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1. Introduction  

Rapid expanding of the multimedia data collections volume brings forward the need for 
visual data efficient organization, storing and search methods. It stipulated diversity of 
investigations directed to creating efficient image retrieval methods satisfying performance 
speed and validity requirements. The indexing efficiency is generally evaluated by 
parameters of storage access number, computational expenses of the index structure search 
and number of operations for the distance computation between query representation and 
objects in the database. As image processing requires a lot of time and resources the most 
efficient practical way to reduce search time expenses is creation of indexing structure on 
the preliminary processing stage. Unfortunately, existing indexing methods are not 
applicable to a wide range of problem-oriented fields due to their operating time limitations 
and strong dependency on the traditional descriptors extracted from the image.   
One of the most promising perspective in multimedia data search, storing and interpretation 
is to represent images as segmentation results and define metrics for their comparison such 
as Minkowski-type metric (including Euclidean and Manhattan distances), Mahalanobis 
metric, EMD, histogram metric, metric for probability density functions, sets of entropy 
metrics, pseudo metrics for semantic image classification (Rubner et al., 2000; Cheng et al., 
2005; Wang et al., 2005). Yet, because of their limitations these metrics cannot give the 
desirable results, so a new metric was introduced and extended for considering the 
embedded partitions and it was effectively used for the content image retrieval (Kinoshenko 
et al., 2007). Due to the nested structure it becomes possible to perform the search with 
different level of refinement or roughening.  
Using the region based image retrieval methods allows to make a step towards overcoming 
the semantic gap between law-level image description and high level conception. But from 
the other hand it definitely leads to increase of the computation complexity of image 
processing and distance calculation operations methods. Thus when creating an efficient 
indexing structure for image database one should first consider the methods providing 
minimal number of matching operations.  
Many of multidimensional indexing methods used in the field of text retrieval were 
modified and improved in order to index high-dimensional image content descriptors. 
Among them X-trees, VA-file and I-Distance approaches are the most promising (Bohm et 
al., 2001). However, in case of comparing images as nested partitions there is no features to 
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describe complex objects and only information about distances between them is available, 
and so-called ‘distance-based’ indexing methods come to the aid (Chavez et al., 2001; 
Hjaltason, Samet, 2003). In this work existing ‘distance-based’ indexing methods are 
analyzed and improved and their possible application for the region-based image retrieval 
is considered. 
Often on the pre-processing analysis stage we have only information of the mutual distance 
between the database objects. In this case such indexing methods as X-trees, VA-file, i-
Distance, cannot be used as there is not enough information about objects coordinates. One 
of the possible solutions of this problem is to create an indexing structure based on the 
triangular inequality axiom. This principle lays in the base of metrical indexing methods. 
Here a distance matrix is formed and analysed for some selection of special objects subset 
(these objects are called pivots). Forming different data structures allows to eliminate from 
the consideration whole families of images situated far from the query at the search stage.  
Clustering methods are often used for the image database preliminary processing. Thus we 
consider a possible hierarchical mechanism of the query processing: one can seek suitable 
clusters in nested partitions with an arbitrary indexing scheme. This way the amount of 
matches can be greatly reduced, but traditional clustering methods do not guarantee the 
optimal result. 
Thus in order to optimize this Content-based image retrieval (CBIR) scheme it is necessary 
to minimize a total number of matches at the retrieval stage. We propose a new hierarchical 
clustering method which allows to construct images partitions into disjoint subsets so that 
firstly one can seek suitable class, then the most similar to the query subclass is chosen and 
so on. The exhaustive search is fulfilled only on the lowest level of hierarchy. 
In this chapter we shall consider theoretical premises and methods of database images 
metrical indexing and find the tools providing guaranteed number of matching operations 
between a query and database objects. 

 
2. Theoretical background for the CBIR distance matrix based indexing 

Let 1 2X { , , ..., }nx x x  be a set characterising images which constitute a database. Each 
element of this set can be:  

– image itself 2B( ), Dz z   , where D  is a sensor’s field of view, B( )z  is a brightness 
distribution function; 

– feature vector ( )k kp  ;  
– some  combination  of  the  image  processing  results  and  features,  for example 

segmentation results, contour preparations or regions shape features. 
Then we consider X U , where U  is some universum which corresponds to an object-
oriented field and provides introduction of the distance functional (metric in particular). 
Under such X  we shall understand a database. 
The task is to search the best suiting element (or elements) Xix  , under given query 

Uy , which is represented (or can be brought to) by one of the listed above types. When 
we say “best suiting” we mean the minimal distance ρ( , ), Uy x y .  

It should be reminded that a non-negative function ρ( , )y x   is a metric on set U if 

 

, , Ux y z   next axioms are fulfilled: 

a) ρ( , ) 0x y x y     – reflexivity; 

b) ρ( , ) 0x x   – symmetry; 

c) ρ( , ) ρ( , ) ρ( , )x z x y y z   – triangular inequality. 

Talking about variety of image representations we need to emphasize that if there is a set of 
metrics ρ ( , )j x y , then their non-negative linear combination 0j   ρ ( , )j jj x y  is a 

metric. Moreover if some nonnegative function :f     such that (0) 0f   and ( )f z  
is convex 0z  , then ρ( , )( )f x y  is a metric. 
Using a metric for similarity criteria firstly provides adequacy of the search result to the 
query (if the choice of metric corresponding to the domain was correct), and secondly takes 
into account the triangular inequality, what creates premises for elimination from the 
consideration whole image sets without calculating distances to them. We shall note that 
search with limited matches number can be performed in two ways: using preliminary 
clustering in image or feature spaces, or considering methods which analyse values of pre-
calculated distance matrix of all image collection elements. From the other hand all search 
algorithms can be divided into 3 groups:  

- search of k  most similar images ordered according to the similarity extent,  
- search of the images which differ from the query on not more than given threshold  ,  
- combination of these approaches. 

Definition 1. (δ)- search result for the query Uy  is any element (all elements) Xix   if 
ρ( , )iy x    for given 0  , which is called a search radius. 
It is obvious that choice of   threshold is a non trivial task. Moreover, choice of rational   
value essentially depends on configuration (mutual location in regard to the chosen metric) 
of the database objects. Still often the choice of this value is defined by the application, i.e. 
by the required similarity of the images. Note that under 0   we get a special case of 
searching the duplicates in the database. 
Definition 2. Result of ( )-k search for the query Uy  are elements of the set 

1 2X { , , ..., } Xk
k i i ix x x  , for which 

1X , X X , U ρ( , ) ρ( , ), ρ( , ) ρ( , ), 1, 1j j j j
k ki i i ix x y y x y x y x y x j k         \ . 

There is an important special case of X, 1y k  . The exact match of the query should be 
found among the database elements, in other words the query should be identified and its 
corresponding image characteristics should be extracted. It is like identifying a person 
according to his finger prints. 
Definition 3. The result of ( , )-k search of query Uy  are elements of the set 

 1 2X Xm
mi i ix ,x , ,x  , m n , for which 
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describe complex objects and only information about distances between them is available, 
and so-called ‘distance-based’ indexing methods come to the aid (Chavez et al., 2001; 
Hjaltason, Samet, 2003). In this work existing ‘distance-based’ indexing methods are 
analyzed and improved and their possible application for the region-based image retrieval 
is considered. 
Often on the pre-processing analysis stage we have only information of the mutual distance 
between the database objects. In this case such indexing methods as X-trees, VA-file, i-
Distance, cannot be used as there is not enough information about objects coordinates. One 
of the possible solutions of this problem is to create an indexing structure based on the 
triangular inequality axiom. This principle lays in the base of metrical indexing methods. 
Here a distance matrix is formed and analysed for some selection of special objects subset 
(these objects are called pivots). Forming different data structures allows to eliminate from 
the consideration whole families of images situated far from the query at the search stage.  
Clustering methods are often used for the image database preliminary processing. Thus we 
consider a possible hierarchical mechanism of the query processing: one can seek suitable 
clusters in nested partitions with an arbitrary indexing scheme. This way the amount of 
matches can be greatly reduced, but traditional clustering methods do not guarantee the 
optimal result. 
Thus in order to optimize this Content-based image retrieval (CBIR) scheme it is necessary 
to minimize a total number of matches at the retrieval stage. We propose a new hierarchical 
clustering method which allows to construct images partitions into disjoint subsets so that 
firstly one can seek suitable class, then the most similar to the query subclass is chosen and 
so on. The exhaustive search is fulfilled only on the lowest level of hierarchy. 
In this chapter we shall consider theoretical premises and methods of database images 
metrical indexing and find the tools providing guaranteed number of matching operations 
between a query and database objects. 

 
2. Theoretical background for the CBIR distance matrix based indexing 

Let 1 2X { , , ..., }nx x x  be a set characterising images which constitute a database. Each 
element of this set can be:  

– image itself 2B( ), Dz z   , where D  is a sensor’s field of view, B( )z  is a brightness 
distribution function; 

– feature vector ( )k kp  ;  
– some  combination  of  the  image  processing  results  and  features,  for example 

segmentation results, contour preparations or regions shape features. 
Then we consider X U , where U  is some universum which corresponds to an object-
oriented field and provides introduction of the distance functional (metric in particular). 
Under such X  we shall understand a database. 
The task is to search the best suiting element (or elements) Xix  , under given query 

Uy , which is represented (or can be brought to) by one of the listed above types. When 
we say “best suiting” we mean the minimal distance ρ( , ), Uy x y .  

It should be reminded that a non-negative function ρ( , )y x   is a metric on set U if 

 

, , Ux y z   next axioms are fulfilled: 

a) ρ( , ) 0x y x y     – reflexivity; 

b) ρ( , ) 0x x   – symmetry; 

c) ρ( , ) ρ( , ) ρ( , )x z x y y z   – triangular inequality. 

Talking about variety of image representations we need to emphasize that if there is a set of 
metrics ρ ( , )j x y , then their non-negative linear combination 0j   ρ ( , )j jj x y  is a 

metric. Moreover if some nonnegative function :f     such that (0) 0f   and ( )f z  
is convex 0z  , then ρ( , )( )f x y  is a metric. 
Using a metric for similarity criteria firstly provides adequacy of the search result to the 
query (if the choice of metric corresponding to the domain was correct), and secondly takes 
into account the triangular inequality, what creates premises for elimination from the 
consideration whole image sets without calculating distances to them. We shall note that 
search with limited matches number can be performed in two ways: using preliminary 
clustering in image or feature spaces, or considering methods which analyse values of pre-
calculated distance matrix of all image collection elements. From the other hand all search 
algorithms can be divided into 3 groups:  

- search of k  most similar images ordered according to the similarity extent,  
- search of the images which differ from the query on not more than given threshold  ,  
- combination of these approaches. 

Definition 1. (δ)- search result for the query Uy  is any element (all elements) Xix   if 
ρ( , )iy x    for given 0  , which is called a search radius. 
It is obvious that choice of   threshold is a non trivial task. Moreover, choice of rational   
value essentially depends on configuration (mutual location in regard to the chosen metric) 
of the database objects. Still often the choice of this value is defined by the application, i.e. 
by the required similarity of the images. Note that under 0   we get a special case of 
searching the duplicates in the database. 
Definition 2. Result of ( )-k search for the query Uy  are elements of the set 

1 2X { , , ..., } Xk
k i i ix x x  , for which 

1X , X X , U ρ( , ) ρ( , ), ρ( , ) ρ( , ), 1, 1j j j j
k ki i i ix x y y x y x y x y x j k         \ . 

There is an important special case of X, 1y k  . The exact match of the query should be 
found among the database elements, in other words the query should be identified and its 
corresponding image characteristics should be extracted. It is like identifying a person 
according to his finger prints. 
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X , X X , U ρ( , ) , 0j j
m mi ix x y y x         \ , 

1ρ( , ) ρ( , ), ρ( , ) ρ( , ), 1, 1j j ji i iy x y x y x y x j m    . 

The search is considered as successful one if there are elements satisfying definitions 1, 2 
and 3. In other case a feedback is required to refine the query object, search parameters (for 
example radius  ), which is closely connected to the problem of representing images as 
features description and matching. It should be emphasised that formally ( )-k search is 
always successful: decision as for query refining should be made on base of obtained 
distances analysis and the application requirements.  
Calculation of N  ρ( , )iy x  values can be rather expensive, especially in the image space. Let 
us analyse the ways to reduce the operations number. For that a symmetric pair-distances 
matrix of database elements can be pre-calculated  
 

1 2 1 3 1
2 3 2

1

0 ρ( , ) ρ( , ) ... ... ρ( , )
0 ρ( , ) ... ... ρ( , )

0 ... ... ...(X) ... ... ...
0 ρ( , )

0

n
n

n n

x x x x x x
x x x x

d
x x

 
 
   
 
 
 

.                       (1) 

Let Uy  be a query image. We shall fix some image X*x  , called as a pivot object 
(point), and consider a triangular inequality picking out one more image 

X, {1, 2, ..., }ix i n   (the distance ρ( , )* ix x  is known) 
 

ρ( , ) ρ( , ) ρ( , )* *i iy x y x x x  ,                                             (2) 
ρ( , ) ρ( , ) ρ( , )* *i ix x y x y x  ,                                             (3) 
ρ( , ) ρ( , ) ρ( , )i i* *y x y x x x  .                                             (4) 

From equations (1) – (3) it follows that when knowing two distances, namely: ρ( , )*y x  and 
ρ( , )* ix x , it is not hard to obtain upper and lower distance bounds  
 

ρ( , ) ρ( , ) ρ( , ) ρ( , ) ρ( , )i i i* * * *x x y x y x y x x x    .                      (5) 

Thus the implication takes place 
 

U, , X : ρ( , ) 2ρ( , ) ρ( , ) ρ( , )* * * *i i iy x x x x y x y x y x       .          (6) 

Let us consider the case when exact value of distance ( )* ix ,x  is unknown but can be 
evaluated 
 

( )*min i maxx ,x     .                                               (7) 

Then for ix  the following evaluation of the upper and lower bound of distance to y  is 
obtained: 
 

 

{ρ( , )  ,  ρ( , ), 0} ρ( , ) ρ( , )* * *max min i maxmax y x y x y x y x        .            (8) 

Indeed, according to the triangular inequality and (7) we get 
 

( ) ( ) ( ) ( )* *i i i maxy,x y,x x ,x y,x         , 
then 
 

( ) ( )* max iy,x y,x     .                                         (9) 

From the other hand for objects ix  and *x  it is true that 
 

( ) ( ) ( )* *min i ix ,x y,x y,x      , 
 
from where 
 

( ) ( )*min iy,x y,x    .                                         (10) 

Expressions (9) and (10) are the lower bounds of ( )ix,x , and to narrow the equation 
condition we chose the maximal value. Also both values can be negative simultaneously, 
what is shown in (8). Finally, evaluation of upper bound ( )*y,x  directly follows from the 
triangular inequality (2) and condition ( )* i maxx ,x   . 
It is easy to show that if the exact value *( y,x )  is unknown and within the limits 
 

( )*min maxy,x     ,                                         (11) 

then the next evaluation of the lower and upper distance bound takes place: 
 

{ 0} ( )min max min max i max maxmax , , y,x           .              (12) 

From (8) and inequality  ( )  *min max maxy,x       , min max     ρ( , )*min y x    
the left part of (12) is obvious. The left part follows from ( )* max max maxy,x        and 
right part of inequality (8). 
Till now for evaluating ( )iy,x  the distance from the target object ix  to pivot point *x  and 
distance from *x  to the search object y  were considered. It is obvious that introducing to 

the analysis additional pivot point *jx  in some cases will allow to narrow the ranking 

interval ( )ix , y . 

Let the object ix  be situated «closer» to the pivot point 1
*x , than to 2

*x , i.е. 
 

)1 2( ) ( **i ix ,x x ,x   .                                                  (13) 
 
Then the equation takes place 
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X , X X , U ρ( , ) , 0j j
m mi ix x y y x         \ , 

1ρ( , ) ρ( , ), ρ( , ) ρ( , ), 1, 1j j ji i iy x y x y x y x j m    . 
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features description and matching. It should be emphasised that formally ( )-k search is 
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matrix of database elements can be pre-calculated  
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0 ... ... ...(X) ... ... ...
0 ρ( , )

0

n
n

n n

x x x x x x
x x x x

d
x x

 
 
   
 
 
 

.                       (1) 
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distance from *x  to the search object y  were considered. It is obvious that introducing to 

the analysis additional pivot point *jx  in some cases will allow to narrow the ranking 
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*x , than to 2

*x , i.е. 
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1 2( ) ( ) 0 ( )
2

{ }
**

i
y,x y,xmax , y,x 

  .                              (14) 

Indeed according to the triangular inequality axiom we have  
 

1 1( ) ( ) ( )** i iy,x y,x x ,x     , 

then 
 

1 1( ) ( ) ( )* *i iy,x y,x x ,x    .                                            (15) 

Further the following takes place 
 

2 2( ) ( ) ( )* *i ix ,x y,x y,x     .                                           (16) 

Using  condition (13), from equations (15) and (16) we get 
 

1 2( ) ( ) ( ) ( )** i iy,x y,x y,x y,x        
 

what under possible negativity of expression 1 2( ) ( )
2

**y,x y,x 
 gives evaluation (14). 

  
3. Metrical search models 

We shall consider some approaches to (δ)- search, which create the premises for creating an 
efficient indexing system to reduce a number of distance calculations on the search stage.  
We shall agree that distance matrix (X)d  is calculated in the result of preliminary 
processing. The most simple but at the same time often most practically effective (in terms of 
matching operations number) indexing method is based on the full distance matrix 
calculation. Let us briefly describe this method. Suppose on iteration i  there is a set of 

( 1)X Xi   objects for which decision is not made if they are inside the search radius or not. 

It should be pointed out that 0X X . Then some element ( 1) ( 1)Xi ix    is being chosen 

randomly or according to some criteria, ( 1)( )iy,x  is calculated and the next set is produced 
 

( 1) ( 1)( ) ( 1) ( 1) ( 1) ( 1)X { X { } ( ) ( ) }i ii i i i i
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It is obvious that ( 1) ( 1)( 1) ( ) ( 1) ( 1)) ( )i ii i i i
j jx X X | ( x ,x y,x |           and all such 

elements can be eliminated from the consideration. Figure 1 illustrates forming of set (1)X  
on first iteration: all elements (0)Xix   situated in the crosshatched region are eliminated 

from consideration and the rest of elements will form set (1)X . 
 

 

 
Fig. 1. Geometrical interpretation of eliminating the elements based on the lower distance 
evaluation 
 
Let Y  be a goal set of elements X , situated inside of the search radius, which is empty on 
the initial stage. Then on i  iteration we get ( 1)Y Y ix   , if ( 1)( )iy,x    . The procedure 
is carried out recursively till step l , when 
 

{ 1 }k l m,l m , ,l       ( 1) ( )(X ) 1 (X )k kcard card   , ( ) ( 1)X Xk k , 

i.e. exactly one element is eliminated from consideration during m  iterations. In this case 
( )( )l
jx , y , ( ) ( )Xl l

jx  , ( )1 ( )lj ,card X  are calculated and evaluated directly completing 

the Y  forming. Total number of matching operations will be equal to  
 

( )N( ) (X )ll card   .                                                (18) 

In practice storing full distance matrix (X)d  is expensive due to the quadratic dependency 
of the required memory on database dimensionality. To solve this problem which is 
extremely acute on big data sets, a ‘sparse’ view (X)d  is used or special data structures are 
formed which in some way approximate the distance matrix considering correlation of its 
elements. Obviously a natural requirement for such methods would be a compromise 
between cost of resources storage and distance matching operations number at the search 
stage which should tend to N( )  in (18). At the same time it should be noted that value 
N( )  is random in sense that it depends on the objects space configuration, mutual location 

and order of choosing objects (1) (2) ( )lx ,x , ,x , as well as location of query object y . For 

example, N( )  value can be decreased if object (2)x  is chosen at first iteration, and (1)x  is 
chosen at the second one. Thus indexing methods which operate on not complete 
information comparing with method on complete distance matrix theoretically can perform 
less matching operation then the last one. 
Let us introduce a set of fixed image database elements 1 2*X { , , ..., }* * *kx x x .  From (5) the 
lower distance bound follows 
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*Xρ( , ) ρ ( , )i iy x y x                                                     (19) 

where *X *X
ρ ( , ) ρ( , )  ρ( , )|* *i i

x*
y x max | y x x x


 . It is the simplest indexing method based on 

a ‘sparse’ distance matrix where Xd( )  after corresponding re-ordering of indexes takes the 
form  
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    
   




  


.                                 (2.20) 

 

It should be noted that this approach can be interpreted as mapping (X ) ( )k, ,     and 
fulfilling the search in k -arity space. 
Lower distance bounds (8), (12), (14) can be obtained without information about exact 

( )*y,x  or ( )*, ix x  values. For example, m  columns of some rows of the sparse distance 
matrix can be defined by interval (7). If 0max min    , lower bound (8) will tend to the 
lower bound (5). Thus, the greater is m  value, the greater is the volume of released 
memory, which can be used for the additional pivot objects choice what should potentially 
increase indexing algorithms efficiency, for example will increase the *Xρ ( , )iy x  value for 
the sparse distance matrix. Further let for each non-pivot object ix  be defined the closest in 
terms of chosen metric pivot object *x , what allows to form a membership matrix. Then on 
the search stage for obtaining the lower distance bound ( )iy,x  one can use (14) and there 
is no necessity for storing exact values )( *ix ,x . It can be noted that produced membership 
matrix is few times more compact (depending on programming realization) as for the 
resources used for its storing comparing with the distance matrix. All that also allows to 
allocate greater number of pivot objects. 
The described approaches allow to construct different variants of data structures, including 
hierarchical ones for the indexing organization. We will consider several of them.  
We shall chose a random point *x  and calculate the distance ( ) X* i ix ,x ,x  . We shall 
introduce the equivalence relation   such that i jx x


 , if ( ) ( )* *i jx ,x x ,x   . Given 

relation allows to partite X  into equivalence classes {X }d , where 
X { X ( ) }*d i ix : x ,x d     for 0d  ,  0X { }*x . The partition process can be continued 

recursively inside of each class. On the search stage all Xd , for which *( y,x ) d     is 
fulfilled are eliminated from consideration. 

 

Let us consider another method of X  partition. We shall call it a binary tree method. On the 
starting stage a pivot object *jx , which has index j  in the matrix Xd( )  is singled out, and 

row j  of the given matrix is calculated. This way we shall define distances to all other 
objects 1 2X X Xj , j , j ,nd( ) ,d( ) , ,d( ) . We shall sort values of row j  ascending, having re-

labelled indices * * *1 2X X Xj , j , j ,nd ( ) ,d ( ) , ,d ( ) , and define *

2

M X*j nj ,
( x ,d ( ) ) 

  

   – the 

distance to the median object. We produce partition of X  into two classes 
X X M*i j i{ x : ( x ,x ) }      and X X M*i j i{ x : ( x ,x ) }      (Figure 2). 

 

 
Fig. 2. Geometrical interpretation of the indexation method structure forming by binary tree 
 
On the search stage it is necessary to search only class X  under ( ) M*jx , y   , and class 

X  under ( ) M*jx , y    . On figure 3-a is shown that when the first equation is fulfilled 

X  contains the hypersphere formed around the query object. Figure  3-b illustrates 
fulfilment of the second equation.  
Thus when one of two mentioned equations is fulfilled a half of the elements in set X  can 
be eliminated from the consideration. If not, i.e. when M ( ) M*jx , y      , 

hypersphere with centre in *jx  and radius M  intersects hypersphere of the query object, 

analysis of each of the X  and X  sets is required (figure  3-c). 
One possible way to solve the problem is to introduce into consideration an additional 
equivalence class M,X    { X M ( ) M }*i j ix : x ,x       and redefine existing classes 

X { X ( ) M }*i j ix : x ,x       and X { X ( ) M }*i j ix : x ,x      , where    . 
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fulfilling the search in k -arity space. 
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In this case on the search stage (depending on the data configuration and query object 
location) consideration of the following classes will be required (see figure  4 where all 
elements situated in the crosshatched region are eliminated from the consideration): 

– X  under ( ) M*jy,x      (figure 4-a); 

– X  and M,X   under M ( ) M*jy,x         (figure 4-b); 

– M ,X   under M ( ) M*jy,x         (figure 4-c); 

– M ,X   and X  under M ( ) M*jy,x        (figure 4-d); 

– X  under ( ) M*jy,x     (figure 4-e). 

 
 

         а)                            b)                             c)                                 d)                             e) 
Fig. 4. Possible variants of considering sets X , M ,X  , X  under different location of the

query object 

 
                 а)                                                               b)                                               c) 

 

Fig. 3. Three possible variants of considering sets X , X  under different location of the
query object 

 

Obtained partition has both advantages and disadvantages. Obviously regardless of the 
location of y  one of sets X , X  will be eliminated from the consideration. From the other 
hand cardinalities of X  and X  can differ and thus the search tree will not be balanced. 
Partition of set X  should be «granulated» recursively under (X)card b , where b  is 
maximally allowed cardinality of «leaf» set, 3b  . 
Let us consider method of indexing by partitions. We shall fix a set of pivot objects 

1 2
* * **X { , , ..., }kx x x . If elements *sx , 1s ,k  form regions X*

s  based on the following 
 

X X 1* * *s i i s i tx : t ,k ,t s ( x ,x) ( x ,x ){ }        ,                      (21) 

then {X }*
s  is a partition of X . Notice that in case when metrical space is a 2 , partition 

elements are cells of the Voronoi diagram. Voronoi diagram for the finite points set S  on 
plane is a partition of this plane in such way that each region of this partition forms a set of 
points which are more close to one of the elements of set S , than to any other element of the 
set. 
Introduced in this way partition allows to obtain several lower bounds of distance ( )iy,x . 

We shall denote them as ( )p
min , where p  is a number of evaluation. 

Condition (13) is fulfilled in consequence of (21), as )( ) ( **i s i tx ,x x ,x    X*i sx  , t s . 
Then from (14) for k  pivot points we get evaluation of lower bound of distance ( )iy,x  

X*i sx  : 
 

(1)

1

( ) ( )( ) 0
2

{ }{ }* *s t
min t ,k ,t s

y,x y,xs max max ,
 

  
  .                      (22) 

 
Let 

X
( ) ( )

i s

*max s i*x
s max x ,x


    be a radius of partition X*

s  cover. Then according to (8) we get 

second lower distance evaluation: 
 

(2) ( ) ( ) ( )*s maxmin s y,x s     .                                      (23) 

On the preliminary processing stage minimal and maximal distances between partitions 
should be calculated: 
 

X
( ) ( )

i t

*min s i*x
s,t min x ,x


   ,                                        (24) 

X
( ) ( )

i t

*max s i*x
s,t max x ,x


   ,                                       (25) 

where 1s,t ,k . 
Then ( )min s,t  and ( )max s,t  under s t  are corresponding evaluations of min  and 

max  distances ( )*, xs ix  X*i tx   in (8). It should be noted that under s t  ( ) 0min s,s   
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                 а)                                                               b)                                               c) 

 

Fig. 3. Three possible variants of considering sets X , X  under different location of the
query object 

 

Obtained partition has both advantages and disadvantages. Obviously regardless of the 
location of y  one of sets X , X  will be eliminated from the consideration. From the other 
hand cardinalities of X  and X  can differ and thus the search tree will not be balanced. 
Partition of set X  should be «granulated» recursively under (X)card b , where b  is 
maximally allowed cardinality of «leaf» set, 3b  . 
Let us consider method of indexing by partitions. We shall fix a set of pivot objects 

1 2
* * **X { , , ..., }kx x x . If elements *sx , 1s ,k  form regions X*

s  based on the following 
 

X X 1* * *s i i s i tx : t ,k ,t s ( x ,x) ( x ,x ){ }        ,                      (21) 

then {X }*
s  is a partition of X . Notice that in case when metrical space is a 2 , partition 

elements are cells of the Voronoi diagram. Voronoi diagram for the finite points set S  on 
plane is a partition of this plane in such way that each region of this partition forms a set of 
points which are more close to one of the elements of set S , than to any other element of the 
set. 
Introduced in this way partition allows to obtain several lower bounds of distance ( )iy,x . 

We shall denote them as ( )p
min , where p  is a number of evaluation. 

Condition (13) is fulfilled in consequence of (21), as )( ) ( **i s i tx ,x x ,x    X*i sx  , t s . 
Then from (14) for k  pivot points we get evaluation of lower bound of distance ( )iy,x  

X*i sx  : 
 

(1)

1

( ) ( )( ) 0
2

{ }{ }* *s t
min t ,k ,t s

y,x y,xs max max ,
 

  
  .                      (22) 

 
Let 

X
( ) ( )

i s

*max s i*x
s max x ,x


    be a radius of partition X*

s  cover. Then according to (8) we get 

second lower distance evaluation: 
 

(2) ( ) ( ) ( )*s maxmin s y,x s     .                                      (23) 

On the preliminary processing stage minimal and maximal distances between partitions 
should be calculated: 
 

X
( ) ( )

i t

*min s i*x
s,t min x ,x


   ,                                        (24) 

X
( ) ( )

i t

*max s i*x
s,t max x ,x


   ,                                       (25) 

where 1s,t ,k . 
Then ( )min s,t  and ( )max s,t  under s t  are corresponding evaluations of min  and 

max  distances ( )*, xs ix  X*i tx   in (8). It should be noted that under s t  ( ) 0min s,s   
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and 
X

( ) ( ) ( )
i s

*max s i max*x
s,s max x ,x s


     . From here it can be stated that evaluation 

(2) ( )min s  in (23) is a special case of evaluation  
 

(3) (3)

1
( ) { ( )} 0{ }min min

t ,k
s max max s,t ,


   ,                                 (26) 

(3) ( ) { ( ) ( ) ( ) ( ( ))}* *s max min smin s,t max y,x s,t , s,t y, y,x        .             (27) 
 

Evaluation (1) ( )min s  allows to eliminate from the consideration all elements of class X*
s , 

while evaluation (3) ( )min s,t  allows to obtain lower distance bound for class (and all its 

objects) X*
t  with no necessity for calculating the distance ( )*ty,x . 

Finally, the maximal lower bound of distance i( y,x ) , X*
i sx   is defined as 

 
(3)(1)( ) { ( ) ( )}min min mins max s , s    .                                 (28) 

One way to use the obtained distance lower bounds on the search stage is to calculate k  
distances to pivot objects and eliminate those classes X*

s , for which ( )min s    is fulfilled. 
This task can be solved more optimally by defining the distance from y  to not all of 
elements *sx . Let E  contain a set of pivot objects producing the partitions which cannot be 

eliminated. On the initial stage 1E { }k*s sx  . Then we chose random E*sx  , for which 

( )*sy,x  is not calculated, compute this distance and fix lower bound (3) ( )min s,t  on (2.27) for 

all E*tx  , performing E E { }*tx   in case of (3) ( )min s,t   . The procedure is repeated till 

E  becomes an empty set or till distances to all E*sx   are calculated. As interval 

( ) ( )( )min maxs,t , s,t   can be large, the refinement of the lower bound of the regions still 
contained in E  can be done via (22). 
The algorithms described above do not exhaust all the potentialities of the distance matrix 
analysis. The matrix factorization provides a certain perspective for pivot points choice and 
the search itself. This factorization in fact correspons to object clustering in the given 
metrical space. Let us consider such a method.  

  
4. Block-diagonal forms of distance matrix 

We shall denote ,ρ ρ( , )i j jx xi  as elements of distance matrix (X)d  and consider a 

random subset of the database objects for which ,ρ δi j  . These objects can be used as the 

result of (δ)- search, although for that the formalization of search of all such groupings 
under given criteria is needed. Here a number of matching operations between query and 
database objects will be taken as a main criteria. In other words the task lies in preliminary 

 

clustering of the database with the search strategy of finding the closest cluster and if 
necessary continue the search inside of the chosen cluster. The goal of the clustering here is 
minimization of the matching operations number (under given precision of search).  
Definition 4. We shall name a quadratic symmetric matrix of l -th order as k

l -block of a 

distance matrix (X)d   
 

1 2 1
1 1 2 1

1 1 1 1 2

, , ,
, , , 1

, , ,

0 ρ ρ ρ
ρ 0 ρ ρ

[ (X)]

ρ ρ ρ 0

k k k k k k l
k k k k k k lk

l

k l k k l k k l k l

...

d ... ... ... ... ...
... ... ... ... ...

...

   
     

        

 
 
  
 
 
 

  

which is the result of rearranging of rows and columns with numbers 1 2{ , ,..., }li i i  such that 

1 2 ,, { , ,..., }l i' i''i' i'' i i i      . 

We shall call a k
l -block of matrix (X)d  maximal if  

 
 1 2 1 2,{1, 2,..., } { , ,..., }: δ { , ,..., }l r i' lr n i i i i' i i i    \ . 

It should be emphasised that some elements can belong to two or more k
l -blocks of matrix 

(X)d  simultaneously. Obviously there are two possible variants in this case: they are 
included into all possible blocks, or they are included into blocks where sums of elements 
are minimal, what meets the maximal clusters compactness criterion. Generally in the first 
case we deal with a cover (weak clustering) of database elements set, in the second case – 
with partition. In result the means of k

l -blocks forming influences the search algorithms 

implementation, especially if more detailed result is required, for instance for ( )-k  or 
( , )-k search. 
We shall call a  -representation a block-diagonal shape of matrix (X)d  
 

1
1

2
2

0

0[ (X)] 0 0
0 0 lm

m

k
l

k
l

k

d ...

 
 

  
 
   

, 

where 1
1 1 11, 1,i m

i j jj jk k l l n
      . 

It is clear that the best  -representation (in sense of matching operations number) at 
(δ)- search, is the one with minimal number of blocks. In other words forming of matrix  -
representation under given δ  should provide 

(X)k
l d

mmin
 

.                                                            (29) 
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E  becomes an empty set or till distances to all E*sx   are calculated. As interval 

( ) ( )( )min maxs,t , s,t   can be large, the refinement of the lower bound of the regions still 
contained in E  can be done via (22). 
The algorithms described above do not exhaust all the potentialities of the distance matrix 
analysis. The matrix factorization provides a certain perspective for pivot points choice and 
the search itself. This factorization in fact correspons to object clustering in the given 
metrical space. Let us consider such a method.  

  
4. Block-diagonal forms of distance matrix 

We shall denote ,ρ ρ( , )i j jx xi  as elements of distance matrix (X)d  and consider a 

random subset of the database objects for which ,ρ δi j  . These objects can be used as the 

result of (δ)- search, although for that the formalization of search of all such groupings 
under given criteria is needed. Here a number of matching operations between query and 
database objects will be taken as a main criteria. In other words the task lies in preliminary 

 

clustering of the database with the search strategy of finding the closest cluster and if 
necessary continue the search inside of the chosen cluster. The goal of the clustering here is 
minimization of the matching operations number (under given precision of search).  
Definition 4. We shall name a quadratic symmetric matrix of l -th order as k

l -block of a 

distance matrix (X)d   
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, , ,
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 

  

which is the result of rearranging of rows and columns with numbers 1 2{ , ,..., }li i i  such that 

1 2 ,, { , ,..., }l i' i''i' i'' i i i      . 

We shall call a k
l -block of matrix (X)d  maximal if  

 
 1 2 1 2,{1, 2,..., } { , ,..., }: δ { , ,..., }l r i' lr n i i i i' i i i    \ . 

It should be emphasised that some elements can belong to two or more k
l -blocks of matrix 

(X)d  simultaneously. Obviously there are two possible variants in this case: they are 
included into all possible blocks, or they are included into blocks where sums of elements 
are minimal, what meets the maximal clusters compactness criterion. Generally in the first 
case we deal with a cover (weak clustering) of database elements set, in the second case – 
with partition. In result the means of k

l -blocks forming influences the search algorithms 

implementation, especially if more detailed result is required, for instance for ( )-k  or 
( , )-k search. 
We shall call a  -representation a block-diagonal shape of matrix (X)d  
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1

2
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 
 
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where 1
1 1 11, 1,i m
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      . 

It is clear that the best  -representation (in sense of matching operations number) at 
(δ)- search, is the one with minimal number of blocks. In other words forming of matrix  -
representation under given δ  should provide 

(X)k
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 
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In the situation mentioned above the criterion can be considered  
 

1 2 ,, { , ,..., }
(X)

ρ
lk

l

i ji j i i i
d

min 
 

                                           (30) 

which does not change the value of goal function (29), but allows to obtain more adequate 
clustering of the database. 
We shall consider the procedure of forming the maximal i

j -block of distance matrix (X)d  

on set 1 2{ , ,..., } {1, 2,..., }rp p p n . We shall find a new row α*  such that  
 

1 2
α, α, 1 2

α { , ,..., }
α {ρ }: ρ δ, { , ,..., }{ }

r

* q q r
p p p

arg card q p p pmax


   .         (31) 

Let us discuss the choice of one of them (under equality α*  for some rows). We denote 
found in (31) indices 1 2{ , ,..., }rq p p p  as 1 β{α ,...,α ,..., α }* . There also can be few of such 

sets: let us chose any of them. Two cases are possible: 
 

1 β α , αα ,α {α ,...,α,..., α } ρ δ* ' ''' ''    ,                                 (32) 

1 β α , αα , α {α ,...,α ,..., α } such that ρ δ* ' ''' ''   .                                (33) 

Implication (32) means that a choice of α*  guarantees forming of maximal 1β
i
 -block of 

distance matrix (X)d  on set 1 2{ , ,..., }rp p p . So, having redefined the search field  
 

1 2 1 2 21 β{ , ,..., } { , ,..., } {α , α ,..., α }r rp p p p p p \ ,                 (34) 

if 1 2{ , ,..., }rp p p   , we can move to the construction of maximal i
j -block, starting with 

(31). This case is illustrated in figure 5.  
Situation described in (33) is more complicated, but it can be brought to (32) by sequential 
elimination of far situated elements. Here 2 situations are possible as well: equality of the 
eliminated and remained elements and their discrepancy. 
In case of the elements count discrepancy, till fulfilment of (32) every element α' , 

( 0 ,γ 1, 2,..., Γ, {α }= Γ:'   1 β α, αα , α {α ,...,α } ρ δ' ''' ''   , are sequentially eliminated 

11 β 1 β{α , ..., α } {α , ..., α } {α }' \ ) such that 

 

1 β
, , 1 β

{α ,,..., α }
α {ρ }: ρ δ, {α ,,..., α }{ }q s q s

s
' arg card qmax


   .              (35) 

 

 
 
If cardinality of reduced indexing set exceeds the number of close elements of the next 
biggest on (31) value distance matrix row it means that the next block is obtained. 
Otherwise, having temporarily eliminated α'  from 1 2{ , ,..., }rp p p , we repeat the 

considered steps till the next i
j -block is  obtained, after that all eliminated rows are 

brought back for further analysis. Figure 6-а illustrates geometrical interpretation of this 
case, figure 6-b illustrates the result of i

j -blocks forming. 

If at any step of the procedure there is an equal number of the eliminated and remained elements 
(figure 7) element α* , as was mentioned above, can be included into all blocks (on the given step 
we get a few maximal blocks and reduction (34) is fulfilled multiple times) or using (30), we 
chose a maximal compact block, and after that start the formation of the next block. 
Now we can discuss the choice of α*  when having multiple rows in (31). First of all we 
shall emphasise that for (32) we have exactly β  rows and choice of α*  does is of no 

importance, as all elements will be simultaneously put into one i
j -block (see figure  5), or 

there are few blocks of the same cardinality, and all of them are obtained sequentially. If the 
(33) takes place, then 

 

                                 a)                                             b) 
Fig. 6. Geometrical interpretation of -blocks forming for (33) 

 
Fig. 5. Geometrical interpretation of i

j -block under (32) 
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In the situation mentioned above the criterion can be considered  
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which does not change the value of goal function (29), but allows to obtain more adequate 
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case, figure 6-b illustrates the result of i
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we get a few maximal blocks and reduction (34) is fulfilled multiple times) or using (30), we 
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the choice of α*  is also random, as accurate within the numeration all maximal blocks will 
be sequentially reduction formed till cases (32).  
Thus, we have considered forming of some i

j -block on index set 

1 2{ , ,..., } {1, 2,..., }rp p p n . After search and renumbering on set {1, 2,..., }n  of first 
maximal block in - representation of distance matrix we get 
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Further elimination of indices set 1{1, 2,..., }k , we get distance matrix of dimension 

1 1( ) ( )n k n k   . Repeating the procedure for every new distance matrix we at first get the 
required representation, at second due to maximality of blocks on each steps fulfil (29). 
Some notes should be made. First of all, it is not necessary to eliminate elements α' , as the 

next element α*  can be temporary omitted. Maximal i
j -block will still be found, but 

possibly it will take more iterations to execute. It can be emphasised that efficiency of 
computational models of forming  -representations will improve a lot if rows of matrix 

(X)d  is ordered descending accordingly to (31) criterion. Firstly reduction (34) will be 
simplified due to sequential elimination of the distance matrix rows. Secondly, in many 
cases we will not need renumbering of i

j -block elements under including it into the  -

representation.  
 

 

Fig. 7. Forming of i
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5. Computational models optimization. 

In practice depending on data configurations used in the metric space fulfilment of (29) may 
not provide sufficient search efficiency. It will happen if for example value δ  was not 
chosen rationally, or dimensionalities of blocks in  -representations are still too large to be 
used as a result of the (δ)- search. Then, one way is to keep searching inside of the best 
block (best in terms of closeness to the query), another way is to expand (extend) the 
preliminary processing. Particularly within distance matrix preprocessing  -
representations can be formed in each of the found i

j -blocks. Though the task becomes 

more complicated as it is not known which of the  -representations will be used on the 
second search stage. In other words the guaranteed search operations number is determined 
by number of i

j -blocks, obtained on the first stage, maximal number of nested i'
j' -blocks 

in each of i
j -blocks and maximal number of their elements. At that as  -representation 

with closeness parameter δ  is already found, we can confine ourselves to splitting on 
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We shall order obtained i
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2s  – of dimension tl , i.e. 0 1 21= tl l l l n    . Then, assuming that we need to split blocks 
starting with dimension il , and denoting the maximal dimension of the resulting blocks as 

1M [ , ]i il l    (figure 8), we get two possible search realization strategies. The first one 
is searching the best block of nested  -representation, then the nested block of  -
representation and exhaustive search in the closest i

j -blocks. The second one consists in 

choosing the block among union of all blocks of two-level - representation of the distance 
matrix. The first strategy is a special case of the stratificated analysis and is out of our 
research field. Let us stop on the second one: maximal matching operation number is equal 
to the sum of blocks number and their maximal dimensionality, i.e.  
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Thus it is necessary to find value M , providing minimum (36). Searching of minimum 
(M)f  we shall sequentially perform on each 0 1 1 2 1[ , ], [ , ], , [ , ]t tl l l l l l . Among the best 

obtained results we shall chose the minimal one which provides nested splitting of given 
- representation blocks. Let us analyse the local minimum (M)f  search procedure. 

Let us chose a partial interval 1[ , ]i il l  . If it is small enough ( 1 {1, 2,3}i il l   ), then 
solution can be found by exhaustive search. In other case we shall change discrete function 

(M)f  with continuous on 1[ , ]i il l  function ( )x x u x v    , where 0t
j jj iu l s  , 

1
1 0i

jjv s
  . It is easy to see that 1 1[ , ], M [ , ] ( ) (M)i i i ix l l l l x f        . 

Error of transition to continuous function has the upper bound 
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Stationary point of function ( )x x u x v     according to condition 0x   is  
 

t
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As function ( )x  is monotonic on intervals (0, ]*x  and [ , )x*  , its optimum on integer 
interval 1[ , ]i il l    should be searched for either on its ends or if 1( , )i ix* l l , in points 

*
1M *x  , *

2M x*  , where «   » is a maximal integer not exceeding the given one. 
Therefore, 
 

1
1

1

[ , ]
* *
1 1 2

( ) { ( ), ( ),

( { {M , }, }), ( { {M , }, })}.
i i

i i
l l

i i i i

* min x min l l

max min l l max min l l




 

     

 
   

 
In the same way we shall find 
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If f * *  , than according to condition ( ) (M)x f   optimal value on 1[ , ]i il l  is found. If 
no C 0f * *     is an error of optimal value definition. If the error is small (for 
example, 1f * *   ), the optimization process is finished. In other case the field of search 
should be narrowed for what we shall find solutions x  and x''  of the equation  
 

* * * *x u x v m u m v f       ,                               (37) 
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It is obvious that equation (37) always has solution because  
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Taking into consideration that 0*m   and 
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i.e. 0x x   , we shall form the interval 1[ , ] [ , ]i il ' l '' l l  as following  
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And repeating the suggested procedure necessary number times we shall be solving the task 
of finding optimal maximal possible dimension of nested i

j -blocks on shortened intervals, 

namely  

[ , ]
(M)

l ' l ''
f min


. 

Under high enough dimensionality of task the number of analysed partial intervals can 
become very big. The proposed procedure of nested i

j -blocks maximal dimensionality 

search can be applied for reducing the number of analysed intervals on the admitted region, 
i.e. interval [1, ]tl . Considering that 1M [ , ]i il l   (2.36) is fulfilled, then 1M [ , ]tl l   we 
get  

1
M(M) M t

j jj
l sf


    , 

Therefore the continuous function ( )x , which does not exceed discrete function (M)f  on 
all interval [1, ]tl , has a form 
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We shall note that the limitation evaluation at that has form  

1(M) (M) Ct
jjf s   . 

Acting the same way as described above we find on interval [1, ]il    values *  and f* . 

Then we define [ , ]l ' l '' , and intersection 1[ , ] [ , ] ( 1, )( )i il ' l '' l l i t      defines 
reduced set of partial intervals 1[ , ], { } {1, 2, ..., }i' i'l l i' t  . 
Found in result partition parameter M  only defines optimal maximal dimension of nested 
blocks or, what is equivalent, their quantity. As it is possible that cases M il  ( 1, )i t  and 

M 0imod l   (see figure 8) may arise, elements should be redistributed among sub-blocks 
aiming to minimise sum of inter-block distances and maximize intra-blocks distances, what 
should provide search reliability increase.  
So, to provide the guaranteed maximum of matching operations number it is necessary to 
independently split each of the i

j -blocks if its dimension exceeds found M  value. We 

shall fix some i
j -block, which needs to be split, and corresponding cardinality denote as 

N . The number of nested blocks under that is equal to L , L N M  . It can be noted that 

we should obtain not less than *L  blocks of dimension M  
 

M
M M

M

N M , N 0,
*L = N M M+ N, M N N M ,

0, M N N M

mod
mod mod

mod .
 

        
     

 

We can point out conditions for defining potential dimensions and orders of nested blocks  

M N Mrmod p  , 
L

1
Nr

r
p


  

where rp  are dimensions of nested blocks. 
In other words we get the Diophantine equation  
 

1 2 SM + (M 1) + (M S 1) N        ,                          (38) 
where {0}s   ,  

 

1,Ss  ,  M M
M

M N+1, N 0,S= 1, N=0.
mod mod

mod
   

Solutions of the linear equation (38) on subset of positive integers induce all possible 
redistributions of elements into subclusters, invariant regarding main criterion – minimum 

of comparative recognition operations. Let Q
1 2 S =1{ , , , }qq q

q    be solutions of equation 

(38), then under S 1 , obviously the single case is considered, yet if at least two elements 
are not equal to 0 , then taking into account that we are operating with blocks where 
distanced do not exceed threshold δ , under forming the nested blocks one should chose the 

 

best variant in the sense of maximization of intra-blocks distances among V  possible 
situations  
 

Q Q
1 2 S 1

1 2 S
1 11 2 S

( )!
V L! Q ( ! ! !)

( ! ! !)

q q q
qq q

qq q
q q
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 
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 





. 

 
6. Experimental comparative analysis of search models  

A number of tests have been performed on set of points in 2  space with 2L  metric. We 
used two configurations of data distribution: uniform and with formed clusters. We 
implemented the following index structures to preprocess the initial data set: 
 
Table 1. Indexing methods used for the experiments. 

i) Full 
matrix 

Random choice of key objects.  
Maximal number of iterations under which not a single element is 
eliminated from the consideration 3m  . 

ii) «Sparse» 
matrix 

64 pivot points chosen randomly. 

iii) Binary 
tree 

Random choice of pivot points on the tree construction stage. 
Maximal allowed cardinality of «leaf» set 3b  . 

iv) Partitions 64 randomly chosen pivot points.  
On the search stage one eliminate regions using criteria (27)  iterative 
procedure which exploits (28).  

 
The purpose was to calculate the matches number during the search on uniform and clusters 
distribution of objects and its dependency on the query object position and data set 
configuration. 
Data for uniform distribution consisted of 1024 points, for the clusters one there were 16 
clusters, with cluster cardinality mean equal to 64   and variance equal to 10   of 
(1024 elements in total). Both sets of points coordinated were within the range [0;256] (data 
square here and after). The example of these configuration is presented on Figure 9. 
Variance of single cluster points location was set to 6 for both coordinates. It was allowed 
that clusters could overlap. We used k n  parameters for indexation ii), and created one-
level partition with k n  number of pivots in indexation iv). 

First experiment examined dependency of the index structure on the position of the 
query object. We generated uniform and cluster data structures, created all index structures 
and randomly chose query object from the data square 500 times, tracking the number of 
matches of each data structures for all queries. We then calculated the mean and variance of 
matches count for each index structure (Table 1).  
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We shall note that the limitation evaluation at that has form  

1(M) (M) Ct
jjf s   . 

Acting the same way as described above we find on interval [1, ]il    values *  and f* . 

Then we define [ , ]l ' l '' , and intersection 1[ , ] [ , ] ( 1, )( )i il ' l '' l l i t      defines 
reduced set of partial intervals 1[ , ], { } {1, 2, ..., }i' i'l l i' t  . 
Found in result partition parameter M  only defines optimal maximal dimension of nested 
blocks or, what is equivalent, their quantity. As it is possible that cases M il  ( 1, )i t  and 

M 0imod l   (see figure 8) may arise, elements should be redistributed among sub-blocks 
aiming to minimise sum of inter-block distances and maximize intra-blocks distances, what 
should provide search reliability increase.  
So, to provide the guaranteed maximum of matching operations number it is necessary to 
independently split each of the i

j -blocks if its dimension exceeds found M  value. We 

shall fix some i
j -block, which needs to be split, and corresponding cardinality denote as 

N . The number of nested blocks under that is equal to L , L N M  . It can be noted that 

we should obtain not less than *L  blocks of dimension M  
 

M
M M

M

N M , N 0,
*L = N M M+ N, M N N M ,

0, M N N M

mod
mod mod

mod .
 

        
     

 

We can point out conditions for defining potential dimensions and orders of nested blocks  

M N Mrmod p  , 
L

1
Nr

r
p


  

where rp  are dimensions of nested blocks. 
In other words we get the Diophantine equation  
 

1 2 SM + (M 1) + (M S 1) N        ,                          (38) 
where {0}s   ,  

 

1,Ss  ,  M M
M

M N+1, N 0,S= 1, N=0.
mod mod

mod
   

Solutions of the linear equation (38) on subset of positive integers induce all possible 
redistributions of elements into subclusters, invariant regarding main criterion – minimum 

of comparative recognition operations. Let Q
1 2 S =1{ , , , }qq q

q    be solutions of equation 

(38), then under S 1 , obviously the single case is considered, yet if at least two elements 
are not equal to 0 , then taking into account that we are operating with blocks where 
distanced do not exceed threshold δ , under forming the nested blocks one should chose the 

 

best variant in the sense of maximization of intra-blocks distances among V  possible 
situations  
 

Q Q
1 2 S 1

1 2 S
1 11 2 S

( )!
V L! Q ( ! ! !)

( ! ! !)

q q q
qq q

qq q
q q



 

     
    

  
 





. 

 
6. Experimental comparative analysis of search models  

A number of tests have been performed on set of points in 2  space with 2L  metric. We 
used two configurations of data distribution: uniform and with formed clusters. We 
implemented the following index structures to preprocess the initial data set: 
 
Table 1. Indexing methods used for the experiments. 

i) Full 
matrix 

Random choice of key objects.  
Maximal number of iterations under which not a single element is 
eliminated from the consideration 3m  . 

ii) «Sparse» 
matrix 

64 pivot points chosen randomly. 

iii) Binary 
tree 

Random choice of pivot points on the tree construction stage. 
Maximal allowed cardinality of «leaf» set 3b  . 

iv) Partitions 64 randomly chosen pivot points.  
On the search stage one eliminate regions using criteria (27)  iterative 
procedure which exploits (28).  

 
The purpose was to calculate the matches number during the search on uniform and clusters 
distribution of objects and its dependency on the query object position and data set 
configuration. 
Data for uniform distribution consisted of 1024 points, for the clusters one there were 16 
clusters, with cluster cardinality mean equal to 64   and variance equal to 10   of 
(1024 elements in total). Both sets of points coordinated were within the range [0;256] (data 
square here and after). The example of these configuration is presented on Figure 9. 
Variance of single cluster points location was set to 6 for both coordinates. It was allowed 
that clusters could overlap. We used k n  parameters for indexation ii), and created one-
level partition with k n  number of pivots in indexation iv). 

First experiment examined dependency of the index structure on the position of the 
query object. We generated uniform and cluster data structures, created all index structures 
and randomly chose query object from the data square 500 times, tracking the number of 
matches of each data structures for all queries. We then calculated the mean and variance of 
matches count for each index structure (Table 1).  
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Fig. 9. Example of points configuration for cluster (left side) and uniform (right side) data 
configuration.  
 
As it was expected indexation which exploits a full distance matrix i) outperforms the other 
ones while indexation on sparse matrix ii) keeps the second place. Indexations iii) and iv) 
have approximately equal efficiency.  
We can claim that when objects of database tend to form clusters the number of matches 
does not vary dramatically for all indexing methods, they only differ notably on variance 
and therefore in some cases performance of methods iii) and iv) can take much more time 
than it was expected. On the other hand, when distribution of objects is uniform then 
indexation i) perform 4 times better results than iii) and iv) while indexation ii) performs 2 
times better results. 
In the second experiment we tried to track dependency of index structures efficiency on 
different data configurations.  
We created 50 random configurations of uniform and cluster data distributions and ran 
routines of the first experiment changing query object position 20 times. We found out that 
statistics of the indexations efficiency was almost the same compared to first experiment 
results, only variance grew a bit.  
On figures 10 and 11 an average number of distance computations on 50 iterations for 
indexation algorithms i) – iv) is given for uniform and cluster data configuration.  
 

Data 
configuration 

Full matrix Sparse matrix Partition search Binary search 
                

uniform 23.56 4.82 50.98 4.58 107.78 36.18 90.08 23.7 
clusters 30.63 29.73 55.19 26.27 71.2 71.39 74.362 48.49 

Table 2. Dependency of the matches number on different data configurations 
 

 

 
Fig. 10. Results of matches count dependency on change of cluster data configuration 

 

 
Fig. 11. Results of matches count dependency on change of uniform data configuration 
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Fig. 11. Results of matches count dependency on change of uniform data configuration 
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6. More experiments, conclusions and future work 

It was shown that index methods efficiency depends on the data configuration. If objects 
location is uniform, methods on full and sparse matrix outperform binary tree and partition 
methods. Though if objects form clusters the difference of the methods efficiency becomes 
less. Asit was assumed full matrix method outperforms all the others on every search stage 
regardless the data configurations.  
Yet considering square dependency of (X)card  storing resources this method becomes 
inefficient for database of large dimensionality. Sparse matrix method in general requires 
less matching operations number than binary trees and partition methods. Efficiency of the 
last ones is almost the same, still the partition method has larger variance of matching 
operations number. First of all it in connected to the fact that partition method results are 
more depending on the pivot points location. If points are located close to each other 
partition method search performance becomes less efficient.  
We can conclude that only index structures i) and ii) can guarantee rather constant low 
bound of matches count on uniformly distributed data set solely. 
We have proposed a novel indexing structure using sparse distance matrices for the image 
search with queries ‘ad exemplum’ which considering embedded partitions of the images. 
The experimental exploration of the method has proved it to be fast and efficient. The future 
work will be directed for investigation of the pivots choice method and possibility to use 
clustering methods for distance matrices analysis which would provide effective using of 
the partition metric for content image retrieval. 
Offered here method for block-diagonal distance matrix synthesis allows to get a special 
case of sparse matrix. Optimal detalization of resulting blocks cardinality increase speed of 
search and reduce recourses needed for indexing structures storing. Let us see some results 
of this approach research.  
We used data from Berkley University collection which contains 1000 images and their 
ground-truth representations (figures 12 and 13). 
Method of forming block-diagonal matrix is based on matching results of image 
segmentations and so there are few parameters which influence the result: segmentation 
algorithm, method of segmentations matching and  value. 
For segmenting database images we use a wide known color-textured algorithm JSEG, what 
is shown on figure 14. Having the corresponding ground-truth representations we have 
opportunity to define level of dependency of the distance matrix block-diagonal structure 
distances from the segmentation algorithm. Further we shall denote partition extracted from 
the ground-truth representation as gt-partition, and the one obtained from the JSEG 
segmentation results as jseg-partition. 
To compare segmentation results we shall use the partition metric (Mashtalir et al., 2006). 
Measure μ(A)  will be defined as regions area and we shall carry out normalization in limits 
[0 1];  as 

1 1
2

μ(A B )μ(A B )
( , )

( )

n m
i j i j

i j
*

n m
 



   


  
.                                 (39) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Example of image set from database. 72 items from Berkley collection 
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Fig. 12. Example of image set from database. 72 items from Berkley collection 
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Fig.13. Example of ground-truth representations for 72 images from figure 12 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.14. Example of JSEG segmentation results for 72 images from figure 12 
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Fig.13. Example of ground-truth representations for 72 images from figure 12 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.14. Example of JSEG segmentation results for 72 images from figure 12 
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On figure 15 you can see dependency of number of  -blocks of block-diagonal distance 
matrix representation on value  , changing from 0,1  to 0,5  with step 0,05 for gt-partitions 
and jseg-partitions. With increasing of   number of blocks does not increase. It confirms the 
stated here optimality of  -blocks forming strategy.  
 

 
 
Fig.15. dependency of number of  -blocks of block-diagonal distance matrix representation 

from value   
 
It also should be noted that character of  -blocks changing for gt-partitions and jseg-
partitions is quite similar, what proves the comparative independency of block-diagonal 
distance matrix representation forming method from algorithms of segmentation. 
So the metric indexing provides synthesis of effective two-stages search procedures. At first 
all images not satisfying query image are eliminated, at second search is fulfilled on a 
limited set. Image segmentation inducing quotient sets can be a tool for obtaining sufficient 
enough feature descriptions of images in metric space, which provides indexed search of 
images according to its content. 
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