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1. Introduction

Recent advances in image processing, computational technology and control theory are en-
abling vision-based control, localization and mapping to become more prevalent in au-
tonomous vehicle applications. Instead of relying solely on a global positioning system (GPS)
or inertial measurement units (IMU) for navigation, image-based methods are a promising
approach to provide autonomous vehicles with position and orientation (i.e., pose) informa-
tion. Specifically, rather than obtain an inertial measurement of an autonomous vehicle, vision
systems can be used to recast the navigation, localization, control and mapping problems in
terms of the image space.
Applications involving localization and mapping using camera as a sensor are often described
as Visual Simultaneous Localization and Mapping (VSLAM) (Davison et al., 2007; Eustice
et al., 2005; Goncalves et al., 2005; Jensfelt et al., 2006; Jung & Lacroix, 2003; Kim & Sukkarieh,
2003; Se et al., 2002), wherein the camera is the main sensor used to estimate the location of
a robot in the world, as well as estimate and maintain estimates of surrounding terrain or
features. There are many overlapping ways to categorize VSLAM approaches. Some authors
(e.g., (Eustice et al., 2005; Jensfelt et al., 2006; Se et al., 2002)) make a distinction between “local
VSLAM” and “global VSLAM”. Many VSLAM approaches use probabilistic filters (e.g., ex-
tended Kalman filter or particle filter) (Davison et al., 2007; Eustice et al., 2005; Jensfelt et al.,
2006; Jung & Lacroix, 2003; Kim & Sukkarieh, 2003), typically estimating a state vector com-
posed of the camera/robot position, orientation and velocity, and the 3D coordinates of visual
features in the world frame. An option to a filtered based approach is the use of epipolar
geometry (Goncalves et al., 2005; Se et al., 2002). A final possible category are methods that
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build a true 3D map (i.e., a map that is easily interpreted by a human being such as walls or
topography) (Eustice et al., 2005; Jensfelt et al., 2006; Jung & Lacroix, 2003; Kim & Sukkarieh,
2003; Se et al., 2002), and those that build a more abstract map that is designed to allow the
camera/robot to accurately navigate and recognize its location, but not designed for human
interpretation.
From the navigation perspective, vision-based pose estimation has motivated results such as
(Baker & Nayar, 1999; Burschka & Hager, 2001; Chen et al., 2006; Das et al., 2001; Dixon et al.,
2001; Fang et al., 2005; Hagar et al., 1998; Kim et al., 2001; Ma et al., 1999; Song & Huang, 2001)
and others, where a camera provides feedback information to enable autonomous navigation
of a control agent. See (Chen et al., 2006) for a detailed review of these and other related
results. Typically these results are focused on the regulation result, and in all the results the
targets are static with respect to the moving camera or the camera is stationary and recording
images of the moving control agent.
Vision-based cooperative control methods can involve a moving camera supplying regula-
tion/tracking control input to a moving control agent. A practical example application of this
scenario is an airborne camera attached to a remote controlled aircraft that is used to deter-
mine a desired video of an unmanned ground vehicle (UGV) moving in a terrain, and then
another moving camera (which does not have to follow the same trajectory as the previous
camera) is used to relate and control the pose of a moving UGV with respect to the recorded
video. The challenge here is to account for the relative velocity between the moving camera
and the moving UGV. Also, the reference objects (or features) used to evaluate the pose can
leave the camera’s field-of-view (FOV) while new reference object enters the FOV. In this sce-
nario, the vision-based system should be intelligent to switch from the leaving reference object
to a new reference object to provide the pose information to the controller.
This chapter uses a new daisy-chaining method for visual servo tracking control of a rigid-
body object, such as an UGV, while providing localization of the moving camera and moving
object in the world frame, and mapping the location of static landmarks in the world frame.
Hence, this approach can be used in control and local VSLAM of the UGV, with applications
toward path planning, real time trajectory generation, obstacle avoidance, multi-vehicle coor-
dination control and task assignment, etc. By using the daisy-chaining strategy, the coordi-
nates of static features out of the FOV can also be estimated. The estimates of static features
can be maintained as a map, or can be used as measurements in existing VSLAM methods.
Section 2 introduces the imaging model, geometric model used in this chapter, as well as
introduces the daisy-chaining method as applied to the case of controlling a six-DOF planar
object through visual data from a moving camera and fixed reference camera. These results
are extended to the case of an UGV with nonholonomic constraints and a moving camera and
moving reference camera in Section 3. The efforts of previous sections are then brought to
bear on a tracking and mapping application, where the UGV is controlled to track a trajectory
that takes the vehicle outside of the initial FOV of the camera. The daisy-chaining approach
must be extended to allow for new fixed landmarks to enter the FOV and related to previous
landmarks and the UGV.

2. Daisy-Chaining Based Tracking Control

In this section, a visual servo tracking controller is developed for a moving six-DOF agent
based on daisy-chained image feedback from a moving camera. The objective is to enable a
controlled agent to track a desired trajectory determined by a sequence of prerecorded images
from a stationary camera. To achieve this result, several technical issues must be resolved
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including: discriminating the relative velocity between the moving camera and the moving
agent, compensating for the unknown time-varying distance measurement from the camera
to the agent, relating the unknown attitude of the control agent to some measurable signals,
and using the unit quaternion to formulate the rotation motion and rotation error system.
The relative velocity issue is resolved by utilizing multi-view image geometry to daisy-chain
homography relationships between the moving camera frame and the moving agent coordi-
nate frames. By using the depth ratios obtained from the homography decomposition, the
unknown depth information is related to an unknown constant that can be compensated for
by a Lyapunov-based adaptive update law. Lyapunov-based methods are provided to prove
the adaptive asymptotic tracking result.

2.1 Problem Scenario

Over the past decade, a variety of visual servo controllers have been addressed for both
camera-to-hand and camera-in-hand configurations (e.g., see (Allen et al., 1993; Hager et al.,
1995; Hutchinson et al., 1996; Wiiesoma et al., 1993)). Typical camera-to-hand and camera-
in-hand visual servo controllers have required that either the camera or the target remain
stationary so that an absolute velocity can be determined and used in the control develop-
ment. For the problem of a moving camera tracking a moving target (i.e. control of relative
pose/velocity), integral control or predictive Kalman filters have been used to overcome the
unknown target velocity (Bensalah & Chaumette, 1995; Papanikolopoulos et al., 1993). In con-
trast to these methods, the development in this section and our previous preliminary work in
(Hu, Mehta, Gans & Dixon, 2007; Mehta, Dixon, MacArthur & Crane, 2006; Mehta, Hu, Gans
& Dixon, 2006) is motivated by the problem when the camera and the target are moving. A
practical example application of this scenario is an airborne camera attached to a remote con-
trolled aircraft that is used to determine pose measurements of an UGV and then relay the
information to the UGV for closed-loop control.

Fig. 1. Geometric model for a moving camera, moving target and stationary reference camera.

The scenario examined in this section is depicted in Fig. 1, where various coordinate frames
are defined as a means to develop the subsequent Euclidean reconstruction and control meth-
ods. In Fig. 1, a stationary coordinate frame IR is attached to a camera and a time-varying
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coordinate frame Fd is attached to some mobile agent (e.g., an aircraft, a ground vehicle, a ma-
rine vessel). The agent is identified in an image through a collection of feature points that are
assumed (without loss of generality1) to be coplanar and non-collinear (i.e., a planar patch of
feature points). The camera attached to IR a priori records a series of snapshots (i.e., a video)
of the motion of the coordinate frame Fd until Fd comes to rest. A stationary coordinate
frame F ∗ is attached to another planar patch of feature points that are assumed to be visible
in every frame of the video recorded by the camera. For example, the camera attached to IR

is on-board a stationary satellite that takes a series of snapshots of the relative motion of Fd

with respect to F ∗. Therefore, the desired motion of Fd can be encoded as a series of relative
translations and rotations with respect to the stationary frame F ∗ a priori. Spline functions
or filter algorithms can then be used to generate a smooth desired feature point trajectory as
described in (Chen et al., 2005).
Fig. 1 also depicts a time-varying coordinate frame I that is attached to another camera (e.g.,
a camera attached to a remote controlled aircraft), and a time-varying coordinate frame F

that is attached to the current pose of the planar patch. The camera attached to I captures
snapshots of the planar patches associated with F and F ∗, respectively. The a priori motion of
Fd represents the desired trajectory of the coordinate system F , where F and Fd are attached
to identical objects, but at different points in time. The camera attached to IR can be a different
camera (with different calibration parameters) as the camera attached to I . Based on these
coordinate frame definitions, the problem considered in this section is to develop a kinematic
controller for the object attached to F so that the time-varying rotation and translation of F
converges to the desired time-varying rotation and translation of Fd, where the motion of F
is determined from the time-varying overhead camera attached to I .

2.2 Geometric Relationships

Relationships between the various coordinate frames are summarized in Table I. In Table I,

R (t), R∗(t), Rr(t), R
′

(t), Rrd (t), R∗
r ∈ SO(3) denote rotation matrices, and x f r(t), x′f r(t),

x f rd (t), x∗f r ∈ R
3 denote translation vectors. From Fig. 1, the translation x′f r(t) and the

rotation R
′

(t) can be expressed as

x′f r = x∗f r + R∗
r R∗T(x f − x∗f )

R
′

= R∗
r R∗T R. (1)

As illustrated in Fig. 1, π, πd and π
∗ denote the planes of feature points associated with

F , Fd, and F ∗, respectively. The constant Euclidean coordinates of the i-th feature point
in F (and also Fd) are denoted by s1i ∈ R

3 ∀i = 1, 2, · · · , n (n ≥ 4), and s2i ∈ R
3 ∀i =

1, 2, · · · , n denotes the constant Euclidean coordinates of the i-th feature point in F ∗. From
the geometry between the coordinate frames depicted in Fig. 1, the following relationships

1 Image processing techniques can often be used to select coplanar and non-collinear feature points
within an image. However, if four coplanar target points are not available then the subsequent de-
velopment can also exploit the virtual parallax method (Boufama & Mohr, 1995; Malis & Chaumette,
2000) where the non-coplanar points are projected onto a virtual plane.
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Motion Frames

R (t), x f (t) F to I in I

R∗(t), x∗f (t) F ∗ to I in I

Rr(t), x f r(t) I to IR

R
′

(t), x
′

f r (t) F to IR in IR

R∗
r , x∗f r F ∗ to IR in IR

Rrd(t), x f rd(t) Fd to IR in IR

Table 1. Coordinate frames relationships.

can be developed:

m̄i = x f + Rs1i m̄rdi = x f rd + Rrds1i (2)

m̄∗
ri = x∗f r + R∗

r s2i m̄
′

i = x′f r + R
′

s1i (3)

m̄∗
i = x∗f + R∗s2i. (4)

In (2)-(4), m̄i(t), m̄∗
i (t) ∈ R

3 denote the Euclidean coordinates of the feature points on π and
π
∗, respectively, expressed in I as

m̄i(t) �
[

xi(t) yi(t) zi(t)
]T

(5)

m̄∗
i (t) �

[

x∗i (t) y∗i (t) z∗i (t)
]T

, (6)

m̄
′

i(t), m̄rdi (t) ∈ R
3 denote the actual and desired time-varying Euclidean coordinates, respec-

tively, of the feature points on π expressed in IR as

m̄
′

i(t) �
[

x
′

i(t) y
′

i(t) z
′

i(t)
]T

(7)

m̄rdi(t) �
[

xrdi(t) yrdi(t) zrdi(t)
]T

, (8)

and m̄∗
ri ∈ R

3 denotes the constant Euclidean coordinates of the feature points on the plane
π
∗ expressed in IR as

m̄∗
ri �

[

x∗ri y∗ri z∗ri

]T
. (9)

After some algebraic manipulation, the expressions in (2)-(4) can be rewritten as

m̄∗
i = x̄n + Rnm̄i (10)

m̄i = x̄ f + R̄m̄∗
i m̄rdi = x̄ f rd + R̄rdm̄∗

ri (11)

m̄∗
ri = x f r + Rrm̄∗

i m̄
′

i = x f r + Rrm̄i, (12)
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where Rn (t), R̄ (t), R̄rd(t), Rr(t) ∈ SO (3) and x̄n(t), x̄ f (t), x̄ f rd(t), x f r(t) ∈ R
3 are new

rotation and translation variables, respectively, defined as2

Rn = R∗RT R̄ = RR∗T (13)

R̄rd = RrdR∗T
r Rr = R∗

r R∗T

x̄n = x∗f − Rn

(

x f − R (s2i − s1i)
)

(14)

x̄ f = x f − R̄
(

x∗f + R∗ (s2i − s1i)
)

(15)

x̄ f rd = x f rd − R̄rd

(

x∗f r + R∗
r (s2i − s1i)

)

(16)

x f r = x∗f r − Rrx∗f = x′f r − Rrx f . (17)

To facilitate the development of a relationship between the actual Euclidean translation of
F to the Euclidean translation that is reconstructed from the image information, projective
relationships are developed from Fig. 1 as

d(t) = nTm̄i d∗(t) = n∗Tm̄∗
i d∗r = n∗T

r m̄∗
ri, (18)

where d(t) ∈ R represents the distance from the origin of I to π along the unit normal (ex-
pressed in I) to π denoted as n(t) ∈ R

3, d∗(t) ∈ R represents the distance from the origin
of I to π

∗ along the unit normal (expressed in I) to π
∗ denoted as n∗(t) ∈ R

3, and d∗r ∈ R

represents the distance from the origin of IR to π
∗ along the unit normal (expressed in IR) to

π
∗ denoted as n∗

r ∈ R
3 where n∗(t) = RT

r (t)n
∗
r . In (18), d(t), d∗(t), d∗r > ε for some positive

constant ε ∈ R. Based on (18), the relationships in (10)-(12) can be expressed as

m̄∗
i =

(

Rn +
x̄n

d
nT

)

m̄i m̄i =

(

R̄ +
x̄ f

d∗
n∗T

)

m̄∗
i (19)

m̄rdi =

(

R̄rd +
x̄ f rd

d∗r
n∗T

r

)

m̄∗
ri m̄∗

ri =

(

Rr +
x f rn∗T

d∗

)

m̄∗
i (20)

m̄
′

i =

(

Rr +
x f rnT

d

)

m̄i. (21)

As in Chen et al. (2005), the subsequent development requires that the constant rotation ma-
trix R∗

r be known. The constant rotation matrix R∗
r can be obtained a priori using various

methods (e.g., a second camera, additional on-board sensors, off-line calibration, Euclidean
measurements). The subsequent development also assumes that the difference between the
Euclidean distances (s2i − s1i) is a constant ∀i = 1, ..., n. While there are many practical ap-
plications that satisfy this assumption (e.g., a simple scenario is that the objects attached to
F and F ∗ are the identical objects), the assumption is generally restrictive and is the focus of
future research. As described in our preliminary work in Hu, Gans, Mehta & Dixon (2007),

2 Note that Rn (t), R̄(t) and R̄rd (t) in (13) are the rotation matrices between F and F ∗, F ∗ and F , and
F ∗ and Fd, respectively, but x̄n(t), x̄ f (t) and x̄ f rd(t) in (14)-(16) are not the translation vectors between
the corresponding coordinate frames. Only the rotation matrices will be used in the controller develop-
ment.
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each of these assumptions can be avoided by using the geometric reconstruction approach in
Dupree et al. (2007); Gans et al. (2008); Mackunis et al. (2007) under an alternative assumption
that the Euclidean distance between two feature points is precisely known.

2.3 Euclidean Reconstruction

The relationships given by (19)-(21) provide a means to quantify a translation and rotation
error between the different coordinate systems. Since the pose of F , Fd, and F ∗ cannot be
directly measured, a Euclidean reconstruction is developed to obtain the pose error by com-
paring multiple images acquired from the hovering monocular vision system. To facilitate the
subsequent development, the normalized Euclidean coordinates of the feature points in π and
π
∗ can be expressed in terms of I as mi (t), m∗

i (t) ∈ R
3, respectively, as

mi �
m̄i

zi
m∗

i �
m̄∗

i

z∗i
. (22)

Similarly, the normalized Euclidean coordinates of the feature points in π, πd and π
∗ can be

expressed in terms of IR as m
′

i(t), mrdi (t), m∗
ri ∈ R

3, respectively, as

m
′

i(t) �
m̄

′

i(t)

z
′

i(t)
mrdi (t) �

m̄rdi (t)

zrdi (t)
m∗

ri �
m̄∗

ri

z∗ri

. (23)

From the expressions given in (19) and (22), the rotation and translation between the coordi-
nate systems F and F ∗, between F ∗ and Fd, and between I and IR can now be related in
terms of the normalized Euclidean coordinates as

mi = αi

(

R̄ + xhn∗T
)

m∗
i m∗

i =
1

αi

(

Rn + xnhnT
)

mi (24)

mrdi = αrdi

(

R̄rd + xhrdn∗T
r

)

m∗
ri m∗

ri = αri

(

Rr + xhrn∗T
)

m∗
i (25)

where αi (t), αrdi(t), αri(t) ∈ R denote depth ratios defined as

αi =
z∗i
zi

αrdi =
z∗ri

zrdi
αri =

z∗i
z∗ri

,

and xh (t), xnh (t), xhrd(t), xhr(t) ∈ R
3 denote scaled translation vectors that are defined as

xh =
x̄ f

d∗
xnh =

x̄n

d
xhrd =

x̄ f rd

d∗r
xhr =

x f r

d∗
. (26)

Since the normalized Euclidean coordinates in (24)-(25) can not be directly measured, the fol-
lowing relationships (i.e., the pin-hole camera model) are used to determine the normalized
Euclidean coordinates from pixel information:

pi = A1mi p∗i = A1m∗
i prdi = A2mrdi p∗ri = A2m∗

ri, (27)

where A1, A2 ∈ R
3×3 are known, constant, and invertible intrinsic camera calibration matri-

ces of the current camera and the reference camera, respectively. In (27), pi (t), p∗i (t) ∈ R
3

represent the image-space coordinates of the Euclidean feature points on π and π
∗ expressed

in terms of I as
pi �

[

ui vi 1
]T

p∗i �
[

u∗
i v∗i 1

]T
, (28)

www.intechopen.com



Robot Localization and Map Building390

respectively, where ui (t), vi (t) , u∗
i (t), v∗i (t) ∈ R. Similarly, prdi(t), p∗ri ∈ R

3 represent the
image-space coordinates of the Euclidean features on πd and π

∗ expressed in terms of IR as

prdi �
[

urdi vrdi 1
]T

p∗ri �
[

u∗
ri v∗ri 1

]T
(29)

respectively, where urdi(t), vrdi(t), u∗
ri, v∗ri ∈ R. By using (24)-(25) and (29), the following

relationships can be developed:

pi = αi

(

A1

(

R̄ + xhn∗T
)

A−1
1

)

︸ ︷︷ ︸

G

p∗i p∗i =
1

αi

(

A1

(

Rn + xnhnT
)

A−1
1

)

︸ ︷︷ ︸

Gn

pi (30)

prdi = αrdi

(

A2

(

R̄rd + xhrdn∗T
r

)

A−1
2

)

︸ ︷︷ ︸

Grd

p∗ri p∗ri = αri

(

A2

(

Rr + xhrn∗T
)

A−1
1

)

︸ ︷︷ ︸

Gr

p∗i , (31)

where G (t), Gn(t), Grd (t), Gr (t) ∈ R
3×3 denote projective homographies. Sets of linear

equations can be developed from (30)-(31) to determine the projective homographies up to a
scalar multiple. Various techniques can be used (e.g., see Faugeras & Lustman (1988); Zhang
& Hanson (1995)) to decompose the Euclidean homographies, to obtain αi (t) , αrdi(t), αri(t),
xh (t), xnh (t), xhrd(t), xhr(t), R̄ (t), Rn(t), R̄rd(t), Rr(t), n∗(t), n∗

r , n (t). Given that the constant
rotation matrix R∗

r is assumed to be known, the expressions for R̄rd(t) and Rr(t) in (13) can
be used to determine Rrd(t) and R∗(t). Once R∗(t) is determined, the expression for R̄(t) in
(13) can be used to determine R(t). Also, once R∗

r , R∗T (t), and R (t) have been determined,
(1) can be used to determine R′(t). Since Rr(t), xhr(t), αi(t), n∗(t), n∗

r , n (t), m∗
i (t), and mi(t)

can be determined, the following relationship can be used to determine m
′

i(t):

m
′

i =
zi

z′i

(

Rr + xhrαi
n∗Tm∗

i

nTmi
nT

)

mi, (32)

where the inverse of the ratio
zi(t)

z
′

i(t)
can be determined as

z
′

i

zi
=

[
0 0 1

]

(

Rr + xhrαi
n∗Tm∗

i

nTmi
nT

)

mi. (33)

2.4 Control Objective

The control objective is for a controlled agent (e.g., an UGV or an UAV) to track a desired tra-
jectory that is determined by a sequence of images. This objective is based on the assumption
that the control agent is physically able to follow the desired image trajectory, that the linear
and angular velocities of the camera are control inputs that can be independently controlled
(i.e., unconstrained motion), and that the reference and desired cameras are calibrated (i.e., A1

and A2 are known). The control objective can be stated as the desire for the Euclidean feature
points on π to track the corresponding feature points on πd, which can be mathematically

stated as the desire for m̄
′

i (t) → m̄rdi (t). Equivalently, the control objective can also be stated

in terms of the rotation and translation of the agent as the desire for x
′

f r(t) → x f rd(t) and

R′(t) → Rrd (t).
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As stated previously, R′(t) and Rrd (t) can be computed by decomposing the projective ho-
mographies in (30)-(31) and using (1). Once these rotation matrices have been determined,
a variety of parameterizations can be used to describe the rotation. The unit quaternion pa-
rameterization is used to describe the rotation in the subsequent problem formulation, control
development, and stability analysis since the unit quaternion provides a globally nonsingular
parameterization of the corresponding rotation matrices.
The unit quaternion is a four dimensional vector, which can be defined as

q �
[

q0 qT
v

]T
qv �

[

qv1 qv2 qv3

]T
, (34)

where q0(t), qvi(t) ∈ R ∀i = 1, 2, 3 satisfy the following nonlinear constraint

qTq = 1. (35)

Given the rotation matrices R′ (t) and Rrd (t), the corresponding unit quaternions q (t) and
qd (t) can be calculated by using the numerically robust method presented in Hu et al. (2006)
and Shuster (1993) based on the corresponding relationships

R′ =
(

q2
0 − qT

v qv

)

I3 + 2qvqT
v + 2q0q×v (36)

Rrd =
(

q2
0d − qT

vdqvd

)

I3 + 2qvdqT
vd + 2q0dq×vd (37)

where I3 is the 3 × 3 identity matrix, and the notation q×v (t) denotes a skew-symmetric form
of the vector qv(t) as

q×v =





0 −qv3 qv2

qv3 0 −qv1

−qv2 qv1 0



 , ∀qv =





qv1

qv2

qv3



 . (38)

To quantify the rotation error between the feature points on π and πd, the multiplicative error
between rotation matrices R′ (t) and Rrd (t) is defined as

R̃ = R′T Rrd =
(

q̃2
0 − q̃T

v q̃v

)

I3 + 2q̃v q̃T
v − 2q̃0q̃×v , (39)

where the error quaternion q̃(t) = (q̃0(t), q̃T
v (t))

T is defined as

q̃ =

[

q̃0

q̃v

]

=

[

q0q0d + qT
v qvd

q0dqv − q0qvd + q×v qvd

]

. (40)

Since q̃(t) is a unit quaternion, (39) can be used to quantify the rotation tracking objective as

‖q̃v(t)‖ → 0 =⇒ R̃(t) → I3 as t → ∞. (41)

The translation error, denoted by e(t) ∈ R
3, is defined as

e = me − med (42)
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where me (t), med(t) ∈ R
3 are defined as3

me =

[

x
′

1

z
′

1

y
′

1

z
′

1

ln(
z
′

1

z∗r1

)

]T

med =

[

xrd1

zrd1

yrd1

zrd1
ln(

zrd1

z∗r1

)
]T

. (43)

In (43),
z
′

1(t)

z∗r1(t)
and

zrd1(t)

z∗r1(t)
can be expressed in terms of known signals as

z
′

1

z∗r1

=
z
′

1

z1

z1

z∗1

z∗1
z∗r1

=
z
′

1

z1

1

α1
αr1

zrd1

z∗r1

=
1

αrd1
.

Based on (41) and (42), the subsequent control development targets the following objectives:

‖q̃v(t)‖ → 0 and ‖e(t)‖ → 0 as t → ∞. (44)

2.5 Control Development

2.5.1 Open-Loop Error System

Based on (39) and (40), the open-loop rotation error system can be developed as Dixon et al.
(2003)

·
q̃ =

1

2

[

−q̃T
v

q̃0 I3 + q̃×v

]

(

ωc − R̃ωcd

)

, (45)

where ωcd (t) denotes the angular velocity of πd expressed in Fd that can be calculated as
Dixon et al. (2003)

ωcd = 2(q0d q̇vd − qvd q̇0d)− 2q×vd q̇vd, (46)

where
(

q0d(t), qT
vd(t)

)T
,
(

q̇0d(t), q̇T
vd(t)

)T
are assumed to be bounded; hence, ωcd(t) is also

bounded. The open-loop translation error system can be derived as

z∗r1 ė =
z∗r1

z
′

1

L
′

vR
′ (

vc + ω
×
c s1

)

− z∗r1ṁed, (47)

where vc(t), ωc(t) ∈ R
3 denote the linear and angular velocity of π expressed in F , respec-

tively, and the auxiliary measurable term L
′

v(t) ∈ R
3×3 is defined as

L
′

v =















1 0 −
x
′

1

z
′

1

0 1 −
y
′

1

z
′

1
0 0 1















.

3 Any point Oi can be utilized in the subsequent development; however, to reduce the notational com-
plexity, we have elected to select the image point O1, and hence, the subscript 1 is utilized in lieu of i in
the subsequent development.
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2.5.2 Closed-Loop Error System

Based on the open-loop rotation error system in (45) and the subsequent Lyapunov-based
stability analysis, the angular velocity controller is designed as

ωc = −Kω q̃v + R̃ωcd, (48)

where Kω ∈ R
3×3 denotes a diagonal matrix of positive constant control gains. From (45) and

(48), the rotation closed-loop error system can be determined as

·
q̃0 =

1

2
q̃T

v Kω q̃v

·
q̃v = −

1

2

(
q̃0 I3 + q̃×v

)
Kω q̃v = −

1

2
Kω q̃0q̃v. (49)

Based on (47), the translation control input vc(t) is designed as

vc = −
z
′

1

z∗r1

R
′T L

′−1
v (Kve − ẑ∗r1ṁed)− ω

×
c s1, (50)

where Kv ∈ R
3×3 denotes a diagonal matrix of positive constant control gains. In (50), the

parameter estimate ẑ∗r1(t) ∈ R for the unknown constant z∗r1 is designed as

·
ẑ∗r1 = −γeTṁed, (51)

where γ ∈ R denotes a positive constant adaptation gain. By using (47) and (50), the transla-
tion closed-loop error system is

z∗r1 ė = −Kve − z̃∗r1ṁed, (52)

where z̃∗r1(t) ∈ R denotes the parameter estimation error

z̃∗r1 = z∗r1 − ẑ∗r1. (53)

2.5.3 Stability Analysis

Theorem 1. The controller given in (48) and (50), along with the adaptive update law in (51) ensures
asymptotic tracking in the sense that

‖q̃v (t)‖ → 0, ‖e(t)‖ → 0, as t → ∞. (54)

Proof. Let V(t) ∈ R denote the following differentiable non-negative function (i.e., a Lya-
punov candidate):

V = q̃T
v q̃v + (1 − q̃0)

2 +
z∗r1

2
eTe +

1

2γ
z̃∗2

r1 . (55)

The time-derivative of V(t) can be determined as

V̇ = −q̃T
v Kω q̃0q̃v − (1 − q̃0)q̃

T
v Kω q̃v − eTKve

+eT (−Kve − z̃∗r1ṁed) + z̃∗r1eTṁed

= −q̃T
v (q̃0 I3 + (1 − q̃0)I3)Kω q̃v − eTKve

= −q̃T
v Kω q̃v − eTKve, (56)

www.intechopen.com



Robot Localization and Map Building394

where (49) and (51)-(53) were utilized. Based on (55) and (56), e(t), q̃v(t), q̃0(t), z̃∗r1(t) ∈ L∞

and e(t), q̃v(t) ∈ L2. Since z̃∗r1(t) ∈ L∞, it is clear from (53) that ẑ∗r1(t) ∈ L∞. Based on the fact

that e(t) ∈ L∞, (42) and (43) can be used to prove that m
′

1(t) ∈ L∞, and then L
′

v(t), L
′−1
v (t) ∈

L∞. Based on the fact that q̃v(t) ∈ L∞ and ωcd(t) is a bounded function, (48) can be used

to conclude that ωc(t) ∈ L∞. Since ẑ∗r1(t), e(t), m
′

1(t), L
′

v(t), L
′−1
v (t) ∈ L∞ and ṁed (t) is

bounded, (50) can be utilized to prove that vc(t) ∈ L∞. From the previous results, (45)-(47)

can be used to prove that ė(t),
·

q̃v(t) ∈ L∞. Since e(t), q̃v(t) ∈ L∞ ∩ L2, and ė(t),
·

q̃v(t) ∈ L∞,
we can utilize a corollary to Barbalat’s Lemma Slotine & Li (1991) to conclude the result given
in (54).

3. Cooperative Tracking Control of A Nonholonomic Unmanned Ground Vehicle

In the previous section, a visual servo tracking controller is developed for a moving six-DOF
agent based on daisy-chained image feedback from a moving camera where a stationary ref-
erence camera was used to encode a desired video. The development in this section and our
preliminary work in Mehta, Hu, Gans & Dixon (2006) extends the previous section by allow-
ing the reference camera to also move. The example of a reference camera in the previous
section was a “stationary” satellite that was used to encode the desired trajectory. In this sec-
tion, the desired trajectory could be encoded by a moving camera (e.g., attached to a moving
satellite, a dirigible, or another UAV). In addition, instead of considering the general six-DOF
control agent, the control agent in this section is a nonholonomic constrained UGV. The control
objective is for the UGV to track a desired trajectory determined by a sequence of prerecorded
images from some moving overhead camera. An additional technical issue resolved in this
section is the challenge of comparing the relative velocity between a moving camera and a
moving UGV to the relative desired trajectory recorded by a moving camera.

3.1 Problem Scenario

Previous results, such as Chen et al. (2006); Dixon et al. (2001); Fang et al. (2005), are typically
focused on the results in which the targets are static with respect to the moving camera or
the camera is stationary and recording images of the moving UGV. In contrast to these meth-
ods, the development in this section is motivated by the problem when a moving camera is
recording images of a moving UGV so a second UGV can track a desired image trajectory.
The scenario examined in this section is depicted in Fig. 2, where various coordinate frames
are defined again as a means to develop the subsequent Euclidean reconstruction and con-
trol methods. In Fig. 2, a single camera is navigating above the motion plane of an UGV.
The moving coordinate frame I is attached to an overhead camera, which records an images
for real-time tracking control. The moving coordinate frame IM is attached to the overhead
camera that recorded the desired image sequence, and the fixed coordinate frame IR is some
single snapshot of IM.
The moving coordinate frame F is attached to the UGV at the center of the rear wheel axis (for
simplicity and without loss of generality). The UGV is represented in the camera image by
four feature points that are coplanar and not collinear. The Euclidean distance (i.e., s1i ∈ R

3

∀i = 1, 2, 3, 4) from the origin of F to one of the feature points is assumed to be known. A pri-
ori information (such as a known target in the initial FOV Davison et al. (2007)) is sometimes
used in VSLAM methods to establish scale. The plane defined by the UGV motion (i.e., the
plane defined by the xy-axis of F ) and the UGV feature points is denoted by π. The linear
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Fig. 2. Geometric model for a moving camera, moving target and moving reference camera.

velocity of the UGV along the x-axis of F is denoted by vc(t) ∈ R, and the angular velocity
ωc(t) ∈ R is about the z-axis of F .
While viewing the feature points of the UGV, the camera is assumed to also view four ad-
ditional coplanar and noncollinear feature points of a stationary reference object. The four
additional feature points define the plane π∗ in Fig. 2. The stationary coordinate frame F ∗ is
attached to the object where a distance from the origin of the coordinate frame to one of the
feature points (i.e., s2i ∈ R

3) is assumed to be known. The plane π∗ is assumed to be parallel to
the plane π. When the camera is coincident with IR, a fixed (i.e., a single snapshot) reference
pose of the UGV, denoted by Fs, is assumed to be in the camera’s FOV. A desired trajectory
is defined by a prerecorded time-varying trajectory of Fd that is assumed to be second-order
differentiable where vcd(t), ωcd(t) ∈ R denote the desired linear and angular velocity of Fd,
respectively. The feature points that define π∗ are also assumed to be visible when the cam-
era is a priori located coincident with the pose of the stationary coordinate frame IR and the
time-varying coordinate frame IM. Based on these coordinate frame definitions, the problem
considered in this section is to develop a kinematic controller for the object attached to F

so that the time-varying rotation and translation of F converges to the desired time-varying
rotation and translation of Fd, where the motion of F is determined from the time-varying
overhead camera attached to I .

3.2 Geometric Relationships

The rotation matrices and translation vectors in Table I (except the last line) are also valid for
this section. Additional relationships between the various coordinate frames are summarized

in Table II. In Table II, Rrs, Rmd(t), R∗
m(t), Rrm(t), R

′

md(t) ∈ SO(3) denote rotation matrices,

and x f rs, x f md(t), x∗f m(t), x f rm(t), x′f rm(t) ∈ R
3 denote translation vectors.
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Fig. 3. Geometric model for a moving camera, moving target and a stationary coordinate
frame attached to a snapshot of the moving reference camera.

Motion Frames

Rrs, x f rs Fs to IR

Rmd(t), x f md(t) Fd to IM

R∗
m(t), x∗f m(t) F ∗ to IM

Rrm(t), x f rm(t) IM to IR

R′
md(t), x′f rm(t) F to IR in IM

Table 2. Coordinate frame relationships.

Fig. 4. Geometric model for a moving target, moving reference camera, desired trajectory, and
a stationary coordinate frame attached to a snapshot of the moving reference camera.
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3.3 Euclidean Reconstruction

The coordinate frame representation in Fig. 2 can be separated into Figs. 3 and 4 to relate
I to IR and IR to IM, respectively. The coordinate frames in each figure have the same
relationships as in Fig. 1. Therefore, the same Euclidean reconstruction process as presented
in Section 2.1-2.3 can be used twice to build the Euclidean relationships for this example.
To reconstruct the Euclidean relationship for the geometric model as shown in Fig. 3, let
m̄rsi ∈ R

3 denote the constant reference Euclidean coordinates of the feature points on πs

expressed in IR as

m̄rsi �
[

xrsi yrsi zrsi

]T
,

and let prsi ∈ R
3 represent the constant image-space coordinates of the feature points on πs

taken by the camera attached to IM when IM is coincident with IR

prsi �
[

ursi vrsi 1
]T

.

Following the development in Section 2.2 and 2.3, relationships can be obtained to determine
the homographies and depth ratios as4

pi = αi

(

A
(

R̄ + xhn∗T
)

A−1
)

︸ ︷︷ ︸

G

p∗i prsi = αrsi

(

A
(

R̄rs + xhrsn∗T
r

)

A−1
)

︸ ︷︷ ︸

Grs

p∗ri (57)

p∗ri = αri

(

A
(

Rr + xhrn∗T
)

A−1
)

︸ ︷︷ ︸

Gr

p∗i (58)

where

αi =
z∗i
zi

αrsi =
z∗ri

zrsi
αri =

z∗i
z∗ri

R̄ = RR∗T R̄rs = RrsR∗T
r Rr = R∗

r R∗T . (59)

Furthermore, the normalized Euclidean coordinates mi(t) can be related to m
′

i(t) as

m
′

i =
zi

z′i

(

Rr + xhrαi
n∗Tm∗

i

n∗Tmi
n∗T

)

mi (60)

z
′

i

zi
=

[

0 0 1
]

(

Rr + xhrαi
n∗Tm∗

i

nTmi
n∗T

)

mi. (61)

To reconstruct the Euclidean relationship for the geometric model as shown in Fig. 4, let
m̄mdi(t), m̄∗

mi(t) ∈ R
3 denote the Euclidean coordinates of the feature points on πd and π

∗

expressed in IM as

m̄mdi(t) �
[

xmdi(t) ymdi(t) zmdi(t)
]T

m̄∗
mi(t) �

[

x∗mi(t) y∗mi(t) z∗mi(t)
]T

,

4 To simplify the notations, the cameras are assumed to have the same calibration matrix A in the follow-
ing development. The readers can refer to Section 2.1 for the deductions that the calibration matrices
are different.
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let m̄
′

mdi(t) ∈ R
3 denote the desired Euclidean coordinates of the feature points on πd ex-

pressed in IR as

m̄
′

mdi(t) �
[

x
′

mdi(t) y
′

mdi(t) z
′

mdi(t)
]T

,

and let pmdi (t), p∗mi (t) ∈ R
3 represent the image-space coordinates of the feature points on

πd and π
∗ captured by the camera attached to IM, respectively, as

pmdi �
[

umdi vmdi 1
]T

p∗mi �
[

u∗
mi v∗mi 1

]T
.

The normalized coordinates of m̄
′

mdi(t) and m̄mdi(t), denoted as m
′

mdi(t), mmdi(t) ∈ R
3, re-

spectively, are defined as

m
′

mdi(t) �
m̄

′

mdi(t)

z
′

mdi(t)
mmdi(t) �

m̄mdi(t)

zmdi(t)
. (62)

Following the development in Section 2.2 and 2.3, relationships can be developed to compute
the homographies and depth ratios as

pmdi = αmdi

(

A
(

R̄md + xhmdn∗T
m

)

A−1
)

︸ ︷︷ ︸

Gmd

p∗mi p∗ri = αrmi

(

A
(

Rrm + xhrmn∗T
m

)

A−1
)

︸ ︷︷ ︸

Grm

p∗mi,

(63)
where

αmdi =
z∗mi

zmdi
αrmi =

z∗mi

z∗ri

R̄md = RmdR∗T
m Rrm = R∗

r R∗T
m . (64)

Relationships between mmdi(t) and m
′

mdi(t) can be established as

m
′

mdi =
zmdi

z′mdi

(Rrm +xhrmαmdi
n∗T

m m∗
mi

n∗T
m mmdi

n∗T
m

)

mmdi (65)

z′mdi

zmdi
=

[
0 0 1

]
(Rrm +xhrmαmdi

n∗T
m m∗

mi

n∗T
m mmdi

n∗T
m

)

mmdi. (66)

In (57)-(63), n∗ (t), n∗
m (t), and n∗

r ∈ R
3 denote the constant unit normal to the planes π and π

∗

as expressed in I , IM, and IR respectively, xh (t), xhrs(t), xhr(t), xhmd(t), xhrm(t) ∈ R
3 denote

the corresponding scaled translation vectors, and G (t), Grs, Gr(t), Gmd(t), Grm(t) ∈ R3×3

denote projective homographies.
Sets of linear equations in (57)-(58) and (63) can be used to determine and decompose ho-
mographies to obtain αi (t) , αrsi, αmdi(t), αri(t), αrmi(t), xh (t), xhrs, xhr(t), xhmd(t), xhrm(t),
R̄ (t), R̄rs, Rr(t), R̄md(t), and Rrm(t). Given that the rotation matrix R∗

r (t) is assumed to be
known, the expressions for R̄rs(t) and Rr(t) in (59) can be used to determine Rrs(t) and R∗(t).
Once R∗(t) is determined, the expression for R̄(t) and Rrm(t) in (59) and (64) can be used
to determine R(t) and R∗

m(t). The rotation R∗
m(t) can then be used to calculate Rmd(t) from

the relationship for R̄md in (64). Based on the definitions for R(t), R∗(t), Rmd(t), R∗
m(t), R∗

r ,
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and Rrs provided in the previous development, the rotation from F to Fs and from Fd to Fs,
denoted by R1(t), Rd1(t) ∈ SO(3), respectively, are defined as

R1(t) = R
T
rsR

∗
r R

∗T(t)R(t) =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 (67)

Rd1(t) = R
T
rsR

∗
r R

∗T
m (t)Rmd(t) =





cos θd sin θd 0
− sin θd cos θd 0

0 0 1



 (68)

where θ(t) ∈ R denotes the right-handed rotation angle about the z-axis that aligns F with
Fs, and θd(t) ∈ R denotes the right-handed rotation angle about the z-axis that aligns Fd with
Fs. From the definitions of θ(t) and θd(t), it is clear that

θ̇ = ωc θ̇d = ωcd (69)

where ωc(t), ωcd(t) ∈ R denote the desired angular velocities of F and Fd, respectively. Based
on the fact that R(t), R∗(t), Rmd(t), R∗

m(t), R∗
r , and Rrs are known, it is clear from (67)-(69) that

θ(t) and θd(t) are known signals that can be used in the subsequent control development.
To facilitate the subsequent development, θ(t) and θd(t) are assumed to be confined to the
following regions

− π < θ(t) � π − π < θd(t) � π. (70)

3.4 Control Objective

The objective is to develop a visual servo controller that ensures that the coordinate system
F tracks the time-varying trajectory of Fd (i.e., m̄i(t) measured in I tracks m̄mdi(t) mea-
sured in IM). To ensure that m̄i(t) tracks m̄mdi(t), the control objective can be stated by

using the Euclidean reconstruction given in (57)-(63) as the desire for m̄
′

1(t) → m̄
′

md1(t).
To quantify the control objective, translation and rotation tracking error vector, denoted by

e(t) � [e1 (t) , e2 (t) , e3(t)]
T
∈ R

3, is defined as Dixon et al. (2003)

e1 � η1 − ηd1 e2 � η2 − ηd2 e3 � θ − θd (71)

where θ(t) and θd(t) are introduced in (67) and (68), respectively, and the auxiliary signals

η (t) � [η1 (t) , η2 (t) , η3(t)]
T , ηd(t) � [ηd1(t), ηd2(t), ηd3(t)]

T
∈ R

3 are defined as

η (t) �
1

z∗
r1

R
T(t)R

∗(t)R
∗T
r m̄

′

1(t) (72)

ηd(t) �
1

z∗
r1

R
T
md

(t)R
∗
m(t)R

∗T
r m̄

′

md1(t).

Also, the normal unit vector n∗
r is defined as Mehta, Hu, Gans & Dixon (2006)

n
∗
r = R

∗
r R

∗T(t)R(t)
[

0 0 −1
]T

= R
∗
r R

∗T
m (t)Rmd(t)

[

0 0 −1
]T

. (73)
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The expressions in (72) and (73) can be used to determine that

η3 = ηd3 =
−dr

z∗r1

. (74)

The expressions in (57)-(66) can be used to rewrite η (t) and ηd(t) in terms of the measurable
signals α1(t), αr1(t), αrm1(t), αmd1(t), R(t), R∗(t), R∗

r , Rmd(t), R∗
m(t), p1(t), and pmd1(t) as

η (t) =
αr1

α1
RT(t)R∗(t)R∗T

r H
′

r A−1 p1

ηd(t) =
αrm1

αmd1
RT

md(t)R∗
m(t)R∗T

r H′
rm A−1 pmd1. (75)

Based on (71), (75), and the fact that θ(t) and θd(t) are measurable, it is clear that e(t) is mea-
surable. By examining (71)-(74), the control objective is achieved if ‖e(t)‖ → 0. Specifically,
if e3(t) → 0, then it is clear from (71) that R1(t) → Rd1(t). If e1(t) → 0 and e2(t) → 0,
then from (71) and (74) it is clear that η (t) → ηd(t). Given that R1(t) → Rd1(t) and that

η (t) → ηd(t), then (72) can be used to conclude that m
′

1(t) → m
′

md1(t). If m
′

1(t) → m
′

md1(t)
and R1(t) → Rd1(t), then the Euclidean relationships in the geometric model can be used to
prove that m̄i(t) measured in terms of I → m̄mdi(t) measured in terms of IM.

3.5 Control Development

The open-loop error system can be obtained by taking the time derivative of (72) as

η̇ =
v

z∗r1

+

[

η −
s11

z∗r1

]×

ω (76)

where v(t), ω(t) ∈ R
3 denote the respective linear and angular velocity of an UGV expressed

in F as

v �
[

vc 0 0
]T

ω �
[

0 0 ωc
]T

. (77)

Without loss of generality, the location of the feature point s1 is taken as the origin of F , so
that s11 = [0, 0, 0]T . Then, based on (76) and (77), the error system can be further written as

η̇1 =
vc

z∗r1

+ η2ωc η̇2 = −η1ωc. (78)

Since the desired trajectory is assumed to be generated in accordance with UGV motion con-
straints, a similar expression to (78) can be developed as

η̇d1 =
vcd

z∗r1

+ η2dωcd η̇d2 = −ηd1ωcd . (79)

where vcd(t) ∈ R denotes the desired linear velocity of Fd. From (69), (71), (76) and (78), the
open-loop error system can be obtained as

z∗r1 ė1 = vc + z∗r1(η2ωc − η̇d1)
ė2 = −η1ωc + ηd1 θ̇d

ė3 = ωc − θ̇d.
(80)
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To facilitate the subsequent development, the auxiliary variable ē2 (t) ∈ R is defined as

ē2 � e2 + ηd1e3. (81)

After taking the time derivative of (81) and utilizing (80), the following expression is obtained:

.
ē2 = −e1ωc + η̇d1e3. (82)

Based on (81), it is clear that if ē2(t), e3(t) → 0, then e2(t) → 0. Based on this observation
and the open-loop dynamics given in (82), the following control development is based on the
desire to show that e1 (t) , ē2 (t) , e3 (t) are asymptotically driven to zero.
Based on the open-loop error systems in (80) and (82), the linear and angular velocity control
inputs for an UGV are designed as

vc � −kve1 + ē2ωc − ẑ∗r1(η2ωc − η̇d1) (83)

ωc � −kωe3 + θ̇d − η̇d1 ē2 (84)

where kv, kω ∈ R denote positive, constant control gains. In (83), the parameter update law
ẑ∗r1(t) ∈ R is generated by the differential equation

.

ẑ∗r1 = γ1e1(η2ωc − η̇d1) (85)

where γ1 ∈ R is a positive, constant adaptation gain. After substituting the kinematic con-
trol signals designed in (83) and (84) into (80), the following closed-loop error systems are
obtained:

z∗r1 ė1 = −kve1 + ē2ωc + z̃∗r1(η2ωc − η̇d1).
ē2 = −e1ωc + η̇d1e3

ė3 = −kωe3 − η̇d1 ē2

(86)

where (82) was utilized, and the depth-related parameter estimation error, denoted by z̃∗r1(t) ∈
R, is defined as

z̃∗r1 � z∗r1 − ẑ∗r1 . (87)

Theorem 2. The control input designed in (83) and (84) along with the adaptive update law defined
in (85) ensure asymptotic tracking for UGV in the sense that

‖e (t)‖ → 0 (88)

provided the time derivative of the desired trajectory satisfies the following condition

η̇d1 � 0. (89)

Lyapunov-based analysis methods and Barbalat’s lemma can be used to proved Theorem 2
based on a positive definite function V(t) ∈ R defined as Mehta, Hu, Gans & Dixon (2006)

V �
1

2
z∗r1e2

1 +
1

2
ē2

2 +
1

2
e2

3 +
1

2γ1
z̃∗2

r1 . (90)
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4. Simultaneous Tracking, Localization and Mapping

For vision-based autonomous systems applications (e.g., tracking, localization and mapping),
the given reference object can leave the camera’s FOV while another reference object enters
the FOV. In comparison to the single reference object problem presented in Section 3, multi-
ple reference objects are taken into consideration in this section. The daisy-chaining method
is further developed to achieve asymptotic tracking of the UGV by mapping each reference
object to a global coordinate system. Moreover, the time-varying Euclidean position of the
UGV and the stationary position of the reference objects can be localized with respect to the
global coordinate system. In addition to achieving the visual servo tracking and localization
objectives, the developed method generates data for the SLAM problem.

4.1 Problem Scenario

The geometric model in this section is the same as in Section 3, except that multiple reference
objects are taken into consideration. While viewing the feature points of the UGV, the camera
is assumed to also view four additional coplanar and noncollinear feature points of a station-
ary reference object, such that at any instant of time along the camera motion trajectory at least
one such reference object is in the FOV and two reference objects are required to be visible for
the frames switching from one reference to the other. The four additional feature points define
the plane π

∗
j in Fig. 5. The stationary coordinate frame F ∗

j (j = 1, 2, ..., k) is attached to the

object where distance from the origin of the coordinate frame to one of the feature points is
assumed to be known, i.e., s2ji ∈ R

3 ∀i = 1, 2, 3, 4. The plane π
∗
j is assumed to be parallel to

the plane π. The feature points that define π
∗
1 , corresponding to a reference object F ∗

1 (i.e., F ∗
j

corresponding to j = 1), are also assumed to be visible when the camera is a priori located
coincident with the pose of the stationary coordinate frame IR. The fixed coordinate frame IR

is a snapshot of IM at the time instant that the first reference object π
∗
1 is visible to the reference

camera. The reference object π
∗
1 is visible to IR, but the other reference objects π

∗
j (j > 1) are

not.

4.2 Geometric Relationships

In addition to the notations in Tables I and II, more relationships between the various coor-
dinate frames are summarized in Table III. In Table III, R∗

j (t), R∗
rj(t), R∗

mj(t) ∈ SO(3) denote

rotation matrices and x∗f j(t), x∗f rj, x∗f mj(t) ∈ R
3 denote translation vectors.

Motion Frames

R∗
j (t), x∗f j(t) F ∗

j to I in I

R∗
rj(t), x∗f rj F ∗

j to IR in IR

R∗
mj(t), x∗f mj(t) F ∗

j to IM in IM

Table 3. Coordinate frame relationships.
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Fig. 5. Geometric model for a moving camera, moving target, moving reference camera and
multiple reference objects for simultaneous tracking, localization, and mapping.

4.3 Euclidean Reconstruction

The Euclidean reconstruction for the geometric model in Fig. 5 can be separated into three
cases. Case 1: a single reference object π

∗
1 is within the reference camera’s FOV and therefore

π
∗
1 is used as the reference object. Case 2: two reference objects (e.g., π

∗
1 and π

∗
2 ) are within

the camera’s FOV, and the reference object in use is going to be switched from one to the other
(e.g., from π

∗
1 to π

∗
2 ). Case 3: π

∗
j (j ≥ 2) is used as the reference object.

Let m̄∗
mji(t), m̄

′∗
rji ∈ R

3 denote the Euclidean coordinates of the feature points on π
∗
j expressed

in IM and IR, respectively. Also, let p∗mji (t) , p
′∗
rji ∈ R

3 represent the image-space coordinates

of the feature points on π
∗
j captured by the reference camera attached to IM and IR, respec-

tively. When j = 1, p
′∗
r1i are measurable and denoted by p∗r1i, however, when j > 1, p

′∗
rji can not

be measured directly and needs to be computed based on the corresponding normalized coor-
dinates obtained from the daisy-chaining multi-view geometry. The normalized coordinates

of m̄∗
mji(t) and m̄

′∗
rji are denoted as m∗

mji(t), m
′∗
rji ∈ R

3, respectively.

For the first case, the Euclidean reconstruction is exactly the same as that in Section 3. For
the second case, consider the feature point planes π

∗
1 and π

∗
2 as an example. Similar to the

Euclidean reconstruction development in Section 3.3, relationships can be established between
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m
′∗
r2i(t) and m∗

r1i(t) as

m
′∗
r2i =

z∗
r1i

z′∗
r2i

(

R21 + xh21αrm1i
n∗T

m1m∗
m1i

n∗T
r1 m∗

r1i

n∗T
r1

)

m∗
r1i (91)

z′∗r2i

z∗r1i

=
[

0 0 1
]

(

R21 + xh21αrm1i
n∗T

m1m∗
m1i

n∗T
r1 m∗

r1i

n∗T
r1

)

m∗
r1i. (92)

From m
′∗
r2i(t) in (91), the virtual pixel coordinates p

′∗
r2i (t) can be computed. Based on (91) and

(92), the Euclidean coordinates of the feature points on π∗
2 can be related to fixed coordinate

frame IR. Following the same idea used to relate π∗
2 and π∗

1 , π∗
j can be related to π∗

j−1 (j =

3, ..., k) as

m
′∗
rji =

z∗
r(j−1)i

z′∗rji

(

Rj(j−1) + xhj(j−1)αrm(j−1)i

n∗T
m(j−1)

m∗
m(j−1)i

n∗T
r(j−1)

m∗
r(j−1)i

n∗T
r(j−1)

)

m∗
r(j−1)i (93)

z′∗rji

z∗
r(j−1)i

=
[

0 0 1
]

(

Rj(j−1) + xhj(j−1)αrm(j−1)i

n∗T
m(j−1)

m∗
m(j−1)i

n∗T
r(j−1)

m∗
r(j−1)i

n∗T
r(j−1)

)

m∗
r(j−1)i. (94)

Recursively, from (91)-(94), m
′∗
rji (t) can be related to the known normalized Euclidean coor-

dinate m∗
r1i. Once m

′∗
rji (t) is computed based on Case 2, the geometric model in Fig. 5 is

equivalent to that in Fig. 2. Therefore, the Euclidean reconstruction in Section 3 can be used
to build the Euclidean relationships among different coordinate frames.

4.4 Tracking and Mapping

The tracking control design is the same as that in Section 3, once the Euclidean relationship
between F and Fd is obtained based on the Euclidean reconstruction analysis as shown in
Section 4.3. The time-varying Euclidean position of the UGV and the stationary position of
the reference objects can be localized with respect to the global coordinate system IR. Using
the known geometric length s21i and a unit normal n∗

r1 (i.e., the normal to π∗
1 expressed in

IR), the geometric reconstruction method in Dupree et al. (2007); Gans et al. (2008); Mackunis
et al. (2007) can be utilized to obtain m̄∗

r1i(t). Based on the computed m̄∗
r1i(t), (92) can be used

to find z′∗r2i, and then (91) can be used to find m̄
′∗
r2i (t). Recursively, based on (93) and (94),

the Euclidean coordinates of the other reference objects denoted as m̄
′∗
rji (t) (j = 3, ..., k) can be

computed. Similarly, using the known geometric length s1i and a unit normal n(t) (i.e., the
normal to π expressed in I), the geometric reconstruction method in Gans et al. (2008) can
also be utilized to obtain m̄i(t). Based on the computed m̄i(t), (60) and (61) can be used to find

m̄
′

i(t).

4.5 Simulation Results

A numerical simulation was performed to illustrate the localization and mapping perfor-
mance given the controller in (83), (84), and the adaptive update law in (85). The origins of the
coordinate frames F , F ∗

1 , F ∗
2 , and Fd, and the four coplanar feature points on the planes π,

π∗
1 π∗

2 , and πd are chosen such that the Euclidean coordinates of the feature points in F , F ∗
1 ,

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

IM(t)

F(t)
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F2
*I(t)

x [m]

F1
*

IRIM(0)
I(0)

F(0)
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y 
[m

]
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F ∗
2 , and Fd are given by si (where i = 1, 2, 3, 4) i.e., the feature points are located at the same

distance from the origins of the coordinate frames F , F ∗
1 , F ∗

2 , and Fd. The Euclidean space
trajectory of the time-varying feature points attached to the plane πd and the moving refer-
ence camera IM along with the performance of the visual servo tracking controller is shown
in Fig. 6, which shows the Euclidean space trajectory of the feature points attached to the
planes π and πd, taken by I and IM, respectively and the time-varying trajectory of the cur-
rent and reference camera, I and IM, respectively. From Fig. 6, it can be seen that the current
trajectory corresponding to the time-varying UGV F (t) is indistinguishable from the desired
trajectory corresponding to the time-varying UGV Fd(t). The tracking error is depicted in Fig.
7. Fig. 8 shows the results of localization of the current UGV attached to F (t) and mapping
of reference targets attached to F ∗

1 and F ∗
2 expressed in constant reference frame IR.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

IM(t)

F(t)
Fd(t)

F2
*I(t)

x [m]

F1
*

IRIM(0)
I(0)

F(0)

Fd(0)

y 
[m

]

Fig. 6. Euclidean space trajectory of the feature points attached to the current (i.e. F (t) ) and
desired (i.e. Fd(t)) UGV taken by I and IM, respectively and the time-varying trajectory of
the current and reference camera, I and IM, respectively. F (0) denotes the initial position of
the current UGV, F (t) denotes the time-varying position of the current UGV, Fd(0) denotes
the initial position of the desired UGV, Fd(t) denotes the time-varying position of the desired
UGV, I(0) denotes the initial position of the current camera, I(t) denotes the time-varying
position of the current camera, IM(0) denotes the initial position of the time-varying reference
camera, IM(t) denotes the time-varying position of the time-varying reference camera, IR

denotes the position of the stationary reference camera, and F ∗
1 and F ∗

2 denote the position of
the stationary reference objects.
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Fig. 7. Linear (i.e. e1 (t) and e2 (t)) and angular (i.e. e3(t)) tracking error.
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Fig. 8. Results of localization of the current UGV attached to F (t) and mapping of reference
targets attached to F ∗

1 and F ∗
2 expressed in constant reference frame IR. Specifically, trajectory

(1) shows the time-varying pose of the current camera attached to I(t), trajectory (2) shows
the time-varying pose of the moving camera attached to IM(t), and trajectory (3) shows the
time-varying pose of the current UGV attached to F (t) measured in the stationary reference
camera frame IR. F (0) denotes the initial position of the current UGV, I(0) denotes the initial
position of the current camera, IM(0) denotes the initial position of the time-varying reference
camera, and F ∗

1 and F ∗
2 denote the position of the stationary reference objects.
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