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1. Introduction

The accuracy of a robot manipulator’s position in an application environment is dependent on
the manufacturing accuracy and the control accuracy. Unfortunately, there always exist both
manufacturing error and control error. Calibration is an approach to identifying the accurate
geometry of the robot. In general, robots must be calibrated to improve their accuracy. A cali-
brated robot has a higher absolute positioning accuracy. However, calibration involves robot
kinematic modeling, pose measurement, parameter identification and accuracy compensa-
tion. These calibrations are hard work and time consuming. For an active vision system, a
robot device for controlling the motion of cameras based on visual information, the kinematic
calibrations are even more difficult. As a result, even though calibration is fundamental, most
existing active vision systems are not accurately calibrated (Shih et al., 1998). To address this
problem, many researchers select self-calibration techniques. In this article, we apply a more
active approach, that is, we reduce the kinematic errors at the design stage instead of at the
calibration stage. Furthermore, we combine the model described in this article with a cost-
tolerance model to implement an optimal design for active vision systems so that they can be
used more widely in enterprise. We begin to build the model using the relation between two
connecting joint coordinates defined by a DH homogeneous transformation.We then use the
differential relationship between these two connecting joint coordinates to extend the model
so that it relates the kinematic parameter errors of each link to the pose error of the last link.
Given this model, we can implement an algorithm for estimating depth using stereo cameras,
extending the model to handle an active stereo vision system. Based on these two models, we
have developed a set of C++ class libraries. Using this set of libraries, we can estimate robot
pose errors or depth estimation errors based on kinematic errors. Furthermore, we can apply
these libraries to find the key factors that affect accuracy. As a result, more reasonable mini-
mum tolerances or manufacturing requirements can be defined so that the manufacturing cost
is reduced while retaining relatively high accuracy. Besides providing an approach to find the
key factors and best settings of key parameters, we demonstrate how to use a cost-tolerance
model to evaluate the settings. In this way, we can implement optimal design for manufactur-
ing(DFM) in enterprises. Because our models are derived from the Denavit-Hartenberg trans-
formation matrix, differential changes for the transformation matrix and link parameters, and
the fundamental algorithm for estimating depth using stereo cameras, they are suitable for
any manipulator or stereo active vision system. The remainder of this article is organized
as follows. Section 2 derives the model for analyzing the effect of parameter errors on robot
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poses. Section 3 introduces the extended kinematic error model for an active vision system.
It should be noted that this extended model is the main contribution of our article and that
we integrate the robot differential kinematics into an active vision system. Section 4 provides
more detailed steps describing how to use our approach. Section 5 discusses some issues re-
lated to the design of active vision systems and DFM. Section 6 presents a case study for a real
active vision system and cost evaluation using a cost-tolerance model. Finally, Section 7 offers
concluding remarks.

2. Kinematic Differential Model Derived from DH Transformation Matrix

A serial link manipulator consists of a sequence of links connected together by actuated
joints (Paul, 1981). The kinematical relationship between any two successive actuated joints is
defined by the DH (Denavit-Hartenberg) homogeneous transformation matrix. The DH ho-
mogeneous transformation matrix is dependent on the four link parameters, that is, θi, αi, ri,
and di. For the generic robot forward kinematics, only one of these four parameters is vari-
able. If joint i is rotational, the θi is the joint variable and di, αi, and ri are constants. If joint
i is translational, the di is the joint variable and θ, αi, and ri are constants. Since there always
exist errors for these four parameters, we also need a differential relationship between any
two successive actuated joints. This relationship is defined by matrix dAi which is dependent
on dθi, dαi, dri, and ddi as well as θi, αi, ri, and di. Given the relationship between two succes-
sive joints Ai and differential relationship between two successive joints dAi, we can derive
an equation to calculate the accurate position and orientation of the end-effector with respect
to the world coordinate system for a manipulator with N degrees of freedom(N-DOF).
In this section, we will first derive the differential changes between two successive frames in
subsection 2.1. We then give the error model for a manipulator of N degrees of freedom with
respect to the world coordinate system in subsection 2.2.

2.1 The Error Relation between Two Frames

For an N-DOF manipulator described by the Denavit-Hartenberg definition, the homoge-
neous transformation matrix Ai which relates the (i-1)th joint to ith joint is (Paul, 1981)

Ai =









cθi −sθi cαi sθi sαi ricθi

sθi cθi cαi −cθi sαi risθi

0 sαi cαi di

0 0 0 1









(1)

where s and c refer to sine and cosine functions, and θi, αi, ri, and di are link parameters.
Given the individual transformation matrix Ai, the end of an N-DOF manipulator can be
represented as

TN = A1A2 · · ·AN−1AN (2)

We will also use the following definitions. We define Ui = AiAi+1 · · ·AN with UN+1 = I, and
a homogeneous matrix

Ai =

[

ni oi ai pi

0 0 0 1

]

(3)

where ni, oi, ai and pi are 3 × 1 vectors.
Given the ith actual coordinate frame Ai and the ith nominal frame A0

i
, we can obtain an

additive differential transformation dAi

dAi = Ai − A0
i
. (4)
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If we represent the ith additive differential transformation dAi as the ith differential transfor-
mation δAi right multiplying the transformation Ai , we can write

dAi = Ai δAi. (5)

In this case, the changes are with respect to coordinate frame Ai.
Assuming the link parameters are continuous and differentiable we can represent dAi in an-
other way, that is

dAi =
∂Ai

∂θi

dθi +
∂Ai

∂αi

dαi +
∂Ai

∂ri

dri +
∂Ai

∂di

ddi. (6)

Comparing (5) with (6), we obtain

δAi = A−1
( ∂Ai

∂θi

dθi +
∂Ai

∂αi

dαi

+
∂Ai

∂ri

dri +
∂Ai

∂di

ddi

)

. (7)

For the homogeneous matrix, the inverse matrix of Ai is

A−1
i

=









nt
i

−pi · ni

ot
i

−pi · oi

at
i

−pi · ai

01×3 1









(8)

By differentiating all the elements of equation (1) with respect to θi, αi, ri and di respectively,
we obtain

∂Ai

∂θi

=









−sθi −cθi cαi cθi sαi −ri sθi

cθi −sθi cαi sθi cαi ri cθi

0 0 0 0
0 0 0 0









(9)

∂Ai

∂αi

=









0 sθi sαi sθi cαi 0
0 −cθi sαi −cθi cαi 0
0 cαi −sαi 0
0 0 0 0









(10)

∂Ai

∂ri

=









0 0 0 cθi

0 0 0 sθi

0 0 0 0
0 0 0 0









(11)

∂Ai

∂di

=









0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0









(12)

Substituting equations (8), (9), (10), (11) and (12) into (7), we obtain

δAi =









0 −cαi dθi sαi dθi dri

cαi dθi 0 −dαi u

−sαi dθi dαi 0 v

0 0 0 0









(13)
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where u = ri cαi dθi + sαi ddi and v = ri sαi dθi + cαi ddi. Since dAi = Ai δAi, therefore (Paul,
1981)





dxi

dyi

dzi



 =





ddi

di cα dθi + sαi dri

−di sα dθi + cαi dri



 (14)





δxi

δyi

δzi



 =





dαi

sα dθi

cα dθi



 (15)

where (dxi dyi dzi)
t is the differential translation vector and

(

δxi δyi δzi

)t
is the differ-

ential rotation vector with respect to frame Ai.
Let di = (dxi dyi dzi)

t and δi = (δxi δyi δzi )
t. The differential vectors di and δi can be

represented as a linear combination of the parameter changes, which are

di = k1
i dθi + k2

i ddi + k3
i dri (16)

and
δi = k2

i dθi + k3
i dαi (17)

where k1
i = (0 ricαi − risαi)

t, k2
i = (0 sαi cαi)

t and k3
i = (1 0 0)t.

2.2 Kinematic Differential Model of a Manipulator

Wu (Wu, 1984) has developed a kinematic error model of an N-DOF robot manipulator based
on the differential changes dAi and the error matrix δAi due to four small kinematic errors at
an individual joint coordinate frame.
Let dN and δN denote the three translation errors and rotation errors of the end of a manipu-
lator respectively where dN = (dxN dyN dzN) and δN = (δN

x δN
y δN

z ). From (Wu, 1984), we
obtain

(

dN

δN

)

=

(

M1

M2

)

dθ+

(

M2

0

)

dr

+

(

M3

0

)

dd +

(

M4

M3

)

dα (18)

where

dθ = (dθ1 dθ2 . . . dθN)t

dr = (dr1 dr2 . . . drN)t

dd = (dd1 dd2 . . . ddN)t

dα = (dα1 dα2 . . . dαN)t

and M1, M2, M3 and M4 are all 3 × N matrices whose components are the function of N joint
variables. The ith column of M1, M2, M3 and M4 can be expressed as follows:

Mi
1 =





nu
n+1 · k1

i + (pu
i+1 × nu

i+1) · k2
i

ou
i+1 · k1

i + (pu
i+1 × ou

i+1) · k2
i

au
i+1 · k1

i + (pu
i+1 × au

i+1) · k2
i
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Mi
2 =





nu
n+1 · k2

i
ou

i+1 · k2
i

au
i+1 · k2

i





Mi
3 =





nu
n+1 · k3

i
ou

i+1 · k3
i

au
i+1 · k3

i





Mi
4 =





(pu
i+1 × nu

i+1) · k3
i

(pu
i+1 × ou

i+1) · k3
i

(pu
i+1 × au

i+1) · k3
i





where nu
i+1, ou

i+1, au
i+1 and pu

i+1 are four 3 × 1 vectors of matrix Ui+1 which is defined as
Ui = AiAi+1 · · ·AN with UN+1 = I.
Using the above equations, the manipulator’s differential changes with respect to the base can
be represented as

dTN =

[

dn do da dp
0 0 0 1

]

(19)

where

dn = ou
1 δ

N
z − au

1 δ
N
y

do = −nu
1 δ

N
z + au

1 δ
N
x

da = nu
1 δ

N
y − ou

1 δ
N
x

dp = nu
1 dxN + ou

1 dyN + au
1 dzN

and nu
1 , ou

1 , au
1 are four 3 × 1 vectors of matrix U1.

Finally, the real position and orientation at the end of the manipulator can be calculated by

TR
N = TN + dTN (20)

where TN = A1A2 · · ·AN .

3. Extended Model for an Active Visual System

An active vision system, which has become an increasingly important research topic, is a
robot device for controlling the motion of cameras based on visual information. The primary
advantage of directed vision is its ability to use camera redirection to look at widely separated
areas of interest at fairly high resolution instead of using a single sensor or array of cameras to
cover the entire visual field with uniform resolution. It is able to interact with the environment
actively by altering its viewpoint rather than observing it passively. Like an end effector, a
camera can also be connected by a fixed homogeneous transformation to the last link. In
addition, the structure and mechanism are similar to those of robots. Since an active visual
system can kinematically be handled like a manipulator of N degrees of freedom, we can use
the derived solutions in the last section directly.
In this section, we will first introduce the camera coordinate system corresponding to the stan-
dard coordinate system definition for the approaches used in the computer vision literature
and describe a generic algorithm for location estimation with stereo cameras. We will then
integrate them with the kinematic error model of a manipulator.
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Image plane   �

P = (x,y,z)   �

(u,v)   �

Object   �

X

Y

Z

f

Fig. 1. The camera coordinate system whose x- and y-axes form a basis for the image plane,
whose z-axis is perpendicular to the image plane (along the optical axis), and whose origin is
located at distance f behind the image plane, where f is the focal length of the camera lens.

3.1 Pose Estimation with Stereo Cameras

We assign the camera coordinate system with x- and y-axes forming a basis for the image
plane, the z-axis perpendicular to the image plane (along the optical axis), and with its origin
located at distance f behind the image plane, where f is the focal length of the camera lens.

This is illustrated in Fig. 1. A point, cp = (x, y, z)t whose coordinates are expressed with
respect to the camera coordinate frame C, will project onto the image plane with coordinates

pi = (u, v)t given by

π(x, y, z) =

(

u
v

)

=
f

z

(

x
y

)

(21)

If the coordinates of xp are expressed relative to coordinate frame X, we must first perform
the coordinate transformation

cp = cTx
xp. (22)

Let aTc1 represent the pose of the first camera relative to the arbitrary reference coordinate
frame A. By inverting this transformation, we can obtain c1Ta, where

c1Ta =









c1r11
c1r12

c1r13
c1tx

c1r21
c1r22

c1r23
c1ty

c1r31
c1r32

c1r33
c1tz

0 0 0 1









(23)

For convenience, let

c1R1 = (c1r11
c1r12

c1r13) (24)
c1R2 = (c1r21

c1r22
c1r23) (25)

c1R1 = (c1r31
c1r32

c1r33) (26)
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X

Y

Z

f

(a) (b)

Fig. 2. The TRICLOPS Active Vision System has four axes. They are pan axis, tilt axis, left vergence
axis and right vergence axis. The pan axis can rotate around a vertical axis through the center of the
base. The tilt axis can rotate around a horizontal line that intersects the base rotation axis. The left
and right vergence axes intersect and are perpendicular to the tilt axis. These two pictures come from
Wavering, Schneiderman, and Fiala (Wavering et al.). We would like to thank to the paper’s authors.

Given the image coordinates, Hutchinson, Hager and Corke (Hutchinson et al., 1996) have
presented an approach to find the object location with respect to the frame A using the fol-
lowing equations:

A1 ·
ap = b1 (27)

where

A1 =

(

f1
c1R1 − u1

c1R3

f1
c1R2 − v1

c1R3

)

(28)

b1 =

(

u1
c1tz − f1

c1tx

v1
c1tz − f1

c1ty

)

(29)

Given a second camera at location aXc2 , we can compute c2Xa, A2 and ap similarly. Finally
we have an over-determined system for finding ap

(

A1

A2

)

ap =

(

b1

b2

)

(30)

where A1 and b1 are defined by (28) and (29) while A2 and b2 are defined as follows:

A2 =

(

f2
c2R1 − u2

c2R3

f2
c2R2 − v2

c2R3

)

(31)

b2 =

(

u2
c2tz − f2

c2tx

v2
c2tz − f2

c2ty

)

. (32)
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3.2 Pose Estimation Based on an Active Vision System

As mentioned before, assuming that the camera frames are assigned as shown in Fig. 1 and
that the projective geometry of the camera is modeled by perspective projection, a point cp =
(cx cy cz)t, whose coordinates are expressed with respect to the camera coordinate frame will
project onto the image plane with coordinates (u v)t given by

(

u
v

)

=
f

cz

(

cx
cy

)

(33)

For convenience, we suppose that f - the focal length of lens, does not have an error. This
assumption is only for simplicity purposes and we will discuss this issue again in Section 5.
Another problem is that the difference between the real pose of the camera and its nominal
pose will affect the image coordinates. This problem is difficult to solve because the image
coordinates are dependent on the depth of the object which is unknown. If we assume f /cz ≪

1, we can regard them as high order error terms and ignore them. From these assumptions,
we can obtain the real position and orientation of the left camera coordinate frame which is

aTc1 = TR
1 Ac1 (34)

and those of the right camera coordinate frame which is

aTc2 = TR
2 Ac2 (35)

In the above two equations, TR
1 , TR

2 are the real poses of the end links and Ac1, Ac2 are two
operators which relate the camera frames to their end links.
Given Equation (34) and (35), we can invert them to get c1Ta and c2Ta. Then we can obtain an
over-determined system using the method mentioned before. This system can be solved by
the least squares approach as follows (Lawson & Hanson, 1995):

ap =
[

(ATA)−1AT
]

b (36)

where

A =









f1
c1R1 − u1

c1R3

f1
c1R2 − v1

c1R3

f2
c2R1 − u2

c2R3

f2
c2R2 − v2

c2R3









(37)

b =









u1
c1tz − f1

c1tx

v1
c1tz − f1

c1ty

u2
c2tz − f2

c2tx

v2
c2tz − f2

c2ty









(38)

If the superscript a in equations (34) and (35) indicates the world frame, we can calculate the
position of P in world space.
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4. Optimal Structure Design for Active Vision Systems

In the previous section, we derived an equation to calculate the real position when using a
active vision with kinematic errors to estimate the location of a point P in the world space.
Given this equation, it is straightforward to design the structure of an active vision system
optimally. First, we can use T1 and T2 to replace TR

1 and TR
2 in equations (34) and (35).

We then invert the resulting aTc1 and aTc2 to get c1Ta and c2Ta. Finally we solve the over-
determined system by the least squares approach to obtain the nominal pose of the cameras
PN . The difference between these two results, i.e.

E = P − P
N , (39)

is the estimation error.
Note that the estimation errors are dependent on the joint variables and are a function of these
joint variables. Consequently, a series of estimation errors can be obtained based on different
poses of the stereo vision system. A curve describing the relationship between estimation er-
rors and joint variables can be drawn. This curve can help us to analyze the estimation error
or to design an active vision system. Inspired by the eyes of human beings and animals, we
usually select a mechanical architecture with bilateral symmetry when we design a binocular
or stereo active vision system. In this way, we can also simplify our design and manufac-
ture procedures, and thus reduce the our design work and cost. We summarize our method
described in the previous sections as follows:

1. Calculate transformation matrix Ai for each link based on the nominal size of the system
and use them to calculate U1, U2, · · · , UN+1, where Ui = AiAi+1 · · ·AN , UN+1 = I and
T1 = U1.

2. Calculate the operator Ac1 which relates the camera frame to its end link and multiply it
with T1 to obtain the nominal position and orientation of the camera coordinate frame
Tc1.

3. Repeat the above two steps to obtain the nominal position and orientation of the other
camera coordinate frame Tc2.

4. Invert frames Tc1 and Tc2 to obtain c1T and c2T. Here we assume that Tc1 represents
the pose of the first camera relative to the world frame. Since they are homogeneous
matrices, we can guarantee that their inverse matrices exist.

5. Derive Equation (36), an over-determined system using c1T and c2T and solve it by the
least squares approach to find nominal location estimation PN .

6. Calculate four 3 × N matrices M1, M2, M3 and M4 in Equation (18), which are deter-
mined by the elements of matrices in Ui obtained in the first step. Since Ui is dependent
on ith link parameters θi, αi, ri and di, these four matrices are functions of the system
link geometrical parameters as well as of the joint variable θ.

7. Based on performance requirements, machining capability and manufacturing costs,
distribute tolerances to the four parameters of each link. Basically, the three geometrical
tolerances dα, dd, and dr affect manufacturing and assembling costs while the joint
variable tolerance dθ affects control cost.

8. Given four matrices M1, M2, M3, M4 and tolerances for each link, we can use Equa-
tion (19) to compute the total error with respect to the base frame. By adding it to the
T1 obtained in the first step, we can have TR

1 , the real position and orientation of the
end link for the first camera. Similar to Step 2, we need to use the operator Ac1 to do
one more transformation to find the real position and orientation of camera coordinate
frame TR

c1.
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Fig. 3. Coordinate Frames for TRICLOPS - Frame 0 for world frame; Frame 1 for Pan; Frame
2(left) for left tilt; Frame 2(right) for right tilt; Frame 3(left) for left vergence; Frame 3(right) for
right vergence. There are also two camera frames C1 and C2 whose original are located at
distance f behind the image planes.

9. Repeating Step 6, Step 7 and Step 8 for the second camera, we can obtain TR
c2. As men-

tioned above, we usually have a symmetry structure for a stereo vision system. We
assign the same tolerances dα, dθ, dd and dr for the two subsystems. Otherwise, the
subsystem with low precision will dominate the whole performance of the system, and
therefore we will waste the manufacturing cost for the subsystem with highest preci-
sion.

10. Similar to Step 4 and Step 5, we can obtain the inverse matrices of T
R
c1 and T

R
c2, and use

them to build another over-determined system. Solving it, we can have real pose P with
respect to the world frame. The difference between P and P

N is the estimation error.
11. Repeat the above ten steps using another group of joint variables θ1, θ2, · · · , θN until

we exhaust all the joint variables in the Θ domain.
12. After exhausting all the joint variables in the Θ domain, we have a maximum estima-

tion error for assigning tolerances. Obviously, if this maximum does not satisfy the per-
formance requirement, we need to adjust tolerances to improve the system precision
and then go to Step 1 to simulate the result again. On the other hand, if the estima-
tion errors are much smaller than that required, we have some space to relax tolerance
requirements. In this case, we also need to adjust tolerance in order to reduce the man-
ufacturing cost and go to Step 1 to start simulation. After some iterations, we can find
an optimal solution.

Like many engineering designs, while it is true that we can learn from trial and error, those
trials should be informed by something more than random chance, and should begin from a
well thought out design. For example, we can initialize the tolerances based on the previous
design experience or our knowledge in the manufacturing industry. The theory and model
described in this article provide a tool for the design of such an active vision system.
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Plan # dθ dα dd dr

1 (.8◦ .8◦ .8◦)T (.8◦ .8◦ .8◦)T (.005 .005 .005)T (.005 .005 .005)T

2 (.8◦ .8◦ .5◦)T (.8◦ .8◦ .5◦)T (.005 .005 .005)T (.005 .005 .005)T

3 (.8◦ .5◦ .8◦)T (.8◦ .5◦ .8◦)T (.005 .005 .005)T (.005 .005 .005)T

4 (1.1◦ 1.1◦ .5◦)T (1.1◦ 1.1◦ .5◦)T (.005 .005 .005)T (.005 .005 .005)T

5 (.8◦ .8◦ .8◦)T (.8◦ .8◦ .8◦)T (.05 .05 .05)T (.05 .05 .05)T

6 (.8◦ .8◦ .8◦)T (.8◦ .8◦ .8◦)T (.5 .5 .5)T (.5 .5 .5)T

Table 1. The Tolerances for Link Parameters (length unit: in and angle unit: deg)

Feature Category A k δ0 g0 δa δb

Ext. Rotational Sur 3.96 -22.05 0.0 0.79 0.0038 0.203

Hole 1.8 -20.08 -0.025 1.55 0.0038 0.203

Plane 1.73 -12.99 -0.025 0.79 0.0038 0.203

Location 0.68 -12.20 0.0 1.25 0.0038 0.203

Table 2. The parameters of Exponential Function A, k, δ0, g0, δa, δb (δ unit: mm) for four
common manufacturing process (Dong & Soom, 1990)

5. Some Issues about Design of Active Vision Systems

As mentioned, the estimation errors are dependent on four link parameters θ, α, r, d and
their errors dθ, dα, dr, dd. Besides, they are also dependent on the focal length of the camera
lens and its error. Note that although, for simplicity purposes, we do not include the errors
of focal length in our model, adding them is straightforward. Since the cameras are located in
the most end frames, we can obtain the effect of error of focal length directly by substituting
the nominal focal length for the real one.
The four link parameters affect the structure and performance of active vision system. For
example, the parameter θ can determine the motion range of each link, and therefore affect
the view space and domain of the vision system. These parameters should be given based
on specification and performance requirements. The errors of link parameters affect not only
pose estimation precision and performance but the manufacturing process, and therefore the
manufacturing cost as well.
Basically, dα is orientation tolerance while dr and dd are location tolerances. They affect man-
ufacturing cost and assembly cost. The joint variable dθ affects control cost. When we assign
errors of link parameters, the bottom line is to satisfy the function requirement of the active
system. In other words, “...tolerances must be assigned to the component parts of the mechanism in
such a manner that the probability that a mechanism will not function is zero...”1.
On the other hand, we must consider manufacturing cost when we design active vision sys-
tems since even for the same tolerances, different tolerance types can also affect manufactur-
ing cost. For example, form tolerances are more difficult to machine and measure than size
tolerances, and so are holes tolerances more difficult than shaft tolerances.
The final factor discussed in this article, which affects the systems precision and cost, is the
focal length of camera. Since the differences between prices and performances for different
cameras in the current market are big, selecting and purchasing a suitable camera is also a
primary task for the system design. To do trade-off studies before the active system is built,

1 Evans(1974)
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we need a simulation tool for evaluating and optimizing our design. We need to use it to in-
crease the understanding of how each error affects system performance and design the active
vision system in terms of various parameters. Fortunately, the model in this article makes this
simulation possible. Actually, we have developed a C++ class library to implement a simple
tool. With it we can do experiments with various alternatives and obtain data indicating the
best settings of key parameters.

6. TRICLOPS - A Case Study

In this section, we apply the model described above to a real active vision system - TRICLOPS
as shown in Fig. 22. First, we provide six design plans with tolerances assigned for all link
parameters and analyze how the tolerances affect the pose estimation precision using our ap-
proach. We then compare the cost of each design plan based on an exponential cost-tolerance
function. Please note that we do not give a complete design which is much more complicated
than described here, and therefore beyond this article’s range. We just want to demonstrate
how to use our model to help to design active vision systems or analyze and estimate kine-
matic error.
TRICLOPS has four mechanical degrees of freedom. The four axes are: pan about a vertical
axis through the center of the base, tilt about a horizontal line that intersects the base rotation
axis and left and right vergence axes which intersect and are perpendicular to the tilt axis (Fi-
ala et al., 1994). The system is configured with two 0.59(in) vergence lenses and the distance
between the two vergence axes is 11(in). The ranges of motion are ±96.3(deg) for the pan
axis, from +27.5(deg)to − 65.3(deg) for the tilt axis, and ±44(deg) for the vergence axes. The
image coordinates in this demonstration are arbitrarily selected as u = −0.2 and v = 0.2. The
assigned link frames are shown in Fig. 3.

6.1 Tolerances vs. Pose Estimation Precise

As mentioned, the errors are dependent on the variable parameters. We let the three variables
change simultaneously within their motion ranges, as shown in Fig 4. In this experiment, we
have six design plans as shown in Table 1. The results corresponding to these six plans are
shown in Fig. 5 in alphabetical order of sub-figures. If all the translational parameter errors
are 0.005(in) and all angular parameter errors are 0.8(deg), from Fig. 5(a), we know that the
maximum relative error is about 6.5%. Referring to Fig. 5(b), we can observe that by adjusting
dθ3 and dα3 from 0.8(deg) to 0.5(deg), the maximum relative error is reduced from 6.5% to
5.3%. But adjusting the same amount for α2 and θ2, the maximum percentage can only reach
5.8%, as shown in Fig. 5(c). So the overall accuracy is more sensitive to α3 and θ3. As shown in
Fig. 5(d), if we improve the manufacturing or control requirements for α3 and θ3 from 0.8(deg)
to 0.5(deg) and at the same time reduce the requirements for α1, α2, θ1 and θ2 from 0.8(deg) to
1.1(deg), the overall manufacturing requirement is reduced by 0.6 (deg) while the maximum
error is almost the same. From an optimal design view, these tolerances are more reasonable.
From Fig. 5(e), we know that the overall accuracy is insensitive to translational error. From the
design point of view, we can assign more translational tolerances to reduce the manufacturing
cost while retaining relatively high accuracy.

2 Thanks to Wavering, Schneiderman, and Fiala (Wavering et al.), we can present the TRICLOPS pictures
in this article.
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Fig. 4. Simulation Points - The pan axis whose range is from −96.3◦ to +96.3◦, tilt axis whose
range is from −65.3◦ to +27.5◦, and two vergence axes whose ranges are from −44◦ to +44◦

rotate simultaneously.

6.2 Tolerances vs. Manufacturing Cost

For a specific manufacturing process, there is a monotonic decreasing relationship between
manufacturing cost and precision, called the cost tolerance relation, in a certain range. There
are many cost tolerance relations, such as Reciprocal Function, Sutherland Function, Exponen-
tial/Reciprocal Power Function, Reciprocal Square Function, Piecewise Linear Function, and Expo-
nential Function. Among them, the Exponential Function has proved to be relatively simple and
accurate (Dong & Soom, 1990). In this section, we will use the exponential function to evaluate
the manufacturing cost. The following is the mathematical representation of the exponential
cost-tolerance function (Dong & Soom, 1990).

g(δ) = Ae−k(δ−δ0) + g0 (δ0 ≤ δa < δ < δb) (40)

In the above equation, A, δ0, and g0 determine the position of the cost-tolerance curve, while
k controls the curvature of it. These parameters can be derived using a curve-fitting approach
based on experimental data. δa and δb define the lower and upper bounds of the region,
respectively, in which the tolerance is economically achievable. For different manufacturing
process, these parameters are usually different. The parameters are based on empirical datum
for four common feature categories external rotational surface, hole, plane, and location, shown
in Table 2 are from (Dong & Soom, 1990) . For convenience, we use the average values of
these parameters in our experiment. For angular tolerances, we first multiply them by unit
length to transfer them to the length error, and then multiply the obtained cost by a factor
1.5 3. With these assumptions, we can obtain the relative total manufacturing costs, which are

3 Angular tolerances are harder to machine, control and measure than length tolerances.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Experimental Results

www.intechopen.com



An Approach for Optimal Design of Robot Vision Systems 35

14.7, 14.9, 14.9, 14.5, 10.8 and 10.8 for the plans one through six mentioned above, respectively.
Note that for Plan 5 and Plan 6 the length tolerances, after unit conversion, are greater than
parameter δb, and therefore are beyond the range of Exponential Function. So we can ignore the
fine machining cost since their tolerance may be achieved by rough machining such as forging.
Compared with Plan 1, Plan 2, Plan 3 and Plan 4 do not change cost too much while Plan 5 and
Plan 6 can decrease machining cost by 26%. From the analysis of the previous section and
Fig. 5(e), we know that Plan 5 increases system error a little while Plan 6 is obviously beyond
the performance requirement. Thus, Plan 5 is a relatively optimal solution.

7. Conclusions

An active vision system is a robot device for controlling the optics and mechanical structure
of cameras based on visual information to simplify the processing for computer vision. In this
article, we present an approach for the optimal design of such active vision systems. We first
build a model which relates the four kinematic errors of a manipulator to the final pose of this
manipulator. We then extend this model so that it can be used to estimate visual feature errors.
This model is generic, and therefore suitable for analysis of most active vision systems since
it is directly derived from the DH transformation matrix and the fundamental algorithm for
estimating depth using stereo cameras. Based on this model, we developed a standard C++
class library which can be used as a tool to analyze the effect of kinematic errors on the pose
of a manipulator or on visual feature estimation. The idea we present here can also be applied
to the optimized design of a manipulator or an active vision system. For example, we can
use this method to find the key factors which have the most effect on accuracy at the design
stage, and then give more suitable settings of key parameters. We should consider assigning
high manufacturing tolerances to them because the accuracy is more sensitive to these factors.
On the other hand, we can assign low manufacturing tolerances to the insensitive factors
to reduce manufacturing cost. In addition, with the help of a cost-tolerance model, we can
implement our Design for Manufacturing for active vision systems. We also demonstrate how
to use this software model to analyze a real system TRICLOPS, which is a significant proof of
concept. Future work includes a further analysis of the cost model so that it can account for
control errors.
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