation of the information obtained from the camera via the Camera Interface and
Frame Conformer blocks, Figure 6, guarantees a minimum use of hardware resources, at the
same time as total independence of the camera and of the Particle Filter model used
respectively. This is possible by adding a header (sync embedded bits) to each of the pixels

coming from the camera, which indicates the type of pixel being handled at all times: SoFrm
(Start of Frame), SoLn (Start of Line), PoLn (Pixel of Line), EoFrm (End of Frame) and NoPix
(No Pixel). At the same time some discrete synchronization signals are created in the system.
This results in a Datapath width of 11 bits.

FIFO_SOB

Data

Control

MEDIAN

median_krnl

median_ctrl

SOBEL

sobel_krnl

sobel_ctrl

FIFO_MED

FRAME
CONFORMER

Fig. 10. Preprocessing Module

The data frame so formed has allowed each of the filters to be structured in two major
submodules: the filter Kernel and the filter Control, respectively, both in the Median and in
the Sobel filter. The Kernel responds to a linear pipeline structure at pixel level and 3x3 pixel
block whilst the Distributed Control in each of the blocks guarantees a maximum
throughput for a minimum consumption of logic.
As for the most important module in the system, the Particle Filter, Figure 11 shows the
hardware implementation of the architecture which, written in VHDL, operates over the
RoI, Figures 6 and 7.
In each image the presence of lane lines is established and their Center of Mass is calculated,
thereafter predicting their position by application of the Movement Model which can be
seen before. Until all terms present in this equation are available, three consecutive images
(frame0, frame1 and frame2) are needed for prediction and full tracking.
To functionally explain the hardware implementation of the algorithm, it must be assumed
that the Centers of Mass of the lane lines for the initial and successive frames have been
found, and that the predictions are correct. In such a case, the algorithm is processed as
indicated previously. The procedure, in other case, will be explained later.

0t initRNDMCX 1

1t RNDXX 12

2t
2t

 RNDXXXX 1223

 RNDXXXX tttt 11

where 110 ,...,, nxxxX is the set of all the particles, MC the centers of mass detected,
RNDinit the initialization random function, and RNDσ the random function that represents
the variance term of the Particle Filter. Each increment of t is assumed to be in whole
multiples of TFrame (TF, 40 ms, PAL rate). The design of the architecture has been carried
out so that each particle is evaluated and appropriately updated, independently of the rest.
This allows each of them to be found in one of the three states described before, and which
are explained below.

(3)

www.intechopen.com

Pattern Recognition, Recent Advances392

LINE_DETECTOR

mass_center_calc

mass_center_analysis

UPDATE_PREDICTION

update_prediction_slice

update_prediction _slice

particlenumber

PREDICTION_CHECKER

pred_checker_slice

pred_checker_slice

particle
number

PARTICLE
REGISTER

PARTICLE
REGISTER

PARTICLE_DISPLACEMENT

part_displacement _slice

part_displacement_ slice

particle
number

CONTROL

Data
Control

LINE_DETECTOR

mass_center_calc

mass_center_analysis

UPDATE_PREDICTION

update_prediction_slice

update_prediction _slice

particlenumber

PREDICTION_CHECKER

pred_checker_slice

pred_checker_slice

particle
number

PARTICLE
REGISTER

PARTICLE
REGISTER

PARTICLE_DISPLACEMENT

part_displacement _slice

part_displacement_ slice

particle
number

CONTROL

Data
Control

particle
number

CONTROL

Data
Control

CONTROL

Data
Control
Data
Control

Fig. 11. Functional Description of the Particle Filter Hardware Implementation

The equation shown below, which represents the so called Movement Model, governs the
overall behavior of the filter:

 RNDXXXX tttt 11
1) init_state → t = 0. frame0 is analyzed, so there is no initial information at all. After

finding the Centers of Mass of the line, the particles are distributed around the
same with a dispersion given by RNDinit, the latter constituting the prediction of
the position of the Center of Mass in the following image made from that detected
in the current image.

2) transitory_state → t = 1. The prediction consists on applying the variance term to
the prediction made in the previous image.

3) steady_state → t ≥ 2. All data is now available to apply the equation of the filter
completely, that is, the previous prediction Xt, the particle displacement term (Xt –
Xt-1), which represents the speed at which the lines are moving in the real scenario,
and the variance RNDσ.

This routine is followed for the case in which the error committed in the prediction,
measured with respect to the Center of Mass of the current image, is delimited within a
margin of error defined by the maximum value of RNDinit. At this point, steady_state, two
situations can arise:

1. A new line is detected. Depending on the error made, two further situations can
arise.

 The error is bounded. This is the general case, steady_state, which
operation process has been explained above, (1).

 The error is not bounded. The calculation sequence begins again for the
three following frames, considering this as init_state, t = 0.

2. It is in the case where no line is detected that the prediction makes most sense,
being the prediction validated when a new line is found in the following frames.
Thus, when the line appears again, its position will have been predicted, and it will
be possible to evaluate the correctness thereof, proceeding again as in point 1.

The Particle Filter subsystem implemented uses 4 particles for each video line analyzed,
resulting a total of 12 particles, operating only on the horizontal axis of the image. The

dynamic margin (range) of the pseudo random numbers generated, RNDinit (4-bit LFSR)
and RNDσ (3-bit LFSR), as well as the number of particles and the number of bits used for
their encoding, are closely related to the number of video lines used for detecting the lane
lines, the width of the RoI and the number of frames necessary to establish a good
prediction in real time (PAL frame rate = 25 fps). The impact in dimensioning the DataPath
of the pipeline architecture and its control, have constituted one of the main challenges in
implementing the total system. The number of bits used to encode the particles is 10,
representing integers with sign, whereby this coding could be employed for RoIs of up to
512 pixels in width.
Synthesis results for different low-cost FPGAs were obtained, trying to compare the
different architectures. This Module is composed of two FIFO memories that store 2 video
lines for the implementation of the Median and Sobel Filters respectively. The Distributed
Control of this Module has the responsibility of ensuring that the information at pixel level
reaches the Particle Filter Module, Figure 11, in optimum conditions. A Cyclone
EP1C20F400C7 FPGA has been taken as the reference low-cost development system.
The FIFO memories were implemented making use of internal RAM resources available in
the FPGA (294912 bits distributed in 64 blocks of 4608 bits, known as M4Ks). The results
obtained with Quartus II “MegaWizard Plug-in Manager”, an assistant that helps in the
instantiation of architecture-specific resources, have been compared with the direct
instantiation of the scfifo lybrary component. This has been the design decision made since
errors were detected in the assistant that made the creation of the desired FIFO memory
impossible.
The Median and Sobel Filters FIFOs -11 bits per word- (Figure 10) differ in two positions. It
must be pointed out that, as far as synthesis is concerned, this has a relative importance.
After several synthesis tests, it was observed that the design of the LPM component of
Altera scfifo (single-clock fifo) and the mapping process of the memory in HW, always
produce a FIFO with a power of two number of positions. Thus, a FIFO of 126 positions
would occupy the same resources (memory and LEs) as one of 128. On the other hand, one
of 129 positions will occupy the same as one of 256. The difference probably rest in the
generation of the FIFO control signals. Besides, it also must be pointed out that the proposed
architecture for both the Sobel and the Median filter, as regards the number of FPGA
resources employed, is completely independent of the size of the image to be processed. The
key point in the architecture that makes such synthesis results possible is the series
communication protocol implemented at pixel level. This protocol makes that the
Submodules that implement the filters do not need to know the RoI size. This information is
managed by the Frame Conformer block, being the insignificant increase in the size of the
Preprocessing Module due to this submodule, as well as to the FIFOs.The synthesis of the
Particle Filter, as well as its fitting in different types of FPGA with a different architecture,
number of logic elements (LE), availability of internal RAM memory, etc., have allowed a
comparison to be carried out among all of them and some final conclusions to be reached.
This Filter is the module in the architecture of the system developed that consumes most
logic element (LE) resources.

www.intechopen.com

Embedded Intelligence on Chip: Some FPGA-based design experiences 393

LINE_DETECTOR

mass_center_calc

mass_center_analysis

UPDATE_PREDICTION

update_prediction_slice

update_prediction _slice

particlenumber

PREDICTION_CHECKER

pred_checker_slice

pred_checker_slice

particle
number

PARTICLE
REGISTER

PARTICLE
REGISTER

PARTICLE_DISPLACEMENT

part_displacement _slice

part_displacement_ slice

particle
number

CONTROL

Data
Control

LINE_DETECTOR

mass_center_calc

mass_center_analysis

UPDATE_PREDICTION

update_prediction_slice

update_prediction _slice

particlenumber

PREDICTION_CHECKER

pred_checker_slice

pred_checker_slice

particle
number

PARTICLE
REGISTER

PARTICLE
REGISTER

PARTICLE_DISPLACEMENT

part_displacement _slice

part_displacement_ slice

particle
number

CONTROL

Data
Control

particle
number

CONTROL

Data
Control

CONTROL

Data
Control
Data
Control

Fig. 11. Functional Description of the Particle Filter Hardware Implementation

The equation shown below, which represents the so called Movement Model, governs the
overall behavior of the filter:

 RNDXXXX tttt 11
1) init_state → t = 0. frame0 is analyzed, so there is no initial information at all. After

finding the Centers of Mass of the line, the particles are distributed around the
same with a dispersion given by RNDinit, the latter constituting the prediction of
the position of the Center of Mass in the following image made from that detected
in the current image.

2) transitory_state → t = 1. The prediction consists on applying the variance term to
the prediction made in the previous image.

3) steady_state → t ≥ 2. All data is now available to apply the equation of the filter
completely, that is, the previous prediction Xt, the particle displacement term (Xt –
Xt-1), which represents the speed at which the lines are moving in the real scenario,
and the variance RNDσ.

This routine is followed for the case in which the error committed in the prediction,
measured with respect to the Center of Mass of the current image, is delimited within a
margin of error defined by the maximum value of RNDinit. At this point, steady_state, two
situations can arise:

1. A new line is detected. Depending on the error made, two further situations can
arise.

 The error is bounded. This is the general case, steady_state, which
operation process has been explained above, (1).

 The error is not bounded. The calculation sequence begins again for the
three following frames, considering this as init_state, t = 0.

2. It is in the case where no line is detected that the prediction makes most sense,
being the prediction validated when a new line is found in the following frames.
Thus, when the line appears again, its position will have been predicted, and it will
be possible to evaluate the correctness thereof, proceeding again as in point 1.

The Particle Filter subsystem implemented uses 4 particles for each video line analyzed,
resulting a total of 12 particles, operating only on the horizontal axis of the image. The

dynamic margin (range) of the pseudo random numbers generated, RNDinit (4-bit LFSR)
and RNDσ (3-bit LFSR), as well as the number of particles and the number of bits used for
their encoding, are closely related to the number of video lines used for detecting the lane
lines, the width of the RoI and the number of frames necessary to establish a good
prediction in real time (PAL frame rate = 25 fps). The impact in dimensioning the DataPath
of the pipeline architecture and its control, have constituted one of the main challenges in
implementing the total system. The number of bits used to encode the particles is 10,
representing integers with sign, whereby this coding could be employed for RoIs of up to
512 pixels in width.
Synthesis results for different low-cost FPGAs were obtained, trying to compare the
different architectures. This Module is composed of two FIFO memories that store 2 video
lines for the implementation of the Median and Sobel Filters respectively. The Distributed
Control of this Module has the responsibility of ensuring that the information at pixel level
reaches the Particle Filter Module, Figure 11, in optimum conditions. A Cyclone
EP1C20F400C7 FPGA has been taken as the reference low-cost development system.
The FIFO memories were implemented making use of internal RAM resources available in
the FPGA (294912 bits distributed in 64 blocks of 4608 bits, known as M4Ks). The results
obtained with Quartus II “MegaWizard Plug-in Manager”, an assistant that helps in the
instantiation of architecture-specific resources, have been compared with the direct
instantiation of the scfifo lybrary component. This has been the design decision made since
errors were detected in the assistant that made the creation of the desired FIFO memory
impossible.
The Median and Sobel Filters FIFOs -11 bits per word- (Figure 10) differ in two positions. It
must be pointed out that, as far as synthesis is concerned, this has a relative importance.
After several synthesis tests, it was observed that the design of the LPM component of
Altera scfifo (single-clock fifo) and the mapping process of the memory in HW, always
produce a FIFO with a power of two number of positions. Thus, a FIFO of 126 positions
would occupy the same resources (memory and LEs) as one of 128. On the other hand, one
of 129 positions will occupy the same as one of 256. The difference probably rest in the
generation of the FIFO control signals. Besides, it also must be pointed out that the proposed
architecture for both the Sobel and the Median filter, as regards the number of FPGA
resources employed, is completely independent of the size of the image to be processed. The
key point in the architecture that makes such synthesis results possible is the series
communication protocol implemented at pixel level. This protocol makes that the
Submodules that implement the filters do not need to know the RoI size. This information is
managed by the Frame Conformer block, being the insignificant increase in the size of the
Preprocessing Module due to this submodule, as well as to the FIFOs.The synthesis of the
Particle Filter, as well as its fitting in different types of FPGA with a different architecture,
number of logic elements (LE), availability of internal RAM memory, etc., have allowed a
comparison to be carried out among all of them and some final conclusions to be reached.
This Filter is the module in the architecture of the system developed that consumes most
logic element (LE) resources.

www.intechopen.com

Pattern Recognition, Recent Advances394

T FRAME ROI

F ILTER O UTPUT

F ILTER K ERNEL

F ILTER I NPUT

P i+1,j-1

Pi,j-1

Pi-1,j-1

Pi+1,j

P i,j

Pi-1,j

P i+1,j+1

P i,j+1

Pi-1,j+1

M i,j

P i+1,j+2

Pi,j+2

Pi-1,j+2

P i+1,j-1

P i,j-1

P i-1,j-1

P i+1,j

P i,j

P i-1,j

P i+1,j+1

P i,j+1

Pi-1,j+1

Si,j

P i+1,j+2

P i,j+2

Pi-1,j+2

L_D S_M P_D P_U

3*T LINEROI

2*T LINEROI

L INE T RACKING

2*T LINEROI2*T LINEROI T FRAME ROI

F ILTER O UTPUT

F ILTER K ERNEL

F ILTER I NPUT

P i+1,j-1

Pi,j-1

Pi-1,j-1

Pi+1,j

P i,j

Pi-1,j

P i+1,j+1

P i,j+1

Pi-1,j+1

M i,j

P i+1,j+2

Pi,j+2

Pi-1,j+2

P i+1,j-1

P i,j-1

P i-1,j-1

P i+1,j

P i,j

P i-1,j

P i+1,j+1

P i,j+1

Pi-1,j+1

Si,j

P i+1,j+2

P i,j+2

Pi-1,j+2

L_D S_M P_D P_U

3*T LINEROI

2*T LINEROI

L INE T RACKING

2*T LINEROI2*T LINEROI

Fig. 12. System Pipeline Processing

7. FPGA Implementation of an Image Recognition System based on Tiny
Neural Networks and on-line Reconfiguration

Neural networks are widely used in pattern recognition, security applications and robot
control. We propose a hardware architecture system; using Tiny Neural Networks (TNN)
specialized in image recognition. The generic TNN architecture allows expandability by
means of mapping several Basic units (layers) and dynamic reconfiguration; depending on
the application specific demands. One of the most important features of Tiny Neural
Networks (TNN) is their learning ability. Weight modification and architecture
reconfiguration can be carried out in run time. Our system performs shape identification by
the interpretation of their singularities. This is achieved by interconnecting several
specialized TNN (López et al., 2007).
There are several levels of parallelism in the neural network recognition system that we are
proposing: Parallelism among networks, among the layers of a network, among neurons
and among connections. All of them are shown on the General Architecture of the system
(Figure 13).
We can classify the ANN hardware implementation in two main categories: that based on
microprocessors by using Digital Signal Processors (DSP) or general purpose processors,
and that using an Application Specific Integrated Circuit (ASIC) or Field Programmable
Gate Array (FPGA).

Global
Control

System Bus

Neuronal Net1 Neuronal Net2 Neuronal Net3
Input Vector

General Architecture of the System
a) Net, b) Layers, c) Neurons, d) Links

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Global
Control

System Bus

Neuronal Net1 Neuronal Net2 Neuronal Net3
Input Vector

General Architecture of the System
a) Net, b) Layers, c) Neurons, d) Links

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Fig. 13. System Architecture

The first one based on microprocessors, is more flexible and relatively easy to implement.
However, when the network becomes larger (for example, in a fully connected network), it
is not the best option: general purpose computers are required, and the usage and
application depend on power and area characteristics available.
The number of “synapses” and multipliers included in a fully interconnected network is
proportional to the squared total number of neurons. The speed slows down due to the
increase in the number of multipliers, and the chip size or chip area increases significantly,
which becomes one of the critical points in ANN design. In order to solve this problem, the
use of hardware multipliers seems to be an option to resolve the chip size problem; as well
as the design of neural networks without multipliers or reusable ones. Our work explores
multiplier re-usability based on an internal bus structure. Taking into account the
parallelism of the neural network model, it is possible to map the architecture on array
processors, obtaining a linear growth in the number of multipliers. Figure 14 shows a
network interconnected by mean of an array processor model.

multiplier

adder

X1X2Xn

12
11

1n

22
21

2n

2n
1n

nn

Array processor

* *

+ +
MAC

multiplier

adder

X1X1X2X2XnXn

12
11

1n

12 12
11 11

1n 1n

22
21

2n

22
21

2n

22 22
21 21

2n 2n

2n
1n

nn

2n
1n

nn

2n 2n
1n 1n

nn nn

Array processor

* *

+ +
MAC

Fig. 14. Network Example

The main objective of this research is the design of a reconfigurable, efficient, low cost
architecture for shape recognition. Robust methods for the analysis of images, and the
implementation of a system based on specialized TNN have been developed for shape
recognition by means of the analysis of some characteristics of the image (singularities).
Traffic signal recognition and/or pedestrian recognition are two of the most relevant
applications. These networks work cooperatively to obtain the classification of the image.
The main restriction comes with the complexity of the information contained in the image
data, because they are sensible to changes of the environment. It is then necessary to have a
recognition system that allows dynamic reconfiguration. It is necessary to develop an
architecture that allows optimum usage of hardware resources, due to the limitations in
power and available area. The suggested system is formed by small Perceptron multilevel
networks, and it was implemented in an Altera Cyclone II FPGA.
The requirements of recurrent learning processes can be satisfied by the reconfiguration and
flexibility of FPGAs. Weight modification and architecture reconfiguration can be carried
out during run time.
When talking about ANN implementation, the following considerations should be taken
into account: frequency, precision, configuration issues, and ANN parallelism. In order to
improve general design characteristics, there are two units: Basic units and Control units.

www.intechopen.com

Embedded Intelligence on Chip: Some FPGA-based design experiences 395

T FRAME ROI

F ILTER O UTPUT

F ILTER K ERNEL

F ILTER I NPUT

P i+1,j-1

Pi,j-1

Pi-1,j-1

Pi+1,j

P i,j

Pi-1,j

P i+1,j+1

P i,j+1

Pi-1,j+1

M i,j

P i+1,j+2

Pi,j+2

Pi-1,j+2

P i+1,j-1

P i,j-1

P i-1,j-1

P i+1,j

P i,j

P i-1,j

P i+1,j+1

P i,j+1

Pi-1,j+1

Si,j

P i+1,j+2

P i,j+2

Pi-1,j+2

L_D S_M P_D P_U

3*T LINEROI

2*T LINEROI

L INE T RACKING

2*T LINEROI2*T LINEROI T FRAME ROI

F ILTER O UTPUT

F ILTER K ERNEL

F ILTER I NPUT

P i+1,j-1

Pi,j-1

Pi-1,j-1

Pi+1,j

P i,j

Pi-1,j

P i+1,j+1

P i,j+1

Pi-1,j+1

M i,j

P i+1,j+2

Pi,j+2

Pi-1,j+2

P i+1,j-1

P i,j-1

P i-1,j-1

P i+1,j

P i,j

P i-1,j

P i+1,j+1

P i,j+1

Pi-1,j+1

Si,j

P i+1,j+2

P i,j+2

Pi-1,j+2

L_D S_M P_D P_U

3*T LINEROI

2*T LINEROI

L INE T RACKING

2*T LINEROI2*T LINEROI

Fig. 12. System Pipeline Processing

7. FPGA Implementation of an Image Recognition System based on Tiny
Neural Networks and on-line Reconfiguration

Neural networks are widely used in pattern recognition, security applications and robot
control. We propose a hardware architecture system; using Tiny Neural Networks (TNN)
specialized in image recognition. The generic TNN architecture allows expandability by
means of mapping several Basic units (layers) and dynamic reconfiguration; depending on
the application specific demands. One of the most important features of Tiny Neural
Networks (TNN) is their learning ability. Weight modification and architecture
reconfiguration can be carried out in run time. Our system performs shape identification by
the interpretation of their singularities. This is achieved by interconnecting several
specialized TNN (López et al., 2007).
There are several levels of parallelism in the neural network recognition system that we are
proposing: Parallelism among networks, among the layers of a network, among neurons
and among connections. All of them are shown on the General Architecture of the system
(Figure 13).
We can classify the ANN hardware implementation in two main categories: that based on
microprocessors by using Digital Signal Processors (DSP) or general purpose processors,
and that using an Application Specific Integrated Circuit (ASIC) or Field Programmable
Gate Array (FPGA).

Global
Control

System Bus

Neuronal Net1 Neuronal Net2 Neuronal Net3
Input Vector

General Architecture of the System
a) Net, b) Layers, c) Neurons, d) Links

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Global
Control

System Bus

Neuronal Net1 Neuronal Net2 Neuronal Net3
Input Vector

General Architecture of the System
a) Net, b) Layers, c) Neurons, d) Links

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Fig. 13. System Architecture

The first one based on microprocessors, is more flexible and relatively easy to implement.
However, when the network becomes larger (for example, in a fully connected network), it
is not the best option: general purpose computers are required, and the usage and
application depend on power and area characteristics available.
The number of “synapses” and multipliers included in a fully interconnected network is
proportional to the squared total number of neurons. The speed slows down due to the
increase in the number of multipliers, and the chip size or chip area increases significantly,
which becomes one of the critical points in ANN design. In order to solve this problem, the
use of hardware multipliers seems to be an option to resolve the chip size problem; as well
as the design of neural networks without multipliers or reusable ones. Our work explores
multiplier re-usability based on an internal bus structure. Taking into account the
parallelism of the neural network model, it is possible to map the architecture on array
processors, obtaining a linear growth in the number of multipliers. Figure 14 shows a
network interconnected by mean of an array processor model.

multiplier

adder

X1X2Xn

12
11

1n

22
21

2n

2n
1n

nn

Array processor

* *

+ +
MAC

multiplier

adder

X1X1X2X2XnXn

12
11

1n

12 12
11 11

1n 1n

22
21

2n

22
21

2n

22 22
21 21

2n 2n

2n
1n

nn

2n
1n

nn

2n 2n
1n 1n

nn nn

Array processor

* *

+ +
MAC

Fig. 14. Network Example

The main objective of this research is the design of a reconfigurable, efficient, low cost
architecture for shape recognition. Robust methods for the analysis of images, and the
implementation of a system based on specialized TNN have been developed for shape
recognition by means of the analysis of some characteristics of the image (singularities).
Traffic signal recognition and/or pedestrian recognition are two of the most relevant
applications. These networks work cooperatively to obtain the classification of the image.
The main restriction comes with the complexity of the information contained in the image
data, because they are sensible to changes of the environment. It is then necessary to have a
recognition system that allows dynamic reconfiguration. It is necessary to develop an
architecture that allows optimum usage of hardware resources, due to the limitations in
power and available area. The suggested system is formed by small Perceptron multilevel
networks, and it was implemented in an Altera Cyclone II FPGA.
The requirements of recurrent learning processes can be satisfied by the reconfiguration and
flexibility of FPGAs. Weight modification and architecture reconfiguration can be carried
out during run time.
When talking about ANN implementation, the following considerations should be taken
into account: frequency, precision, configuration issues, and ANN parallelism. In order to
improve general design characteristics, there are two units: Basic units and Control units.

www.intechopen.com

Pattern Recognition, Recent Advances396

Basic units (specialized neural networks) are in charge of signal processing and weight and
bias data storage, including the multiplication of the weights by the inputs, the
accumulation and the nonlinear function activation. Control units work on the basic of
signal transmission including parallel processing and the algorithm work. By considering
those units, the proposed design (as shown in Figure 15) has an efficient architecture based
on specialized neural networks by recognition, to be implemented in FPGAs.

Fig. 15. System Architecture

For achieving the learning operation the algorithm is divided in three phases, known as:
feed-forward, back-propagation and up-date. In the feed-forward phase the input signals
propagate through the network layer by layer, eventually producing some response at the
output of the network. This response is compared with the desired (target) response,
generating error signals that are propagated in backward direction through the network. In
this backward phase of operation, the free parameters of the network are adjusted so as to
minimize the sum of square error. Finally, weights and biases are updated using the data
obtained in the previous phase. The process is repeated as many times as necessary in order
to have a trained network. The three phases of algorithm are shown in Figure 16.
Since the proposed architecture is auto-reconfigurable during the execution time, separated
modules where developed. So that the system carries out an on-line reconfiguration, the
same learning rules should be applied concurrently over a new pattern. When the network
is reconfigured, the Control unit executes the learning process concurrently, using the
training patterns stored along with the new pattern to be recognized.

Backpropagation
Module

Update
Module

Feedforward
Module

Backpropagation
Module

Backpropagation
Module

Update
Module
Update
Module

Feedforward
Module

Feedforward
Module

Fig. 16. Sequential Algorithm for Learning Operation

When the learning processes finishes, collected data are transmitted to the weights and bias
network memories, by means of the control unit and pass through the backpropagation
level, which checks the reconfiguration and learning of it.

Update
Module

Feedforward
Module

Backpropagation
Module

Reconfiguration

Foreground
Process

Background
Process

Update
Module
Update
Module

Feedforward
Module

Feedforward
Module

Backpropagation
Module

Backpropagation
Module

Reconfiguration

Foreground
Process

Background
Process

Fig. 17. Algorithms Segmentation for Learning Operation

Figure 17 shows the implementation of the different levels of the learning algorithm. The
feed-forward and update modules corresponding to the Basic unit were implemented
directly in the same FPGA (Altera Cyclone II), and they are executed concurrently in a
foreground Process.
At that moment, the uncertainty module determines if there is a new pattern and sends a
request to the control unit to reconfigure the network. The backpropagation module
corresponding to on line learning was implemented in the PowerPC processor XILINX
(Virtex II), background process. By means of a state machine, three modes of operation of
the system were defined. In the Initialization mode, the system loads the initial values of the
weights and biases, and begins the Classification mode. In this mode, the network works in
feed-forward, and when it detects that a new pattern has arrived it changes to the
Reconfiguration mode. When this mode finished, the update is carried out in other to begin
again with the classification mode. The different modes of operation and the states machine
will be explained later.
Considering the problems of size and scalability, we propose a design based on the
mathematical model of the neural networks, similar to the model shown in figure 18(a).
As explained above, the synapse number is limited (network size) by the size of the internal
memory of FPGA. In addition, the network architecture (number of neurons and number of
layers) is also limited by the hardware resources. In order to avoid these difficulties, a Basic
Processing Unit is suggested as the central component of the network. This unit is called the
Knowledge Unit (KWU) and can be modified to configure a neuron or a number of them in
order to create one of the layers of the network, obtaining different topologies according to
the programming of the internal registers of the system.

www.intechopen.com

Embedded Intelligence on Chip: Some FPGA-based design experiences 397

Basic units (specialized neural networks) are in charge of signal processing and weight and
bias data storage, including the multiplication of the weights by the inputs, the
accumulation and the nonlinear function activation. Control units work on the basic of
signal transmission including parallel processing and the algorithm work. By considering
those units, the proposed design (as shown in Figure 15) has an efficient architecture based
on specialized neural networks by recognition, to be implemented in FPGAs.

Fig. 15. System Architecture

For achieving the learning operation the algorithm is divided in three phases, known as:
feed-forward, back-propagation and up-date. In the feed-forward phase the input signals
propagate through the network layer by layer, eventually producing some response at the
output of the network. This response is compared with the desired (target) response,
generating error signals that are propagated in backward direction through the network. In
this backward phase of operation, the free parameters of the network are adjusted so as to
minimize the sum of square error. Finally, weights and biases are updated using the data
obtained in the previous phase. The process is repeated as many times as necessary in order
to have a trained network. The three phases of algorithm are shown in Figure 16.
Since the proposed architecture is auto-reconfigurable during the execution time, separated
modules where developed. So that the system carries out an on-line reconfiguration, the
same learning rules should be applied concurrently over a new pattern. When the network
is reconfigured, the Control unit executes the learning process concurrently, using the
training patterns stored along with the new pattern to be recognized.

Backpropagation
Module

Update
Module

Feedforward
Module

Backpropagation
Module

Backpropagation
Module

Update
Module
Update
Module

Feedforward
Module

Feedforward
Module

Fig. 16. Sequential Algorithm for Learning Operation

When the learning processes finishes, collected data are transmitted to the weights and bias
network memories, by means of the control unit and pass through the backpropagation
level, which checks the reconfiguration and learning of it.

Update
Module

Feedforward
Module

Backpropagation
Module

Reconfiguration

Foreground
Process

Background
Process

Update
Module
Update
Module

Feedforward
Module

Feedforward
Module

Backpropagation
Module

Backpropagation
Module

Reconfiguration

Foreground
Process

Background
Process

Fig. 17. Algorithms Segmentation for Learning Operation

Figure 17 shows the implementation of the different levels of the learning algorithm. The
feed-forward and update modules corresponding to the Basic unit were implemented
directly in the same FPGA (Altera Cyclone II), and they are executed concurrently in a
foreground Process.
At that moment, the uncertainty module determines if there is a new pattern and sends a
request to the control unit to reconfigure the network. The backpropagation module
corresponding to on line learning was implemented in the PowerPC processor XILINX
(Virtex II), background process. By means of a state machine, three modes of operation of
the system were defined. In the Initialization mode, the system loads the initial values of the
weights and biases, and begins the Classification mode. In this mode, the network works in
feed-forward, and when it detects that a new pattern has arrived it changes to the
Reconfiguration mode. When this mode finished, the update is carried out in other to begin
again with the classification mode. The different modes of operation and the states machine
will be explained later.
Considering the problems of size and scalability, we propose a design based on the
mathematical model of the neural networks, similar to the model shown in figure 18(a).
As explained above, the synapse number is limited (network size) by the size of the internal
memory of FPGA. In addition, the network architecture (number of neurons and number of
layers) is also limited by the hardware resources. In order to avoid these difficulties, a Basic
Processing Unit is suggested as the central component of the network. This unit is called the
Knowledge Unit (KWU) and can be modified to configure a neuron or a number of them in
order to create one of the layers of the network, obtaining different topologies according to
the programming of the internal registers of the system.

www.intechopen.com

Pattern Recognition, Recent Advances398

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC* SERIALIZER**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

**NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

X1

Xn

X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1
S x R

S x 1

S x 1 S x 1

S = Number of Neurons

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC* SERIALIZER**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

**NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC* SERIALIZER**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

**NOT IN OUTPUT LAYER

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC* SERIALIZER**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

**NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

X1

Xn

X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1
S x R

S x 1

S x 1 S x 1

S = Number of Neurons

X1

Xn

X2

W1

b1

p

1
+ f1

X1X1X1

XnXnXn

X2X2X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1
S x R

S x 1

S x 1 S x 1

S = Number of Neurons

Fig. 18. Specialized Tiny Neural Networks Model

Figure 18b shows the model of a Basic Learning Unit. The hardware architecture is obtained
by mapping the high level algorithmic model of the Perceptron neural network into the
equivalent module hardware. A data input vector (coming from the acquisition and pre-
processing levels) and the external buses system (address, data and control) is used to
interconnect the knowledge units with the general control of the system.
According to our research it is necessary to know the degree of parallelism (taking into
account the hardware resources) of the algorithm, in order to trade off the development and
hardware resources consumption when implemented. With the suggested model, the Basic
Learning Unit architecture has an almost complete parallel functionality, providing the best
development with the minimum resources.
All hardware neurons (Basic Units), are formed by a MAC Unit (multiplier and
accumulator), a Serial Unit (multiplexer), and the Non-lineal Functions calculator, all of
them interconnected by a parallel system bus as shown on figure 18b.
MAC Units are connected through the internal data bus to their weight memories and to the
series of input data (input vector). Let us suppose that we have an input layer of N neurons.
By means of this architecture it is possible to carry out N operations in parallel with serial
input data because of the simultaneous access of the memories, through the internal
structure of bus. Therefore, the weight and bias memories have been implemented in the
RAM modules embedded in the FPGA. These modules allow being accessed independently,
so faster memory accesses are achieved thanks to this distributed memory scheme.
The design of the Basic Unit should include a level in which output data are obtained
(output vector) in order to balance cost and development. This internal output contains the
results of the first layer neurons and it is used as an input vector on the network’s hidden or
the output layers.

All of the MAC units makes parallel calculations ending up into an architecture with a high
hardware resources consumption, so resources are optimized by an adder and a block
which activates the non-lineal function used into the Basic Unit design; this way, the
Learning Unit architecture has an input vector and an output vector for the information
transfer (feed-forward), through the different network layers, being able to implement
several neural networks, Perceptron Multilayer (PM).
As a special case, when talking about a Perceptron Multilayer network and due to the little
number of neurons on the exit layer, it is not necessary to use a Serial Unit because cost and
development trade off does not have a negative impact on the architecture. There is an
adder and an activation function by output neuron; the bias memory has been implemented
with registers in the same adder, reducing the RAM cost and achieving resource
optimization. We can see the architecture of an exit layer unit on figure 19.
Having the Learning Unit, it is easy to have a neural network interconnecting two or more
Basic Units; depending on the number of layers those neurons have (Modular and Scalable
features of the Architecture). The interconnection is performed by an internal bus that
transfers the data vectors of the previous stage. The data flow is controlled by a control unit
through a protocol which indicates to the next layer on the network, the beginning and end
of the information vector.

Data Bus Input Vector

Out

WEIGHTS

MEMORY MAC*

BIAS

+

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

+

+

Out

Out

Data Bus Input Vector

Out

WEIGHTS

MEMORY MAC*

BIAS

+

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

+

+

Out

Out

Fig. 19. Basic Unit Output Layer

With the Basic and Control units designed, a new layer of the neural network, which we will
call the Learning Generic Unit can be designed. This is the basic module in the network and
gives the modular characteristic to the system, which enables the Perceptron networks with
several neurons and layers to be implemented.
These units are also the basic modules on the huge architectures on FPGAs platforms,
having a growing system on internal networks and the whole one. A growing and modular
system is achieved when the modular control unit is designed.
The modular design of the Control unit of the network layers avoids the need for global
control and a completely modular and scalable system is obtained. The main activities
carried out by the Control Unit are signal transmission and learning algorithm execution.
The state machine of the Control Unit has been designed to improve the system
performance. This state machine has been carefully created and has three different ways of
implementing the algorithm (figure 20) as explained previously.
The characteristics of the design allow that several networks execute the classification
process in parallel, and meanwhile concurrently the training process could be executed in
another one TNN.

www.intechopen.com

Embedded Intelligence on Chip: Some FPGA-based design experiences 399

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC* SERIALIZER**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

**NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

X1

Xn

X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1
S x R

S x 1

S x 1 S x 1

S = Number of Neurons

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC* SERIALIZER**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

**NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC* SERIALIZER**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

**NOT IN OUTPUT LAYER

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC* SERIALIZER**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

**NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

X1

Xn

X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1
S x R

S x 1

S x 1 S x 1

S = Number of Neurons

X1

Xn

X2

W1

b1

p

1
+ f1

X1X1X1

XnXnXn

X2X2X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1
S x R

S x 1

S x 1 S x 1

S = Number of Neurons

Fig. 18. Specialized Tiny Neural Networks Model

Figure 18b shows the model of a Basic Learning Unit. The hardware architecture is obtained
by mapping the high level algorithmic model of the Perceptron neural network into the
equivalent module hardware. A data input vector (coming from the acquisition and pre-
processing levels) and the external buses system (address, data and control) is used to
interconnect the knowledge units with the general control of the system.
According to our research it is necessary to know the degree of parallelism (taking into
account the hardware resources) of the algorithm, in order to trade off the development and
hardware resources consumption when implemented. With the suggested model, the Basic
Learning Unit architecture has an almost complete parallel functionality, providing the best
development with the minimum resources.
All hardware neurons (Basic Units), are formed by a MAC Unit (multiplier and
accumulator), a Serial Unit (multiplexer), and the Non-lineal Functions calculator, all of
them interconnected by a parallel system bus as shown on figure 18b.
MAC Units are connected through the internal data bus to their weight memories and to the
series of input data (input vector). Let us suppose that we have an input layer of N neurons.
By means of this architecture it is possible to carry out N operations in parallel with serial
input data because of the simultaneous access of the memories, through the internal
structure of bus. Therefore, the weight and bias memories have been implemented in the
RAM modules embedded in the FPGA. These modules allow being accessed independently,
so faster memory accesses are achieved thanks to this distributed memory scheme.
The design of the Basic Unit should include a level in which output data are obtained
(output vector) in order to balance cost and development. This internal output contains the
results of the first layer neurons and it is used as an input vector on the network’s hidden or
the output layers.

All of the MAC units makes parallel calculations ending up into an architecture with a high
hardware resources consumption, so resources are optimized by an adder and a block
which activates the non-lineal function used into the Basic Unit design; this way, the
Learning Unit architecture has an input vector and an output vector for the information
transfer (feed-forward), through the different network layers, being able to implement
several neural networks, Perceptron Multilayer (PM).
As a special case, when talking about a Perceptron Multilayer network and due to the little
number of neurons on the exit layer, it is not necessary to use a Serial Unit because cost and
development trade off does not have a negative impact on the architecture. There is an
adder and an activation function by output neuron; the bias memory has been implemented
with registers in the same adder, reducing the RAM cost and achieving resource
optimization. We can see the architecture of an exit layer unit on figure 19.
Having the Learning Unit, it is easy to have a neural network interconnecting two or more
Basic Units; depending on the number of layers those neurons have (Modular and Scalable
features of the Architecture). The interconnection is performed by an internal bus that
transfers the data vectors of the previous stage. The data flow is controlled by a control unit
through a protocol which indicates to the next layer on the network, the beginning and end
of the information vector.

Data Bus Input Vector

Out

WEIGHTS

MEMORY MAC*

BIAS

+

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

+

+

Out

Out

Data Bus Input Vector

Out

WEIGHTS

MEMORY MAC*

BIAS

+

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

* MAC = MULTIPLY ACCUMULATE

+

+

Out

Out

Fig. 19. Basic Unit Output Layer

With the Basic and Control units designed, a new layer of the neural network, which we will
call the Learning Generic Unit can be designed. This is the basic module in the network and
gives the modular characteristic to the system, which enables the Perceptron networks with
several neurons and layers to be implemented.
These units are also the basic modules on the huge architectures on FPGAs platforms,
having a growing system on internal networks and the whole one. A growing and modular
system is achieved when the modular control unit is designed.
The modular design of the Control unit of the network layers avoids the need for global
control and a completely modular and scalable system is obtained. The main activities
carried out by the Control Unit are signal transmission and learning algorithm execution.
The state machine of the Control Unit has been designed to improve the system
performance. This state machine has been carefully created and has three different ways of
implementing the algorithm (figure 20) as explained previously.
The characteristics of the design allow that several networks execute the classification
process in parallel, and meanwhile concurrently the training process could be executed in
another one TNN.

www.intechopen.com

Pattern Recognition, Recent Advances400

In order to maintain the processing speed of a TNN in hardware and its versatility in
simulations, the reconfiguration of the neural network on its different hardware levels has
to be possible (Reconfiguration features). Different researches have revealed that general
purpose processors can be used in order to reprogram the neural network. We could also
use FPGAs to modify the bus structure and the Basic Unit possessing by means of the
change in the configuration registers.

State Machine of the System
a) Initialization b) Classification c) Reconfiguration

Initial
State

Load Weights
Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training
Memory

Up Date
Memory

Initialization

State Machine of the System
a) Initialization b) Classification c) Reconfiguration

Initial
State

Load Weights
Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training
Memory

Up Date
Memory

Initialization
Initial
State

Load Weights
Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training
Memory

Up Date
Memory

Initialization

Fig. 20. System Operation

The characteristics of the design allow that several networks execute the classification
process in parallel, and meanwhile concurrently the training process could be executed in
another one TNN.
In order to maintain the processing speed of a TNN in hardware and its versatility in
simulations, the reconfiguration of the neural network on its different hardware levels has
to be possible (Reconfiguration features). Different researches have revealed that general
purpose processors can be used in order to reprogram the neural network.
The way in which general purpose processors are used is better although it is not
completely successful with regard a the processing speed and required areas; in any case,
the reconfigurable hardware networks are limited when programming but they have more
processing speed, they use a smaller area and they can be included in an integrated circuit
(system on-chip). Due to the characteristics of the suggested system, it can be considerate to
be a heterogeneous architecture, combining the activities from the general purpose
processors (programming availability) and those of the FPGAs (parallel processing and
execution speed).
The specialized network design has an Uncertainty stage (module). The basic function of the
module is to determine if the output data sequence corresponds to the training pattern or if
it is similar to it, generating a valid signal for the recognition. On the other hand, if the
Uncertainty module detects similar points on a probability range between 50% and 75%, a
signal for reconfiguration is produced. Uncertainty stages are visible on Figure 21.
When the reconfiguration takes place, the global control system executes several processes
concurrently: input vector acquisition, data attachment to training memory, new training
vectors (target) and on-line training execution (including the new learning pattern). When
training is finished, the hardware stages have been reconfigured: training memories (content
and dimensions), and weight and bias memories have been updated, with new values
obtained at the end of the process.

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Uncertainty stage: Comparator,
Detector Sequence, Detector Uncertainty

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Uncertainty stage: Comparator,
Detector Sequence, Detector Uncertainty

Fig. 21. Uncertainty Module

The system designed is highly parallel and able to execute several tasks at the same time.
The networks in our system are also cooperative in order to solve complex issues through
small networks. As an example of the system application, the networks can be trained to
identify special points on an image. These points are characteristic elements of shape
(singularities) such as right-angled corners, round segments and acute-angled corners.
These singularities are used for the recognition of rectangular, circular and triangular
shapes. Autonomous robots or intelligent systems for cars use this kind of system.
The decision to have the communication of the global control system through a bus
structure was taken after consideration of the efficiency level that we wanted to achieve. In
this way the memory blocks share the same space on the system and can be accessed with a
logic address, having as a result a distributed system of the memories on the networks with
a centralized control. The addressing mode was considered to be the optimum model
because it does not require a redundant memory for the networks, and only during the
reconfiguration process can exists a redundancy in the network memories that have to be
reconfigured, achieving a more rapid convergence of the algorithm. See figure 22, for the
networks interconnection to the global control.

weights of
the neuron 1

weights of the
N neurons

Neuronal Specialized
Network

Control address map

weights and bias memories of
the neuronal specialized network

Address space
“Window”

Neuronal Specialized
Network

Neuronal Specialized
Network

Physical address

Physical address

Logical address

weights of
the neuron 1

weights of the
N neurons

Neuronal Specialized
Network

Control address map

weights and bias memories of
the neuronal specialized network

Address space
“Window”

Neuronal Specialized
Network

Neuronal Specialized
Network

Physical address

Physical address

Logical address

Fig. 22. System Memory Map

The reconfiguration takes place at the moment at which a new image must be recognized.
Therefore, the architecture has to be modified, and the new training patterns and the targets
added to the memory. When the training process ends, the memories are updated and the
network has the recognition connections.
According to the research, there are different forms of reconfiguration on a neural network.
During the execution time, the number of neurons on the input layer can be modified or we

www.intechopen.com

Embedded Intelligence on Chip: Some FPGA-based design experiences 401

In order to maintain the processing speed of a TNN in hardware and its versatility in
simulations, the reconfiguration of the neural network on its different hardware levels has
to be possible (Reconfiguration features). Different researches have revealed that general
purpose processors can be used in order to reprogram the neural network. We could also
use FPGAs to modify the bus structure and the Basic Unit possessing by means of the
change in the configuration registers.

State Machine of the System
a) Initialization b) Classification c) Reconfiguration

Initial
State

Load Weights
Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training
Memory

Up Date
Memory

Initialization

State Machine of the System
a) Initialization b) Classification c) Reconfiguration

Initial
State

Load Weights
Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training
Memory

Up Date
Memory

Initialization
Initial
State

Load Weights
Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training
Memory

Up Date
Memory

Initialization

Fig. 20. System Operation

The characteristics of the design allow that several networks execute the classification
process in parallel, and meanwhile concurrently the training process could be executed in
another one TNN.
In order to maintain the processing speed of a TNN in hardware and its versatility in
simulations, the reconfiguration of the neural network on its different hardware levels has
to be possible (Reconfiguration features). Different researches have revealed that general
purpose processors can be used in order to reprogram the neural network.
The way in which general purpose processors are used is better although it is not
completely successful with regard a the processing speed and required areas; in any case,
the reconfigurable hardware networks are limited when programming but they have more
processing speed, they use a smaller area and they can be included in an integrated circuit
(system on-chip). Due to the characteristics of the suggested system, it can be considerate to
be a heterogeneous architecture, combining the activities from the general purpose
processors (programming availability) and those of the FPGAs (parallel processing and
execution speed).
The specialized network design has an Uncertainty stage (module). The basic function of the
module is to determine if the output data sequence corresponds to the training pattern or if
it is similar to it, generating a valid signal for the recognition. On the other hand, if the
Uncertainty module detects similar points on a probability range between 50% and 75%, a
signal for reconfiguration is produced. Uncertainty stages are visible on Figure 21.
When the reconfiguration takes place, the global control system executes several processes
concurrently: input vector acquisition, data attachment to training memory, new training
vectors (target) and on-line training execution (including the new learning pattern). When
training is finished, the hardware stages have been reconfigured: training memories (content
and dimensions), and weight and bias memories have been updated, with new values
obtained at the end of the process.

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Uncertainty stage: Comparator,
Detector Sequence, Detector Uncertainty

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Uncertainty stage: Comparator,
Detector Sequence, Detector Uncertainty

Fig. 21. Uncertainty Module

The system designed is highly parallel and able to execute several tasks at the same time.
The networks in our system are also cooperative in order to solve complex issues through
small networks. As an example of the system application, the networks can be trained to
identify special points on an image. These points are characteristic elements of shape
(singularities) such as right-angled corners, round segments and acute-angled corners.
These singularities are used for the recognition of rectangular, circular and triangular
shapes. Autonomous robots or intelligent systems for cars use this kind of system.
The decision to have the communication of the global control system through a bus
structure was taken after consideration of the efficiency level that we wanted to achieve. In
this way the memory blocks share the same space on the system and can be accessed with a
logic address, having as a result a distributed system of the memories on the networks with
a centralized control. The addressing mode was considered to be the optimum model
because it does not require a redundant memory for the networks, and only during the
reconfiguration process can exists a redundancy in the network memories that have to be
reconfigured, achieving a more rapid convergence of the algorithm. See figure 22, for the
networks interconnection to the global control.

weights of
the neuron 1

weights of the
N neurons

Neuronal Specialized
Network

Control address map

weights and bias memories of
the neuronal specialized network

Address space
“Window”

Neuronal Specialized
Network

Neuronal Specialized
Network

Physical address

Physical address

Logical address

weights of
the neuron 1

weights of the
N neurons

Neuronal Specialized
Network

Control address map

weights and bias memories of
the neuronal specialized network

Address space
“Window”

Neuronal Specialized
Network

Neuronal Specialized
Network

Physical address

Physical address

Logical address

Fig. 22. System Memory Map

The reconfiguration takes place at the moment at which a new image must be recognized.
Therefore, the architecture has to be modified, and the new training patterns and the targets
added to the memory. When the training process ends, the memories are updated and the
network has the recognition connections.
According to the research, there are different forms of reconfiguration on a neural network.
During the execution time, the number of neurons on the input layer can be modified or we

www.intechopen.com

Pattern Recognition, Recent Advances402

can give enough knowledge to the network by changing the training memory content. The
either of both methods leads us to the image recognition.
Depending on available hardware resources and the applications of the system, a dynamic
reconfiguration is possible when the image is part of the same group. Specialized
cooperative networks, where installed for reconfiguration to be held in the control section,
acquire more knowledge as new images are recognized.
The weight and bias data stored in the memory modules were obtained by the previous off-
line learning, using a backpropagation algorithm. Simulation software was developed using
Matlab and Simulink, Neural Network Toolbox. In order to obtain the data of the memories
of weights, 450 patterns of training with different characteristics have been used, taking into
account the fact that all correspond to an image of the same class (rectangular, circular and
triangular shapes)
The training method works in batch mode, which means that once all the entries were
presented, the learning stage updates the weights and bias according to the decreasing
moment of the gradient and an adaptive learning scale.
A region of 6x5 (columns*rows) pixels has been used to detect the singularities. The
classification mode has been implemented as a series of regions processing. First, the ROI
extractor detects the RoI (Region of Interest), figure 23, sized 60x45 pixels, and stores it in
the internal embedded RAM memory. Then, successive vector of characteristic are extracted
from the RoI, and sent to the TNN to be processed. So, dividing the RoI in 6x5 sized-regions,
results in 10x9 data input vector in one RoI. This is the actual amount of data being
processed in each image field, resulting in 90 vectors of 30 pixels each one. This has been
accomplished by sweeping the RoI, and by sending each vector of characteristics to the
TNN, and by storing the result associated to each region. In this way, probability maps of
possible detected singularities are obtained so that the uncertainty stage can decide whether
a signal has been detected or not.

RoI (60x45)
(columns*rows)

RoD (6x5)
(columns*rows)

Detection Recognition

Traffic Sign Frame

Sign: Triangular
Circular
Rectangular

RoI (60x45)
(columns*rows)

RoD (6x5)
(columns*rows)

Detection Recognition

Traffic Sign Frame

Sign: Triangular
Circular
Rectangular

Fig. 23. Traffic Sign Recognition

In addition, further simulations in MATLAB, have established that a Q8.16 format is
accurate enough to quantify weights and biases. This reduction in the bit width leads to a
reduction in the resources consumed by the network. But more importantly, a great increase
in the maximum operating frequency is also achieved. This is a key factor if we want to
enhance the system.
As a design premise we have always had in mind a design for reuse methodology.
Therefore, a big effort has been made to specify as many generic hardware modules as
possible. For this reason, the architecture and VHDL description of the TNN has been
improved so that later versions, apart from the basic functionality mentioned above, make
possible their building N-layer, m-output perceptrons in the easiest and most-automated

way possible. These features have been incorporated so that we shall be able, in the future,
to test the system architecture on larger FPGAs.
Preliminary synthesis (no synthesis effort or optimizations directed to the synthesizer)
results for Altera CYCLONE EP1C20F400C6 and CYCLONE-II EP2C35F672C6 devices have
been obtained with the Altera Quartus II (v. 6.0) software package. The proposed
architecture (Q8.16) fits in one CYCLONE device, but remaining resources, mainly memory,
are a bit scarce. Therefore, the system has also been implemented in the CYCLONE-II
device. Functional and post-fitting simulations with Mentor Graphics ModelSim simulation
environment show how the real-time restrictions imposed on the system and the functional
specifications are met.

8. Dynamic reconfigurability for scalability in multimedia environments

Multimedia products and services (Alsolaim et al., 2000) must face nowadays to different
situations in terms of variable parameters like the available bandwidth, Quality of service
(QoS), display size, or battery life, among others. In order to deal with these new scenarios,
the standardization committee known as Joint Video Team (JVT), initiated in 2003 the
development of a new video coding standard named Scalable Video Coding (SVC),
conceived as a scalable solution for different users that may have different needs. The SVC
standard represents an extension of the successful H.264/AVC (Advanced Video Coding)
standard, as it maintains the video coding techniques introduced in the H.264/AVC
encoding loop but incorporating a set of novel tools in order to provide video encoders and
decoders with three levels of scalability: temporal scalability, spatial scalability, and video
quality scalability. The use of dynamic reconfiguration technology is the main key factor to
deal with these exigent characteristics, even more stringent for real-time applications. In
particular, the use of an ad-hoc scalable network of reconfigurable nodes able to cope with
the requirements imposed by the SVC standard will be proposed. The reconfigurability
concept is envisioned within the scope of this research project in a threefold manner:
a) The nodes are composed by a set of reconfigurable Processing Elements (PEs) in charge of
performing the computations demanded by the SVC standard. b) PEs communicate among
them throughout a reconfigurable Network-on-Chip (NoC); and c) These nodes are
communicated by a reconfigurable off-chip wireless network.
Reconfigurable architectures offer a good balance between implementation efficiency and
flexibility because they combine post-fabrication programmability with the spatial (parallel)
computation style of ASIC platforms and the flexibility of the GPPs (General Purpose
Processors).
Embedded and networked systems must perform progressively more complex functions,
which require a high level of embedded intelligence. This rise in intelligence force an
increase in the level of information processing that the embedded systems carry out, giving
as result a significant increase in the complexity of the hardware and software. Due to this,
the conception and design of embedded systems for digital signal (video) processing
applications in real-time have to face two major points, in many cases opposed one to each
other. On one side, a higher level of intelligence is demanded day by day to the systems,
and, on the other side, these systems have requirements of real-time operation and
reliability, which are difficult to meet in complex systems. The way to be explored in
whatever research activity is a) to exploit high-level cognitive architectures in embedded

www.intechopen.com

Embedded Intelligence on Chip: Some FPGA-based design experiences 403

can give enough knowledge to the network by changing the training memory content. The
either of both methods leads us to the image recognition.
Depending on available hardware resources and the applications of the system, a dynamic
reconfiguration is possible when the image is part of the same group. Specialized
cooperative networks, where installed for reconfiguration to be held in the control section,
acquire more knowledge as new images are recognized.
The weight and bias data stored in the memory modules were obtained by the previous off-
line learning, using a backpropagation algorithm. Simulation software was developed using
Matlab and Simulink, Neural Network Toolbox. In order to obtain the data of the memories
of weights, 450 patterns of training with different characteristics have been used, taking into
account the fact that all correspond to an image of the same class (rectangular, circular and
triangular shapes)
The training method works in batch mode, which means that once all the entries were
presented, the learning stage updates the weights and bias according to the decreasing
moment of the gradient and an adaptive learning scale.
A region of 6x5 (columns*rows) pixels has been used to detect the singularities. The
classification mode has been implemented as a series of regions processing. First, the ROI
extractor detects the RoI (Region of Interest), figure 23, sized 60x45 pixels, and stores it in
the internal embedded RAM memory. Then, successive vector of characteristic are extracted
from the RoI, and sent to the TNN to be processed. So, dividing the RoI in 6x5 sized-regions,
results in 10x9 data input vector in one RoI. This is the actual amount of data being
processed in each image field, resulting in 90 vectors of 30 pixels each one. This has been
accomplished by sweeping the RoI, and by sending each vector of characteristics to the
TNN, and by storing the result associated to each region. In this way, probability maps of
possible detected singularities are obtained so that the uncertainty stage can decide whether
a signal has been detected or not.

RoI (60x45)
(columns*rows)

RoD (6x5)
(columns*rows)

Detection Recognition

Traffic Sign Frame

Sign: Triangular
Circular
Rectangular

RoI (60x45)
(columns*rows)

RoD (6x5)
(columns*rows)

Detection Recognition

Traffic Sign Frame

Sign: Triangular
Circular
Rectangular

Fig. 23. Traffic Sign Recognition

In addition, further simulations in MATLAB, have established that a Q8.16 format is
accurate enough to quantify weights and biases. This reduction in the bit width leads to a
reduction in the resources consumed by the network. But more importantly, a great increase
in the maximum operating frequency is also achieved. This is a key factor if we want to
enhance the system.
As a design premise we have always had in mind a design for reuse methodology.
Therefore, a big effort has been made to specify as many generic hardware modules as
possible. For this reason, the architecture and VHDL description of the TNN has been
improved so that later versions, apart from the basic functionality mentioned above, make
possible their building N-layer, m-output perceptrons in the easiest and most-automated

way possible. These features have been incorporated so that we shall be able, in the future,
to test the system architecture on larger FPGAs.
Preliminary synthesis (no synthesis effort or optimizations directed to the synthesizer)
results for Altera CYCLONE EP1C20F400C6 and CYCLONE-II EP2C35F672C6 devices have
been obtained with the Altera Quartus II (v. 6.0) software package. The proposed
architecture (Q8.16) fits in one CYCLONE device, but remaining resources, mainly memory,
are a bit scarce. Therefore, the system has also been implemented in the CYCLONE-II
device. Functional and post-fitting simulations with Mentor Graphics ModelSim simulation
environment show how the real-time restrictions imposed on the system and the functional
specifications are met.

8. Dynamic reconfigurability for scalability in multimedia environments

Multimedia products and services (Alsolaim et al., 2000) must face nowadays to different
situations in terms of variable parameters like the available bandwidth, Quality of service
(QoS), display size, or battery life, among others. In order to deal with these new scenarios,
the standardization committee known as Joint Video Team (JVT), initiated in 2003 the
development of a new video coding standard named Scalable Video Coding (SVC),
conceived as a scalable solution for different users that may have different needs. The SVC
standard represents an extension of the successful H.264/AVC (Advanced Video Coding)
standard, as it maintains the video coding techniques introduced in the H.264/AVC
encoding loop but incorporating a set of novel tools in order to provide video encoders and
decoders with three levels of scalability: temporal scalability, spatial scalability, and video
quality scalability. The use of dynamic reconfiguration technology is the main key factor to
deal with these exigent characteristics, even more stringent for real-time applications. In
particular, the use of an ad-hoc scalable network of reconfigurable nodes able to cope with
the requirements imposed by the SVC standard will be proposed. The reconfigurability
concept is envisioned within the scope of this research project in a threefold manner:
a) The nodes are composed by a set of reconfigurable Processing Elements (PEs) in charge of
performing the computations demanded by the SVC standard. b) PEs communicate among
them throughout a reconfigurable Network-on-Chip (NoC); and c) These nodes are
communicated by a reconfigurable off-chip wireless network.
Reconfigurable architectures offer a good balance between implementation efficiency and
flexibility because they combine post-fabrication programmability with the spatial (parallel)
computation style of ASIC platforms and the flexibility of the GPPs (General Purpose
Processors).
Embedded and networked systems must perform progressively more complex functions,
which require a high level of embedded intelligence. This rise in intelligence force an
increase in the level of information processing that the embedded systems carry out, giving
as result a significant increase in the complexity of the hardware and software. Due to this,
the conception and design of embedded systems for digital signal (video) processing
applications in real-time have to face two major points, in many cases opposed one to each
other. On one side, a higher level of intelligence is demanded day by day to the systems,
and, on the other side, these systems have requirements of real-time operation and
reliability, which are difficult to meet in complex systems. The way to be explored in
whatever research activity is a) to exploit high-level cognitive architectures in embedded

www.intechopen.com

Pattern Recognition, Recent Advances404

systems, b) to develop systems by model-based processes and c) to develop scalable
architectural models that allow maintaining properties of intelligence and reliability across a
wide spectrum of implementation platforms. This drives our work necessarily to evolvable
hardware. We are carrying on some preliminary studies for using discrete wavelets
implemented in hardware in order to achieve embedded intelligence on chip for dynamic
reconfigurability for scalability in multimedia environments.

9. Acknowledgement

This work was developed funded by the Spanish Ministry of Science under the National
R&D Plan: PROFIT, FIT 110100-2001-10, TRA2004-07441-C03-03/AUT, TEC2008-06846-C02-
01/TEC; and by the European Commission ARTEMIS-2008 program: SMART (Secure,
Mobile visual sensor networks Architecture). The authors wish also to thank Teresa Riesgo,
Ruben Salvador and Jaime Alarcón. Without them all, this document would not have been
possible.

10. References

Alarcón, J.; Salvador, R.; Moreno, F. and López, I. A new real-time hardware architecture for
road line tracking using a particle filter. Proceedings of 32nd annual Conference of the
IEEE Industrial Electronics Society, IECON’06, Paris 2006, pp 736-741.

Albus J.S. RCS: A Reference Model Architecture for Intelligent Systems, 1995. In Working
Notes: AAAI 1995 Spring Symposium on Lessons Learned from Implemented Software
Architectures for Physical Agents.

Alsolaim, J.; Beker, M.; Glesner and Starzyk, J. Architecture and Application of a
Dynamically Reconfigurable Hardware Array for Future Mobile Communication
Systems. Simposium on Field-Programmable Custom Computing Machines, Ref: 0-7695-
0871-5/00, pp. 205-214, IEEE 2000.

Arulampalam, M.S.; Maskell, S.; Gordon, N. and Clapp, T. A Tutorial on Particle Filters for
Online Nonlinear/ Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal
Processing, vol. 50, No. 2 February 2002.

López, I.; Salvador, R.; Alarcón, J. and Moreno, F. Architectural design for a low cost FPGA-
based traffic signal detection system in vehicles. Volume 65900, pages 65900M. SPIE,
2007. Gran Canaria. Spain.

Moreno, F.; Aparicio, F.; Hernández, W. and Páez J. A low-cost real-time FPGA solution for
driver drowsiness detection. In Proc. 29th Annual Conference, IEEE Ind. Elect. Society,
IECON’03. Virginia (USA), ISBN:0-7803-7906-3/03.

www.intechopen.com

Pattern Recognition Recent Advances

Edited by Adam Herout

ISBN 978-953-7619-90-9

Hard cover, 524 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nos aute magna at aute doloreetum erostrud eugiam zzriuscipsum dolorper iliquate velit ad magna feugiamet,

quat lore dolore modolor ipsum vullutat lorper sim inci blan vent utet, vero er sequatum delit lortion sequip

eliquatet ilit aliquip eui blam, vel estrud modolor irit nostinc iliquiscinit er sum vero odip eros numsandre

dolessisisim dolorem volupta tionsequam, sequamet, sequis nonulla conulla feugiam euis ad tat. Igna feugiam

et ametuercil enim dolore commy numsandiam, sed te con hendit iuscidunt wis nonse volenis molorer suscip

er illan essit ea feugue do dunt utetum vercili quamcon ver sequat utem zzriure modiat. Pisl esenis non ex

euipsusci tis amet utpate deliquat utat lan hendio consequis nonsequi euisi blaor sim venis nonsequis enit, qui

tatem vel dolumsandre enim zzriurercing

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Felix Moreno, Ignacio Lopez, Ricardo Sanz, Ruben Salvador and Jaime Alarcon (2010). Embedded

Intelligence on Chip: Some FPGAbased Design Experiences, Pattern Recognition Recent Advances, Adam

Herout (Ed.), ISBN: 978-953-7619-90-9, InTech, Available from: http://www.intechopen.com/books/pattern-

recognition-recent-advances/embedded-intelligence-on-chip-some-fpgabased-design-experiences

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

