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For a long time, the main concern of the pattern recognition research community has been to 
achieve high accuracy. For example, in the area of Multi-Classifier Systems (MCS), 
researchers have developed very powerful techniques that combine large number of 
classifiers through complex combination schemes to achieve satisfactory accuracies. 
However, this was at the expense of complexity. Even powerful single classifiers (e.g. SVM) 
have very high complexity. This might give the impression that high accuracies could not be 
achieved without sacrificing recognition time. 
Classification cascades are relatively neglected because speed is usually considered a 
secondary issue by researchers in pattern recognition field. This fact is going to change in 
the near future because as the world relies more and more on the Internet, web applications 
are going to include very complex pattern recognition and data mining tasks that are 
required to be done online.  
Classification cascades are usually created manually using domain knowledge and are 
composed in most cases of two or three stages. In this chapter, a model-based algorithm of 
automatic generation of optimum classification cascades is devised. Given a large pool of 
classifiers (of size N), it builds a cascade that achieves the lowest possible recognition time 
while preserving the accuracy of the most powerful classifier in the pool. The proposed 
algorithm has a low complexity of O(N2) where N is the number of classifiers in the pool. 
This gives us the freedom of using a large pool of classifiers which leads to more efficient 
cascades. Other cascade design techniques devised in the literature have very high 
complexity which hinders using large pool of classifiers.  
In this chapter we also analyze the performance of the devised algorithm showing its 
powerfulness and limitations. Also we present an algorithm for building a classification 
cascade of a given fixed length. This helps building cascades with space complexity 
constraints and helps in analyzing the performance of the devised algorithm for building 
optimum classification cascades. 

 
1. Introduction 
 

Suppose we have a classification task on which we have already found a complex 
classification technique that achieves a satisfactory accuracy. Suppose also while such 
classification technique is very powerful, its time complexity is unacceptably high. This 
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scenario happens frequently in real life as many powerful but very time-consuming 
techniques have been devised in recent years (e.g. SVM and multi-classifier systems). Our 
goal would be to build a system that preserves the accuracy of that complex classifier while 
having much better timing performance. 
The high complexity of powerful classifiers might give the impression that high accuracies 
could not be achieved without sacrificing recognition time. In fact, this is not true. The high 
recognition time of a classifier in many cases is due to improper resource allocation. To 
achieve a high recognition rate, the classifier is built to recognize the hardest of patterns; 
though most of the patterns are ‘regular’ patterns and could be classified using a simple 
classification technique. This observation led to the development of cascade systems which 
is the main concern of this paper. In such a system, all the patterns to be classified first go 
through a first stage; those patterns that are classified with confidence score higher than a 
certain threshold leave the system with the labels given to them by the first stage. The 
patterns that are classified with confidence scores lower than the threshold are rejected to 
the second stage. In the same manner, the patterns pass through different stages until they 
reach the powerful last stage that does not reject any patterns.  Figure 1 illustrates this idea. 
The idea of classification cascades has been well-known for long time but has not attracted 
much attention in spite of its practical importance [Kuncheva 2004]. Recently, and since the 
prominent work of Viola and Jones [VIOLA & JONES 2001], the idea of cascade has been 
attracting considerable attention in the context of object detection which is a rare-event 
classification problem [VIOLA & JONES 2001, LUO 2005, CHEN, X. & YUILLE 2005, 
YUANN ET AL. 2005, Brubaker et al. 2006, SUN ET AL. 2004, WU ET AL. 2008]. 
To avoid any confusion, we will call the cascades used in the context of object detection 
"detection cascades" while we will call the cascades used in regular classification problems  
"classification cascades" in which we are interested in this chapter. 

 
Fig 1 Typical classification cascade system. 
 
The remaining of the chapter is organized as follows. Section 2 presents an algorithm for 
automatically generating optimum classification cascades. In section 3, we present an 
algorithm for generating optimum classification cascades of specific number of stages. 
Section 4 presents an experimental validation of our proposed algorithms. In section 5 we 
review previous works on classification cascades and in section 6 we conclude. 

 
2. Model-Based Algorithm for Automatically Generating Optimum 
Classification Cascades 
 

In this section a novel algorithm for automatically generating optimum classification 
cascades is proposed that achieves as high accuracy as we can get with the lowest 
complexity possible. The proposed algorithm is built according to a model of how 

stage 1 > T1? 
yes 

no stage 2 > T2? 
yes 

no . . . . . . . final 
stage 

decision decision decision 

 

classification cascade works; thus we named it ‘model-based’ approach. Assume that we 
have a pool of N classifiers: S1, S2, …, SN, and a powerful classifier SF that achieves an 
accuracy higher than any classifier in the pool. However, SF has a very high complexity. The 
proposed algorithm automatically builds a cascade that achieves accuracy not less than that 
of SF with the lowest complexity possible. Classifiers of the pool are assumed to be trained 
independently before applying the proposed algorithm, and no further training is done for 
any of them after applying the algorithm. 

 
2.1 Problem statement 
We first present our notation. We denote an unordered set by boldface character 
surrounded by curly braces, and its elements by the same character but in italics and 
subscripted by numbers (e.g. }{,...,, 321 AAAA ). Note that the subscripts of the 
unordered set are arbitrary and hold no ordering significance. An ordered set (or an array) 
is denoted by just a boldface character and its elements by the same character but in italics 
and subscripted by numbers according to their order in the array (e.g. A,...,, 321 AAA , 

where A1 is the first element in A, and A2 is the second element, etc.). AB   means that 
all the elements of the ordered set B exists in the ordered set A with the same order. 

}{AB  means that all the elements of the ordered set B exist in the unordered set {A}. 

}{AB   means that the elements of B are the same as that of A but with order, i.e. B is an 
ordered version of A. We enumerate the elements of an unordered set {A} as follows 

,...},{}{ 21 AAA and the elements of an ordered set A as follows ...]  [ 21 AAA . 
C=[A B] means that the ordered set C is a concatenation of the two ordered sets A and B. In 
this chapter we will represent a cascade by an ordered set whose elements are the 
classification stages ordered in the set from left to right. 
Here we state our problem. Given a set of N classifiers },...,,,{}{ 321 NSSSSS  and a 

powerful classifier }{SFS  that achieves a satisfactory accuracy. The problem is to select 

an ordered set }{SS opt  and a corresponding ordered set of thresholds 
optT  that 

makes ] [ F
opt SS  if put in a cascade structure give the optimal cascade. We mean by 

‘optimal cascade’ the one that gives the least possible complexity with accuracy not less than 
that of FS . 

 
2.2 The Algorithm 
In this section, an algorithm that automatically generates optimal classification cascades will 
be presented. The algorithm is composed of three major steps: 
 

i. Find the set of thresholds {T}. Each element of {T} is a threshold for the 

corresponding classifier in {S} such that }{TT opt . 
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unordered set are arbitrary and hold no ordering significance. An ordered set (or an array) 
is denoted by just a boldface character and its elements by the same character but in italics 
and subscripted by numbers according to their order in the array (e.g. A,...,, 321 AAA , 

where A1 is the first element in A, and A2 is the second element, etc.). AB   means that 
all the elements of the ordered set B exists in the ordered set A with the same order. 

}{AB  means that all the elements of the ordered set B exist in the unordered set {A}. 

}{AB   means that the elements of B are the same as that of A but with order, i.e. B is an 
ordered version of A. We enumerate the elements of an unordered set {A} as follows 

,...},{}{ 21 AAA and the elements of an ordered set A as follows ...]  [ 21 AAA . 
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powerful classifier }{SFS  that achieves a satisfactory accuracy. The problem is to select 

an ordered set }{SS opt  and a corresponding ordered set of thresholds 
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makes ] [ F
opt SS  if put in a cascade structure give the optimal cascade. We mean by 

‘optimal cascade’ the one that gives the least possible complexity with accuracy not less than 
that of FS . 

 
2.2 The Algorithm 
In this section, an algorithm that automatically generates optimal classification cascades will 
be presented. The algorithm is composed of three major steps: 
 

i. Find the set of thresholds {T}. Each element of {T} is a threshold for the 

corresponding classifier in {S} such that }{TT opt . 
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ii. Sort the set {S} to form }{SS ord  such that ordopt SS  . With the same 
ordering pattern of Sord, sort {T} to form Tord.  

iii. From Sord, select ordopt SS  t and the corresponding ordopt TT  . 
 
These three steps is illustrated in Figure 2 and described in the following subsections. But 
we want here to give a note about how {S} and SF were generated. The dataset available for 
training and testing the system was first partitioned into 3 parts: training set, validation set, 
and test set. Then, many classifiers were generated with different accuracies and 
complexities and were trained using the training set. The most powerful of these classifiers 
was found and denoted by SF , and the rest were grouped in the set {S}. The validation set is 
used to find the best cascade. The test set is used for testing the overall system. The 
algorithm proposed in this chapter for generating classification cascade trains the classifiers 
only once and uses different performance measurements (specifically, their rejection rates 
and complexities, as will be discussed soon) of these classifiers using the validation set to 
build the cascade. No retraining of classifiers is held. 
 

 
Fig. 2. An example to show how the proposed algorithm works. 

 
2.2.1 Step1: Find {T} for {S} 
Our procedure for finding {T} of {S} will be as follows. Using every classifier }{SiS , 
classify the patterns of the validations set and order them according to the confidence scores 
they are given by Si. Traverse these ordered patterns from the one that has been classified by 
the highest confidence score to the lowest. While traversing the patterns, monitor whether 
the patterns are correctly or falsely classified. Once you hit a pattern that is falsely classified, 
check whether this same pattern is falsely classified by SF or not. If yes, then this pattern 
would not contribute to the errors of the overall cascade and can be safely ignored, and we 
continue traversing the patterns. We stop when we hit a pattern that is falsely classified by 
the classifier under consideration Si but correctly classified by SF. Then we set the threshold 
Ti of the classifier Si to be the confidence score of the pattern we stopped at. We do the same 
for all the classifiers in the set {S} to form the corresponding set of thresholds {T}. This 
procedure is illustrated in Figure 3. 
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2.2.2 Step 2: Sort {S} to form }{SS ord  
The criterion by which we sort {S} is based on the following assumption: 
 
Assumption 1 Using sufficiently tough thresholds iT  and jT  for the two classifiers iS  and 

jS , respectively, if the classifier jS  has a lower rejection rate than iS , then it is said that 

jS  is more powerful than iS ; and iS  would reject all the patterns that jS would reject. 

 
The "rejection rate" of a certain classifier iS  using threshold iT  is the number of rejected 

patterns divided by the number of validation set patterns if the threshold iT  is applied on 
its output. 

traversing 

stop 
here 

selected 
threshold 

Fig. 3. A hypothetical example illustrating threshold selection process for some 
classifier Si belongs to the pool {S}. Each row represents a different pattern of the 
validation set classified by Si. The right entry of each record is labeled '1' if a 
classification error is committed by Si while the pattern is correctly classified by the 
most powerful classifier SF. The second entry of each record is the top decision 
score of the corresponding pattern given to it by Si. The patterns are ordered 
according to the decision score. This process is done for every classifier in {S} to get 
the corresponding set of thresholds {T}.  

This assumption, while not perfectly realistic, is reasonable. Since jS  is more powerful than 

iS , then it will be of little possibility for iS  to confidently classify some pattern that was 

hard for jS  to classify. To what extent this assumption is valid will be discussed in section 

4.2. 
Assumption 1 leads to a great simplification of the system design. Suppose that while 
designing a cascade system we put a classifier 2S  that has high rejection rate after a 

classifier 1S  that has lower rejection rate. According to Assumption 1, 1S  is more powerful 

than 2S , and 2S  would be then useless. This is because 2S  would reject all the patterns 

that are rejected from 1S . In this case, 2S  would do nothing except increasing the 
complexity of the cascade.  
 
This means that the only reasonable criterion of sorting the classifiers in the cascade is to 
sort them by decreasing rejection rates. By this principle, {S} is sorted to give Sord. The 
corresponding set of thresholds for Sord will be Tord. Now we are guaranteed that 

ordopt SS  , because any other order would give more complex cascade. 

 
2.2.3  Step 3: Select Sopt out of Sord 

Now we want to select ordopt SS  . This selection process, if done exhaustively, is of 

complexity )2( NO . Hence, exhaustive search would not be feasible for large values of N. 

In this section an algorithm is suggested for finding ordopt SS   of complexity )( 2NO . 
 
Now, a formula will be introduced to have an estimate for the average complexity of a 
cascade given the complexities and rejection rates of the constituent classifiers. This formula 
will be used to find the best cascade in a sequential manner without doing an exhaustive 
search. How this formula is deduced can be shown through an example. Let 

ord
MSSSS SS  ] ....   [ 321  have thresholds ] ....   [ 321 MTTTT T , complexities 

]....   [ 321 MCCCC C , and rejection rates ]....   [ 321 MRRRR R . Let FC  be the 

complexity of FS . Figure 4 represents each stage in the cascade by a rectangular 
representing the validation set. The hashed portion of the rectangular is the portion that is 
not rejected from the validation set. Assumption 1 is evident in Figure 4 as each stage 
rejections include the rejections of preceding stage. It is obvious from Figure4 that the 
cascade ] [ FCS  has an overall complexity Ctot, where, 
 

FMMMtot CRCRCRCRCC  132211 ......   (1) 
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We note here that Equation (1) validity is dependent on a hypothetical model of how the 
classification cascades works which is represented by Figure 4. This model in its turn is 
dependent on the validity Assumption 1. 

 

 

Fig. 5. Two examples to illustrate how Sopt is selected from Sord 

1C   
Fig. 4. A cascade represented by accepted and rejected patterns. The 
shaded region represents the accepted patterns. 
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Equation (1) suggests a very simple algorithm to find ordopt SS  .  The algorithm is going 

to be described through an example. Assume that Sord is composed of four stages: ordS1 , 
ordS2 , ordS3 , ordS4 , and the last stage FS . We can represent such scheme by successive 

nodes in a digraph as shown in Figure 5. For convenience, we added a dummy node 
ordS0 before ordS1 . Node ordS0 is the source of all the patterns to be classified and has zero 

complexity and a rejection rate of 1 (i.e. 1 and ,0 00  ordord RC ).  The problem now is to 

get the path from ordS0  to SF that leads to the least complex cascade.  Now, define the 
distance from node Siord to node Sjord for j>i to be equal to RiordCjord. Hence, each cascade can 
be represented by some path in Sord. For example, the path indicated in Figure 3(i) has a 

distance of F
ordordordordordord CRCRCRC 442211  which is equal to the cascade 

complexity. Another possible path of complexity F
ordordordord CRCRC 3322   is shown in 

Figure 3(ii). The problem of finding the least complex cascade can be seen then as finding 
the shortest path in a directed acyclic graph (DAG) which is a well-known problem. 
However, for completeness, we will present its solution in the context of our problem. 
 
Assume that each node tries to find the shortest path from itself to SF as well as the distance 
of this path. All the nodes can easily collect this information if we started by last stage and 

proceeded backwardly to the first. For example, in Figure 5 we start by ordS4 . The shortest 

path from ordS4 to SF is obviously [ ordS4 SF] as this is the only possible path. The distance of 

this path is F
ordCR4 . For node ordS3 , we have two possible paths: [ ordS3  ordS4  SF] and 

[ ordS3 SF]. Hence, we compare the two paths distances: F
ordordord CRCR 443   and F

ordCR3 , 

respectively. The shortest path as well as its distance are found and saved at node ordS3 . 

Then, we proceed to ordS2 . Node ordS2  has just 3 options: to jump to ordS3 , to jump to 
ordS4 , or to jump to SF. If we jumped form ordS2  to ordS3 , and if we are interested in just 

shortest paths, the path from ordS3  to SF would be previously decided by ordS3  and need 

not to be recalculated; and the complexity of the path in this case is ordordCR 32  + the 

distance of shortest path from ordS3  to SF. The remaining two options for ordS2  (to jump to 
ordS4  and to jump to SF.) are also examined and the option of the least distance is saved at 

node ordS2 . The same procedure is done for ordS1 and ordS0 . Finally, the shortest path from 
ordS0  to SF is the cascade of least complexity. 
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We note here that Equation (1) validity is dependent on a hypothetical model of how the 
classification cascades works which is represented by Figure 4. This model in its turn is 
dependent on the validity Assumption 1. 

 

 

Fig. 5. Two examples to illustrate how Sopt is selected from Sord 
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Fig. 4. A cascade represented by accepted and rejected patterns. The 
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Equation (1) suggests a very simple algorithm to find ordopt SS  .  The algorithm is going 

to be described through an example. Assume that Sord is composed of four stages: ordS1 , 
ordS2 , ordS3 , ordS4 , and the last stage FS . We can represent such scheme by successive 

nodes in a digraph as shown in Figure 5. For convenience, we added a dummy node 
ordS0 before ordS1 . Node ordS0 is the source of all the patterns to be classified and has zero 

complexity and a rejection rate of 1 (i.e. 1 and ,0 00  ordord RC ).  The problem now is to 

get the path from ordS0  to SF that leads to the least complex cascade.  Now, define the 
distance from node Siord to node Sjord for j>i to be equal to RiordCjord. Hence, each cascade can 
be represented by some path in Sord. For example, the path indicated in Figure 3(i) has a 

distance of F
ordordordordordord CRCRCRC 442211  which is equal to the cascade 

complexity. Another possible path of complexity F
ordordordord CRCRC 3322   is shown in 

Figure 3(ii). The problem of finding the least complex cascade can be seen then as finding 
the shortest path in a directed acyclic graph (DAG) which is a well-known problem. 
However, for completeness, we will present its solution in the context of our problem. 
 
Assume that each node tries to find the shortest path from itself to SF as well as the distance 
of this path. All the nodes can easily collect this information if we started by last stage and 

proceeded backwardly to the first. For example, in Figure 5 we start by ordS4 . The shortest 

path from ordS4 to SF is obviously [ ordS4 SF] as this is the only possible path. The distance of 

this path is F
ordCR4 . For node ordS3 , we have two possible paths: [ ordS3  ordS4  SF] and 

[ ordS3 SF]. Hence, we compare the two paths distances: F
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ordCR3 , 

respectively. The shortest path as well as its distance are found and saved at node ordS3 . 

Then, we proceed to ordS2 . Node ordS2  has just 3 options: to jump to ordS3 , to jump to 
ordS4 , or to jump to SF. If we jumped form ordS2  to ordS3 , and if we are interested in just 

shortest paths, the path from ordS3  to SF would be previously decided by ordS3  and need 

not to be recalculated; and the complexity of the path in this case is ordordCR 32  + the 

distance of shortest path from ordS3  to SF. The remaining two options for ordS2  (to jump to 
ordS4  and to jump to SF.) are also examined and the option of the least distance is saved at 

node ordS2 . The same procedure is done for ordS1 and ordS0 . Finally, the shortest path from 
ordS0  to SF is the cascade of least complexity. 
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To present the algorithm more formally, it would be of much help to introduce some simple 
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the shortest path is a succession of single hops, whose distances are calculated as given in 
Equation (2). 
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Algorithm 1 shows the three steps of the proposed algorithm for automatic generation of 
optimum classification cascades. Step 3 uses the definitions given above to show how to 

Select ordopt SS  . 
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to use a cascade of smaller length. In this section, an algorithm will be introduced that 
builds the best cascade of any preferred length. This will also help in studying the effect of 
increasing the number of stages in a cascade on its performance (refer to section 4.3). 
 
To introduce the algorithm, we will first add two more definitions. Define the shortest path 

of length n, ),( ord
j

ord
in SSP , between stages 

ord
iS  and 

ord
jS as the shortest path of n hops 

between nodes  
ord
iS  and 

ord
jS . Define also shortest distance of length n, 

),( ord
j
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in SSD , between nodes  

ord
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ord
jS as the distance (complexity) of 

),( ord
j

ord
in SSP . 

 
The algorithm for finding the best cascades of different lengths is presented in Algorithm 2. 
Step 1 and 2 of the algorithm is the same as that of Algorithm 1. Step 3 is a modified version 
of Step 3 of Algorithm 1. Instead of saving only the information of best path, each node 
saves the best path of every possible length. 

 
4. Experiments and Discussion 
 
In this section we present some experiments that validate the proposed approach and shed 
light on its strengths and limitations. 

 
4.1 Model-Based Approach versus DFS 
The problem of finding optimal classification cascades has other possible solutions than that 
proposed (e.g. using stochastic search techniques [Chellapilla et al. 2006a]). But we will 
compare the proposed technique with the most elegant solution, that is the one using depth-
first search (DFS) devised by Chellapella et al. [Chellapilla et al. 2006b] (refer to section 5.6 
for more details on this technique). Given a set of N ordered classifiers, the DFS algorithm 
searches systematically all possible cascade structures with Q permissible threshold values 
to find the optimum cascade. Using some heuristics, all the search space need not be visited 
and extensive pruning of search space is possible. The goal of the DFS algorithm is more 
general than ours. Given a certain permissible margin of error, it finds the least complex 
cascade. The proposed model-based system design procedure on the other hand finds least 
complex cascade that commits no more error than the last stage in the cascade. Actually, The 
DFS algorithm could be used to solve the problem if we adjusted the margin of error to be 
that of the final stage. 
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to use a cascade of smaller length. In this section, an algorithm will be introduced that 
builds the best cascade of any preferred length. This will also help in studying the effect of 
increasing the number of stages in a cascade on its performance (refer to section 4.3). 
 
To introduce the algorithm, we will first add two more definitions. Define the shortest path 
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The algorithm for finding the best cascades of different lengths is presented in Algorithm 2. 
Step 1 and 2 of the algorithm is the same as that of Algorithm 1. Step 3 is a modified version 
of Step 3 of Algorithm 1. Instead of saving only the information of best path, each node 
saves the best path of every possible length. 

 
4. Experiments and Discussion 
 
In this section we present some experiments that validate the proposed approach and shed 
light on its strengths and limitations. 

 
4.1 Model-Based Approach versus DFS 
The problem of finding optimal classification cascades has other possible solutions than that 
proposed (e.g. using stochastic search techniques [Chellapilla et al. 2006a]). But we will 
compare the proposed technique with the most elegant solution, that is the one using depth-
first search (DFS) devised by Chellapella et al. [Chellapilla et al. 2006b] (refer to section 5.6 
for more details on this technique). Given a set of N ordered classifiers, the DFS algorithm 
searches systematically all possible cascade structures with Q permissible threshold values 
to find the optimum cascade. Using some heuristics, all the search space need not be visited 
and extensive pruning of search space is possible. The goal of the DFS algorithm is more 
general than ours. Given a certain permissible margin of error, it finds the least complex 
cascade. The proposed model-based system design procedure on the other hand finds least 
complex cascade that commits no more error than the last stage in the cascade. Actually, The 
DFS algorithm could be used to solve the problem if we adjusted the margin of error to be 
that of the final stage. 
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The proposed algorithm has a number of advantages over the DFS algorithm:  
 

i. DFS algorithm has a training complexity of )( NQO , where Q is the number 
of thresholds quantization levels which equals 32 as suggested by [Chellapilla 
et al. 2006b]. While extensive pruning of search space is possible, the algorithm 
takes very long training times especially for large N. On the other hand, the 

proposed algorithm is of only a complexity of )( 2NO . This means that the 
proposed procedure is faster in training.  

 
ii. Besides being faster, the proposed algorithm is scalable to large numbers of N. 

While the actual number of stages selected for the optimum cascade is only 
around 6 or 7 stages, making a large number of classifiers N available for the 
algorithm gives it more flexibility to select the most suitable stages for the 
cascade. In case of DFS, and to make the algorithm terminates with reasonable 
time, we should select by hand around 8 stages for the algorithm as done by 
[Chellapilla et al. 2006b]. This makes the proposed algorithm a means for 
system design and for classifier selection at the same time. This means also 
that the proposed system is more automatic than DFS. 

 
In this section, we will compare the performance of the proposed system design procedure 
with the DFS algorithm on the digit recognition problem. The dataset used in the 
experiments is the MNIST [LECUN ET AL. 1998]. The MNIST has a total of 70,000 digits 
which partitioned into 3 parts: i) a training set, which includes 50,000 digits and used for 
training the classifiers, ii) a validation set, which contains 10,000 digits used for optimizing 
the cascade system, and iii) a test set, which is used for final testing of the cascade. Each 
digit image of all sets was transformed into 200-element feature vector using the gradient 
feature extraction technique [LIU ET AL. 2003]. 
 
Forty-eight different classifiers were trained with different complexities and accuracies on 
the training set. Three different types of classifiers are used: one-layer neural network (1-NN 
or linear classifier), two-layer neural network (2-NN), and RBF SVM [WEBB 2002]. For 
each classifier type, a number of classifiers of different structures were generated. First all 
200 gradient feature elements were ranked according to their importance using ReliefF 
feature ranking technique [KONONENKO 1994]. Then, for 1-NN, a classifier was generated 
that has as the most important 25 feature elements as input, and then another one with the 
most important 50 feature elements, then 75, and so on, till finally a classifier with all the 200 
feature elements was generated. Hence, we have 8 different 1-NN classifiers. The same was 
done for SVM; hence, we have additional 8 different classifiers. This also was done for 2-
NN, but for each number of inputs, a classifier was generated with different number of 
hidden units: 50, 100 150, and 200 (i.e. 2-layer neural network of structures: 25-50-10, 25-100-
10, …, 25-200-10, 50-50-10, 50-100-10, ……, 200-200-10). Hence, we have 8 1-NN classifiers, 8 
SVMs, and 8×4 2-NN classifier; hence we have a total of 48 classifiers of different structure 
and accuracies. Table 1 shows the performance of the most powerful classifier (that is, the 
SVM classifier with 200 feature elements): its number of errors and its complexity on the test 
set. The complexity of a certain classifier is measured as the number of floating point 

operations (flops) [RIDDER ET AL. 2002] it needs to classify one pattern divided by the 
number of flops the least complex classifier generated (that is, the 1-NN with 25 inputs) 
needs to classify one pattern. 
 

Test set errors Complexity 
66 5638.2 

Table 1 The performance of the most powerful classifier (SVM with 200 features as input) 
 

 Complexity  Errors Number of 
 Stages 

Model-Based on 5 randomly 
selected stages from {S} 376.9 67.3 3.5 

DFS on 5 randomly selected stages 
from {S} 358.7 66.5 4.9 

Table 2 Average complexity, average errors, and average number of stages when applying 
both model-based approach and DFS on 5 randomly selected stages from the pool of 
classifiers 
 

 Complexity  Errors Number of 
Stages 

Model-Based applied to the whole {S} 
187.8 70 6 

Table 3 Complexity and errors of model-based approach on the entire pool of classifiers 
 
Now, all the generated 48 classifiers can be handed to the proposed algorithm to generate 
the best cascade out of them. However, this would not be possible for the DFS algorithm 
due to its large complexity. In order to compare the proposed algorithm with DFS, the most 
powerful classifier (that is, the SVM with 200 features) was used as the last stage and then 
randomly selected 5 classifiers from the remaining 47 classifiers. The same was done 15 
times; each time with different randomly selected 5 classifiers. For each of these selections, 
both model-based algorithm and DFS was used to select the optimum cascade. The averages 
of the 15 trials of both cases are calculated and summarized in Table 2. The average cascade 
length (number of stages excluding SF) is also indicated for both cases. Table 2 shows that 
DFS got slightly better results. 
 
However, the main advantage of the proposed approach is that we can use classifiers pools 
of large sizes N which is impossible for DFS. The entire set of 48 classifiers was given to the 
proposed algorithm to build the optimum cascade out of them. The results are shown in 
Table 3. We see that the cascade built when the proposed algorithm is given all the 48 has a 
complexity of 187.8 which is lower than that of both model-approach and DFS when applied 
to 5 randomly selected stages. This clarifies the importance of using large number of 
classifiers N, and hence, the importance of the low complexity of our proposed algorithm. 
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that has as the most important 25 feature elements as input, and then another one with the 
most important 50 feature elements, then 75, and so on, till finally a classifier with all the 200 
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done for SVM; hence, we have additional 8 different classifiers. This also was done for 2-
NN, but for each number of inputs, a classifier was generated with different number of 
hidden units: 50, 100 150, and 200 (i.e. 2-layer neural network of structures: 25-50-10, 25-100-
10, …, 25-200-10, 50-50-10, 50-100-10, ……, 200-200-10). Hence, we have 8 1-NN classifiers, 8 
SVMs, and 8×4 2-NN classifier; hence we have a total of 48 classifiers of different structure 
and accuracies. Table 1 shows the performance of the most powerful classifier (that is, the 
SVM classifier with 200 feature elements): its number of errors and its complexity on the test 
set. The complexity of a certain classifier is measured as the number of floating point 

operations (flops) [RIDDER ET AL. 2002] it needs to classify one pattern divided by the 
number of flops the least complex classifier generated (that is, the 1-NN with 25 inputs) 
needs to classify one pattern. 
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Table 3. We see that the cascade built when the proposed algorithm is given all the 48 has a 
complexity of 187.8 which is lower than that of both model-approach and DFS when applied 
to 5 randomly selected stages. This clarifies the importance of using large number of 
classifiers N, and hence, the importance of the low complexity of our proposed algorithm. 
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4.2 The Validity of Assumption 1 
The optimality of Algorithm 1 is guaranteed if Equation (1) is valid. Equation (1) on its turn 
is based on the validity of Assumption 1. In this section we are going to explore the 
condition under which Assumption 1 is valid. 
 
Assumption 1 states that the weaker classifier rejects all the patterns that the stronger 
classifier rejects. In fact, this is true only when the stronger classifier is much stronger than 
the weaker. Classifiers of near degree of strength reject overlapping sets of patterns; but 
never totally conform to Assumption 1; this phenomenon is called ‘diversity’ and is 
exploited in building classifiers ensembles [Kuncheva 2000]. Figure 6 is a scatter plot 
showing the dependency of the invalidity of Assumption 1 for different classifier pairs 
(taken from the pool of 48 classifiers mentioned above) on the difference in strength 
between them. The invalidity of Assumption 1 is measured by the number of cases that 
violated it and put on the vertical axis. The difference in strength between two classifiers is 
represented by the difference in rejection rates between them. As clear from Figure 6, the 
more the difference in rejection rates between two classifiers is, the less the number of 
violations of Assumption 1 is found. 

 
Fig. 6. A scatter plot that showing the dependency of the validity of Assumption 1 on the 
difference in strength between the two classifiers. 
 
But how could the inaccuracy of Assumption 1 affect the structure of cascades built by the 
model-based approach? In fact, Assumption 1 leads us to believe that putting two classifiers 
of near degree of strength one after the other is of no use. This is because the second 
classifiers will not confidently recognize much of the patterns rejected from the first 
classifier, and hence would not do but just increasing the complexity of the cascade. This 
leads the model-based approach selects classifiers of very distant rejection rates from each 
other to build the cascade. Because the rejection rate domain is finite (from 0 to 1), this 
makes the model-based approach tends to build cascades of small lengths. This is clear if we 

refer to Table 2 and compared the average cascades lengths built by model-based approach 
and DFS. 
 
Now, would this lead us to miss an opportunity for building less complex cascades? The 
answer is yes. Putting a classifier of near strength to some classifiers increases its complexity 
indeed but might result in a drop in rejection rate. Consider the following hypothetical 
example. Suppose that there are two classifiers; both have rejection rate of 0.5. According to 
Assumption 1, there is no point of putting one after the other in a cascade as this will lead to 
more complex system of the same rejection rate of 0.5. But according to the concept of 
diversity, there is. To take the extreme case of Assumption 1 violation, assume that the sets 
of patterns rejected from the two classifiers are exclusive. This will make the overall 
rejection rate of both classifiers when put one after the other in a cascade drop to 0. Of 
course, this extreme case does not occur in reality, but this shows how two classifiers of near 
strength could lead to rejection rates enhancements, and hence to more efficient 
classification cascades. This is clear from Table 2, as the DFS (which is an exhaustive 
procedure) finds cascades of better performance than model-based approach. However, DFS 
is of very high complexity and does not scale to large pool sizes and this leads us to select 
classifiers for it by hand which leads to inferior results to model-based approach as clear 
from Table 3. 

 
4.3 The Effect of Number of Stages on the Cascade Performance 
In section 3 we presented an algorithm that builds the best cascade of specific length. 
Besides being useful for memory-limited applications, it is very helpful in studying the 
effect of increasing the number of cascade stages on its performance. Figure 7 shows the 
complexities of best cascades with i stages, where i = 2, 3, 4, …, 48. It is clear from the figure 
that the complexity decreases as we add more stages until certain limit, after which the 
complexity starts to increase. Note that the complexities are calculated using the test set. 
 
It would be interesting if we compared the theoretical cascade complexities anticipated by 
Equation (1) with the actual cascade complexities. Because the theoretical complexities were 
calculated using the validation set while building the cascade; hence, we will compare them 
to the actual complexities calculated using the validation set, not the test set. This is to 
clarify the difference between the theoretical and actual complexity setting aside the 
differences between the validation and test sets. Figure 8 compares the theoretical and actual 
complexities of best cascades with i stages, where i = 2, 3, 4, …, 48. From Figure 8, we note 
that the theoretical complexity decreases with adding more stages until we reach the 
cascade with 5 stages, then the complexity starts to increase again. On the other hand, the 
actual complexities continue to decrease with adding more stages till reaching the cascade 
with 22 stages. The actual complexity difference between best 5 stages and best 22 stages 
cascade is not substantial; however, it sheds the light on the concept of diversity discussed 
in section 4.2. In the point of view of Assumption 1, adding more stages after 5 stages limit 
does nothing but increasing the complexity; however, in reality, the diversity continues to 
enhance the performance and the cascade complexity continues to drop. We also note that 
with adding more and more stages, the difference between the theoretical and actual 
complexities increases since the effect of diversity increases between more classifiers. 
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4.2 The Validity of Assumption 1 
The optimality of Algorithm 1 is guaranteed if Equation (1) is valid. Equation (1) on its turn 
is based on the validity of Assumption 1. In this section we are going to explore the 
condition under which Assumption 1 is valid. 
 
Assumption 1 states that the weaker classifier rejects all the patterns that the stronger 
classifier rejects. In fact, this is true only when the stronger classifier is much stronger than 
the weaker. Classifiers of near degree of strength reject overlapping sets of patterns; but 
never totally conform to Assumption 1; this phenomenon is called ‘diversity’ and is 
exploited in building classifiers ensembles [Kuncheva 2000]. Figure 6 is a scatter plot 
showing the dependency of the invalidity of Assumption 1 for different classifier pairs 
(taken from the pool of 48 classifiers mentioned above) on the difference in strength 
between them. The invalidity of Assumption 1 is measured by the number of cases that 
violated it and put on the vertical axis. The difference in strength between two classifiers is 
represented by the difference in rejection rates between them. As clear from Figure 6, the 
more the difference in rejection rates between two classifiers is, the less the number of 
violations of Assumption 1 is found. 
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difference in strength between the two classifiers. 
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classifiers will not confidently recognize much of the patterns rejected from the first 
classifier, and hence would not do but just increasing the complexity of the cascade. This 
leads the model-based approach selects classifiers of very distant rejection rates from each 
other to build the cascade. Because the rejection rate domain is finite (from 0 to 1), this 
makes the model-based approach tends to build cascades of small lengths. This is clear if we 

refer to Table 2 and compared the average cascades lengths built by model-based approach 
and DFS. 
 
Now, would this lead us to miss an opportunity for building less complex cascades? The 
answer is yes. Putting a classifier of near strength to some classifiers increases its complexity 
indeed but might result in a drop in rejection rate. Consider the following hypothetical 
example. Suppose that there are two classifiers; both have rejection rate of 0.5. According to 
Assumption 1, there is no point of putting one after the other in a cascade as this will lead to 
more complex system of the same rejection rate of 0.5. But according to the concept of 
diversity, there is. To take the extreme case of Assumption 1 violation, assume that the sets 
of patterns rejected from the two classifiers are exclusive. This will make the overall 
rejection rate of both classifiers when put one after the other in a cascade drop to 0. Of 
course, this extreme case does not occur in reality, but this shows how two classifiers of near 
strength could lead to rejection rates enhancements, and hence to more efficient 
classification cascades. This is clear from Table 2, as the DFS (which is an exhaustive 
procedure) finds cascades of better performance than model-based approach. However, DFS 
is of very high complexity and does not scale to large pool sizes and this leads us to select 
classifiers for it by hand which leads to inferior results to model-based approach as clear 
from Table 3. 

 
4.3 The Effect of Number of Stages on the Cascade Performance 
In section 3 we presented an algorithm that builds the best cascade of specific length. 
Besides being useful for memory-limited applications, it is very helpful in studying the 
effect of increasing the number of cascade stages on its performance. Figure 7 shows the 
complexities of best cascades with i stages, where i = 2, 3, 4, …, 48. It is clear from the figure 
that the complexity decreases as we add more stages until certain limit, after which the 
complexity starts to increase. Note that the complexities are calculated using the test set. 
 
It would be interesting if we compared the theoretical cascade complexities anticipated by 
Equation (1) with the actual cascade complexities. Because the theoretical complexities were 
calculated using the validation set while building the cascade; hence, we will compare them 
to the actual complexities calculated using the validation set, not the test set. This is to 
clarify the difference between the theoretical and actual complexity setting aside the 
differences between the validation and test sets. Figure 8 compares the theoretical and actual 
complexities of best cascades with i stages, where i = 2, 3, 4, …, 48. From Figure 8, we note 
that the theoretical complexity decreases with adding more stages until we reach the 
cascade with 5 stages, then the complexity starts to increase again. On the other hand, the 
actual complexities continue to decrease with adding more stages till reaching the cascade 
with 22 stages. The actual complexity difference between best 5 stages and best 22 stages 
cascade is not substantial; however, it sheds the light on the concept of diversity discussed 
in section 4.2. In the point of view of Assumption 1, adding more stages after 5 stages limit 
does nothing but increasing the complexity; however, in reality, the diversity continues to 
enhance the performance and the cascade complexity continues to drop. We also note that 
with adding more and more stages, the difference between the theoretical and actual 
complexities increases since the effect of diversity increases between more classifiers. 
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Fig. 7. The cascade actual complexity as the number of stages increases (calculated using the 
test set) 
 

 
Fig. 8. The cascade actual as well as theoretical complexities as the number of stages 
increases (calculated using the validation set) 
 

5. Related Works 
 

In this section, we first present a taxonomy for the classification cascade research and then 
review some related works. 
 
Classification cascades could be categorized according to four different aspects: 

1- Accuracy versus speed oriented cascades. 
One could build a cascade to increase the accuracy [RAHMAN & FAIRHURST 1999], or 
to increase the speed of the classification system [KAYNAK & ALPAYDIN 1997, PUDIL 
et al. 1992, GIUSTI ET AL. 2002, GORGEVIK & CAKMAKOV 2004, ,FERRI et al. 2004, 
Chellapilla et al. 2006a, Chellapilla et al. 2006b]. 
 
2- Reevaluation-based versus information-passing cascades. 
In reevaluation-based cascades, the pattern to be classified is presented to the first 
classifier to give a decision with a confidence score. If the confidence score is higher 
than some threshold, the classification process terminates and the decision taken by the 
first classifier is declared to be the final decision. If the confidence score is lower than 
the threshold, the pattern is passed to the next classifier to re-classify it, and the process 
continues in the same manner. There is no information passed from one stage to the 
next. Each stage, if evoked, starts the classification process from scratch. In information 
passing cascades, each stage passes some information to the next stage. The most 
important of this category is the class reduction cascade, in which each stage passes a 
list of the most probable classes the pattern could belong to. Each stage focuses only on 
this list neglecting other classes [TSAY ET AL. 2004]. 
 
3- Dependent versus independent training of classifiers. 
Each stage in the cascade could be trained independently using all the training set 
patterns [Chellapilla et al. 2006a, Chellapilla et al. 2006b This is called ‘independent 
training of stages’. On the other hand, each stage could be trained using only the 
patterns rejected from the previous stage [FERRI ET AL. 2004]. This is called ‘dependent 
training of stages’. 
 
 
4- Manual versus automatic building of cascades. 
A cascade could be manually built [GORGEVIK & CAKMAKOV 2004, ], or 
automatically built [Chellapilla et al. 2006a, Chellapilla et al. 2006b]. The degree of 
cascade building automation differs. For example, in some cascade design technique, 
the structure of the cascade is automated but some other parameters (e.g. thresholds) 
are not. 

 
According to this categorization scheme, the proposed model-based approach for building 
classification cascades is: speed-oriented, re-evaluation based, with independent training of 
classifiers, and entirely automatic. 
 
There are many cascade design techniques in the literature. However, they have common 
themes. In the following some works on classification cascades will be presented, each 
representing some theme, mentioning similar works.  
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important of this category is the class reduction cascade, in which each stage passes a 
list of the most probable classes the pattern could belong to. Each stage focuses only on 
this list neglecting other classes [TSAY ET AL. 2004]. 
 
3- Dependent versus independent training of classifiers. 
Each stage in the cascade could be trained independently using all the training set 
patterns [Chellapilla et al. 2006a, Chellapilla et al. 2006b This is called ‘independent 
training of stages’. On the other hand, each stage could be trained using only the 
patterns rejected from the previous stage [FERRI ET AL. 2004]. This is called ‘dependent 
training of stages’. 
 
 
4- Manual versus automatic building of cascades. 
A cascade could be manually built [GORGEVIK & CAKMAKOV 2004, ], or 
automatically built [Chellapilla et al. 2006a, Chellapilla et al. 2006b]. The degree of 
cascade building automation differs. For example, in some cascade design technique, 
the structure of the cascade is automated but some other parameters (e.g. thresholds) 
are not. 

 
According to this categorization scheme, the proposed model-based approach for building 
classification cascades is: speed-oriented, re-evaluation based, with independent training of 
classifiers, and entirely automatic. 
 
There are many cascade design techniques in the literature. However, they have common 
themes. In the following some works on classification cascades will be presented, each 
representing some theme, mentioning similar works.  
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5.1 Risk analysis of multistage pattern recognition with reject option by Pudil et al. 
One way to build a multistage system is to generate different systems with different 
structures and then to asses each of them using some criterion. Then the best cascade in 
terms of this criterion is selected. One problem with this method is that there are two 
conflicting requirements of a cascade system: high accuracy and low complexity. Any 
reasonable criterion should consider both requirements. Pudil et al. [PUDIL ET AL. 1992] 
suggested a criterion to assess the performance of multistage systems using a modified 
version of average risk analysis [DUDA et al. 2000].  
 
Pudil’s et al. technique is then considered according to the proposed categorization of 
cascades: speed-oriented, reevaluation-based, independent learning of stages, and automatic 
if we are ready to generate very large set of cascades and select the best; and partly-manual 
if we used our experience of the problem to select some reasonable set of cascades. 

 
5.2 Kaynak-Alpaydin cascade 
Kanyak and Alpaydin [KAYNAK & ALPAYDIN 1997] suggested a technique for building 
classification cascades that achieves high accuracy with low complexity. In this technique, a 
sequence of learners jS ’s is used, where 1jS  learner is more complex than jS . 

Associated with each learner is a confidence score jconf  such that we say jS  is confident 

of its output and can be used if jj tconf   where 10 1  jj tt  is the confidence 

threshold. Learner jS  is used if all the preceding learners are not confident. Starting with 

1j , given a training set, jS  is trained. All the patterns on which jS ’s performance is 

not acceptable are found and used to train 1jS . This means that Kaynak-Alpaydin cascade 

falls in the category of dependent-training cascades. 
 
This technique is to some degree similar to AdaBoost learning [DUDA et al. 2000, CHEVA 
(2004) ]. Both techniques build a sequence of classifiers, each specializes in recognizing the 
pattern not recognized (or not confidently recognized) by the previous stage. However, 
there are some important differences between the two techniques. In AdaBoost 
classification, all the stages should be evoked in order to get the final classification decision. 
In Kaynak-Alpaydin cascade, the decision could be made at any stage according to the 
decision confidence of that stage. This property is behind the low complexity of the cascade 
classifier. AdaBoost uses weak learners of the same type. Kaynak-Alpaydin cascade uses 
different learner of increasing powerfulness and complexity.  
 
Experiments show good performance of Kaynak-Alpaydin cascade. However, Kaynak-
Alpaydin technique is not fully automatic, and relies of the users’ experience to select the 
classifiers constituting the cascade as well as their rejection thresholds by hand. 
 
Kaynak-Alpaydin cascade is considered according to the proposed categorization of 
classification cascades: speed-oriented, reevaluation-based, dependent training of stages, 
and manual. 

5.3 Delegating classifier 
Delegating classifier is another name coined by Ferri et al. [FERRI ET AL. 2004] for cascade 
classifier. Ferri et al. first suggest a two-stage system in which the first stage has a threshold 
at its output to reject the uncertain classifications to the second stage. This threshold is 
found such that the first stage would reject a certain percentage of the examples to the 
second stage. Here the first stage is trained using all the available examples and the second 
stage is trained using only the samples rejected by the first stage. This idea is also 
generalized to the case of more than two stages.  
 
Ferri et al. suggest an interesting modification to the two-stage system. They put another 
threshold on the second stage output of the two-stage system. If the confidence score of the 
second stage falls below this threshold, the decision of the second stage is ignored and the 
final decision would be of the first stage. This approach is verified by the fact that the second 
stage inclines to overfit as it is trained using the noisy patterns rejected by the first stage. 
This technique was called ‘Round Rebound’ and was shown to slightly improve the results 
of the two-stage system. 
 
Delegating classifier is considered according to the proposed categorization of classification 
cascades: speed-oriented, reevaluation-based, dependent training of stages. Ferri et al. 
suggested an automatic way of building cascade, though it is not theoretically verified and 
needs some manual calibration. 

 
5.4 Two-stage system of Giusti et al. 
Kaynak et al. [KAYNAK & ALPAYDIN 1997] studied one implementation of Kaynak-
Alpaydin Cascade in which there is only two stages: the first stage is a global classifier like 
ANN, and the second stage is a local classifier like KNN. Giusti et al. [GIUSTI ET AL. 2002] 
studied a similar system theoretically with the addition to one time-saving technique. That 
is, if the first stage rejects some patterns, it indicates the h top most probable classes that the 
pattern belongs to. The KNN does not need then to search in its whole database, only within 
patterns belonging to the h top classes. 
 
Giusti’s two-stage system is considered according to the proposed categorization of 
classification cascades: speed-oriented, information-passing-based, dependent training of 
stages, and manual. Similar works to Giusti’s system are [TSAY ET AL. 2004, GORGEVIK & 
CAKMAKOV 2004, ]. 

 
5.5 Sequential combination of classifiers by Rahman and Fairhurst 
 ‘Sequential classifier’ is another name for cascade classifier. Rahman and Fairhurst 
[RAHMAN & FAIRHURST 1999] presented two versions of the cascade classifiers: one is 
reevaluation-based and the other is information-passing-based. The information-passing-
version passes a subset of most probable classes from one stage to the next narrowing down 
the scope of classes we search in. The first version resembles Kaynak-Alpaydin cascade but 
the stages are trained independently. The second version resembles the work of Giusti et al. 
but the role of successive stages is only to narrow down the list of possible classes more and 
more; an intermediate stage cannot classify a pattern; just the last stage can.  
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5.1 Risk analysis of multistage pattern recognition with reject option by Pudil et al. 
One way to build a multistage system is to generate different systems with different 
structures and then to asses each of them using some criterion. Then the best cascade in 
terms of this criterion is selected. One problem with this method is that there are two 
conflicting requirements of a cascade system: high accuracy and low complexity. Any 
reasonable criterion should consider both requirements. Pudil et al. [PUDIL ET AL. 1992] 
suggested a criterion to assess the performance of multistage systems using a modified 
version of average risk analysis [DUDA et al. 2000].  
 
Pudil’s et al. technique is then considered according to the proposed categorization of 
cascades: speed-oriented, reevaluation-based, independent learning of stages, and automatic 
if we are ready to generate very large set of cascades and select the best; and partly-manual 
if we used our experience of the problem to select some reasonable set of cascades. 

 
5.2 Kaynak-Alpaydin cascade 
Kanyak and Alpaydin [KAYNAK & ALPAYDIN 1997] suggested a technique for building 
classification cascades that achieves high accuracy with low complexity. In this technique, a 
sequence of learners jS ’s is used, where 1jS  learner is more complex than jS . 

Associated with each learner is a confidence score jconf  such that we say jS  is confident 

of its output and can be used if jj tconf   where 10 1  jj tt  is the confidence 

threshold. Learner jS  is used if all the preceding learners are not confident. Starting with 

1j , given a training set, jS  is trained. All the patterns on which jS ’s performance is 

not acceptable are found and used to train 1jS . This means that Kaynak-Alpaydin cascade 

falls in the category of dependent-training cascades. 
 
This technique is to some degree similar to AdaBoost learning [DUDA et al. 2000, CHEVA 
(2004) ]. Both techniques build a sequence of classifiers, each specializes in recognizing the 
pattern not recognized (or not confidently recognized) by the previous stage. However, 
there are some important differences between the two techniques. In AdaBoost 
classification, all the stages should be evoked in order to get the final classification decision. 
In Kaynak-Alpaydin cascade, the decision could be made at any stage according to the 
decision confidence of that stage. This property is behind the low complexity of the cascade 
classifier. AdaBoost uses weak learners of the same type. Kaynak-Alpaydin cascade uses 
different learner of increasing powerfulness and complexity.  
 
Experiments show good performance of Kaynak-Alpaydin cascade. However, Kaynak-
Alpaydin technique is not fully automatic, and relies of the users’ experience to select the 
classifiers constituting the cascade as well as their rejection thresholds by hand. 
 
Kaynak-Alpaydin cascade is considered according to the proposed categorization of 
classification cascades: speed-oriented, reevaluation-based, dependent training of stages, 
and manual. 

5.3 Delegating classifier 
Delegating classifier is another name coined by Ferri et al. [FERRI ET AL. 2004] for cascade 
classifier. Ferri et al. first suggest a two-stage system in which the first stage has a threshold 
at its output to reject the uncertain classifications to the second stage. This threshold is 
found such that the first stage would reject a certain percentage of the examples to the 
second stage. Here the first stage is trained using all the available examples and the second 
stage is trained using only the samples rejected by the first stage. This idea is also 
generalized to the case of more than two stages.  
 
Ferri et al. suggest an interesting modification to the two-stage system. They put another 
threshold on the second stage output of the two-stage system. If the confidence score of the 
second stage falls below this threshold, the decision of the second stage is ignored and the 
final decision would be of the first stage. This approach is verified by the fact that the second 
stage inclines to overfit as it is trained using the noisy patterns rejected by the first stage. 
This technique was called ‘Round Rebound’ and was shown to slightly improve the results 
of the two-stage system. 
 
Delegating classifier is considered according to the proposed categorization of classification 
cascades: speed-oriented, reevaluation-based, dependent training of stages. Ferri et al. 
suggested an automatic way of building cascade, though it is not theoretically verified and 
needs some manual calibration. 

 
5.4 Two-stage system of Giusti et al. 
Kaynak et al. [KAYNAK & ALPAYDIN 1997] studied one implementation of Kaynak-
Alpaydin Cascade in which there is only two stages: the first stage is a global classifier like 
ANN, and the second stage is a local classifier like KNN. Giusti et al. [GIUSTI ET AL. 2002] 
studied a similar system theoretically with the addition to one time-saving technique. That 
is, if the first stage rejects some patterns, it indicates the h top most probable classes that the 
pattern belongs to. The KNN does not need then to search in its whole database, only within 
patterns belonging to the h top classes. 
 
Giusti’s two-stage system is considered according to the proposed categorization of 
classification cascades: speed-oriented, information-passing-based, dependent training of 
stages, and manual. Similar works to Giusti’s system are [TSAY ET AL. 2004, GORGEVIK & 
CAKMAKOV 2004, ]. 

 
5.5 Sequential combination of classifiers by Rahman and Fairhurst 
 ‘Sequential classifier’ is another name for cascade classifier. Rahman and Fairhurst 
[RAHMAN & FAIRHURST 1999] presented two versions of the cascade classifiers: one is 
reevaluation-based and the other is information-passing-based. The information-passing-
version passes a subset of most probable classes from one stage to the next narrowing down 
the scope of classes we search in. The first version resembles Kaynak-Alpaydin cascade but 
the stages are trained independently. The second version resembles the work of Giusti et al. 
but the role of successive stages is only to narrow down the list of possible classes more and 
more; an intermediate stage cannot classify a pattern; just the last stage can.  
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The major difference between Rahman and Fairhurst’s cascade and other cascades is that it 
is accuracy-oriented. However, it is remarked that it has much less complexity than other 
accuracy-oriented classifiers combination scheme. Also, while they optimized the cascade 
accuracy, they could optimize its speed as well or they could optimize a cost function that 
considers both accuracy and speed. 
 
It is understood how could a cascade enhance the speed; but how could it enhance the 
accuracy? The answer is different for each of the two versions of Rahman and Fairhurst’s 
cascade. For the reevaluation version, the cause is as follows. If all stage before the last 
rejects or misclassify the patterns of the last stage, there will be no gain in accuracy. But 
actually what happens is that some stages correctly and confidently classify some patterns 
that are not correctly classified by the last stage (the concept of diversity discussed earlier). 
This is why the accuracy increases. For the information-passing version of the cascade, the 
cause behind the increase in accuracy is as follows. It happens that the last stage confuses 
between the true class of some pattern and other class. If this other class has been omitted 
from the list of considered classes passed through the cascade, this will lead the last stage 
make the correct classification as the rival class is omitted beforehand. This could increase 
the overall accuracy of the system. 
 
Rahman and Fairhurst’s cascade is considered according to the proposed categorization of 
classification cascades: accuracy-oriented but can easily modified to speed-oriented, 
reevaluation-based for the first version and information-passing-based for the second 
version, independent training of stages, and manual. 

 
5.6 Searching in the space of thresholds by Chellapilla et al. 
The most elegant work on classification cascade design is that of Chellapilla et al. 
[Chellapilla et al. 2006a, Chellapilla et al. 2006b]. They first presented a framework for the 
cascade design problem as an optimization problem that can be solved using any 
combinatorial optimization technique. Their cascade is speed-oriented, reevaluation-based, 
with independent training of stages, and is automatic to a large extent. 
 
They start with a cascade of N classifier S1, S2, . . ., SN; each has a complexity Ci and a 
threshold ti, i=1, 2, . . ., N. The stages are ordered in the cascade in an ascending order of 
complexities (i.e. C1<C2< . . . <CN). The pattern to be classified goes initially through the first 
stage. If it is classified with confidence score higher than t1, then it is absorbed (i.e. the 
classification process terminates taking the decision of S1 to be the final decision). If the 
confidence score is below t1, the pattern is rejected to the next stage S2, and the process 
continues. The last stage has a threshold tN=0 (i.e. it absorbs all the patterns it receives and 
rejects nothing). 
 
The problem of cascade design now reduces to the setting of the set of N thresholds t1, t2, . . , 
tN. Note that a stage could be excluded from the cascade by setting its threshold to 1 (i.e. it 
rejects everything). The problem is then formulated into an optimization problem. There are 
actually two optimization problems reflecting the goal from building the cascade. The first 
goal is to minimize the overall system complexity given some error constraint. The second 
goal is to minimize the error given some complexity constraint. The search space of 

solutions is then V={t1}×{t2}× . . . ×{tN}, where {ti} is the set of all thresholds of stage i. The 
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where C(T) is the complexity of the cascade with threshold vector T=[t1, t2,..., tN], e(T) is the 
error rate of the cascade with threshold vector T, emax is the error constraint, and Cmax is the 
complexity constraint. 
 
Left is the procedure by which the set of possible threshold {ti} for the stage Si for each i, i=1, 
2, …, N is prepared. First, each stage Si is used to classify all the examples of a validation set. 
The examples are then sorted in a descending order according to the confidence scores they 
are given by Si. The examples are partitioned into Q-2 subset. The thresholds {ti} are then the 
confidence score of the first example of each subset, plus the two thresholds: 0 (means Si 
absorbs all the examples) and 1 (means Si rejects all the examples). Here then we have Q 
thresholds in the set {ti}. This is equivalent to quantizing ti to Q quantization levels. Then the 
size of the space of thresholds V is QN. The optimization problem is then to search through 
the space V of threshold to satisfy either Equation (3) or Equation (4). 
 
This problem can be solved using any combinatorial optimization technique. Cellapilla et al. 
tried solving the problem using steepest descent, dynamic programming, simulated 
annealing, depth first search (DFS). All these algorithms are suboptimal except DFS. The 
DFS [Chellapilla et al. 2006b] is a simple search algorithm that searches through the space of 
solution intelligently. It prunes large sections of the search space that are guaranteed not to 
give the best solution. 
 
This framework is elegant and fully automatic except that the procedure of ordering the 
stages by increasing complexity is not verified theoretically. The DFS solution is elegant and 
optimal but it has an exponential complexity in N (that is, O(QN)) which means that using 
large value number of stages is computationally prohibitive. This made Chellapilla et al. do 
manual selection of the N classifiers to be used with algorithm. Hence, though DFS could be 
fully automatic, its high computational complexity hinders it to be. 

 
6. Conclusion 
 

In this chapter, we presented a model-based approach for automatically building 
classification cascades. The experiments showed that the algorithm is efficient and scalable. 
The algorithm was also analyzed and its strengths and limitations were clarified. In 
addition, we presented an algorithm that builds cascades with given lengths which is useful 
in memory-limited systems helped in studying the effect of increasing the number of stages 
in a cascade on its performance.  
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optimal but it has an exponential complexity in N (that is, O(QN)) which means that using 
large value number of stages is computationally prohibitive. This made Chellapilla et al. do 
manual selection of the N classifiers to be used with algorithm. Hence, though DFS could be 
fully automatic, its high computational complexity hinders it to be. 
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