
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Development of Adaptive Learning Control Algorithm for  
a two-degree-of-freedom Serial Ball And Socket Actuator 81

Development of Adaptive Learning Control Algorithm for a two-degree-
of-freedom Serial Ball And Socket Actuator

Hayder M. A. A. Al-Assadi and Ahmed Jaffar

x 
 

Development of Adaptive Learning Control 
Algorithm for a two-degree-of-freedom Serial 

Ball And Socket Actuator 
 

Hayder M. A. A. Al-Assadi and Ahmed Jaffar 
Faculty of Mechanical Engineering, Universiti Teknologi MARA  

40450,Shah Alam, Selangor 
 Malaysia 

 
1. Introduction      
 

For any newly developed mechanism the most challenging task is the controller. The 
controller is an algorithm that organizes the mechanism input energy to perform a specified 
task. Robot control usually requires the directing of signals or fluid paths of power elements 
to indicate robot end-effector dynamic behaviour. Furthermore, robot control can be divided 
into two main areas: kinematic control (the coordination of the links of the kinematic chain 
to produce desired motions of the robot) and dynamic control (driving the actuators of the 
mechanism to follow the commanded position velocities). These control strategies are 
widely used in most robots involving position coordination in Cartesian space by a direct 
kinematic method (Karlik and Aydin, 2000). 
In this chapter, an artificial neural network (ANN) adaptive learning algorithm has been 
implemented for dynamic behaviour control of a new two-degree- of-freedom (2DOF) serial 
ball-and-socket actuator. The ANN provides computer simulation of human brain activity 
that gives computers the ability to learn and predict a decision for a specific task. The ANN 
requires a specific network design followed by a training process. A variety of modifications 
could be carried out for the network design during the training process. 
For a robot control scheme there are many uncertainties in the parameters of both the 
actuators (hydraulic, pneumatic, and electric drivers) and the mechanical parts of the 
manipulators (Cheah et al., 2003, Tso & Law, 1993, Mills, 1994, Yang & Chu, 1993, Tsao & 
Tomizuka, 1994, Park & Cho, 1992, Ambrosino et al., 1998). Therefore, to cover the overall 
complexity of the robot control problem and the quest for a truly autonomous robot system, 
the application of an ANN to the robot control scheme has been considered (Ananthraman, 
1991, Cruse & Bruwer, 1990, Kuperstein & Wang, 1990, Miller et al., 1990, Hasan et al., 2007, 
Abdelhameed, 1999, Sharkey & Noel, 1997, Brun-Picard et al., 1999).  In addition, the 
proposed hydraulic power system is one with highly non-linear behaviour. Variations in 
parameters affect the hydraulic system operation and performance, e.g. the laminar and 
turbulent flows, channel geometry, friction results in the system equation, the relation 
between flow velocity and pressure, and oil viscosity (Knohl & Unbehauen, 2000). Hence, to 
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cope with situations of this kind, the hydraulic system required a non-linear controller such 
situation such as an ANN, which has been the focus of work by various researchers (Mills et 
al., 1994, Chen & Billings, 1992).  
In robotics, the revolute joint has one-degree-of-freedom and, because of its simplicity, is by 
far the most used joint. In order to imitate the shoulder or hip joint, two revolute actuators 
are required to provide the necessary 2DOF motion. In the biomedical literature, the 
representation of the human arm as three rigid segments connected by frictionless joints 
with a total of seven degrees of freedom is the generally accepted model (Desmurget & 
Prablanc, 1997, Lemay & Cragi, 1996, Raikova, 1992). In the 7DOF arm models the shoulder 
joint is usually considered as a ball-and-socket joint and the axes in the elbow and wrist 
joints are assumed to be orthogonal and intersecting (Perokopenko et al., 2001).  
Consequently, a new 2DOF serial ball-and-socket actuator has been fabricated to replace the 
two revolute actuators in the serial robot manipulator. The fabricating process has been 
done by combining actuator elements such as the actuator mechanism, the electrohydraulic 
powering system, the communication interface board, and the adaptive learning algorithm. 
The ball-and-socket joint, used in engineering as a mechanical connection between parts that 
must be allowed some relative angular motion in nearly all directions, represents 
articulation with two rotational degrees of freedom. Ball-and-socket joints are successfully 
used for parallel robots and simulators powered by pneumatic or hydraulic cylinders. The 
available basic methods to transmit the power are electrical, mechanical, and fluid drivers. 
Most applications are a combination of these three methods. Each of these methods has 
advantages and disadvantages, so the use of a particular method depends on the application 
and environment (McKerrow, 1991). Among the power transmission systems, the hydraulic 
system will be recommended for use in the developed actuator on account of its ability to 
store energy when no power supply is offered by keeping the pressurized fluid inside the 
cylinder. This is a necessary step to stabilize the ball-and-socket actuator. Therefore, two 
electrohydraulic cylinders have been developed; each will perform one degree of freedom 
with the other supporting, and vice versa.  
An ANN model has been developed and trained to build control knowledge that covers all 
the control parameters for the ball-and-socket actuator. This control knowledge will 
function from digital signals, extracted by computer, to the target end-effector dynamic 
behaviour, without any involvement of actuator mechanism behaviour, with the flexibility 
to cover any modification without changing the control scheme. The ANN model has been 
simulated using C++ programming language. The completed system has been run and 
tested successfully in the laboratory. The remainder of this chapter will demonstrate the 
basic elements of the ball-and-socket actuator, and will examine the control approach and 
the process of development and training of the ANN model. 

 
2. Actuator Design Specifications 
 

The proposed ball-and-socket actuator comprised an actuator mechanism, a power system, 
and a communication interface board. The actuator mechanism represents the mechanical 
elements and comprises the base, ball-and-socket joints, two double-acting electrohydraulic 
cylinders, and the end-effector rod. A diagram of the ball-and-socket actuator is shown in 
Fig. 1, while Fig. 2 shows the fabricated actuator mechanism built to represent the 
developed ball-and-socket actuator.  

 

Fig. 1. Positioning of the support cylinder for the actuator 
 

 

Fig. 2. Fabricated Ball and socket actuator 
 
The power transmission system is complicated by the characteristics of the joints which 
must be free to rotate in all directions and need a dual-tasking power system. Therefore, an 
electrohydraulic cylinder powered by a 1 hp pump was used. The system consists of two 
double-acting electrohydraulic cylinders that are capable of maintaining their position when 
the pressurized fluid is kept inside them. This is a very necessary step to ensure sufficient 
actuator stability for the other cylinder when operating to the desired direction and is an 
advantage of the ball-and-socket actuator. The double-acting electrohydraulic cylinders 
have a two-direction movement scheme that provides an inward and outward motion for 
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cope with situations of this kind, the hydraulic system required a non-linear controller such 
situation such as an ANN, which has been the focus of work by various researchers (Mills et 
al., 1994, Chen & Billings, 1992).  
In robotics, the revolute joint has one-degree-of-freedom and, because of its simplicity, is by 
far the most used joint. In order to imitate the shoulder or hip joint, two revolute actuators 
are required to provide the necessary 2DOF motion. In the biomedical literature, the 
representation of the human arm as three rigid segments connected by frictionless joints 
with a total of seven degrees of freedom is the generally accepted model (Desmurget & 
Prablanc, 1997, Lemay & Cragi, 1996, Raikova, 1992). In the 7DOF arm models the shoulder 
joint is usually considered as a ball-and-socket joint and the axes in the elbow and wrist 
joints are assumed to be orthogonal and intersecting (Perokopenko et al., 2001).  
Consequently, a new 2DOF serial ball-and-socket actuator has been fabricated to replace the 
two revolute actuators in the serial robot manipulator. The fabricating process has been 
done by combining actuator elements such as the actuator mechanism, the electrohydraulic 
powering system, the communication interface board, and the adaptive learning algorithm. 
The ball-and-socket joint, used in engineering as a mechanical connection between parts that 
must be allowed some relative angular motion in nearly all directions, represents 
articulation with two rotational degrees of freedom. Ball-and-socket joints are successfully 
used for parallel robots and simulators powered by pneumatic or hydraulic cylinders. The 
available basic methods to transmit the power are electrical, mechanical, and fluid drivers. 
Most applications are a combination of these three methods. Each of these methods has 
advantages and disadvantages, so the use of a particular method depends on the application 
and environment (McKerrow, 1991). Among the power transmission systems, the hydraulic 
system will be recommended for use in the developed actuator on account of its ability to 
store energy when no power supply is offered by keeping the pressurized fluid inside the 
cylinder. This is a necessary step to stabilize the ball-and-socket actuator. Therefore, two 
electrohydraulic cylinders have been developed; each will perform one degree of freedom 
with the other supporting, and vice versa.  
An ANN model has been developed and trained to build control knowledge that covers all 
the control parameters for the ball-and-socket actuator. This control knowledge will 
function from digital signals, extracted by computer, to the target end-effector dynamic 
behaviour, without any involvement of actuator mechanism behaviour, with the flexibility 
to cover any modification without changing the control scheme. The ANN model has been 
simulated using C++ programming language. The completed system has been run and 
tested successfully in the laboratory. The remainder of this chapter will demonstrate the 
basic elements of the ball-and-socket actuator, and will examine the control approach and 
the process of development and training of the ANN model. 

 
2. Actuator Design Specifications 
 

The proposed ball-and-socket actuator comprised an actuator mechanism, a power system, 
and a communication interface board. The actuator mechanism represents the mechanical 
elements and comprises the base, ball-and-socket joints, two double-acting electrohydraulic 
cylinders, and the end-effector rod. A diagram of the ball-and-socket actuator is shown in 
Fig. 1, while Fig. 2 shows the fabricated actuator mechanism built to represent the 
developed ball-and-socket actuator.  

 

Fig. 1. Positioning of the support cylinder for the actuator 
 

 

Fig. 2. Fabricated Ball and socket actuator 
 
The power transmission system is complicated by the characteristics of the joints which 
must be free to rotate in all directions and need a dual-tasking power system. Therefore, an 
electrohydraulic cylinder powered by a 1 hp pump was used. The system consists of two 
double-acting electrohydraulic cylinders that are capable of maintaining their position when 
the pressurized fluid is kept inside them. This is a very necessary step to ensure sufficient 
actuator stability for the other cylinder when operating to the desired direction and is an 
advantage of the ball-and-socket actuator. The double-acting electrohydraulic cylinders 
have a two-direction movement scheme that provides an inward and outward motion for 
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the end-effector rod. Moreover, the deployment of double-acting electrohydraulic cylinders 
reduces the number of supporting points that are necessary to run and stabilize the actuator 
mechanism to 2 instead of 4 as in the case of single-acting cylinders.  
A communication interface board has been designed and fabricated to establish the 
necessary signals to operate the actuator. Basically it is a transistor relay driver circuit 
converting a 5 V digital signal from the computer mother board operating the learning 
algorithm (ANN) to the necessary 24 d.c. signals required to operate the electrohydraulic 
cylinders. 

 
3. Actuator Controlling Approach 
 

To plan a controller it is necessary to understand the system behaviour and characteristics. 
The equations 

   (x)     333222111 cossincossincossin2  rrr   (1) 
(y) 333222111 sinsinsinsinsinsin2  rrr   (2) 

                        (z)            332211 coscoscos2  rrr   (3) 
illustrate the relationship between angles 1 and 1 , representing the angular displacement 
of the end effector, and ,,,,, 23232 r and 3r  for kinematic analysis on the x, y, and z axes, 

where 3232 ,,,    are the angular displacements of cylinders 1 and 2, and 2r and 3r are the 
lengths of cylinders 1 and 2 respectively.  
 
The equations  
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represent the solutions for finding the angles 1 and 1  from equations (1) to (3).  
 
Finding the solution for 1 and 1  as illustrated in the above equations will depend on 

)(sin 1 and )(cos 1  which are not single-value functions. Furthermore, equations (4), (6), and 
(8) can be used to find 1  values that are not unique. 
In this chapter, an ANN adaptive learning algorithm has been proposed for controlling a 
2DOF serial actuator. In this approach, the adaptive learning algorithm finds an alternative 

solution of the kinematic relation for the ball-and-socket actuator. Therefore, all parameters 
operating the actuator will be considered as target learning input data for the ANN model, 
while the output target data will be the angular displacement, angular velocity, and angular 
acceleration of the actuator end-effector. 
The shape of the actuator mechanism, as shown in Fig. 1, can be controlled by varying the 
length of the electrohydraulic cylinders. The hydraulic cylinders operate as a result of 
allowing pressurized fluid to run them. All the parameters affecting this operation, such as 
the valve order, time, flow-rate, pump pressure, and the fluid head losses, will have been 
incorporated as inputs for the ANN model. After running the cylinder length, the output for 
the ANN will be the dynamic behaviour of the actuator end-effector.   
The workspace, the region that can be reached by the end-effector, is considered to be an 
important performance indicator. Therefore, the control approach is to drive the actuator to 
reach a point from any point within the desired workspace area. Experimental operation 
shows a square workspace for the fabricated actuator mechanism, as illustrated in Fig. 3. As 
can be seen from Fig. 3, the workspace is divided into nine points within the x–y plane. 
Therefore, experimental operation has been carried out to estimate and collect the control 
parameters that drive the actuator from one specific point to another individual point. These 
collected control data have been arranged as datasets. Each set represents input control data 
to drive the actuator mechanism and outputs as angular displacement, angular velocity, and 
angular acceleration of the end-effector. All the datasets were used as target learning data by 
the ANN to build the control knowledge required to operate the ball-and-socket actuator. 
 

 

Fig. 3. Motion analyses of the ball-and-socket actuator 

 
4. Adaptive Learning Algorithm  
 

ANN adaptive learning algorithm computer software was proposed to learn and adopt the 
control parameters to provide the necessary digital signal from the computer main board to 
operate the actuator mechanism. These digital signals could be extracted through various 
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the end-effector rod. Moreover, the deployment of double-acting electrohydraulic cylinders 
reduces the number of supporting points that are necessary to run and stabilize the actuator 
mechanism to 2 instead of 4 as in the case of single-acting cylinders.  
A communication interface board has been designed and fabricated to establish the 
necessary signals to operate the actuator. Basically it is a transistor relay driver circuit 
converting a 5 V digital signal from the computer mother board operating the learning 
algorithm (ANN) to the necessary 24 d.c. signals required to operate the electrohydraulic 
cylinders. 

 
3. Actuator Controlling Approach 
 

To plan a controller it is necessary to understand the system behaviour and characteristics. 
The equations 
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illustrate the relationship between angles 1 and 1 , representing the angular displacement 
of the end effector, and ,,,,, 23232 r and 3r  for kinematic analysis on the x, y, and z axes, 
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represent the solutions for finding the angles 1 and 1  from equations (1) to (3).  
 
Finding the solution for 1 and 1  as illustrated in the above equations will depend on 

)(sin 1 and )(cos 1  which are not single-value functions. Furthermore, equations (4), (6), and 
(8) can be used to find 1  values that are not unique. 
In this chapter, an ANN adaptive learning algorithm has been proposed for controlling a 
2DOF serial actuator. In this approach, the adaptive learning algorithm finds an alternative 

solution of the kinematic relation for the ball-and-socket actuator. Therefore, all parameters 
operating the actuator will be considered as target learning input data for the ANN model, 
while the output target data will be the angular displacement, angular velocity, and angular 
acceleration of the actuator end-effector. 
The shape of the actuator mechanism, as shown in Fig. 1, can be controlled by varying the 
length of the electrohydraulic cylinders. The hydraulic cylinders operate as a result of 
allowing pressurized fluid to run them. All the parameters affecting this operation, such as 
the valve order, time, flow-rate, pump pressure, and the fluid head losses, will have been 
incorporated as inputs for the ANN model. After running the cylinder length, the output for 
the ANN will be the dynamic behaviour of the actuator end-effector.   
The workspace, the region that can be reached by the end-effector, is considered to be an 
important performance indicator. Therefore, the control approach is to drive the actuator to 
reach a point from any point within the desired workspace area. Experimental operation 
shows a square workspace for the fabricated actuator mechanism, as illustrated in Fig. 3. As 
can be seen from Fig. 3, the workspace is divided into nine points within the x–y plane. 
Therefore, experimental operation has been carried out to estimate and collect the control 
parameters that drive the actuator from one specific point to another individual point. These 
collected control data have been arranged as datasets. Each set represents input control data 
to drive the actuator mechanism and outputs as angular displacement, angular velocity, and 
angular acceleration of the end-effector. All the datasets were used as target learning data by 
the ANN to build the control knowledge required to operate the ball-and-socket actuator. 
 

 

Fig. 3. Motion analyses of the ball-and-socket actuator 

 
4. Adaptive Learning Algorithm  
 

ANN adaptive learning algorithm computer software was proposed to learn and adopt the 
control parameters to provide the necessary digital signal from the computer main board to 
operate the actuator mechanism. These digital signals could be extracted through various 
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computer outputs such as serial, parallel, and USB ports. In this chapter, the parallel port 
(printer port) has been chosen to extract +5 V digital signals from the computer. 
Although the ANN method is being implemented to learn a set of information, a specific 
network design is required to cover each individual dataset and application. Consequently, 
a special network has been designed to adopt the control parameters for the ball-and-socket 
actuator that consists of an input layer (valve order, time, pump power, flow-rate, output 
pressure, and head losses for the system), one hidden layer, and an output layer (angular 
displacement 1, angular displacement 2, angular velocity 1, angular velocity 2, angular 
acceleration 1, and angular acceleration 2), as shown in Fig. 4.  
 

 

Fig. 4. ANN for controlling the ball-and-socket actuator 
 
After designing the network, a training process had to be accomplished to build control 
knowledge, which is considered to be the most important step in designing ANN 
algorithms. A neural network was trained by presenting several target data that the network 
had to learn according to a learning rule. The training rule indicated transfer of a function 
such as the binary sigmoid transfer function (equation (9)), forward learning for the input 
layer  (equation (10)), forward learning for the hidden layer (equation (11)), backward 
learning for the output layer (equation (12)), and backward learning for the hidden layer 
(equation (13)) 
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The training process also indicates weight adjustments for each node of the network with 
adjustment of the hidden neuron numbers and learning factor. In this chapter, ten hidden 
neurons were assigned. This type of training process formally was known as the back-
propagation learning algorithm or delta learning rule. The back-propagation for the output 
layer is represented by the equation 
 

hμδ(t)Wi)(tW 2
(2)(2)   (14) 

 
and for the hidden layer by the equation 
 

xμδwi)(tW 1
(1)(1)   (15) 

 
In addition, a learning factor μ  of 0.7 was assigned to adjust the training process. The 
effectiveness and convergence of the error back-propagation learning algorithm depends 
significantly on the value of the learning factor. In general, the optimum value of μ  
depends on the problem being solved, and there is no signal learning factor value suitable 
for different training cases. This leads to the conclusion that μ  should indeed be chosen 
experimentally for each problem (Zurda, 1992). The training process will be continued until 
the network is able to learn all the target data. The accuracy of the learning process depends 
on the type of data to be learned and the application of the network. 

 
5. Results and Discussion  
 

The ANN was trained with predefined target control datasets. C++ programming language 
was developed to simulate the ANN control algorithm with the necessary arrangement of 
output signals operating the electrohydraulic power system. All control datasets values had 
been scaled individually so that the overall difference in the dataset was maximized; this 
was due to the sigmoid transfer function employed with a learning range from 0 to 1. 
Training sets were taken by manually driving the actuator to follow a desired path. 
The training control data were broken up into 64 input–output sets, which covered the 
entire motion range of the ball-and-socket actuator. Each set represented the valve order 
with the time needed to move the actuator from a desired point to another with the 
incorporated parameters. These control data were used to drive the actuator to follow a 
desired path and to move the actuator through all intermediate points. The neural network 
was trained repeatedly for 300 000 iterations with the predefined datasets. To validate the 
design of the network, predicted output sets for angular displacement 1, angular 
displacement 2, angular velocity 1, angular velocity 2, angular acceleration 1, and angular 
acceleration 2 were compared with values from experimental data collected.  
The average absolute errors are summarized in Table 1. Figure 5 illustrates the deviation 
between predicted outputs and the data obtained from the ANN. The results show that the 
design network is capable of learning and predicting the control parameters as shwon in 
Figures 6, 7,and  8. 
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computer outputs such as serial, parallel, and USB ports. In this chapter, the parallel port 
(printer port) has been chosen to extract +5 V digital signals from the computer. 
Although the ANN method is being implemented to learn a set of information, a specific 
network design is required to cover each individual dataset and application. Consequently, 
a special network has been designed to adopt the control parameters for the ball-and-socket 
actuator that consists of an input layer (valve order, time, pump power, flow-rate, output 
pressure, and head losses for the system), one hidden layer, and an output layer (angular 
displacement 1, angular displacement 2, angular velocity 1, angular velocity 2, angular 
acceleration 1, and angular acceleration 2), as shown in Fig. 4.  
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The training process also indicates weight adjustments for each node of the network with 
adjustment of the hidden neuron numbers and learning factor. In this chapter, ten hidden 
neurons were assigned. This type of training process formally was known as the back-
propagation learning algorithm or delta learning rule. The back-propagation for the output 
layer is represented by the equation 
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In addition, a learning factor μ  of 0.7 was assigned to adjust the training process. The 
effectiveness and convergence of the error back-propagation learning algorithm depends 
significantly on the value of the learning factor. In general, the optimum value of μ  
depends on the problem being solved, and there is no signal learning factor value suitable 
for different training cases. This leads to the conclusion that μ  should indeed be chosen 
experimentally for each problem (Zurda, 1992). The training process will be continued until 
the network is able to learn all the target data. The accuracy of the learning process depends 
on the type of data to be learned and the application of the network. 

 
5. Results and Discussion  
 

The ANN was trained with predefined target control datasets. C++ programming language 
was developed to simulate the ANN control algorithm with the necessary arrangement of 
output signals operating the electrohydraulic power system. All control datasets values had 
been scaled individually so that the overall difference in the dataset was maximized; this 
was due to the sigmoid transfer function employed with a learning range from 0 to 1. 
Training sets were taken by manually driving the actuator to follow a desired path. 
The training control data were broken up into 64 input–output sets, which covered the 
entire motion range of the ball-and-socket actuator. Each set represented the valve order 
with the time needed to move the actuator from a desired point to another with the 
incorporated parameters. These control data were used to drive the actuator to follow a 
desired path and to move the actuator through all intermediate points. The neural network 
was trained repeatedly for 300 000 iterations with the predefined datasets. To validate the 
design of the network, predicted output sets for angular displacement 1, angular 
displacement 2, angular velocity 1, angular velocity 2, angular acceleration 1, and angular 
acceleration 2 were compared with values from experimental data collected.  
The average absolute errors are summarized in Table 1. Figure 5 illustrates the deviation 
between predicted outputs and the data obtained from the ANN. The results show that the 
design network is capable of learning and predicting the control parameters as shwon in 
Figures 6, 7,and  8. 
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Parametrs  Percenatge of Error  
Angular Disp_1 3.86 
Angular Disp_2 5.23 
Angular Velocity_1 6.35 
Angular Velocity _2 4.36 
Angular Accel_1  3.98 
Angular Accel_2 2.77 

Table 1. Mean absolute percentage error 
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Fig. 5. Process of building knowledge for the learning Algorithm 
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Fig. 6. Predicted angular displacements 
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Fig. 7. Predicted angular velocities  
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Fig. 8. Predicted angular acceleration 

 
6. Conclusion 
 

The ANN adaptive learning algorithm developed has been implemented successfully on a 
new 2DOF ball-and-socket actuator. The algorithm has the capability of getting round the 
drawback of some control schemes that depend on modelling the system being controlled. 
An actuator has been fabricated to replace the two revolute actuators in serial robot 
manipulators. The trained ANN showed the ability to operate the ball-and-socket actuator 
properly in real time by achieving angular displacement, angular network velocity, and 
angular acceleration. 
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Fig. 7. Predicted angular velocities  
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Fig. 8. Predicted angular acceleration 

 
6. Conclusion 
 

The ANN adaptive learning algorithm developed has been implemented successfully on a 
new 2DOF ball-and-socket actuator. The algorithm has the capability of getting round the 
drawback of some control schemes that depend on modelling the system being controlled. 
An actuator has been fabricated to replace the two revolute actuators in serial robot 
manipulators. The trained ANN showed the ability to operate the ball-and-socket actuator 
properly in real time by achieving angular displacement, angular network velocity, and 
angular acceleration. 
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