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1. Introduction      
 

Robotic manipulators are widely used to help in dangerous, monotonous, and tedious jobs. 
Most of the existing robotic manipulators are designed and built in a manner to maximize 
stiffness in an attempt to minimize the vibration of the end-effectors. This high stiffness is 
achieved by using heavy material and bulky design. Hence, the existing heavy rigid 
manipulators are shown to be inefficient in terms of power consumption or speed with 
respect to the operating payload. Also, the operation of high precision robots is severely 
limited by their dynamic deflection, which persists for a period of time after a move is 
completed. The settling time required for this residual vibration delays subsequent 
operations, thus conflicting with the demand of increased productivity. These conflicting 
requirements between high speed and high accuracy have rendered the robotic assembly 
task a challenging research problem. In addition, many industrial manipulators face the 
problem of arm vibrations during high-speed motion. In order to improve industrial 
productivity, it is required to reduce the weight of the arms and/or to increase their speed 
of operation. For these purposes, it is very desirable to build flexible robotic manipulators. 
Compared to the conventional heavy and bulky robots, flexible link manipulators have the 
potential advantage of lower cost, larger work volume, higher operational speed, greater 
payload-to-manipulator weight ratio, smaller actuators, lower energy consumption, better 
manoeuvrability, better transportability and safer operation due to reduced inertia. 
However, the major drawback of these robots is the inaccuracy of the end effectors due to 
low stiffness. Due to the importance and usefulness of these robots, researchers are 
nowadays engaged in the investigation of control of flexible manipulator. The issue of tip 
position control for flexible link manipulator has gained a lot of attention due to the great 
benefits, which can be achieved by changing the traditional rigid robots with flexible ones. 
Then, by measuring the elastic deformations of the link and using a more sophisticated 
control algorithm, the endpoint of the robot can be controlled with a relatively high degree 
of precision with minimal vibration. Using the vibration signal that is from the motion of the 
flexible links robot is one of the important methods used in controlling the tip position of 
the single-link arms. Compared with the common methods for controlling the base of the 
flexible arm the vibration feedback can improve the use of the flexible-link robot systems. 
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The control of a flexible robot arm has attracted many researchers either to design advanced 
and intelligent controllers or to use smart actuators in order to achieve a high positioning 
accuracy at the end of the arm.  An initial experiment on the control of a single-link flexible 
robot moving in a plane was done by (Cannon & Schmitz, 1984). After then many researches 
have been done in all topics related to the control of flexible robot arms. Some researches 
focus on the modelling of the flexible arm such as (Zhu & Mote, 1997); (Kariz & Heppler, 
2000). (Ge et al., 1997); (Ge et al., 1998) uses the finite element method to model flexible 
arms. The use of smart material and piezoelectric actuators in suppressing the vibration for 
a flexible robot has been investigated by (Tawfeic et al., 1997). (Lee et al., 1988) proposed 
PDS (proportional-derivative-strain) control for vibration suppression of multi-flexible-link 
manipulators and analyzed the Lyapunov stability of the PDS control while (Matsuno & 
Hayashi, 2000) applied the PDS control to a cooperative task of two one-link flexible arms. 
They aimed to accomplish the desired grasping force for a common rigid object and the 
vibration absorption of the flexible arms. Control policy had attracted (Menq & Xia, 1993) to 
investigate the use of classical control for the single-link flexible arm. The optimal control of 
the flexible link is highlighted by (Rai & Asada, 1995) while (Etxebarria et al., 2005) have 
proposed a robust control scheme for flexible link robotic manipulators.  
The motivation for this research is to find a simple controller, which can be able to achieve 
final accurate tip position for the flexible arm and at the same time reduce resulting 
vibration. The use of the deflection signal or its derivatives in the feedback is one of the 
effective methods used in controlling the vibration of the tip position. A modified PID 
(MPID) control that uses the rate of change of the tip deflection is investigated in this 
chapter. 
In this chapter, a Modified PID control (MPID) is proposed to control flexible link 
manipulator. The MPID control depends mainly on vibration feedback to improve the 
response of the flexible arm without the massive need of measurements. First, we give a 
brief introduction about the experimental set-up then the dynamic model of the system is 
driven. A detailed of the controller design is shown and the analysis of this controller is 
highlighted. The stability of the system is checked with the proposed controller. A case 
study for a single link flexible manipulator is chosen to verify the proposed controller. 
Simulation results are exposed for the system using the MPID to suppress the vibration. 
Finally, the experimental results for the response of the flexible manipulator are shown. A 
concluding summary is ending the chapter. 
Unlike other research (Ge et al., 1998), the effect of static deformation is taken into 
consideration when evaluating the effect of the vibration on the control signal. As this 
control signal will drive the flexible manipulator, residual strain due to material defect 
and/or static deformation may lead to inaccurate movement. In addition to that, an 
experimental verification has been done in parallel with a simulation study to evaluate the 
performance of the MPID control. Using the rate of deflection at the tip of flexible 
manipulator as an indication for the vibration of the tip can remove successfully the effect of 
static deformation that may appears in the generated control signal.  
The main contribution point with this controller is the usage of the rate of deflection at the 
tip as an indication of the vibration. The controller succeeds to remove the quasi-static 
component in the strain instead of using high-pass filter, which is used in general. However, 
a high-pass filter may bring a phase shift, which may cause the instability. The MPID 

controller uses rate of deflection; therefore, neither quasi-static strains due to gravity nor 
residual strains in the material bring a problem. 

 
2. Experimental setup 

 

In this section, the details of the experimental flexible robot system are presented. As shown 
in Fig. 1, the flexible robot consists of a motor/actuator, an arm of length l and an end-point 
payload Mt. All the three elements are related to each other through the shear force and the 
bending moment. The motor torque T drives the whole system. The flexural rigidity EI and 
the mass per unit length ρ of the arm are assumed uniform along the length of the arm. A 
motor armature and gearbox are described by an equivalent moment of inertia Ih at the hub. 
A payload Mt is mounted at the tip of the arm. The variable δ(x, t) is the deflection of the 
arm at a point located a distance x from the hub, measured relative to the non-deformed 
position of the arm. θ is the rotary angle of the arm from its reference position. The geometry 
of the single-link flexible robot is shown in Fig. 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Flexible arm system. 
 
The experimental apparatus shown in Fig. 2 consists of a flexible arm, an actuator and 
sensors for tip and hub. An aluminum thin plate is used for the arm. The payload at the tip 
of the arm is detachable. The base end of the arm is clamped onto the hub that is driven by a 
DC permanent magnet servomotor, which is controlled by a PWM servo amplifier through a 
reduction gearbox. A tachometer is used to measure the rotary velocity of the joint. The 
flexible arm can freely bend in the horizontal plane but not in the vertical plane nor in 
torsion in order to eliminate the gravitational effects. Strain gauges are used to measure the 
strain at the base of the arm, which is an indication for the deflection of the tip. A measuring 
circuit with an amplifier is applied to get the value of the deflection.  A/D converter is used 
to convert the analog signals into digital signals through an interface card. The hub position 
is measured using a rotary encoder. A digital controller is used through PC computer. The 
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measurement instruments used for measuring the joint angle, joint velocity and the 
deflection is shown in Fig. 2.  
 

 
Fig. 2. The experimental setup. 
 
A program written in C language is used for the interfacing and controlling processes. In 
addition, a digital low pass filter based on Hamming window is used to eliminate the noise 
from the deflection-measured signal. The physical parameters of the system are shown in 
Table 1.  

Parameter Values 

l  b  h (Arm dim.) 0.5 0.003  0.05 m 

 (Uniform mass/unit length) 0.403 kg/m 

EI (Flexural rigidity)  7.85 Nm2  

Mt (Tip payload)  0.0, 0.25, 0.5 kg  

K1 (Motor amplifier gain)  4.8 V/V  

K2 (Motor torque const.)  0.11 Nm/A  

K3 (Back E.M.F const.)  0.117 V/rpm  

G (Gear ratio)  80 

L (Inductance)  1.4 Mh  

R (Armature resistance)  0.4 .  

b (Viscous friction coeff.)  0.003 Nm/(rad/s)  

J (Inertia for the motor)  3.48104 kgm2  
Table 1. Physical parameters of the system. 

The mathematical equations, which represent the motor dynamics and the reduction 
gearbox, are expressed as: 

)()( 1 tuKtva  ,                                                       (1)  
 
where u(t) is the control signal generated from the controller and va(t) is the armature 
voltage. 
As the speed of a armature-controlled dc servo motor is controlled by the armature voltage 
va(t) which is the output from the amplifier. The differential equation for the armature 
circuit is 

                                                           )()()()( tv
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where ia(t) is the armature current and vb(t) is the back EMF voltage.    
For a constant flux, the back EMF voltage vb(t) is directly proportional to the angular 
velocity d  dt, or      

                                                         
dt
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The equations for torque equilibrium are 
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where Tm(t) is  the output torque from the motor and Jo , bo are the inertia and viscous friction 

of the combination of the motor, load, and gear referred to the motor shaft respectively.  

 
3. Dynamic modelling  

 

In this section, the mathematical model of the flexible link manipulator is driven in order to 
be used in the simulation program. First, we construct a simple block diagram to explain the 
complete system. The block diagram, which represents the system of the single-link flexible 
robot, is illustrated in Fig. 3. As shown previously in section 2 the mathematical equation of 
the actuator is driven starting from the output signal of the controller u(t) to the output from 
the motor. Equation (6) gives the relation between the motor torque and arm torque as 
follows: 
 

)()( tGTtT marm  ,                                                            (6) 
 
where Tm (t) is the motor torque and Tarm (t) is the arm torque . 

 
Three measurements are available on the experiment, the hub rotational angle θ(t) is 
measured using the rotary encoder, the tip deflection δ(l, t) is calculated from the strain at 
the base of the arm assuming the first vibration mode shape, and the velocity of the hub     
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d  dt is measured by the tachometer.  
From the analysis of the single-link flexible arm in the experimental work, a continuous 
clamped-free beam approximates the flexible link. The flexible arm shown in Fig. 1 is 
rotating in the horizontal plane and the effect of gravity is not taken into consideration. 
Frame O-XY is the fixed base frame and frame O-xy  is the local frame rotating with the hub. 
The deflection δ(x, t) is assumed to be small compared to the length of the arm. Let p(x, t) 
represents the tangential position of a point on the flexible arm and with respect to the 
frame O-XY. From the assumption of the deflection of the flexible arm, the equation that 
describes the position is given by: 
 

),()(),( txtxtxp   ,                                                   (7) 
 
where p(x, t) is the position of a point at distance x from the base of the arm at any time and 
δ(x, t)  is the distance from the local rotating frame O-xy to the arm for a point at distance x 
from the base of the arm at any time. 
 

Fig. 3. Block diagram for single-link manipulator. 
 
The flexible arm is modelled as Euler-Bernoulli beam under the assumption of simple beam 
theory, which is valid when the ratio between beam’s length and its height is relatively large 
(>10) and if the beam does become too wrinkled because of flexure. Also, it is assumed that 
the beam has a uniform cross-sectional area and constant characteristics. If the flexible beam 
treated as a simple cantilever as shown in Fig. 4. The deflection at the free end of the beam 
can be estimated as  
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where F is the force at the free end and EI is the uniform flexural rigidity of the beam. 
Then, the Euler-Bernoulli equation for the link is given as follows : 
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Substituting equation (7) into (9), the following equation is obtained: 
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Fig. 4. Cantilever beam. 
 
As the flexible arm is clamped at its base, both the deflection and the slope of the deflection 
curve must be zero at the clamped end (Meirovitch, 1967). Those conditions are represented 
by equations (11) and (12) respectively. Equation (13) presents the bending moment at the 
free end that is equal zero. Finally, if we make force balance at the tip of the flexible 
manipulator we can get equation (14). The boundary conditions can be summarized as 
follow: 
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where l is the length of the arm. Using the Lagrangian equations 
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where l is the length of the arm. Using the Lagrangian equations 
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With the assumptions that the mass is only concentrated at the tip of the arm (i.e. neglect the 
weight of the link) and the deflection is small, the dynamic equations which describes the 
system can be written as  
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 4. Controller Design  

 

The control of the single flexible link SFL robot has created a great deal of interest in the 
control theory field. It can be argued that it has become a benchmark problem for comparing 
the performance of newly developed control strategies. The reason for this is the inherent 
difficulty in controlling such a system. This is caused by several factors. First, this is 
mathematically an infinite-dimensional problem. This will make it very difficult to 
implement some control strategies, Controllers generally need to be finite-order in order to 
be implementable (with exception of time delays). Also, the internal damping in the beam is 
extremely difficult to model accurately, resulting in a plant with parametric uncertainties. 
Finally, if the tip deflection is chosen as the output, then the transfer function of the plant is 
nonminimum phase (i.e., it contains unstable zeros). This will make it very difficult to 
implement some control strategies which are commonly used for conventional rigid link 
robots. Not only that but the inherent non-minimum phase behavior of the flexible 
manipulator system makes it very difficult to achieve high level performance and 
robustness simultaneously. For the methods of collocating the sensors and actuators at the 
joint of a flexible manipulator, for example, the joint PD control, which is considered the 
most widely used controller for industrial robot applications, only a certain degree of 
robustness of the system can be guaranteed. As studied before (Spector & Flashner , 1990) 
and (Luo , 1993) the robustness of collocated controllers comes directly from the energy 
dissipating configuration of the resulting system. However, the performance of the flexible 
system with only a collocated controller, for example, the joint PD controller is often not 
very satisfactory because the elastic modes of the flexible beam are seriously excited and not 
effectively suppressed. Due to this reasons, numerous kinds of control techniques have been 
investigated as shown in section 1 to improve the performance of flexible systems. In 
general, the desired tip regulation performance of a flexible manipulator can be described 
as: 

1- The joint motion converges to the final position fast. 
2- The elastic vibrations are effectively suppressed. 

Obviously there is a trade-off between the two requirements so the successive control try to 
achieve both of them together. 

  
4.1 Controller analysis 
The input for the flexible link system is a step input with a reference angle θref with no 
deflection at the tip. Thus, the equivalent effect at the tip position, which is denoted herein 
as the effective input is ( lθref + zero deflection at the tip). The output of the system is the tip 

position, which is defined by rigid arm motion plus tip deflection. The error in the tip 
position can be defined as (effective input - output). Therefore, the following relation gives 
the error in the tip position of the flexible arm: 
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where e(t) is the total error in the tip. It is indicated from equation (19) that the error 
includes two components. The first component ej(t) is the tangential position error due to the  
joint motion and it equals to l(θref-θ(t)) which is identical with the rigid arm error. The 
second one is much more important and is due to the flexibility of the arm and equals δ(l, t). 
These two error components are coupled to each other. On the other hand, a single 
controller is used to develop a single control signal u(t) which drives a single actuator in the 
arm system. The drive torque T(t) is proportional to the control signal u(t) as expressed by 
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where K1, K2 and G are presented in Table 1. 
Thus, the current flexible arm control problem described by the two error components 
coupled to each other and having only one control command to actuate the joint actuator, is 
rather complicated and difficult to be solved by traditional controller strategies.  
One of the best ways to overcome the problem of inaccuracy in the tip position of the 
flexible manipulator is to add a vibration feedback from the tip to the controller which 
control the base joint. Many researchers had used this algorithm like (Lee et al., 1988). They 
proposed PDS (proportional-derivative-strain) control, which is composed of a conventional 
PD control and feedback of strain detected at the root of link. Also (Matsuno & Hayashi, 
2000), as they proposed the PDS control for a cooperative two one-link flexible arm. Other 
trails is done by (Ge et al., 1997); (Ge et al., 1998) to enhance the control of the flexible 
manipulator by using non-linear feedback controller based on the feedback of the vibration 
signal to the controller. 
The Modified PID controller replaces the classical integral term of a PID control with a 
vibration feedback term to affect the effect flexible modes of the beam in the generated 
control signal. The MPID controller is formed as follows (Mansour et al., 2008):  
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where  ubias  is the bias or null value.   

Kjp, Kjd  are the joint proportional and joint derivative gains respectively. 
Kvc  is the vibration control gain. 
g(t) is the vibration variable used in the controller. 

 
The value of ubias is the compensated control signal needed for the motor to overcome 
friction losses without causing any motion to the arm. The sign of this value depends on the 
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With the assumptions that the mass is only concentrated at the tip of the arm (i.e. neglect the 
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where e(t) is the total error in the tip. It is indicated from equation (19) that the error 
includes two components. The first component ej(t) is the tangential position error due to the  
joint motion and it equals to l(θref-θ(t)) which is identical with the rigid arm error. The 
second one is much more important and is due to the flexibility of the arm and equals δ(l, t). 
These two error components are coupled to each other. On the other hand, a single 
controller is used to develop a single control signal u(t) which drives a single actuator in the 
arm system. The drive torque T(t) is proportional to the control signal u(t) as expressed by 
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where K1, K2 and G are presented in Table 1. 
Thus, the current flexible arm control problem described by the two error components 
coupled to each other and having only one control command to actuate the joint actuator, is 
rather complicated and difficult to be solved by traditional controller strategies.  
One of the best ways to overcome the problem of inaccuracy in the tip position of the 
flexible manipulator is to add a vibration feedback from the tip to the controller which 
control the base joint. Many researchers had used this algorithm like (Lee et al., 1988). They 
proposed PDS (proportional-derivative-strain) control, which is composed of a conventional 
PD control and feedback of strain detected at the root of link. Also (Matsuno & Hayashi, 
2000), as they proposed the PDS control for a cooperative two one-link flexible arm. Other 
trails is done by (Ge et al., 1997); (Ge et al., 1998) to enhance the control of the flexible 
manipulator by using non-linear feedback controller based on the feedback of the vibration 
signal to the controller. 
The Modified PID controller replaces the classical integral term of a PID control with a 
vibration feedback term to affect the effect flexible modes of the beam in the generated 
control signal. The MPID controller is formed as follows (Mansour et al., 2008):  
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where  ubias  is the bias or null value.   

Kjp, Kjd  are the joint proportional and joint derivative gains respectively. 
Kvc  is the vibration control gain. 
g(t) is the vibration variable used in the controller. 

 
The value of ubias is the compensated control signal needed for the motor to overcome 
friction losses without causing any motion to the arm. The sign of this value depends on the 
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direction of motion, which means that if the arm motion is in the clockwise direction then 
the value of ubias is equal to (uhold), and if the motion of the arm is reversed then the value of 
ubias will be (-uhold). The value of ubias is evaluated as given in terms of the torque from the 
motor or voltage to the servo amplifier (Mansour et al., 2008).  
The signum function (sgn) is defined as 
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The value of ej(t) is defined in equation (19). The vibration variable g(t) such as 
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One of the contributions of this research is the utilizing of rate of deflection signal as an 
indication of the vibration of the tip to enhance the response of the flexible manipulator. In 
this research the rate of change of the deflection at the tip ),( tl  is chosen as the vibration 

variable g(t), while (Ge et al., 1998)  used ),0( t   for g(t). The use of  ),( tl   has an 
advantage over the use of ),0( t    when the flexible-links have quasi-static strains due to 

gravity or initial strains due to material problems, because ),( tl   is not affected by such 
static deformations. When ),0( t    is used for g(t), the static components in ),0( t   must be 
removed by some means. (Ge et al., 1998) did not consider the static deformations; however, 
such static deformations are generally seen in a real manipulator system. 
The mathematical equation for the MPID when using the rate of deflection as the vibration 
feedback signal is given by: 
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First, we wish to show the steps for enhancement the classic PD control to reach the MPID. 
The most common way to enhance the response is to include the vibration of the flexible 
manipulator in the generated control signal as in (Matsuno & Hayashi, 2000). A joint PD 
controller, which is given by: 
 
                                                 )()()( teKteKtu jjdjjp  ,                                                  (24) 

 
is compared with an enhancement for the controller by feeding back the deflection signal. 
The mathematical equation, which represents the controller, in this case is give by:  
 

),()()()( tlKteKteKtu djjdjjp   ,                              (25)  

 
where Kd is the deflection gain.      
 
The response of the flexible manipulator using those two controllers is shown in Fig. 5. As 

shown form the response that feeding the deflection had improved the defection of the 
response but on the same time, it creates an overshoot on the joint response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Step response for the deflection and joint with reference angle 300 with 0.5 kg payload 
using PD and PD plus deflection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Step response for the deflection and joint with reference angle 250with 0.5 kg payload. 
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The value of ej(t) is defined in equation (19). The vibration variable g(t) such as 
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removed by some means. (Ge et al., 1998) did not consider the static deformations; however, 
such static deformations are generally seen in a real manipulator system. 
The mathematical equation for the MPID when using the rate of deflection as the vibration 
feedback signal is given by: 
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First, we wish to show the steps for enhancement the classic PD control to reach the MPID. 
The most common way to enhance the response is to include the vibration of the flexible 
manipulator in the generated control signal as in (Matsuno & Hayashi, 2000). A joint PD 
controller, which is given by: 
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is compared with an enhancement for the controller by feeding back the deflection signal. 
The mathematical equation, which represents the controller, in this case is give by:  
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where Kd is the deflection gain.      
 
The response of the flexible manipulator using those two controllers is shown in Fig. 5. As 

shown form the response that feeding the deflection had improved the defection of the 
response but on the same time, it creates an overshoot on the joint response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Step response for the deflection and joint with reference angle 300 with 0.5 kg payload 
using PD and PD plus deflection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Step response for the deflection and joint with reference angle 250with 0.5 kg payload. 
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The next step that we modify the effect of the vibration feedback and use it is an integral 
form as given by equation (23). The response of the flexible arm corresponding to 250 step 
input is presented in Fig. 6. Two figures are drawn one for the base joint of the flexible arm 
and the other for the tip deflection. Two types of controller are tested to control the flexible 
arm through the joint. First controller is a simple PD controller for the joint plus a 
proportional gain for the deflection of the tip and the second one is the MPID control.  
The response for the first controller is represented with the dotted line while the response 
using the MPID is plotted using continuous line. The MPID control given by equation (23) 
uses the rate of deflection ),( tl  as a vibration feed back signal. 
To compare between the behaviour of the classic PD controller and the proposed MPID 
controller Fig. 7 is drawn. In this figure both the PD controller and the MPID is used to 
control the joint of the flexible arm. The continuous lines represent the tip deflection and the 
joint angle when using the MPID controller while the dotted lines represent them when 
using PD control.  

 
Fig. 7. Step response for the deflection and joint with reference angle 300with 0.5 kg payload. 
 
As it noticeable from Fig. 7 that the PD control can achieve a fast and accurate response for 

the joint but on the same time it increased the oscillations on the tip while the MPID can 
achieve a damping for the tip deflection on approximate time for reaching the joint angle 
without causing overshoot for the response of the joint.  
A simulation analysis for the single-link flexible manipulator system is presented using 
MATLAB software package. The mathematical equations used in building the simulation 
have been discussed in section 3. The aim of the simulation is to highlight the effect of 
adding the modified term, which contains the vibration feedback variable to the normal 
servo control for the joint. A simple joint PD controller and MPID controller are examined in 
the simulation. The MPID controller is compared with the traditional joint PD control to see 
the merits of using the rate of change of the tip deflection as the vibration variable in the 
feedback signal. The joint PD control is given by equation (24) while the MPID is designed 
using the rate of deflection at the tip of the flexible manipulator as the vibration variable g(t) 
as shown in equation (23).  

 
4.2 Stability analysis 
After the MPID control is analysed on subsection 4.1. The stability of the MPID controller 
around a stationary point (  , ) = ( 0,ref ) is analysed in this section. Note that )()( tte j    

because θref is constant. 
Fundamental contribution to the stability theory for non-linear systems were made by the 
Russian mathematician Lyapunov where he investigated the non-linear differential equation 
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dx                                                     (26) 

 
Since f(x) the equation has the solution x(t)=0. To guarantee that a solution exists and is 
unique, it is necessary to make some assumptions about f(x). A sufficient assumption is that 
f(x) is Lipschitz, that is  
 

                                                   0,)()(  LyxLyfxf ,                                          (27) 

 
in the neighborhood of the origin. Before we proceed in the stability prove two important 
definitions needs to be highlighted. 
1- The solution x(t) = 0 to the differential equation (26) is called stable for given  > 0 there 

exists a number () > 0 such that all solutions with initial conditions 
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have the property 
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the solution is unstable if it is not stable. The solution is asymptotically stable if it is stable 
and can be found such that all solutions with )0(x have the property that 
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2- A continuously differentiable function V : Rn → R is called positive definite in a region    

U   Rn contains the origin if 
1- 0)0( V  
2- UxxV  ,0)( and 0x , 

and the function is called positive semi-definite if condition 2 is replaced by 0)( xV . 
As stated by the Lyapunov stability theorem, If there exists a function V : Rn → R that is 
positive definite such that its derivative along the solution of equation (26), 
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is negative semi-definite, then the solution x(t) = 0 to equation (26) is stable. If 
dt
dV is 

negative definite, then the solution is also asymptotically stable. The function V is called a 
Lyapunov function for the system. 
 
To check the stability of the MPID controller we start by forming the Lyapunov function 
V(t). V (t) is formed using the following relation 
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where KE is the total kinetic energy of the system and PE the total potential energy of the 
system.  
From the analysis of the flexible link manipulator system, the total Kinetic energy of the 
system can be calculated by            
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Where KEm, KEb, KEp are the kinetic energy of the motor, beam and payload respectively. And 
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By substituting equations (34), (35), (36) into (33), the total kinetic energy of the system can 
be rewritten as 
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Consider that the beam only vibrates in horizontal direction, any effect of gravity are 
neglected such that the potential energy of the system is 
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Recalling equation (7), the total potential energy of the system can be rewritten as 
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Differentiating equation (32) and (37) with respect to time gives 
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From equation (7) the middle term of equation (41) can be written as 
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substituting equations (7) and (42) into equation (41) gives 

  
l

hE dxtxtxtxttlttIK
0

3 ),()(),()()(
3
1)()(    

               ),()(),(),()()(),()(
0

tltltlMtltltlMdxtxxt tt

i

    .              (43) 

  







 

l

thE dxtxxtltxtllMtItK
0

3 ),()(
3
1),()()()(    

www.intechopen.com



Vibration Based Control for Flexible Link Manipulator 449

 

                                                            0)0( x as  t .                                                  (30) 
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As stated by the Lyapunov stability theorem, If there exists a function V : Rn → R that is 
positive definite such that its derivative along the solution of equation (26), 
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is negative semi-definite, then the solution x(t) = 0 to equation (26) is stable. If 
dt
dV is 

negative definite, then the solution is also asymptotically stable. The function V is called a 
Lyapunov function for the system. 
 
To check the stability of the MPID controller we start by forming the Lyapunov function 
V(t). V (t) is formed using the following relation 
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where KE is the total kinetic energy of the system and PE the total potential energy of the 
system.  
From the analysis of the flexible link manipulator system, the total Kinetic energy of the 
system can be calculated by            
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Where KEm, KEb, KEp are the kinetic energy of the motor, beam and payload respectively. And 
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By substituting equations (34), (35), (36) into (33), the total kinetic energy of the system can 
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Consider that the beam only vibrates in horizontal direction, any effect of gravity are 
neglected such that the potential energy of the system is 
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Recalling equation (7), the total potential energy of the system can be rewritten as 
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Differentiating equation (32) and (37) with respect to time gives 
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Substituting equation (17) into (44), we have 
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From equation (10), using integration by parts with the fourth boundary condition is it 
proved that 
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Substituting equation (46),(20) and (21) into equation (40) we get 
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which is negative semi-definite as long as Kjd ≥ 0 which means that the system is stable. 
 
After showing the controller analysis and the stability analysis, some important points need 

to be highlighted.  
  Include the deflection effect in the controller enable generating a control signal take 

into consideration the effect of the end effector vibration. The generated control signal 
have the ability to achieve accurate tip position without neither overshoot for the joint 
nor vibration at the tip.  

   Only three measurements needed to apply this controller, the measurements are the 
base joint angle )(t , base joint velocity )(t  and the rate of deflection ),( tl   unlike other 
types of controller which needs a full states measurements like (Cannon & Schmitz, 
1984) and (Siciliano, 1988).  

 The stability of the system is shown experimentally and theoretically when using the rate 
of deflection at the tip  ),( tl  as the vibration signal in the controller.  The stability is 
depend mainly of the joint derivative gain Kjd and will not be affected by the vibration 
feedback. 

 
5. Case study  
   

In this section, we test the proposed MPID control with the rate of change of deflection 
),( tl  as a vibration signal to control a single link moving horizontally. The MPID 

represented by equation (23) is compared in simulation with a PI control as a classic control. 
The main function of the integral action in the PI is to make sure that the system output 
agrees with the set point in steady state. The equation representing the PI controller is 
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where Kp, Ki are the proportional and integral feedback gains, respectively. The PI control is 
represented by equation (49) 
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where Kjp, Kji are the joint proportional, joint integral gains while Kdp, Kdi are the and 
deflection proportional, deflection integral gains respectively. As the tip deflection response 
is oscillatory, we set the deflection integral gain in equation (49) equal to zero to eliminate 
this problem. The mathematical equation representing the PI controller in this case is given 
by: 
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5.1 Simulation results 
A simulation model using MATLAB-Simulink software is used to simulate the performance 
of the controller with different working conditions. As shown previously in section 3 the 
mathematical model of the flexible arm is used in the simulation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Step response for the reference angle 100 with 0.5 kg payload (simulation). 
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1984) and (Siciliano, 1988).  

 The stability of the system is shown experimentally and theoretically when using the rate 
of deflection at the tip  ),( tl  as the vibration signal in the controller.  The stability is 
depend mainly of the joint derivative gain Kjd and will not be affected by the vibration 
feedback. 
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where Kjp, Kji are the joint proportional, joint integral gains while Kdp, Kdi are the and 
deflection proportional, deflection integral gains respectively. As the tip deflection response 
is oscillatory, we set the deflection integral gain in equation (49) equal to zero to eliminate 
this problem. The mathematical equation representing the PI controller in this case is given 
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5.1 Simulation results 
A simulation model using MATLAB-Simulink software is used to simulate the performance 
of the controller with different working conditions. As shown previously in section 3 the 
mathematical model of the flexible arm is used in the simulation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Step response for the reference angle 100 with 0.5 kg payload (simulation). 

www.intechopen.com



Robot Manipulators, New Achievements452

 

The system does not model the friction of the motors so in the simulation we put the value 
of ubias equals zero. As shown in Fig. 8 the dotted represents the response of the system 
when using the PI control plus the deflection feedback while the continuous line represents 
the response of the system when using the MPID given by equation (23). 
It is clear that the MPID control can successfully suppress the vibration at the end effector of 
the flexible manipulator while it does not create an over shoot on the joint response. 
After changing the tip payload and the input angle of the manipulator, the MPID control 
success to achieve a noticeable damping for the tip deflection of the flexible manipulator 
compared with the PI control as shown in Fig. 9. Compared with the MPID control based on 
rate of deflection at the tip as a vibration variable, the PI control can achieves an accurate 
joint angle at the steady state but it have an undesirable effect on the vibration of the end 
effector.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Step response for the reference angle 150 with 0.25 kg payload (simulation). 
 
Another set of simulation results is obtained by comparing the MPID with the PD joint 
control. Different payloads of 0.25 kg and 0.5 kg are tested in the simulation. A simulation 
result for the step input of 150 with tip payload 0.25 kg is shown in Fig. 10. The joint 
proportional gain Kjp and the joint differential gain Kjd for both PD and MPID control are set 
to be equal. The vibration control gain Kvc equals 744340 V.s2/rad.m2. The MPID succeeded 
to suppress the vibration in the tip of the flexible manipulator after 2 seconds as shown in 
Fig. 10(a). On the same time the joint angle reached its desired value.  
 
 

 
 
 
 
 
 
 
 
 
 
 

(a) Tip deflection with input 150. 
 
 
 
 
 
 
 
 
 
 
 

(b) Joint angle with input 150. 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Tip position with input 150. 
Fig. 10. Step response for the reference angle 150 with 0.25 kg payload (simulation). 

 
5.2 Experimental results 
Since the performance of the new scheme is confirmed by simulation in the previous 
subsection, now it will be tested experimentally with PI controller as a classical controller. 
The experimental setup which had been highlighted before is used to verify the efficient of 
the MPID control. The MPID control given by equation (23) and PI control given by 
equation (50) are tested experimentally.  
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result for the step input of 150 with tip payload 0.25 kg is shown in Fig. 10. The joint 
proportional gain Kjp and the joint differential gain Kjd for both PD and MPID control are set 
to be equal. The vibration control gain Kvc equals 744340 V.s2/rad.m2. The MPID succeeded 
to suppress the vibration in the tip of the flexible manipulator after 2 seconds as shown in 
Fig. 10(a). On the same time the joint angle reached its desired value.  
 
 

 
 
 
 
 
 
 
 
 
 
 

(a) Tip deflection with input 150. 
 
 
 
 
 
 
 
 
 
 
 

(b) Joint angle with input 150. 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Tip position with input 150. 
Fig. 10. Step response for the reference angle 150 with 0.25 kg payload (simulation). 

 
5.2 Experimental results 
Since the performance of the new scheme is confirmed by simulation in the previous 
subsection, now it will be tested experimentally with PI controller as a classical controller. 
The experimental setup which had been highlighted before is used to verify the efficient of 
the MPID control. The MPID control given by equation (23) and PI control given by 
equation (50) are tested experimentally.  
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The experimental results of the tip position and the tip deflection with both PI and MPID 
controllers are shown for different payloads. The value of ubias in equations (50) and (23) is 
determined experimentally. As a vibration variable g(t) in equation (21), the tip velocity is 
chosen in the experiments. The gains for the PI in is optimized using Ziegler- Nichols 
method while for the MPID it is first treated as PD controller to get the optimum gains then 
by trial and error get the values of Kvc. The response when using MPID controller is 
indicated with the continuous line, while the response with PI is indicated with the dashed 
line.  

 
 
 

                
 
 

 
 
 
 
 

    
 
 
 
 

             (a) Input 100  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             (b) Input 150  

Fig. 11. Tip position with 0.25 kg payload for 100 and 150 step input (experimental). 
 
First, a 0.25 kg tip payload is used, and tip position response with 100 step input for the joint 
angle shown in Fig. 11(a) and a step input response with 150 is shown in Fig. 11(b). Using 
the MPID the steady state error ess has a value of 0.1 mm, while it reaches a value of 1.3 
mm when using PI controller for the same step input. It is noticed from the response that the 
MPID has a desirable response especially near the steady state. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Input 100 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Input 150 
Fig. 12. Tip position with 0.5 kg payload for 100 and 150 step input (experimental). 
 
After then the tip payload is increased to 0.5 kg and the tip response is recorded. In Fig. 
12(a) and (b) the response of the single-link flexible arm is indicated. The same gains for 
both of the controllers, PI and MPID are used in the new experiment. In this case also the 
MPID gives a speedy rise time; tr for the response of the tip position equals 0.95 s and ess 0.2 
mm while the PI shows rise time, tr 1.23 s and steady state error 2.0 mm.  
To focus on the effect of the MPID controller on the response, the tip deflection with a 0.25 
kg tip payload is shown in Fig. 13 (a) and also for the 0.5 kg tip payload appeared on Fig. 13 
(b). It is well noticed that MPID controller could succeed to make remarkable vibration 
suppression for tip defection of the single-link flexible arm.  
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Fig. 12. Tip position with 0.5 kg payload for 100 and 150 step input (experimental). 
 
After then the tip payload is increased to 0.5 kg and the tip response is recorded. In Fig. 
12(a) and (b) the response of the single-link flexible arm is indicated. The same gains for 
both of the controllers, PI and MPID are used in the new experiment. In this case also the 
MPID gives a speedy rise time; tr for the response of the tip position equals 0.95 s and ess 0.2 
mm while the PI shows rise time, tr 1.23 s and steady state error 2.0 mm.  
To focus on the effect of the MPID controller on the response, the tip deflection with a 0.25 
kg tip payload is shown in Fig. 13 (a) and also for the 0.5 kg tip payload appeared on Fig. 13 
(b). It is well noticed that MPID controller could succeed to make remarkable vibration 
suppression for tip defection of the single-link flexible arm.  
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 (a) payload 0.25 kg                                                                                (b) payload 0.5 kg 

Fig. 13. Tip deflection with different payload (experimental). 

 
7. Conclusion 
    

In this chapter, a Modified Proportional-Integral-Derivative (MPID) controller is utilized to 
solve the problem of achieving an accurate tip position of a flexible manipulator. The aim of 
the control of the flexible manipulator is to achieve the final position of the manipulator 
with the minimal vibration. The controller consists of a PD for the joint and an integral term 
including the vibration of the tip. As a result introducing vibration feedback, compared with 
traditional joint PD control allows explicit evaluation of vibration and, thus, provides 
explicit control effort in vibration suppression. The rate of change in the deflection of the tip 
is used as a vibration feedback signal in the MPID. In addition, the way the rate of deflection 
is used as a vibration feedback is different from other similar work. The advantage of the 
proposed MPID controller over the strain-based MPID controller is that the proposed 
controller does not receive a bad influence from the quasi-static strain or initial strain of the 
flexible links. The performance of the MPID controller is evaluated by simulation study. An 
experimental validation of the tip position control of a single-link flexible arm is carried out 
using the MPID. The implementation of the MPID showed that it is an easy controller to use. 
The MPID is compared with other standard controller in theoretical and experimental. The 
comparison shows good behave for the MPID. The settling time of the flexible manipulator 
using the MPID control is noticeably shorten compared with other control method. This will 
enable a fast task execution.  The stability of the proposed controller is tested and it was 
proven that this controller can achieve stable operation for the flexible manipulator. The 
future work is aim to extend the use of MPID with the rate of deflection as vibration signal 
in the multiple link flexible manipulator 

 
8. References  

 

Cannon, R. H. & Schmitz, J. E. (1984). Initial experiments on the end-point control of a 
flexible one-link robot, Int. J. of Robotics Research, Vol. 3, No. 3, pp. 62–75, 0278-3649. 

Etxebarria, A.; Sanz, A. & Lizarraga, I. (2005). Control of a Lightweight Flexible Robotic Arm 
Using Sliding Modes, Int. J. of Advanced Robotic Systems, Vol. 2, No. 2 , pp. 103- 110,  
1729-8806 

Ge, S. S.; Lee, T. H. & Zhu, G.  (1997). A nonlinear feedback controller for a single link 
flexible manipulator based on a finite element model, J. of Robotic Systems, Vol 14, 
No. 3, pp. 165–178, 0741-2223. 

Ge, S. S.; Lee, T. H. & Zhu, G. (1998). Asymptotically stable end-point regulation of a flexible 
SCARA/Cartesian robot, IEEE/ASME Transactions on Mechatronics, Vol. 3, No. 2, pp. 
138–144, 1083-4435. 

Kariz, Z. & Heppler, G. R. (2000). A Controller for an Impacted Single Flexible Link, Journal 
of Vibration and Control, Vol. 6, No. 3, pp 407-428, 1077-5463.  

Lee, H. G.; Arimoto, S. & Miyazaki, F. (1988). Liapunov stability analysis for PDS control of 
flexible multi-link manipulators, Proc. of IEEE Conf. of Decision and Control, Austin, 
pp. 75–80. 

Luo, Z. (1993). Direct strain feedback control of flexible robot arms: New theoretical and 
experimental results, IEEE Trans. on Automatic Control, Vol. 38, No. 11, pp. 1610–
1622, 0018-9286. 

Mansour, T.; Konno, A. & Uchiyama M. (2008). Modified PID Control of a Single- Link 
flexible Robot, Advanced Robotics, Vol. 22, No. 4, pp. 433-449, 0169-1864. 

Matsuno, M. & Hayashi, A. (2000). PDS cooperative control of two one-link flexible arms, 
Proc. of IEEE Int. Conf. on Robotics and Automation, San Francisco, pp. 1490–1495. 

Meirovitch, L. (1967). Analytical Methods in Vibrations, Macmillan Publishing Co., 0-02-
3801409, NewYork 

Menq, C. & Xia, J. Z. (1993). Experiments on the Tracking Control of A Flexible One-Link 
Manipulator, Trans. of ASME, J. of Dynamic Systems, Measurement and Control, Vol. 
115, No. 2, pp. 306-308, 0022-0434. 

Rai, S. & Asada, H. (1995). Integrated Structure/Control Design of High Speed Flexible 
Robots Based on Time Optimal Control, Trans. of ASME, J. of Dynamic Systems, 
Measurement and Control, Vol. 117, No. 4, pp. 503–512, 0022-0434.   

Siciliano, B. & Book, W. J. (1988). A singular perturbation approach to control of lightweight 
flexible manipulators, Int. J. of Robotics Research, Vol. 7, No. 4 , pp. 79–90, 0278-3649. 

Spector, V. A. & Flashner,  H. (1990). Modelling and design implications of noncollocated 
control in flexible systems. Trans. of ASME, J. of Dynamic Systems, Measurement and 
Control, Vol. 112, No. 2, pp. 186–193, 0022-0434. 

Tawfeic, S. R. ; Baz A.; Abo-Ismail A. A. & Azim, O. A. (1997). Vibration Control of a 
Flexible Arm with Active Constrained Layer Damping, Journal of Low Frequency 
Noise, Vibration And Active Control, Vol. 16, No. 4, pp. 271-287, 1461-3484. 

 Zhu, W. D. & Mote, C. D. (1997). Dynamic Modelling and Optimal Control of Rotating 
Euler-Bernoulli Beams, Trans. of ASME, J. of Dynamic Systems, Measurement and 
Control, Vol. 119, No. 4, pp. 802–808, 0022-0434. 

www.intechopen.com



Vibration Based Control for Flexible Link Manipulator 457

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 (a) payload 0.25 kg                                                                                (b) payload 0.5 kg 

Fig. 13. Tip deflection with different payload (experimental). 
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