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1. Introduction 
 

Mine rescue robot was developed to enter mines during emergencies, such as underground 
explosion, roof fall or water inundation, to locate possible escape routes for those trapped 
inside and determine whether it is safe for human to enter or not. Comparing with wheeled 
robots (Baker et al., 2004) and tracked robots (Tanaka et al., 2005; Wang et al., 2007), legged 
robots are flexible and effective to move on uneven surfaces and natural environments 
because of its adaptability to the geometry of the terrain and in principle support on very 
steep surfaces. Though thought as the promising systems, it is always challenging and 
complex to achieve robust locomotion of legged robots.  
Most of the recent prototypes of legged robots, including Lauron III (Gabmann et al., 2005), 
RHex (Koditschek et al., 2004) and SILO4 (Santos et al., 2005), adopted the serial leg 
manipulator. Due to better system rigidity, rapid motion velocity, high nominal load to 
weight ratio and flexible end position-stance, the parallel manipulators are feasible to be the 
leg manipulators of mine rescue robots. But it is well known that the close chain often leads 
to difficulty in its mechanical design. Since Clavel and his Delta structures (Clavel, 1988) in 
the late 80’s have reached extremely high performances, lower-mobility parallel 
manipulators have been under intensive study for over many years. Lower-mobility parallel 
manipulators have simpler mechanical structure, simpler control system, high speed 
performance, low manufacturing and operations cost (Kim, 2001). Therefore, they have been 
applied in some fields, including telescope applications (Carretero et al., 2000), flight 
simulation (Pouliot et al., 1996) and beam aiming applications (Dunlop & Jones, 1997). 
Among lower-mobility parallel manipulators, special attention has been paid to 
optimization and innovation of 3 degree-of-freedom (DOF) parallel manipulators. Some 
3-DOF translational and spherical parallel manipulators were proposed respectively.  
The topological structure of 3-UCR symmetrical parallel robot leg is described in Fig. 1(a). 
The parallel manipulator consists of a fixed base, a moving platform and three limbs with 
identical structure. In Fig. 1(a), OO-XOYOZO is the static coordinate system attached to the 
base, while OO′-XO′YO′ZO′ is the moving coordinate system attached to the moving platform. 
The lengths of the equilateral triangle lines in the moving platform and the base, such as 
LA′B′ and LAB, are denoted as Lm and LB, respectively. Each limb connects the moving 
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platform to the base by a revolute joint (R) followed by cylindrical joint (C) and universal 
joint (U) in sequence. The lengths of limbs are given as LII′ where I can be substituted by A, B, 
C. 

 
Fig. 1. 3-UCR spatial parallel manipulator: (a) 3-UCR parallel manipulator, (b) UCR 
topological limb 
 
As shown in Fig. 1(a), the number of links is n=8 for 1 platform, 3 cylinders, 3 piston-rods, 
and 1 base; the number of joints is 9 for 3 revolute joints, 3 cylindrical joints, and 3 universal 
joints. Based on a revised Kutzbach-Grübler equation, the DOF of 3-UCR parallel robot leg 
is 3. Therefore, any screw of the manipulator consisted of three linearly independent 
principal screws and it is known as third-order screw system. 

 
2. Instantaneous Kinematic Characteristics of 3-UCR Parallel Robot Leg 
 

The performance of parallel robot leg largely depends on the characteristics of the 
end-effector, including the DOF number, workspace, singularity and dynamic performance, 
decided by the instantaneous kinematics. Because of the kinematic coupling of parallel robot 
leg caused by the interaction of limbs, it is complicated to describe the instantaneous 
kinematics of parallel robot leg. The reciprocal screw theory was introduced by Fang and 
Alon and the spatial screw restrictions were used to analyze the kinematic characteristics of 
moving platform (Fang & Tsai, 2004; Alon & Moshe, 2006). Sokolov made the similar study 
on the basis of differential geometrical method and he further developed the singularities of 
moving platform (Sokolov & Xirouchakis, 2006). For the purpose of the instantaneous 
kinematic analysis of 3-UCR parallel robot leg with 2R1T DOF, the principal screw theory in 
reciprocal screw theory can be proposed to analyze the robot leg. By contrast with the 
first-order influence coefficient matrix between base and moving platform, the principal 
screw model can be established. So the spatial screw restrictions and the corresponding 
kinematics of moving platform can be also obtained. 

2.1 Principal Screw Theory 
Screw theory is important to analyze the kinematic characteristics of manipulators. The 
principal screws intersect perpendicularly each other in screw system, and the number of 
principal screws equals to the order of screw system. The principal screws describe the 
instantaneous independent motion of rigid body, and any screw in screw system is the 
linear combination of principal screws. Therefore, the principal screws are an important tool 
in the analysis of kinematic characteristics. In order to further understand the kinematic 
nature and all possible motions of the manipulators at any given instant, the principal 
screws of the manipulators should be identified from screw system. Compared with the 
principal screws in second-order screw system, the solving process of principal screws in 
third-order screw system is more complicated and there are three principal screw pitches h1, 
h2 and h3. All screw pitch values exist in the scale between two extreme values denoted as h1 
and h3. Ball deduced the principal screws of third-order system by means of mapping 
geometry method (Ball, 1900) and Fang analyzed for the same purpose based on conic 
section degenerating theory (Fang & Huang, 1998). 
The study (Hunt, 1978) indicated that the quadric surface would degenerate into principal 
screw axis 1or 3 when h=h1 or h=h3. The quadric surface would degenerate into a pair of 
intersecting planes and the corresponding intersecting line is principal screw axis 2 when 
h=h2. The middle symmetry axis in hyperboloid of one sheet is regarded as principal screw 
axis 1, and the semi-major axis of middle ellipse is principal screw axis 2 when h1>h>h2. The 
mid-symmetry axis in hyperboloid of one sheet is principal screw axis 3, and the semi-major 
axis of middle ellipse in the plane decided by axis 1 and axis 2 is still axis 2 when h2>h>h3. 
The second equation would degenerate if any pitch value in the system equals to any of h1, 
h2 and h3. For example, the planar quadratic equation would degenerate into two virtual 
lines crossing vertically at one point when h=h1 or h=h3, and the equation would degenerate 
into two solid lines when h=h2. 
Based on the screw theory (Hunt, 1978), a screw can be written as 
 

 hSSSS  0, ,                               (1) 
 
where S, S0 denote the direction and position of a line in space respectively and h is the pitch 
of the screw. h=0 and h=∞ correspond to pure rotation and pure translation of a rigid body, 
and the screw will have the form (S, S0) and (0, hS) respectively. 

 
2.2 Principal Screw Model 
From the theory as above mentioned, the screw pitch of rotation joint and translation joint 
respectively is 0 and ∞. For the purpose of analyzing DOF and kinematics characteristics of 
3-UCR parallel robot leg, the revolute and cylindrical characteristics of moving parts should 
be obtained. Therefore, it is necessary to put emphasis on the analysis of principal screw 
pitch. 
In order to solve the principal screw pitch, the first-order influence coefficient matrix G and 
G′ need to be analyzed firstly. The first-order influence coefficient matrix 0

iG  (i=1, 2, 3) of 
limbs can be deduced by means of imaginary mechanism principle as 
 

                iiiiii
ii SSSSSSAG 543210
00  ,                 (2) 
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platform to the base by a revolute joint (R) followed by cylindrical joint (C) and universal 
joint (U) in sequence. The lengths of limbs are given as LII′ where I can be substituted by A, B, 
C. 

 
Fig. 1. 3-UCR spatial parallel manipulator: (a) 3-UCR parallel manipulator, (b) UCR 
topological limb 
 
As shown in Fig. 1(a), the number of links is n=8 for 1 platform, 3 cylinders, 3 piston-rods, 
and 1 base; the number of joints is 9 for 3 revolute joints, 3 cylindrical joints, and 3 universal 
joints. Based on a revised Kutzbach-Grübler equation, the DOF of 3-UCR parallel robot leg 
is 3. Therefore, any screw of the manipulator consisted of three linearly independent 
principal screws and it is known as third-order screw system. 

 
2. Instantaneous Kinematic Characteristics of 3-UCR Parallel Robot Leg 
 

The performance of parallel robot leg largely depends on the characteristics of the 
end-effector, including the DOF number, workspace, singularity and dynamic performance, 
decided by the instantaneous kinematics. Because of the kinematic coupling of parallel robot 
leg caused by the interaction of limbs, it is complicated to describe the instantaneous 
kinematics of parallel robot leg. The reciprocal screw theory was introduced by Fang and 
Alon and the spatial screw restrictions were used to analyze the kinematic characteristics of 
moving platform (Fang & Tsai, 2004; Alon & Moshe, 2006). Sokolov made the similar study 
on the basis of differential geometrical method and he further developed the singularities of 
moving platform (Sokolov & Xirouchakis, 2006). For the purpose of the instantaneous 
kinematic analysis of 3-UCR parallel robot leg with 2R1T DOF, the principal screw theory in 
reciprocal screw theory can be proposed to analyze the robot leg. By contrast with the 
first-order influence coefficient matrix between base and moving platform, the principal 
screw model can be established. So the spatial screw restrictions and the corresponding 
kinematics of moving platform can be also obtained. 

2.1 Principal Screw Theory 
Screw theory is important to analyze the kinematic characteristics of manipulators. The 
principal screws intersect perpendicularly each other in screw system, and the number of 
principal screws equals to the order of screw system. The principal screws describe the 
instantaneous independent motion of rigid body, and any screw in screw system is the 
linear combination of principal screws. Therefore, the principal screws are an important tool 
in the analysis of kinematic characteristics. In order to further understand the kinematic 
nature and all possible motions of the manipulators at any given instant, the principal 
screws of the manipulators should be identified from screw system. Compared with the 
principal screws in second-order screw system, the solving process of principal screws in 
third-order screw system is more complicated and there are three principal screw pitches h1, 
h2 and h3. All screw pitch values exist in the scale between two extreme values denoted as h1 
and h3. Ball deduced the principal screws of third-order system by means of mapping 
geometry method (Ball, 1900) and Fang analyzed for the same purpose based on conic 
section degenerating theory (Fang & Huang, 1998). 
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screw axis 1or 3 when h=h1 or h=h3. The quadric surface would degenerate into a pair of 
intersecting planes and the corresponding intersecting line is principal screw axis 2 when 
h=h2. The middle symmetry axis in hyperboloid of one sheet is regarded as principal screw 
axis 1, and the semi-major axis of middle ellipse is principal screw axis 2 when h1>h>h2. The 
mid-symmetry axis in hyperboloid of one sheet is principal screw axis 3, and the semi-major 
axis of middle ellipse in the plane decided by axis 1 and axis 2 is still axis 2 when h2>h>h3. 
The second equation would degenerate if any pitch value in the system equals to any of h1, 
h2 and h3. For example, the planar quadratic equation would degenerate into two virtual 
lines crossing vertically at one point when h=h1 or h=h3, and the equation would degenerate 
into two solid lines when h=h2. 
Based on the screw theory (Hunt, 1978), a screw can be written as 
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where S, S0 denote the direction and position of a line in space respectively and h is the pitch 
of the screw. h=0 and h=∞ correspond to pure rotation and pure translation of a rigid body, 
and the screw will have the form (S, S0) and (0, hS) respectively. 

 
2.2 Principal Screw Model 
From the theory as above mentioned, the screw pitch of rotation joint and translation joint 
respectively is 0 and ∞. For the purpose of analyzing DOF and kinematics characteristics of 
3-UCR parallel robot leg, the revolute and cylindrical characteristics of moving parts should 
be obtained. Therefore, it is necessary to put emphasis on the analysis of principal screw 
pitch. 
In order to solve the principal screw pitch, the first-order influence coefficient matrix G and 
G′ need to be analyzed firstly. The first-order influence coefficient matrix 0

iG  (i=1, 2, 3) of 
limbs can be deduced by means of imaginary mechanism principle as 
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where 0
iA  is the transform matrix between the limb coordinate system and the static 

coordinate system. So the equation about the angular velocity ω of the end-effector in 
moving platform, the linear velocity vp of the chosen reference point and the input velocity 
vector  i  of every limb can be shown as 
 

                iiiiii
i

T
P Gv 543210

0   .               (3) 
 

If the matrix  0
iG  is non-singular, there would be     10

0


 i
i GG . If the velocities of 

cylindrical joint 1 and 3 can be chosen as the input velocities in third-order screw system, 
taking and combining the first row and third row corresponding to  i

0  and  i
2  from the 

matrix  iG0  of every limbs in Eq. (3) could get the following equation as 
 

               66
1

3
01

2
01

1
03

3
03

2
03

1
0

 RGGGGGGG
Tq

H .           (4) 
 
The manipulators with different DOF need different number of input parameters, except for 
redundant driving, so the forms of first-order influence matrix G and G′ are decided by the 
number of DOF. Since 3-UCR manipulator has three DOF, it is necessary to have three 
inputs. Therefore, the corresponding relation of inputs and outputs can be established as 
 

       321321 LLLGGLLLGv H
L

T
P

  ,             (5) 
 
where 1L , 2L , 3L  are the known input velocities of limbs and H

LG  formed by taking 

the first three columns of   1q
HG  is a 6×3 matrix. 

Fang analyzed the screw characteristics of instantaneous kinematics of robot, and the pitch 
and the axis of screw can be solved as 
 

      
      11

11





GG
GGh

TT

TT




 ,                      (6) 

          11  GhGGr  ,                    (7) 
 
where    3231 LLLL  .  
It is obviously that any pair of variables (μ, σ) corresponds to a screw in space. Therefore, the 
screw in third-order system can be represented by using any point (μ, σ). Eliminating (x, y, z) 
from Eq. (6), we obtain 
 

0222 332313
2

2212
2

11  aaaaaa  ,               (8) 
 

where 3×3 matrix aij (i, j=1, 2, 3) is the function about screw pitch of moving platform and 
elements of matrix [G] and [G′]. 

If the quadric curve expressed by Eq. (8) degenerates, that is σ becomes the linear function of 
μ, the following condition must be satisfied, 
 

0

333231

232221

131211


aaa
aaa
aaa

D .                          (9) 

 
Expending Eq. (9), we obtain 
 

043
2

2
3

1  chchchc ,                           (10) 
 
where the coefficients ci (i=1, 2, 3, 4) are formed by the elements in matrix [G] and [G′]. Three 
possible roots corresponding to the pitches of three principal screws can be obtained by 
solving Eq. (10), and the instantaneous characteristics of the manipulator can be gotten by 
analyzing them. 

 
2.3 Screw Analysis of 3-UCR Parallel Robot Leg 
In order to solve first-order influence coefficient matrixes, the limb screw system should be 
constructed as shown in Fig. 1(b) by means of imaginary mechanism principal firstly. An 
imaginary link and an imaginary revolute pair denoted by a screw with zero pitch are 
added to every limb. Moreover, there are five unit-DOF kinematic pairs in every limb of 
3-UCR parallel robot leg. So every limb of this manipulator has six unit pairs. For the 
purpose of keeping equivalent kinematic effect between the imaginary manipulator and the 
real one, let the velocity amplitude of the imaginary unit screw 0S  of every limb be zero, 
and 0S  is linearly independent with the other five real screws of the primary limb. 
Therefore, the plücker coordinate of the imaginary screw 0S  in the static coordinate 
system is 

 00100 20 lS  ,                          (11) 
 
where l2 is the length from the origin to the centers of three imaginary pairs which is shown 
in Fig. 1(b). And the plücker coordinates of three original limbs in base system are 
 

 0000101 S , 
    iiS  cos0sin0002  , 

     000cos0sin3 iiS  ,                     (12) 
    iiii llS  sin0cos010 114  , 

    00sin0cos 15 iii lS   , 
 
where l1i is the instantaneous length of every limb and αi is the angel between limb li and Zi 
in the limb coordinate system,   ii lrr  arcsin . The first-order influence matrix 0

iG  
of every limb can be obtained by Eq. (11) and Eq. (12). By selecting the imaginary pair and 
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where 0
iA  is the transform matrix between the limb coordinate system and the static 
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The manipulators with different DOF need different number of input parameters, except for 
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where 1L , 2L , 3L  are the known input velocities of limbs and H

LG  formed by taking 
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HG  is a 6×3 matrix. 
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possible roots corresponding to the pitches of three principal screws can be obtained by 
solving Eq. (10), and the instantaneous characteristics of the manipulator can be gotten by 
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the prismatic motion in cylindrical joint as the initiative inputs, the influent matrix q
HG  can 

be obtained as 
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The first-order influence coefficient matrixes G and G′ of 3-UCR parallel robot leg can be 
solved by the above principal screw model, and the pitches of the general screw can be 
gotten by Eq. (6) and Eq. (10). Analyzing the pitches shows that 3-UCR parallel robot leg 
with different position and orientation has only 3 DOF including 2R1T. In the following part, 
the principal screw when the base is parallel to the moving platform, as an example of 
numerical simulation, would be analyzed. 

 
2.4 Analysis of principal screw when the base is parallel to the moving platform 
According to the topological structure of UCR limb, the parameters need to be taken in this 
configuration. They are l1i=180mm, l2=35mm, r=45mm, and r′=35mm. By substituting those 
parameters into the above principal screw model, we obtain the influent matrix q

HG  as 
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By analyzing the previous equation, the first-order influence coefficient matrixes G and G′ 
are written as 
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Substituting Eq. (14) and Eq. (15) into Eq. (6) gets the following equation as  
 

0101126.1108077.110097.6100939.9 4936226344   hhh .       (17) 
 
By solving Eq. (16), the pitches of the instantaneous 3-UCR parallel robot leg are obtained as 
 

 12917 101421.610971.2107045.6  h .              (18) 
 
From the Eq. (18), it is shown that two possible roots of h are close to zero and one possible 
root of h can be seen as infinite in spite of any inputs. Based on the definition of screw 
theory, we can see that the screw is pure rotation when the pitch is zero and pure translation 
when the pitch is close to infinite. Therefore, the 3-UCR parallel robot leg has two 
instantaneous rotations and one instantaneous translation when the base is parallel to the 
moving platform. 

 
3. Inverse Kinematic Analysis of 3-UCR Parallel Robot Leg 
 

For better motion control, it is essential to analyze the kinematics of the parallel robot leg. 
Kim and Park considerably simplified the kinematic algorithm of 3-RS parallel manipulator 
based on Sylvester’s elimination method (Kim & Park, 2001). Kindermann and Cruse 
proposed the mean of multiple computations to solve the kinematics of manipulators of 
nearly arbitrary configuration and validated the method by the calculation of a hexapod 
walking system (Kindermann & Cruse, 2002). Sokolov introduced subtly some novel 
geometrical parameters and established the inverse kinematic model about a 3-RPS parallel 
manipulator (Sokolov & Xirouchakis, 2005). Through the double semi-ellipses approximate 
distribution model, Wang obtained the corrected inverse kinematic solution of the variable 
geometry parallel manipulator (Wang & Yang, 2005). It is necessary to choose the 
descriptions of the attitude motion of rigid bodies including direction-cosine, Euler angles, 
quaternion and Rodrigues parameters. But direction-cosine method needs nine parameters 
and six constraint equations and it is difficult to be solved. Quaternion method has four 
parameters which is more than the least number of parameters required to describe the 
orientation of a rotating rigid body that is three. Though described by three parameters, 
Euler angle method has singularities. Such this case is Rodirgues parameters can be used. 
Moreover, Rodrigues parameters stand for trigonometric functions in the kinematic model 
and improve the ability of real-time control. But when calculating by Rodirgues parameters, 
eigenaxis rotations greater than 180° cannot be allowed because of the corresponding 
singularities. The kinematic characteristics of the parallel robot leg decide that its motions 
are within the range of angle limits. So Rodrigues parameter method is adopted to describe 
the parallel robot leg. 
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the prismatic motion in cylindrical joint as the initiative inputs, the influent matrix q
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The first-order influence coefficient matrixes G and G′ of 3-UCR parallel robot leg can be 
solved by the above principal screw model, and the pitches of the general screw can be 
gotten by Eq. (6) and Eq. (10). Analyzing the pitches shows that 3-UCR parallel robot leg 
with different position and orientation has only 3 DOF including 2R1T. In the following part, 
the principal screw when the base is parallel to the moving platform, as an example of 
numerical simulation, would be analyzed. 

 
2.4 Analysis of principal screw when the base is parallel to the moving platform 
According to the topological structure of UCR limb, the parameters need to be taken in this 
configuration. They are l1i=180mm, l2=35mm, r=45mm, and r′=35mm. By substituting those 
parameters into the above principal screw model, we obtain the influent matrix q
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By analyzing the previous equation, the first-order influence coefficient matrixes G and G′ 
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Substituting Eq. (14) and Eq. (15) into Eq. (6) gets the following equation as  
 

0101126.1108077.110097.6100939.9 4936226344   hhh .       (17) 
 
By solving Eq. (16), the pitches of the instantaneous 3-UCR parallel robot leg are obtained as 
 

 12917 101421.610971.2107045.6  h .              (18) 
 
From the Eq. (18), it is shown that two possible roots of h are close to zero and one possible 
root of h can be seen as infinite in spite of any inputs. Based on the definition of screw 
theory, we can see that the screw is pure rotation when the pitch is zero and pure translation 
when the pitch is close to infinite. Therefore, the 3-UCR parallel robot leg has two 
instantaneous rotations and one instantaneous translation when the base is parallel to the 
moving platform. 

 
3. Inverse Kinematic Analysis of 3-UCR Parallel Robot Leg 
 

For better motion control, it is essential to analyze the kinematics of the parallel robot leg. 
Kim and Park considerably simplified the kinematic algorithm of 3-RS parallel manipulator 
based on Sylvester’s elimination method (Kim & Park, 2001). Kindermann and Cruse 
proposed the mean of multiple computations to solve the kinematics of manipulators of 
nearly arbitrary configuration and validated the method by the calculation of a hexapod 
walking system (Kindermann & Cruse, 2002). Sokolov introduced subtly some novel 
geometrical parameters and established the inverse kinematic model about a 3-RPS parallel 
manipulator (Sokolov & Xirouchakis, 2005). Through the double semi-ellipses approximate 
distribution model, Wang obtained the corrected inverse kinematic solution of the variable 
geometry parallel manipulator (Wang & Yang, 2005). It is necessary to choose the 
descriptions of the attitude motion of rigid bodies including direction-cosine, Euler angles, 
quaternion and Rodrigues parameters. But direction-cosine method needs nine parameters 
and six constraint equations and it is difficult to be solved. Quaternion method has four 
parameters which is more than the least number of parameters required to describe the 
orientation of a rotating rigid body that is three. Though described by three parameters, 
Euler angle method has singularities. Such this case is Rodirgues parameters can be used. 
Moreover, Rodrigues parameters stand for trigonometric functions in the kinematic model 
and improve the ability of real-time control. But when calculating by Rodirgues parameters, 
eigenaxis rotations greater than 180° cannot be allowed because of the corresponding 
singularities. The kinematic characteristics of the parallel robot leg decide that its motions 
are within the range of angle limits. So Rodrigues parameter method is adopted to describe 
the parallel robot leg. 
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3.1 RODRIGUES PARAMETERS 
In 1840, Rodrigues published a paper on the transformation groups, and Rodrigues 
parameters that integrate the direction cosines of a rotation axis with the tangent of half the 
rotation angle were presented with three quantities. The angles of the rotations appear as 
half-angles which occurred for the first time in the study of rotations. The half-angles are an 
essential feature of the parameterization of rotations and are the measure of pure rotation 
for the most elegant representation of rotations in kinematics (Dai, 2006). The Rodrigues 
parameters were further taken by Cayley to comprise a skew symmetric matrix which then 
formed Cayley’s formula (Cayley, 1875) for a rotation matrix (Altmann, 1986). 
Cayley-Rodrigues parameters can be used to eliminate the constraints associated with the 
Euler parameters, and further these parameters reduce the number of coordinates that 
describe the rigid body orientation from four to three. This fact can be established by 
defining so-called Cayley-Rodrigues parameters as follows: 
 

0iiΦ     (i=1, 2, 3),                        (19) 
 
where i (i=0, 1, 2, 3) are defined as the Euler parameters. 
The Cayley-Rodrigues parameters i (i=1, 2, 3) are also components of the Gibbes which 
defined as 

 2tanˆ ii pΦ    (i=1, 2, 3),                       (20) 
 
where ip̂ (i=1, 2, 3) are the components of principal vector of rotation p̂  referred to the 
body axes. 
Considering iΦ (i=1, 2, 3) as the projection of connected coordinates composes the 
Rodrigues vector denoted as Φ . So the direction-cosine matrix with Rodrigues parameters 
can be written as 
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3.2 Inverse kinematics of moving platform 
As shown in the topological figure of 3-UCR parallel robot leg, 0 0O I O   is considered as the 
closed-loop kinematic chain, and the corresponding vector of the chain can be written as 
 

0 0 0 0O I O I O O    A
  

,                            (22) 
 

where 0O I  , 0O I   and 0 0O O  correspond to the coordinates of the vector OoI′, Oo′I′ and 
OoOo′, respectively.  
Due to the geometrical characteristics of the parallel manipulator, the kinematic spaces of 
limbs are limited in three planes that are defined, respectively, as x=0 in limb AA′, 

yx 3  in limb BB′ and yx 3  in limb CC′. So substituting Eq. (21) into Eq. (22) gives 
the following equations: 
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2
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2 3ΦΦLy mO  .                          (25) 

 
Suppose that the velocity of origin on the moving coordinate system is denoted as VO′ and 
the corresponding sub-velocities along coordinate axes are denoted as VO′x, VO′y, and VO′z. 
According to the corresponding differential equations of the above three equations with 
respect to time, the sub-velocities can be written as 
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where 2

0  equals to 2
2

2
11 ΦΦ   and 1Φ , 2Φ  represent the change velocities of the 

corresponding Rodrigues parameters, respectively. 
Suppose that the angular velocity of origin on the moving coordinate system is denoted as 
ωO′. Analyzing the geometrical characteristics of the parallel manipulator with 3-UCR limbs 
gives the following equation as 

I O O O I      V V ω


,                           (29) 
 
where VI′  (I′=A′, B′, C′) represents the velocity of the connectors on the moving platform 
relative to the static coordinate system and the vector between O′ and I′ is denoted as O I 


. 

Due to the restrictions of revolute joints on the base, the limb coordinates are located in 
three planes perpendicular to the axes of revolute joints. The normalization of the three axes 

can be obtained as  1 0 0 T
A  e ,  1 2 3 2 0

T

B e  and  1 2 3 2 0
T

C  e , so one can 

have 
0I I V e .                               (30) 

 
Analyzing the above equation gives the angular velocities of centroid on the moving 
platform as follows: 
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where the variables in the above three equations can be expressed analytically. 
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3.1 RODRIGUES PARAMETERS 
In 1840, Rodrigues published a paper on the transformation groups, and Rodrigues 
parameters that integrate the direction cosines of a rotation axis with the tangent of half the 
rotation angle were presented with three quantities. The angles of the rotations appear as 
half-angles which occurred for the first time in the study of rotations. The half-angles are an 
essential feature of the parameterization of rotations and are the measure of pure rotation 
for the most elegant representation of rotations in kinematics (Dai, 2006). The Rodrigues 
parameters were further taken by Cayley to comprise a skew symmetric matrix which then 
formed Cayley’s formula (Cayley, 1875) for a rotation matrix (Altmann, 1986). 
Cayley-Rodrigues parameters can be used to eliminate the constraints associated with the 
Euler parameters, and further these parameters reduce the number of coordinates that 
describe the rigid body orientation from four to three. This fact can be established by 
defining so-called Cayley-Rodrigues parameters as follows: 
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where 0O I  , 0O I   and 0 0O O  correspond to the coordinates of the vector OoI′, Oo′I′ and 
OoOo′, respectively.  
Due to the geometrical characteristics of the parallel manipulator, the kinematic spaces of 
limbs are limited in three planes that are defined, respectively, as x=0 in limb AA′, 
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the following equations: 
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According to the corresponding differential equations of the above three equations with 
respect to time, the sub-velocities can be written as 
 

     4
02

2
2

2
111

2
2

2
12 3112 ΦΦΦΦΦΦΦΦLV mxO

  ,            (26) 

     4
02

2
121

2
21 321212 ΦΦΦΦΦΦLV myO

  ,               (27) 
zV zO  ,                                 (28) 

 
where 2

0  equals to 2
2

2
11 ΦΦ   and 1Φ , 2Φ  represent the change velocities of the 

corresponding Rodrigues parameters, respectively. 
Suppose that the angular velocity of origin on the moving coordinate system is denoted as 
ωO′. Analyzing the geometrical characteristics of the parallel manipulator with 3-UCR limbs 
gives the following equation as 

I O O O I      V V ω


,                           (29) 
 
where VI′  (I′=A′, B′, C′) represents the velocity of the connectors on the moving platform 
relative to the static coordinate system and the vector between O′ and I′ is denoted as O I 


. 

Due to the restrictions of revolute joints on the base, the limb coordinates are located in 
three planes perpendicular to the axes of revolute joints. The normalization of the three axes 

can be obtained as  1 0 0 T
A  e ,  1 2 3 2 0

T

B e  and  1 2 3 2 0
T

C  e , so one can 

have 
0I I V e .                               (30) 

 
Analyzing the above equation gives the angular velocities of centroid on the moving 
platform as follows: 
 

     
   

22 33 32 23 41 31 23 33 21 42 32 21 31 22 43

12 33 21 31 23 13 31 22 32 21
O x

s s s s s s s s s s s s s s s
s s s s s s s s s s

 

    


  
,         (31) 

 
   

13 32 12 33 41 13 31 42 12 31 43

12 33 21 31 23 13 31 22 32 21
O y

s s s s s s s s s s s
s s s s s s s s s s

 

  


  
,                 (32) 

 
   

12 23 13 22 41 13 21 42 21 12 43

12 33 21 31 23 13 31 22 32 21
O z

s s s s s s s s s s s
s s s s s s s s s s

 

  


  
,                  (33) 

 
where the variables in the above three equations can be expressed analytically. 
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According to the differential forms of sub-velocities of origin on the moving coordinate 
system with respect to time, the corresponding linear accelerations can be obtained as 
 

O x O xa V   ,                               (34) 

O y O ya V   ,                               (35) 

O z O za V   .                               (36) 
 
Similarly, the differential forms of angular velocities of origin on the moving coordinate 
system with respect to time give the corresponding angular acceleration as 
 

O x O x    ,                               (37) 

O y O y    ,                               (38) 

O z O z    .                               (39) 

 
3.3 Inverse kinematics of limbs 
The coordinates of the connectors in the moving platform being reference to the static 
coordinate system can be obtained by substituting Eq. (23), Eq. (24) and Eq. (25) into Eq. (22). 
So the lengths of limbs described by Rodrigues parameters can be gotten as 
 

   
2 2

22 2 2 1
1 22 2

0 0

3 3 2 30 1 2 2
3 3 3

m m
AA m O

L LL L z  
  

   
            

   
,     (40) 

   
22 22 2 2 2 2

1 2 1 22 1 0
1 2 1 2 22 2 2

0 0 0

1 3 1 33
2 2 6 6 3

m m m m O
BB m

m

L L L L zL L
L

        
  




                                          
, (41) 

   
22 22 2 2 2 2

1 2 1 22 1 0
1 2 1 2 22 2 2

0 0 0

1 3 1 33
2 2 6 6 3

m m m m O
CC m

m

L L L L zL L
L

        
  




                                           
. (42) 

 
The parallel manipulator includes three limbs denoted as AA′, BB′ and CC′. The following 
part shows the kinematic calculation of limb AA′ firstly. 
The coordinates of the connector A′ can be expressed as 
 

0Ax   ,                                 (43) 

 2 2
1 22

0

3 1 2 2
3

m
A

Ly  
    ,                         (44) 

1
2
0

2 3
3

m
A O

Lz z
   .                            (45) 

 
Differentiating the above three equations with respect to time gets the sub-velocities of the 
connector A′ as follows: 

0A xv   ,                                (46) 

    2 2
1 2 1 2 1 2

4
0

2 3 4 1 4

3
m

A y

L
v

     



   


 
,                 (47) 

  2 2
1 2 1 1 2 2

4
0

2 1 2

3
m

A z

L
v z

   



  
 

 
 .                 (48) 

 
The driving velocity of limb AA′ obtained by differentiating its length with Rodrigues 
parameters can be shown as 

   2

2
AAAA

AA
AA

d Ld L
dt L dt






 v .                         (49) 

 
According to the motion of limb AA′ and the geometrical characteristics of this parallel 
manipulator, one can have 

 A AA AA AA AA AAL       v v e ω e .                      (50) 
 
By dot-multiplying both sides of the above equation with  AA AA AAL  e e , Eq. (50) can be 
simplified as 

  2
AA A AA AA AAL L    ω v e ,                        (51) 

 
where AAe  represents the unit vector of AA


, and AAω  is the angular velocity of limb AA′. 

Moreover, 
T

A A x A y A zv v v      v . 

Differentiating the velocities of the connector A′ with respect to time gets the linear 
accelerations of this connector relative to the static coordinate system, three 
sub-accelerations of which along different axes of the static coordinate system can be written 
as 

  0A xa   ,                               (52) 

                2 2 2 2 2 2 2 2
1 1 2 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2 1 2

6 4
0 0

2 4 3 4 1 4 2 3 4 1 4 3 4 1 4

3 3
m m

Ay

L L
a

                 

 

             
 

       
, (53) 

         2 2 2 2 2 2
1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 1 1 2 2

6 4
0 0

8 1 2 2 2 1 2

3 3
m m

Az

L L
a z

            

 

          
  

       
. (54) 

 

The angular acceleration can be obtained by differentiating the angular velocity of limb AA′ 
with respect to time as follows: 
 

     2 2 4
AA AA AA AA AA AA AA AAa L L L L        

   
 

v e .                (55) 

 

Similarly, the velocities and the accelerations of the other limbs can also be gotten by the 
corresponding calculations. 
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According to the differential forms of sub-velocities of origin on the moving coordinate 
system with respect to time, the corresponding linear accelerations can be obtained as 
 

O x O xa V   ,                               (34) 

O y O ya V   ,                               (35) 

O z O za V   .                               (36) 
 
Similarly, the differential forms of angular velocities of origin on the moving coordinate 
system with respect to time give the corresponding angular acceleration as 
 

O x O x    ,                               (37) 

O y O y    ,                               (38) 

O z O z    .                               (39) 

 
3.3 Inverse kinematics of limbs 
The coordinates of the connectors in the moving platform being reference to the static 
coordinate system can be obtained by substituting Eq. (23), Eq. (24) and Eq. (25) into Eq. (22). 
So the lengths of limbs described by Rodrigues parameters can be gotten as 
 

   
2 2

22 2 2 1
1 22 2

0 0

3 3 2 30 1 2 2
3 3 3

m m
AA m O

L LL L z  
  

   
            

   
,     (40) 
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, (41) 
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

                                           
. (42) 

 
The parallel manipulator includes three limbs denoted as AA′, BB′ and CC′. The following 
part shows the kinematic calculation of limb AA′ firstly. 
The coordinates of the connector A′ can be expressed as 
 

0Ax   ,                                 (43) 

 2 2
1 22

0

3 1 2 2
3

m
A

Ly  
    ,                         (44) 

1
2
0

2 3
3

m
A O

Lz z
   .                            (45) 

 
Differentiating the above three equations with respect to time gets the sub-velocities of the 
connector A′ as follows: 

0A xv   ,                                (46) 

    2 2
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4
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m

A y

L
v
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,                 (47) 
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3
m

A z

L
v z

   
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The driving velocity of limb AA′ obtained by differentiating its length with Rodrigues 
parameters can be shown as 

   2

2
AAAA

AA
AA

d Ld L
dt L dt






 v .                         (49) 

 
According to the motion of limb AA′ and the geometrical characteristics of this parallel 
manipulator, one can have 

 A AA AA AA AA AAL       v v e ω e .                      (50) 
 
By dot-multiplying both sides of the above equation with  AA AA AAL  e e , Eq. (50) can be 
simplified as 

  2
AA A AA AA AAL L    ω v e ,                        (51) 

 
where AAe  represents the unit vector of AA


, and AAω  is the angular velocity of limb AA′. 

Moreover, 
T

A A x A y A zv v v      v . 

Differentiating the velocities of the connector A′ with respect to time gets the linear 
accelerations of this connector relative to the static coordinate system, three 
sub-accelerations of which along different axes of the static coordinate system can be written 
as 

  0A xa   ,                               (52) 

                2 2 2 2 2 2 2 2
1 1 2 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2 1 2

6 4
0 0

2 4 3 4 1 4 2 3 4 1 4 3 4 1 4

3 3
m m

Ay

L L
a

                 

 

             
 

       
, (53) 
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. (54) 

 

The angular acceleration can be obtained by differentiating the angular velocity of limb AA′ 
with respect to time as follows: 
 

     2 2 4
AA AA AA AA AA AA AA AAa L L L L        
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 

v e .                (55) 

 

Similarly, the velocities and the accelerations of the other limbs can also be gotten by the 
corresponding calculations. 
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4. Forward Kinematic Analysis of 3-UCR Parallel Robot Leg 
 

The forward position-stance analysis of the parallel manipulators is the basis of structure 
synthesis, kinematic analysis and dynamic optimization, and many researchers had paid 
more attention to it gradually (Ruggiu, 2008; Kim & Park, 2001; Jaime et al., 2006; Lu et al., 
2008). However, the forward position-stance analysis of the parallel manipulator is more 
difficult than the inverse position-stance analysis because it is essential to solve the 
multivariate nonlinear equations. 

 
4.1 Analytical model 
The constraint equations of the parallel robot leg can be obtained by the geometrical 
characteristics, and the variables in the equations can be eliminated by the successive 
elimination method. Then the constraint equations are changed into the unary polynomial 
equation.  
Three joints, denoted as A′, B′, and C′, can be described by another method by the angle 
between driving limbs and moving platform. The above angles are assumed as αA, αB, and αC 
respectively. And the joints in the moving platform can be expressed as 
 

     3, , 0, cos , sin
3A A A m AA A AA Ax y z L L L     

 
   
 

,              (56) 

       1 3 3 1, , cos , cos , sin
2 2 6 2B B B m BB B m BB B BB Bx y z L L L L L       

 
      
 

,   (57) 

       1 3 3 1, , cos , cos , sin
2 2 6 2C C C m CC C m CC C CC Cx y z L L L L L       

 
     
 

.   (58) 

 
Three joints in the moving platform are symmetrical and the distances between two joints of 
them are denoted as Lm. So the equations can be gotten as follows: 
 

     2 2 2 2
B A B A B A mx x y y z z L           ,                  (59) 

     2 2 2 2
C A C A C A mx x y y z z L           ,                  (60) 

     2 2 2 2
C B C B C B mx x y y z z L           .                  (61) 

 
Substituting the coordinates of three joints into the above equation gives 
 

              2 3 cos 3 cos cos cos 2sin sin 0AA BB m B BB AA m A A B A B BBL L L L L L L                 , (62) 

              2 3 cos 3 cos cos cos 2sin sin 0AA CC m C CC AA m A A C A C CCL L L L L L L                 , (63) 

              2 3 cos 3 cos cos cos 2sin sin 0BB CC m C CC BB m B B C B C CCL L L L L L L                 . (64) 

Substituting the universal trigonometric functions into the above transcendental equations 
and supposing    2sin 2 1i i ix x   ,      2 2cos 1 1i i ix x     where  tan 2i ix   (i=A, 

B, C), can simplify the above equations as follows: 
 

2
1 2 1 2 1 0G x H x J   ,                           (65) 

2
2 3 2 3 2 0G x H x J   ,                           (66) 

2
3 3 3 3 3 0G x H x J   ,                           (67) 

 
where 2 2 2 2 2 2 2 2 2

1 1 1 1 1 13 3 3 3m AA AA m BB AA BB BB m AA AA m BB AA BB BBG L L L L L L L L L L x L x L L x L L x L x                     , 
2 2 2 2 2 2 2 2 2

2 1 1 1 1 13 3 3 3m AA AA m CC AA CC CC m AA AA m CC AA CC CCG L L L L L L L L L L x L x L L x L L x L x                     , 
2 2 2 2 2 2 2 2 2

3 2 2 2 2 23 3 3 3m BB BB m CC BB CC CC m BB BB m CC BB CC CCG LL L LL L L L LL x L x LL x L L x L x                     , 
2 2 2 2 2 2 2 2 2

1 1 1 1 1 13 3 3 3m AA AA m BB AA BB BB m AA AA m BB AA BB BBJ L L L L L L L L L L x L x L L x L L x L x                     , 
2 2 2 2 2 2 2 2 2

2 1 1 1 1 13 3 3 3m AA AA m CC AA CC CC m AA AA m CC AA CC CCJ L L L L L L L L L L x L x L L x L L x L x                     , 
2 2 2 2 2 2 2 2 2

3 2 2 2 2 23 3 3 3m BB BB m CC BB CC CC m BB BB m CC BB CC CCJ L L L L L L L L L L x L x L L x L L x L x                     ,

1 12 AA BBH L L x  , 2 12 AA CCH L L x  , 3 22 BB CCH L L x  . 
 
The above equations can be simplified into the polynomial with sixteen degrees having one 
variable, and the main process can be described as the following steps. 
At first, simplifying the two equations about x3 gives 
 

2 3 3 2 2 3 2 3 3

2 3 2 3 2 3 2 3

0
1 0

G H G H G J J G x
J G G J J H H J

      
           

.                   (68) 

 
By analyzing the geometrical characteristics of the parallel robot leg, it is obvious that x3≠0. 
So the following equation can be gotten as 
 

    2
2 3 3 2 2 3 2 3 2 3 2 3 0G H G H J H H J G J J G     .               (69) 

 
Then simplifying x2 in the above equation gives 
 

4 3 2
4 2 3 2 2 2 1 2 0 0Q x Q x Q x Q x Q     ,                    (70) 

 
where Qi (i=0, 1, 2, 3, 4) is the polynomial about x1 having not more than four degrees. 
Because of 2

1 2 1 2 1 0G x H x J   , combining the above two equations can get the following 
equation as 

www.intechopen.com



Kinematic Analysis of 3-UCR Parallel Robot Leg 355

4. Forward Kinematic Analysis of 3-UCR Parallel Robot Leg 
 

The forward position-stance analysis of the parallel manipulators is the basis of structure 
synthesis, kinematic analysis and dynamic optimization, and many researchers had paid 
more attention to it gradually (Ruggiu, 2008; Kim & Park, 2001; Jaime et al., 2006; Lu et al., 
2008). However, the forward position-stance analysis of the parallel manipulator is more 
difficult than the inverse position-stance analysis because it is essential to solve the 
multivariate nonlinear equations. 

 
4.1 Analytical model 
The constraint equations of the parallel robot leg can be obtained by the geometrical 
characteristics, and the variables in the equations can be eliminated by the successive 
elimination method. Then the constraint equations are changed into the unary polynomial 
equation.  
Three joints, denoted as A′, B′, and C′, can be described by another method by the angle 
between driving limbs and moving platform. The above angles are assumed as αA, αB, and αC 
respectively. And the joints in the moving platform can be expressed as 
 

     3, , 0, cos , sin
3A A A m AA A AA Ax y z L L L     

 
   
 

,              (56) 

       1 3 3 1, , cos , cos , sin
2 2 6 2B B B m BB B m BB B BB Bx y z L L L L L       

 
      
 

,   (57) 

       1 3 3 1, , cos , cos , sin
2 2 6 2C C C m CC C m CC C CC Cx y z L L L L L       

 
     
 

.   (58) 

 
Three joints in the moving platform are symmetrical and the distances between two joints of 
them are denoted as Lm. So the equations can be gotten as follows: 
 

     2 2 2 2
B A B A B A mx x y y z z L           ,                  (59) 

     2 2 2 2
C A C A C A mx x y y z z L           ,                  (60) 

     2 2 2 2
C B C B C B mx x y y z z L           .                  (61) 

 
Substituting the coordinates of three joints into the above equation gives 
 

              2 3 cos 3 cos cos cos 2sin sin 0AA BB m B BB AA m A A B A B BBL L L L L L L                 , (62) 

              2 3 cos 3 cos cos cos 2sin sin 0AA CC m C CC AA m A A C A C CCL L L L L L L                 , (63) 

              2 3 cos 3 cos cos cos 2sin sin 0BB CC m C CC BB m B B C B C CCL L L L L L L                 . (64) 

Substituting the universal trigonometric functions into the above transcendental equations 
and supposing    2sin 2 1i i ix x   ,      2 2cos 1 1i i ix x     where  tan 2i ix   (i=A, 

B, C), can simplify the above equations as follows: 
 

2
1 2 1 2 1 0G x H x J   ,                           (65) 

2
2 3 2 3 2 0G x H x J   ,                           (66) 

2
3 3 3 3 3 0G x H x J   ,                           (67) 

 
where 2 2 2 2 2 2 2 2 2

1 1 1 1 1 13 3 3 3m AA AA m BB AA BB BB m AA AA m BB AA BB BBG L L L L L L L L L L x L x L L x L L x L x                     , 
2 2 2 2 2 2 2 2 2

2 1 1 1 1 13 3 3 3m AA AA m CC AA CC CC m AA AA m CC AA CC CCG L L L L L L L L L L x L x L L x L L x L x                     , 
2 2 2 2 2 2 2 2 2

3 2 2 2 2 23 3 3 3m BB BB m CC BB CC CC m BB BB m CC BB CC CCG LL L LL L L L LL x L x LL x L L x L x                     , 
2 2 2 2 2 2 2 2 2

1 1 1 1 1 13 3 3 3m AA AA m BB AA BB BB m AA AA m BB AA BB BBJ L L L L L L L L L L x L x L L x L L x L x                     , 
2 2 2 2 2 2 2 2 2

2 1 1 1 1 13 3 3 3m AA AA m CC AA CC CC m AA AA m CC AA CC CCJ L L L L L L L L L L x L x L L x L L x L x                     , 
2 2 2 2 2 2 2 2 2

3 2 2 2 2 23 3 3 3m BB BB m CC BB CC CC m BB BB m CC BB CC CCJ L L L L L L L L L L x L x L L x L L x L x                     ,

1 12 AA BBH L L x  , 2 12 AA CCH L L x  , 3 22 BB CCH L L x  . 
 
The above equations can be simplified into the polynomial with sixteen degrees having one 
variable, and the main process can be described as the following steps. 
At first, simplifying the two equations about x3 gives 
 

2 3 3 2 2 3 2 3 3

2 3 2 3 2 3 2 3

0
1 0

G H G H G J J G x
J G G J J H H J

      
           

.                   (68) 

 
By analyzing the geometrical characteristics of the parallel robot leg, it is obvious that x3≠0. 
So the following equation can be gotten as 
 

    2
2 3 3 2 2 3 2 3 2 3 2 3 0G H G H J H H J G J J G     .               (69) 

 
Then simplifying x2 in the above equation gives 
 

4 3 2
4 2 3 2 2 2 1 2 0 0Q x Q x Q x Q x Q     ,                    (70) 

 
where Qi (i=0, 1, 2, 3, 4) is the polynomial about x1 having not more than four degrees. 
Because of 2

1 2 1 2 1 0G x H x J   , combining the above two equations can get the following 
equation as 
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1 4 1 3 1 4 1 2 1 1 1 0

1 2 1 4 1 1 1 2 1 3 1 0 1 1 1 0

1 1 1

1 1 1

0
0

0

H Q GQ J Q GQ GQ GQ
GQ J Q GQ H Q J Q GQ H Q H Q

G H J
G H J

    
      
 
 
 

.          (71) 

 
The above equation is the polynomial about x1 having sixteen degrees, and the 
corresponding solutions have sixteen groups. Putting the angle values of αi (i=1, 2, 3) into 
the coordinates joints in the moving platform gives the forward position-stance solutions of 
three spheral joints. Because three spheral joint coordinates do not exist in the same line, the 
plane decided by the spheral joints can be solved. Moreover, the coordinates of any points in 
the moving platform can also be gotten. So knowing the exact values of the inputs, denoted 
as LAA′, LBB′, LCC′, can get the corresponding values of the outputs, denoted as Φ1, Φ2, ZO′. 
And the forward position-stance model of the parallel robot leg with the analytical form has 
been established. 

 
4.2 Numerical model 
Though all position-stance solutions of the robot leg can be gotten by the analytical model, 
the elimination process is complicated and sometimes it is not necessary to get all of them in 
practice. In the given workspace, the only one forward position-stance solution of the 
structure is available. So the numerical solutions can be easier to be calculated and it 
becomes the feasible method to analyze the forward kinematics. 

 
4.2.1 Iterative algorithm 
Bracketing methods such as the bisection method and the false position method of finding 
roots of a nonlinear equation require bracketing of the root by two guesses. These methods 
are always convergent since they are based on reducing the interval between the two 
guesses to zero on the root. In the Newton-Raphson method, only one initial guess of the 
root is needed to get the iterative process started to find the root of an equation. This 
method is based on the principle that if the initial guess of the root of f(x)=0 is at xi , then if 
one draws the tangent to the curve at f(xi), the point xi+1 where the tangent crosses the x-axis 
is an improved estimate of the root. So the Newton-Raphson method is applied as the 
iterative algorithm. 
The iterative steps of numerical model of the parallel robot leg can be written as follows. 
At first, the iterative function is defined as 
 

   1 2 1 2g , , , ,O II O II MZ Z       L L ,                    (72) 
 

where        1 2 1 2 1 2 1 2, , , , , , , ,
T

II O O O OZ AA Z BB Z CC Z                L  and LII′M is the 
measured values of three driving limbs. Substituting the iterated values of three outputs 
into the inverse kinematic model of the parallel robot leg can obtain the theoretical values of 
three driving limbs. 
Based on the Newton-Raphson method, supposing QK as  1 2, ,K K O KZ   gets the following 
equation as 

 
 1

K
K K

K

g Q
Q Q

g Q  


,                           (73) 

 
where g′(QK) can be replaced by the Jacobi matrix of the robot leg. That can be expressed as 
 

  1 2
1

, ,II O II M
K K

E

Z
Q Q

J
   




 

L L
.                   (74) 

 
The tolerances of the driving limbs are defined as LII′฀. If the iterative terminational 
condition could be reached, the corresponding outputs about QK+1 can be calculated by the 
above equation. Corresponding to the preceding inputs, the values of three outputs are the 
forward kinematic solutions of 3-UCR parallel robot leg. 

 
4.2.2 Numerical simulation 
In order to validate the iterative process of forward kinematics, the initial structure 
parameters of 3-UCR parallel robot leg need to be defined and put into the Matlab program 
written by the preceding steps. Then the output values of 3-UCR parallel robot leg can be 
obtained after several iterative circles. 
Firstly, the distances between the joints in the moving platform, denoted as Lm, are 
initialized as 50 3 mm, and the circumcircle radius of the equilateral triangle formed by 
three spheral joints is set as 50mm. The distances between the rotational joints, denoted as LB, 
are 68 3 mm, and the corresponding circumcircle radius of the equilateral triangle is 
68mm. 
For the purpose of getting the target values of the outputs, it is necessary to assume the 
position-stance outputs as [Φ1Φ2 z O′] = [-0.2 0.5 320] in advance. By the relations among 
three spheral joints and the outputs, the position-stance output values caused by the other 
related DOF can be obtained as [Φ3 x O′ y O′] = [0 7.7519 8.1395]. 
Substituting the output values into the inverse kinematic model gives [LAA′ LBB′ LCC′] = 
[304.7719 295.1586 364.8734]. The units in the above matrix are millimeter, and the above 
input values of three driving limbs are assumed as the measured values by the displacement 
sensors.  
The choice of the initial values in the course of calculation is important, especially the 
parallel manipulators, because the number of the forward position-stance solutions of the 
parallel manipulators is more than the number of the serial manipulators. If the errors of 
initial values are enough large, the other group of forward solutions would be gotten. So the 
initial search values of the outputs are set as Q0 = [-0.22 0.48 318]T. 
By calculating circularly the iterative parameter, denoted as   0K K

Q 


, and defining the 

terminational tolerance value as LII′฀=0.0001, the accurate values of the outputs can be 
obtained when the calculated tolerance is less than the terminational tolerance. According to 
the above parameter choice, the output values in the different iterative steps have been 
solved and the corresponding values are written in Table 1. 
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The above equation is the polynomial about x1 having sixteen degrees, and the 
corresponding solutions have sixteen groups. Putting the angle values of αi (i=1, 2, 3) into 
the coordinates joints in the moving platform gives the forward position-stance solutions of 
three spheral joints. Because three spheral joint coordinates do not exist in the same line, the 
plane decided by the spheral joints can be solved. Moreover, the coordinates of any points in 
the moving platform can also be gotten. So knowing the exact values of the inputs, denoted 
as LAA′, LBB′, LCC′, can get the corresponding values of the outputs, denoted as Φ1, Φ2, ZO′. 
And the forward position-stance model of the parallel robot leg with the analytical form has 
been established. 

 
4.2 Numerical model 
Though all position-stance solutions of the robot leg can be gotten by the analytical model, 
the elimination process is complicated and sometimes it is not necessary to get all of them in 
practice. In the given workspace, the only one forward position-stance solution of the 
structure is available. So the numerical solutions can be easier to be calculated and it 
becomes the feasible method to analyze the forward kinematics. 

 
4.2.1 Iterative algorithm 
Bracketing methods such as the bisection method and the false position method of finding 
roots of a nonlinear equation require bracketing of the root by two guesses. These methods 
are always convergent since they are based on reducing the interval between the two 
guesses to zero on the root. In the Newton-Raphson method, only one initial guess of the 
root is needed to get the iterative process started to find the root of an equation. This 
method is based on the principle that if the initial guess of the root of f(x)=0 is at xi , then if 
one draws the tangent to the curve at f(xi), the point xi+1 where the tangent crosses the x-axis 
is an improved estimate of the root. So the Newton-Raphson method is applied as the 
iterative algorithm. 
The iterative steps of numerical model of the parallel robot leg can be written as follows. 
At first, the iterative function is defined as 
 

   1 2 1 2g , , , ,O II O II MZ Z       L L ,                    (72) 
 

where        1 2 1 2 1 2 1 2, , , , , , , ,
T

II O O O OZ AA Z BB Z CC Z                L  and LII′M is the 
measured values of three driving limbs. Substituting the iterated values of three outputs 
into the inverse kinematic model of the parallel robot leg can obtain the theoretical values of 
three driving limbs. 
Based on the Newton-Raphson method, supposing QK as  1 2, ,K K O KZ   gets the following 
equation as 
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where g′(QK) can be replaced by the Jacobi matrix of the robot leg. That can be expressed as 
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The tolerances of the driving limbs are defined as LII′฀. If the iterative terminational 
condition could be reached, the corresponding outputs about QK+1 can be calculated by the 
above equation. Corresponding to the preceding inputs, the values of three outputs are the 
forward kinematic solutions of 3-UCR parallel robot leg. 

 
4.2.2 Numerical simulation 
In order to validate the iterative process of forward kinematics, the initial structure 
parameters of 3-UCR parallel robot leg need to be defined and put into the Matlab program 
written by the preceding steps. Then the output values of 3-UCR parallel robot leg can be 
obtained after several iterative circles. 
Firstly, the distances between the joints in the moving platform, denoted as Lm, are 
initialized as 50 3 mm, and the circumcircle radius of the equilateral triangle formed by 
three spheral joints is set as 50mm. The distances between the rotational joints, denoted as LB, 
are 68 3 mm, and the corresponding circumcircle radius of the equilateral triangle is 
68mm. 
For the purpose of getting the target values of the outputs, it is necessary to assume the 
position-stance outputs as [Φ1Φ2 z O′] = [-0.2 0.5 320] in advance. By the relations among 
three spheral joints and the outputs, the position-stance output values caused by the other 
related DOF can be obtained as [Φ3 x O′ y O′] = [0 7.7519 8.1395]. 
Substituting the output values into the inverse kinematic model gives [LAA′ LBB′ LCC′] = 
[304.7719 295.1586 364.8734]. The units in the above matrix are millimeter, and the above 
input values of three driving limbs are assumed as the measured values by the displacement 
sensors.  
The choice of the initial values in the course of calculation is important, especially the 
parallel manipulators, because the number of the forward position-stance solutions of the 
parallel manipulators is more than the number of the serial manipulators. If the errors of 
initial values are enough large, the other group of forward solutions would be gotten. So the 
initial search values of the outputs are set as Q0 = [-0.22 0.48 318]T. 
By calculating circularly the iterative parameter, denoted as   0K K

Q 


, and defining the 

terminational tolerance value as LII′฀=0.0001, the accurate values of the outputs can be 
obtained when the calculated tolerance is less than the terminational tolerance. According to 
the above parameter choice, the output values in the different iterative steps have been 
solved and the corresponding values are written in Table 1. 
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 Φ1 Φ2 zO′ 

0 -0.22 0.48 318 
1 -0.196089 0.505499 320.46100 
2 -0.200635 0.499836 319.90179 
3 -0.199858 0.499836 320.01285 
4 -0.200032 0.499996 319.99716 
5 -0.199993 0.500000 320.00063 
6 -0.200002 0.500000 319.99992 

Table 1. Numerical solution of the outputs parameters of forward kinematics 
 
The data in Table 1 have been calculated by the taking or rejecting way, and the values of 
the last two iterative steps meet with the iterative terminational condition. Calculation of the 
six cycles shows that the Newton-Raphson method can search the exact forward 
position-stance solutions rapidly. However, for the reason of the choice of initializations and 
limitation of iteration step, it is necessary to pay attention to solution precision and 
algorithm stability. So we need take the following measures during the calculation process 
of forward kinematics. 
At first, if the function equals to zero, the program would have faults. So we need to judge 
the value of f′(Q) and eliminate the condition. Then the slope value of f′(Q) is so little that 
{QK} converges to another group of the solutions. So we should define the initial values 
accurately. Finally, if the items of {QK} tend to repetition, the calculation process would run 
into limitless cycles. So the maximum steps should be chosen to improve the validity of the 
program. 

 
5. Conclusions 
 

Based on principal screw theory and imaginary manipulator method, the kinematic 
characteristics of 3-UCR spatial parallel robot leg with three DOF were analyzed. According 
to the topologic structure of limbs, the screw coordinate system was obtained and the 
kinematics of limbs was studied. By the relation of the matrices of influence coefficient 
between limbs and moving platform, the kinematic model with the screw coordinates was 
established. It shows that the matrices of influence coefficient is only dependent on the 
inputs and kinematic parameters and the method analyzing instantaneous motion is fit for 
others kinds of lower-mobility parallel manipulators. The instantaneous pitches of the 
principal screws gained decide that the kind of manipulator has always three DOF 
including one translation and two rotations. By the numerical simulation when the moving 
platform is parallel to the base, the pitch analysis of principal screws validates the kinematic 
characters of 3-UCR parallel robot leg.  
A new method to describe the position-stance of 3-UCR parallel robot leg was proposed 
based on the Rodrigues theory. Comparing with others methods, the kinematic model with 
Rodrigues parameters has the advantages including least computational parameters, no 
trigonometric function calculation and convenient real-time control. The model of the 
inverse kinematics was established and the inverse solutions of the position-stance were 
obtained by analyzing the topologic structure of 3-UCR parallel robot leg. By analyzing the 
vectors of the manipulator, the velocity and acceleration models of moving platform, limbs 

and end-effector were deduced. According to the designed kinematic track, it is convenient 
to control accurately 3-UCR parallel robot leg by the inverse kinematic model. 
According to the topologic system of 3-UCR parallel robot leg, the geometrical constraints 
are obtained. And the forward kinematic model with analytical expressions can be 
established by eliminating the unknown terms. It is shown that the analytical solutions of 
the forward kinematic model have 16 groups. In order to decrease the number of solutions 
and get the exact position-stance of 3-UCR parallel robot leg, the Newton-Raphson method 
was used to search the best numerical solutions by the judgment of the terminal value. The 
corresponding numerical simulation proved that the exact forward solution can be found 
rapidly by the iterative steps. Moreover, aiming at improving the numerical precision, some 
measures on the choice of initial value and iterative step had been put forward. The forward 
kinematic model provides the basis of the perfect control of 3-UCR parallel robot leg. 
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