
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Multi-Robot Cooperative Sensing and Localization 207

Multi-Robot Cooperative Sensing and Localization

Kai-Tai Song, Chi-Yi Tsai and Cheng-Hsien Chiu Huang

X 
 

Multi-Robot Cooperative Sensing  
and Localization  

 
Kai-Tai Song, Chi-Yi Tsai and Cheng-Hsien Chiu Huang 

Institute of Electrical and Control Engineering, National Chiao Tung University 
1001 Ta Hsueh Road, Hsinchu, Taiwan 300, ROC 

E-mail: ktsong@mail.nctu.edu.tw; u9112824@cn.nctu.edu.tw; 
hchchiu.ece90g@nctu.edu.tw 

 
Abstract 
This chapter describes a method for mobile robot localization design based on multi-robot 
cooperative sensing. A multi-robot cooperative localization system is presented. The system 
utilizes visual detection and sensor data fusion techniques to achieve mobile robot 
localization. The visual detection system employs a stereo vision module for both observing 
other robots and obtaining environmental information. Each mobile robot is able to 
recognize its teammates by using onboard vision system. The localization error is reduced 
through the proposed sensor fusion algorithm. The cooperative localization algorithm 
consists of two stages: serial fusion and parallel fusion. Serial fusion aims to identify the 
positional uncertainty of an observed robot while parallel fusion reduces its positional error 
based on Kalman filtering. The multi-robot cooperative localization system has been 
realized through the client-server architecture. Experimental results are presented to 
validate the effectiveness of the proposed algorithms. 
 
Keywords: multi-robot system, mobile robot localization, cooperative localization, sensor 
data fusion, Kalman filtering. 

 
1. Introduction 

In recent years, multi-robot systems and distributed autonomous robotic systems have 
become important research areas in autonomous robotics (Parker, 1998), (Weigel et al., 2002). 
There are increasing interests in cooperative localization and map-building using a robot 
team. Traditionally, robot localization and map-building are resolved by a single robot 
equipped with various perception sensors (Gamini Dissanayake et al., 2001), (Nieto et al., 
2002), (Nieto et al., 2003). However, a single mobile robot equipped with several types of 
sensors will consume much power and is more expensive to construct. A multi-robot system 
can overcome these drawbacks through cooperative sensing from simpler sensors and 
map-building will become more efficient by fusing results from each mobile robot. 
Many efforts have been put to cooperative localization of mobile robots. Several researchers 
utilize multi-robot cooperative sensing techniques to achieve cooperative localization (Fox et 
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al., 1998), (Zhang et al., 2000). A Monte Carlo Localization (MCL) algorithm was developed 
to localize two robots equipped with laser range finders (Thrun et al., 2001). The presented 
method gathers environmental data fast and can localize individual robot using a laser 
scanner. A cooperative localization and mapping method was proposed for two robots to 
localize themselves and for map-building (Rekleitis et al. 2003). The key idea is that one 
robot carries a target to act as a landmark, and the other equipped with a laser range finder 
and a camera observes the former for position correction. A Kalman filter based approach 
was presented to simultaneous localization of a group of robots by sensing the team 
members and combining position information from all teammates (Roumeliotis & Bekey, 
2002). The hypothesis of this method is that the robots can communicate with their 
teammates and measure their respective poses. A collaborative landmark localization 
method was presented for multiple robots equipped with vision systems to localize 
themselves by estimating fixed landmarks (Stroupe & Balch, 2002). The fixed landmarks are 
established beforehand and the robot needs to record the landmark positions. However, 
when the number of robots increases to more than two, information from laser scanner will 
not be able to distinguish each robot.  
Vision-based systems have been widely exploited as a robotic perception sensor. They are also 
useful for distinguishing individual robot and handling the case of more than two robots. A 
vision-based cooperative mapping and localization method employed stereo vision to build a 
grid map and localize robots by features in grid map such as corners (Jennings et al., 1999). The 
key idea is to find corners in a grid map and compare these corners with a-priori landmarks at 
known positions. Hence, an accurate reference map of the environment is required in the 
method. A multi-robot MCL approach was presented to achieve the localization of a robot 
team with improved accuracy (Fox et al., 1999). The results show that the robots can localize 
themselves faster and with higher accuracy. However, although the MCL algorithm can be 
used for cooperative localization, it requires transmission of relatively large amount of 
information. On the other hand, a Kalman filtering approach can reduce not only the 
transmission of information but also the complexity of computing positional uncertainty. But a 
drawback of this approach is that the accuracy of the localization results will be decreased 
compared with the MCL methods. A distributed sensing method was developed based on 
Kalman filtering to improve the target localization (Stroupe & Martin, 2001). However, this 
method was only developed for recognizing and localizing a specific target. In a multi-robot 
cooperation system, it is desirable for each robot to recognize all of its teammates in 
cooperative localization. An effective algorithm is needed to fuse the observed information 
and reduce the sensing uncertainty.  
Furtherore, when a robot team consists of more than two teammates, the problem of 
communication, cooperation and recognition among teammates will become increasingly 
important. In this chapter, we developed a multi-robot cooperative localization scheme 
exploiting a stereo vision system. This scheme does not restrict the number of robot in a 
robot team and can collect all observational information of the environment form each robot. 
We establish a client-server architecture using wireless LAN to integrate the local sensory 
data from each robot (a client) to a server. The server stores the current position of each 
robot in order to reduce the transmission of information between robot teammates. The 
proposed multi-robot cooperative localization algorithm aims to estimate the optimal 
position and reduce the positional uncertainty of the observed robot collaboratively through 
Kalman filtering. The localization method consists of two stages, serial fusion and parallel 

fusion. The serial fusion is to identify the positional uncertainty of an observed robot, and 
the parallel fusion takes into account all of the other robots that observe other robots to 
reduce its positional uncertainty. Recursively, the sensory information by multiple robots 
can be merged using serial fusion and parallel fusion to obtain the optimal position with 
minimum positional uncertainty of the observed robot. It is clear that the computation of the 
proposed fusion algorithms is decentralized.  
The stereo vision system can be exploited to construct a two-dimensional (2D) map of the 
environment collaboratively by multiple robots. In the current study, however, the development 
of map-building algorithm is not emphasized. We will show map-building results in the 
experimental section only. In the following sections, the presentation will focus on the design and 
theoretical analysis of the proposed multi-robot cooperative data fusion algorithms for 
localization purpose. The rest of this chapter is organized as follows. Section 2 describes the 
overall system architecture of the proposed multi-robot cooperative sensing system. In Section 3, 
the multi-robot cooperative localization scheme will be presented based on sensor data fusion 
technique. Section 4 presents the derivations of the Kalman filter recursive fusion formulas to 
obtain the fusion results. Section 5 gives some interesting experimental results of the proposed 
method. Finally, Section 6 summarizes the contribution of this work. 

 
2. System Architecture 

The presented multi-robot cooperative localization system is shown in Fig 1. The left block 
represents the environment. The middle part shows blocks of multiple robots; each of it is a 
client. Each robot captures environmental imagery using an on-board stereo camera module. 
Image processing algorithms are developed to observe environmental features (such as 
corners, edges and disparity map, etc.) and the robot’s teammates from the acquired image. 
Stereo vision techniques are provided to find the depth information of the environment and 
the distance between each robot. Each robot transforms the local environmental data to a 
line representation through the line segment block. The upper-right block represents a 
server for storing the map of the environment and the current Gaussian parameters of each 
robot’s position. In the server, all detected lines are fused through the line data fusion block, 
and an environmental map is maintained as line segments. The robot server receives 
processed local environmental data and integrates all sensory data from each robot.  
Each robot utilizes odometry to calculate its Gaussian parameters of current position and 
updates the corresponding parameters stored in the server. Gaussian parameters of the 
robot are represented by its current position and the corresponding positional uncertainty. 
When a robot observes other robots, the serial fusion block (explained later in Section 4) 
estimates the other robot’s position and positional uncertainty. The parallel fusion block (see 
Section 4) fuses via Kalman filtering the results from individual serial fusion to obtain a 
unique and more accurate representation. Note that if a robot does not observe other robots 
in its sensing region, the serial and parallel fusion processes will not be enabled. In this case, 
the robot only estimates and updates position and positional uncertainty of itself by 
odemetry. Moreover, the serial and parallel fusions are realized in each robot. In other 
words, the observed robot receives the serial fusion results from other robots and performs 
parallel fusion by itself. Therefore, the proposed multi-robot cooperative localization 
algorithm is decentralized. In the following sections, we will focus the discussion on the 
design of the presented multi-robot cooperative localization algorithm only. 
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al., 1998), (Zhang et al., 2000). A Monte Carlo Localization (MCL) algorithm was developed 
to localize two robots equipped with laser range finders (Thrun et al., 2001). The presented 
method gathers environmental data fast and can localize individual robot using a laser 
scanner. A cooperative localization and mapping method was proposed for two robots to 
localize themselves and for map-building (Rekleitis et al. 2003). The key idea is that one 
robot carries a target to act as a landmark, and the other equipped with a laser range finder 
and a camera observes the former for position correction. A Kalman filter based approach 
was presented to simultaneous localization of a group of robots by sensing the team 
members and combining position information from all teammates (Roumeliotis & Bekey, 
2002). The hypothesis of this method is that the robots can communicate with their 
teammates and measure their respective poses. A collaborative landmark localization 
method was presented for multiple robots equipped with vision systems to localize 
themselves by estimating fixed landmarks (Stroupe & Balch, 2002). The fixed landmarks are 
established beforehand and the robot needs to record the landmark positions. However, 
when the number of robots increases to more than two, information from laser scanner will 
not be able to distinguish each robot.  
Vision-based systems have been widely exploited as a robotic perception sensor. They are also 
useful for distinguishing individual robot and handling the case of more than two robots. A 
vision-based cooperative mapping and localization method employed stereo vision to build a 
grid map and localize robots by features in grid map such as corners (Jennings et al., 1999). The 
key idea is to find corners in a grid map and compare these corners with a-priori landmarks at 
known positions. Hence, an accurate reference map of the environment is required in the 
method. A multi-robot MCL approach was presented to achieve the localization of a robot 
team with improved accuracy (Fox et al., 1999). The results show that the robots can localize 
themselves faster and with higher accuracy. However, although the MCL algorithm can be 
used for cooperative localization, it requires transmission of relatively large amount of 
information. On the other hand, a Kalman filtering approach can reduce not only the 
transmission of information but also the complexity of computing positional uncertainty. But a 
drawback of this approach is that the accuracy of the localization results will be decreased 
compared with the MCL methods. A distributed sensing method was developed based on 
Kalman filtering to improve the target localization (Stroupe & Martin, 2001). However, this 
method was only developed for recognizing and localizing a specific target. In a multi-robot 
cooperation system, it is desirable for each robot to recognize all of its teammates in 
cooperative localization. An effective algorithm is needed to fuse the observed information 
and reduce the sensing uncertainty.  
Furtherore, when a robot team consists of more than two teammates, the problem of 
communication, cooperation and recognition among teammates will become increasingly 
important. In this chapter, we developed a multi-robot cooperative localization scheme 
exploiting a stereo vision system. This scheme does not restrict the number of robot in a 
robot team and can collect all observational information of the environment form each robot. 
We establish a client-server architecture using wireless LAN to integrate the local sensory 
data from each robot (a client) to a server. The server stores the current position of each 
robot in order to reduce the transmission of information between robot teammates. The 
proposed multi-robot cooperative localization algorithm aims to estimate the optimal 
position and reduce the positional uncertainty of the observed robot collaboratively through 
Kalman filtering. The localization method consists of two stages, serial fusion and parallel 

fusion. The serial fusion is to identify the positional uncertainty of an observed robot, and 
the parallel fusion takes into account all of the other robots that observe other robots to 
reduce its positional uncertainty. Recursively, the sensory information by multiple robots 
can be merged using serial fusion and parallel fusion to obtain the optimal position with 
minimum positional uncertainty of the observed robot. It is clear that the computation of the 
proposed fusion algorithms is decentralized.  
The stereo vision system can be exploited to construct a two-dimensional (2D) map of the 
environment collaboratively by multiple robots. In the current study, however, the development 
of map-building algorithm is not emphasized. We will show map-building results in the 
experimental section only. In the following sections, the presentation will focus on the design and 
theoretical analysis of the proposed multi-robot cooperative data fusion algorithms for 
localization purpose. The rest of this chapter is organized as follows. Section 2 describes the 
overall system architecture of the proposed multi-robot cooperative sensing system. In Section 3, 
the multi-robot cooperative localization scheme will be presented based on sensor data fusion 
technique. Section 4 presents the derivations of the Kalman filter recursive fusion formulas to 
obtain the fusion results. Section 5 gives some interesting experimental results of the proposed 
method. Finally, Section 6 summarizes the contribution of this work. 

 
2. System Architecture 

The presented multi-robot cooperative localization system is shown in Fig 1. The left block 
represents the environment. The middle part shows blocks of multiple robots; each of it is a 
client. Each robot captures environmental imagery using an on-board stereo camera module. 
Image processing algorithms are developed to observe environmental features (such as 
corners, edges and disparity map, etc.) and the robot’s teammates from the acquired image. 
Stereo vision techniques are provided to find the depth information of the environment and 
the distance between each robot. Each robot transforms the local environmental data to a 
line representation through the line segment block. The upper-right block represents a 
server for storing the map of the environment and the current Gaussian parameters of each 
robot’s position. In the server, all detected lines are fused through the line data fusion block, 
and an environmental map is maintained as line segments. The robot server receives 
processed local environmental data and integrates all sensory data from each robot.  
Each robot utilizes odometry to calculate its Gaussian parameters of current position and 
updates the corresponding parameters stored in the server. Gaussian parameters of the 
robot are represented by its current position and the corresponding positional uncertainty. 
When a robot observes other robots, the serial fusion block (explained later in Section 4) 
estimates the other robot’s position and positional uncertainty. The parallel fusion block (see 
Section 4) fuses via Kalman filtering the results from individual serial fusion to obtain a 
unique and more accurate representation. Note that if a robot does not observe other robots 
in its sensing region, the serial and parallel fusion processes will not be enabled. In this case, 
the robot only estimates and updates position and positional uncertainty of itself by 
odemetry. Moreover, the serial and parallel fusions are realized in each robot. In other 
words, the observed robot receives the serial fusion results from other robots and performs 
parallel fusion by itself. Therefore, the proposed multi-robot cooperative localization 
algorithm is decentralized. In the following sections, we will focus the discussion on the 
design of the presented multi-robot cooperative localization algorithm only. 
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Fig. 1. System architecture of multi-robot cooperative localization design. 
 
Remark 1: The main advantage of the discussed multi-robot cooperative localization scheme 
is that the computation of the localization algorithm is decentralized. However, if the 
Gaussian parameters of each robot are also decentralized stored in each robot, there will be 
a large amount of information transmission between all robot teammates due to updating 
their Gaussian parameters. Because information transmission is also an important factor in 
multi-robot systems, the external server is helpful to store the Gaussian parameters of each 
robot and reduce the amount of information transmission. Although the external server 
seems to be the disadvantage of the presented method, it helps to reduce the information 
transmission between robot teammates. Another drawback of the presented method is the 
assumption of Gaussian distribution uncertainty. Thus, in the case of multimodal 
distribution uncertainty, the proposed method only can provide a suboptimal solution 
based on a weighted least-square criterion (see Section 4.2). However, this shortcoming can 
be improved by extending this work by accommodating particle filters. 

 
3. Multi-Robot Cooperative Localization Scheme 

Suppose that the robot positional uncertainty can be described by Gaussian distribution, this 
section presents a method to reduce motion uncertainties of each robot in a robot team. Fig. 
2 shows the block diagram of a recursive multi-robot localization system. MRi denotes the 
current position of robot i, and CRi is the corresponding positional covariance matrix. 
Assume that the robot j is observed by robot i, where n ji,1  and ji  , then the 
estimated position MEij  and the corresponding covariance matrix CEij can be generated by 
robot i through its on-board sensor. After merging (MRi ,CRi) and (MEij ,CEij) by serial fusion, 
the measured position and corresponding covariance matrix of robot j, (MRij ,CRij), can be 

obtained. The parallel fusion works to merge the current position and corresponding 
covariance matrix of robot j, (MRj ,CRj), with all serial fusion results occurring to robot j to 
obtain updated parameters of robot j, (M’Rj ,C’Rj). In the next section, we will show that the 
updated covariance matrix C’Rj can be minimized step-by-step through parallel fusion. 
It is easy to see that we separate the multi-robot cooperative localization algorithm into two 
stages. The first stage is serial fusion, and the second stage is parallel fusion. Table 1 
tabulates the purpose and performer of serial and parallel fusions. The performer of serial 
fusion is the observing robot which observes another robot, and the purpose is to measure 
the position and the corresponding positional uncertainty of the observed robot. On the 
other hand, the performer of parallel fusion is the observed robot, which is observed by its 
teammates. The purpose is to update the current position and reduce positional uncertainty 
of the observed robot. Therefore, when a robot moves and observes other robots in its 
sensing region, serial and parallel fusions will recursively occur to localize and reduce 
positional uncertainties of all robots of the robot team. 
 

Param
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Fig. 2. Block diagram of recursive multi-robot localization. 
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section presents a method to reduce motion uncertainties of each robot in a robot team. Fig. 
2 shows the block diagram of a recursive multi-robot localization system. MRi denotes the 
current position of robot i, and CRi is the corresponding positional covariance matrix. 
Assume that the robot j is observed by robot i, where n ji,1  and ji  , then the 
estimated position MEij  and the corresponding covariance matrix CEij can be generated by 
robot i through its on-board sensor. After merging (MRi ,CRi) and (MEij ,CEij) by serial fusion, 
the measured position and corresponding covariance matrix of robot j, (MRij ,CRij), can be 

obtained. The parallel fusion works to merge the current position and corresponding 
covariance matrix of robot j, (MRj ,CRj), with all serial fusion results occurring to robot j to 
obtain updated parameters of robot j, (M’Rj ,C’Rj). In the next section, we will show that the 
updated covariance matrix C’Rj can be minimized step-by-step through parallel fusion. 
It is easy to see that we separate the multi-robot cooperative localization algorithm into two 
stages. The first stage is serial fusion, and the second stage is parallel fusion. Table 1 
tabulates the purpose and performer of serial and parallel fusions. The performer of serial 
fusion is the observing robot which observes another robot, and the purpose is to measure 
the position and the corresponding positional uncertainty of the observed robot. On the 
other hand, the performer of parallel fusion is the observed robot, which is observed by its 
teammates. The purpose is to update the current position and reduce positional uncertainty 
of the observed robot. Therefore, when a robot moves and observes other robots in its 
sensing region, serial and parallel fusions will recursively occur to localize and reduce 
positional uncertainties of all robots of the robot team. 
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 Purpose Performer 
Serial 

Fusion 
Measure the position and the corresponding 
positional uncertainty of the observed robot. 

Observing 
Robot 

Parallel 
Fusion 

Merge the current position and positional 
uncertainty of the observed robot with all serial 
fusion results to update the current position 
and reduce the positional uncertainty of the 
observed robot. 

Observed 
Robot 

Table 1. Purpose and performer of serial and parallel fusions. 

 
4. Proposed Data Fusion Algorithms 

In this section, a spatial uncertainty estimation method (Smith & Cheeseman, 1986) is 
extended to develop serial and parallel data fusion algorithms for the application of 
multi-robot cooperative localization. Moreover, we will also show that the parallel data 
fusion algorithm guarantees to provide the minimum updated covariance matrix solution 
via recursively Kalman filtering. 
 

 
Fig. 3. Relative coordinates of two robots.  

 
4.1 Serial fusion 
The purpose of serial fusion is to measure the position and positional uncertainty of an 
observed robot in world coordinate. As shown in Fig. 3, a robot location is described by 
three parameters ),,( rrr yx   in world coordinate frame, where rx  and ry  are the X 

and Y coordinates of the robot, r  is the orientation angle of the robot. The shaded part of 

Fig. 3 indicates the sensing region of robot 1. ex  and ey  denote the relative position of 

robot 2 as observed by robot 1. If the relative orientation of robot 2, e , is observed by 
robot 1, then the observed position and orientation of robot 2 can be estimated as: 
 

 rererEijRi yxxMMfx  sincos),(  ,  (1) 
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where T
rrrRi yxM ][   and T

eeeEij yxM ][  . In this presentation, the 

method to observe the relative position and orientation angle between robot 1 and robot 2 
will not be discussed for simplicity.  

Let T
Rij yxM ][   and T

Rij yxM ][   denote the ideal and the 

measured position of the observed robot, respectively; TT
Eij

T
Ri MMM ][  and 
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Eij

T
Ri MMM ][  denote the ideal and the measured system parameters, respectively. 

By combining equations (1)-(3) into one and expanding it to a Taylor form, the following 
result can be obtained: 
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Based on (4), the covariance matrix of the measured position of observed robot, RijC , is 

given by 
 

 TTT
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Because parameters RiM  and EijM  are obtained from different sensor systems and 

uncorrelated, the covariance matrix ]))([( TMMMME   becomes such that 
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uncorrelated, the covariance matrix ]))([( TMMMME   becomes such that 
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position of observing robot and the relative position measured by stereo vision system, 
respectively; nm0  is a m-by-n zero matrix. Based on equations (1)-(6), the serial fusion 
algorithm to measure the position and positional uncertainty of an observed robot in world 
coordinate system is summarized as follows: 
 
Measured Position: 
 

 Eijrr

rr

Ri

EijRi

EijRi

EijRi

Rij MM
MMh
MMg
MMf

M














 



















100
0cossin
0sincos

),(
),(
),(




, (7) 

Measured Positional Uncertainty: 
 

 
T

Eij

Ri
Rij J

C
C

JC 













33

33

0
0

.  (8) 

 

 
Fig. 4. Serial fusion occurs for robot 1, 3 and 4 as each of them observes robot 2. 

Figure 4 illustrates the steps of serial fusion for multi-robot localization. In Fig. 4, robot 2 is 
observed by robot 1, robot 3 and robot 4 at the time instant k . Thus the serial fusion of 
robot 2 occurs for robot 1, 3, and 4 respectively. For example, the global position and 
uncertainty of robot 1 kRR CM ),( 11  and the estimated position and uncertainty of robot 2 

from robot 1 kEE CM ),( 1212  can be merged to obtain the position and uncertainty of 

robot 2 in world coordinate system, kRR CM ),( 1212 . In the same way, another two 

positions and uncertainties of robot 2 as observed by robot 3 and robot 4, kRR CM ),( 3232  

and kRR CM ),( 4242 , can also be obtained respectively.  

 
4.2 Parallel fusion 
Parallel fusion aims to estimate the optimal position and reduce the positional uncertainty of 
an observed robot using Kalman filtering. The fusion processing includes two steps. The 

first step is to estimate the optimal position of an observed robot *
RjM  by minimizing a 

weighted least-square criterion:  
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More specifically, the first step of parallel fusion algorithm is to find the optimal position 
that minimizes the performance criterion (9) such that 
 

 )(minarg* MJM
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By taking the derivative of (9) with respect to M, the necessary condition of local optimal 
solution of (10) can be obtained as follows 
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From (11), the local optimal solution of (10) is given by 
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Let 1111 )(   RijRijRjij CCCK  and 1111 )(   RjRijRjj CCCK  denote Kalman gain 

matrices, expression (12) is simplified such that 
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Fig. 4. Serial fusion occurs for robot 1, 3 and 4 as each of them observes robot 2. 

Figure 4 illustrates the steps of serial fusion for multi-robot localization. In Fig. 4, robot 2 is 
observed by robot 1, robot 3 and robot 4 at the time instant k . Thus the serial fusion of 
robot 2 occurs for robot 1, 3, and 4 respectively. For example, the global position and 
uncertainty of robot 1 kRR CM ),( 11  and the estimated position and uncertainty of robot 2 

from robot 1 kEE CM ),( 1212  can be merged to obtain the position and uncertainty of 

robot 2 in world coordinate system, kRR CM ),( 1212 . In the same way, another two 

positions and uncertainties of robot 2 as observed by robot 3 and robot 4, kRR CM ),( 3232  

and kRR CM ),( 4242 , can also be obtained respectively.  

 
4.2 Parallel fusion 
Parallel fusion aims to estimate the optimal position and reduce the positional uncertainty of 
an observed robot using Kalman filtering. The fusion processing includes two steps. The 

first step is to estimate the optimal position of an observed robot *
RjM  by minimizing a 

weighted least-square criterion:  
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More specifically, the first step of parallel fusion algorithm is to find the optimal position 
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Therefore, expression (13) provides the optimal fusion result for the positional estimation of 
parallel fusion algorithm based on the performance criterion (9). 
The second step of parallel fusion is to minimize the covariance matrix of the updated 
position of the observed robot: 
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Substituting (13) into (14), we can obtain the following two results 
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From (15), the minimum covariance matrix can be obtained by taking the derivative of (15) 
with respect to Kij and setting to zero such that 
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Solving (17) for Kij gives 
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Expression (18) is the Kalman gain equation. Substituting (18) into (15), the minimum 
covariance matrix becomes 
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Using the same procedure discussed above, similar result also can be obtained from (16) 
such that 

 11111 )()(   RjRijRjRijRjRijj CCCCCCK ,  (20) 

 RijjRijjRijRj CKICKCC )(*  .  (21) 

Based on equations (13) and (18)-(21), the parallel fusion algorithm to estimate the optimal 
position and minimum positional uncertainty of an observed robot in world coordinate 
system is summarized as follows: 

Kalman Gain Matrix:  
 

 11111 )()(   RijRijRjRijRjRjij CCCCCCK ,  (22) 

 
Updated Position:  
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Updated Covariance Matrix:  
 

 RjijRjijRjRj CKICKCC )(*  .  (24) 

Or, 
Kalman Gain Matrix:  
 

 11111 )()(   RjRijRjRijRjRijj CCCCCCK ,  (25) 

 
Updated Position:  
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Updated Covariance Matrix:  
 

 RijjRijjRijRj CKICKCC )(*  .  (27) 

 
The symbol “  ” is employed to represent the parallel fusion operation. For instance, we can 
simplify the presentation of parallel fusion equations (22)-(24) as: 
 

 RijRjRj MMM *  , (28) 

 RijRjRj CCC *   (29) 

 
Similarly, the presentation of parallel fusion equations (25)-(27) can be simplified as: 
 

 RjRijRj MMM *  ,   (30) 

 RjRijRj CCC*   (31) 

Compare equations (28)-(29) with (30)-(31), it is clear that the parallel fusion operation has 

commutative property. Moreover, because of 1)(  RijRjRijij CCCKI  and 
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such that 
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Based on equations (13) and (18)-(21), the parallel fusion algorithm to estimate the optimal 
position and minimum positional uncertainty of an observed robot in world coordinate 
system is summarized as follows: 

Kalman Gain Matrix:  
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The symbol “  ” is employed to represent the parallel fusion operation. For instance, we can 
simplify the presentation of parallel fusion equations (22)-(24) as: 
 

 RijRjRj MMM *  , (28) 

 RijRjRj CCC *   (29) 

 
Similarly, the presentation of parallel fusion equations (25)-(27) can be simplified as: 
 

 RjRijRj MMM *  ,   (30) 

 RjRijRj CCC*   (31) 

Compare equations (28)-(29) with (30)-(31), it is clear that the parallel fusion operation has 

commutative property. Moreover, because of 1)(  RijRjRijij CCCKI  and 
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1)(  RijRjRjj CCCKI , the updated covariance matrix becomes 

 

 RijRijRjRjRjRijRjRijRj CCCCCCCCC 11* )()(   . (32) 

 

Expression (32) leads to the fact that the matrix norm of updated covariance matrix, *
RjC , 

will not be larger than that of covariance matrices CRj and CRij (Golub & Van Loan, 1996). 
More specifically, expression (32) leads to the following result 
 

 ),min(*
RijRjRj CCC  . (33) 

 
Therefore, the parallel fusion operation also has associative property, which guarantees that 
the final fusion result has minimum matrix norm irrelevant to the order of fusion operation. 
These two properties are helpful to generalize the parallel fusion algorithm into the sensor 
fusion procedure of multiple robots. Suppose that robot j is observed by robot i at instant k , 
where nji  ,1 , and ji  , we can write the parallel fusion formula such that: 
 
 kRnjjRjRRjkRj MMMMM )...()( 211  ,  (34) 

 kRnjjRjRRjkRj CC )C...CC()( 211  , (35) 

 

where 1)( kRjM  and 1)( kRjC  represent the updated global position and the 

corresponding covariance matrix of robot j at next instant 1k , respectively. In equations 

(34) and (35), any two terms of kRijRij CM ),( , nji  ,1 , can be chosen to perform the 

parallel fusion. The output of the first fusion is used as the input of next step, and then the 
optimal position of robot j with minimum covariance matrix can be obtained after several 
iterations. 
Figure 5 depicts the complete steps of parallel fusion. As the case shown in Fig. 5(a), there 
are three sets of parameters of serial fusion obtained from other robots, which observe robot 
2. Using the proposed parallel fusion scheme, the parameters of serial fusion 

kRR CM ),( 1212 , kRR CM ),( 3232 , kRR CM ),( 4242  and kRR CM ),( 22  can be merged in 
three subsequent steps as depicted in Fig. 5(b). A new positional parameters of robot 2 at 
instant 1k , 122 ),( kRR CM , is obtained and updated accordingly. We write parallel 
fusion formula following the representation in Fig. 5(b): 
 

 
(a)                                  (b) 

Fig. 5. Complete steps of parallel fusion. (a) Parameters of serial fusion are obtained by each 
robot which observes robot 2. (b) Parameters are fused in three subsequent steps using 
parallel fusion. 
 

 )()( k242321212 RRRRkR MMMMM  , (36) 

 )CCC()( k242321212 RRRRkR CC  . (37) 
 
We can also rewrite (36) and (37) to another form using the commutative and associative 
properties: 

 )()( k212324212 RRRRkR MMMMM    (38) 

 )CCC()( k212324212 RRRRkR CC    (39) 
In the following section, the performance of the proposed serial and parallel fusion 
algorithms will be validated by practical experiments. 

 
5. Experimental Results 

The developed system has been implemented on two experimental mobile robots H1 and 
H2 developed in our lab. Each robot has an on-board industrial PC (IPC), which is 
connected to the internet via wireless LAN. On top of the robot, a stereo vision module was 
installed in order to estimate the position of the observed robot and build the local map of 
the experimental environment. The robots were equipped with a motor control card for 
driving two independent wheels. Fig. 6 shows the robots H1 and H2 in the experiments. 
Figs. 7(a) and (b) show the experimental environment in the lab. 
Two experiments were conducted to verify the effectiveness of the proposed method of 
cooperation localization. One experiment used a single robot H1 to build a map. The second 
experiment used two robots, H1 and H2, to cooperatively build an environmental map with 
multi-robot localization. In these two experiments, the robots are set to only have four 
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1)(  RijRjRjj CCCKI , the updated covariance matrix becomes 
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will not be larger than that of covariance matrices CRj and CRij (Golub & Van Loan, 1996). 
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Therefore, the parallel fusion operation also has associative property, which guarantees that 
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These two properties are helpful to generalize the parallel fusion algorithm into the sensor 
fusion procedure of multiple robots. Suppose that robot j is observed by robot i at instant k , 
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parallel fusion. The output of the first fusion is used as the input of next step, and then the 
optimal position of robot j with minimum covariance matrix can be obtained after several 
iterations. 
Figure 5 depicts the complete steps of parallel fusion. As the case shown in Fig. 5(a), there 
are three sets of parameters of serial fusion obtained from other robots, which observe robot 
2. Using the proposed parallel fusion scheme, the parameters of serial fusion 

kRR CM ),( 1212 , kRR CM ),( 3232 , kRR CM ),( 4242  and kRR CM ),( 22  can be merged in 
three subsequent steps as depicted in Fig. 5(b). A new positional parameters of robot 2 at 
instant 1k , 122 ),( kRR CM , is obtained and updated accordingly. We write parallel 
fusion formula following the representation in Fig. 5(b): 
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Fig. 5. Complete steps of parallel fusion. (a) Parameters of serial fusion are obtained by each 
robot which observes robot 2. (b) Parameters are fused in three subsequent steps using 
parallel fusion. 
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In the following section, the performance of the proposed serial and parallel fusion 
algorithms will be validated by practical experiments. 

 
5. Experimental Results 

The developed system has been implemented on two experimental mobile robots H1 and 
H2 developed in our lab. Each robot has an on-board industrial PC (IPC), which is 
connected to the internet via wireless LAN. On top of the robot, a stereo vision module was 
installed in order to estimate the position of the observed robot and build the local map of 
the experimental environment. The robots were equipped with a motor control card for 
driving two independent wheels. Fig. 6 shows the robots H1 and H2 in the experiments. 
Figs. 7(a) and (b) show the experimental environment in the lab. 
Two experiments were conducted to verify the effectiveness of the proposed method of 
cooperation localization. One experiment used a single robot H1 to build a map. The second 
experiment used two robots, H1 and H2, to cooperatively build an environmental map with 
multi-robot localization. In these two experiments, the robots are set to only have four 
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orientation angles: 0o, 90o, 180o, and 270o. Therefore, the orientation of the robot can be 
supposed to be known without uncertainty. This assumption leads a simplified 
implementation of the proposed algorithm, which does not consider the information of 
robot orientation. For instance, expressions (7) and (8) can be simplified such that  
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However, the performance and convergence of the proposed algorithm will not be 
influenced. In the following, these two experimental results are compared and discussed. 
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RiC  denotes the positional covariance matrix of robot Ri at time step k and will be 

accumulated step-by-step when the robot travels due to the odometry measurement noise. 
 
Experiment 1: Single robot localization and map-building 
In this part, robot H1 was commanded to build a map of the environment alone. The 
localization of the robot is using the information from odometry only such that 
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where )(k
rv is the linear velocity of the robot at time step k. The linear velocity is calculated 

by counting encoder signals from two driving wheels. Because of 

}270,180,90,0{ r , the angular velocity of the robot can be ignored in the 
experiments. 
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orientation angles: 0o, 90o, 180o, and 270o. Therefore, the orientation of the robot can be 
supposed to be known without uncertainty. This assumption leads a simplified 
implementation of the proposed algorithm, which does not consider the information of 
robot orientation. For instance, expressions (7) and (8) can be simplified such that  
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Fig. 8 shows the experimental results. In Fig. 8, the dotted lines represent actual 
environmental shape. Solid lines show the map established by the robot H1. Six positions A, 
B, C, D, E and F were recorded as the robot moved around the environment. Table 2 shows 
the position parameters of H1 of these points. In Table 2, it is observed that as H1 moves 
through point A to F subsequently, the standard deviations of x  and y  coordinates 
become larger and larger. This means that H1 is getting lost of its position estimation 
because the accumulated error from dead reckoning. From Table 2, we also see that the 
standard deviations of from A to F are increasing. This implies the error between the actual 
and estimated positions becomes larger as the robot travels further. 
 
Experiment 2: Cooperative visual localization and map-building 
In this part, robots H1 and H2 worked together to cooperatively localize each other and built 
a map of the environment. Fig. 9 shows the experimental results. In Fig. 9(a), seven positions 
of H1 were recorded. In Fig. 9(b), five positions of H2 were recorded. The black points are 
the recorded trajectory of H1 and H2, respectively. The dotted lines are actual 
environmental shape. Solid lines represent the maps established by H1 and H2 respectively. 
In this experiment, H1 was observed by H2 at point D of H1. The robot H2 was observed by 
H1 at points C and E of H2. 
 

 
Fig. 8. Map-building result of single robot H1. 
 
The position estimation results of H1 and H2 in experiment 2 are shown in Table 3 and 4, 
respectively. From Table 3, we see that when H1 moved through point A, B and C 
subsequently, the standard deviations of x  and y  coordinates increase. However, when 
H1 moved to point D and was observed by H2, parallel fusion of H1 occurred. So the 
position uncertainty of robot H1 and the error between actual and estimated position 
became smaller as expected. The similar results also can be confirmed for robot H2. As 
shown in Table 4, since H2 was observed by H1 at points C and E, the position uncertainty 
and the positional error were reduced at point C and E as expected. 

 
Table 2. Position parameters of H1 in experiment1. 
 

 
Fig. 9. Map-building results in experiment 2: (a) by H1 (b) by H2. 
 

 
Table 3. Position parameters of H1 in experiment 2. 
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Table 4. Position parameters of H2 in experiment 2. 
 

 
Fig. 10. Cooperative map-building result of H1 and H2. 
 
Therefore, the experimental results validate that the proposed cooperative localization 
algorithm effectively reduces the position error of each robot in the cooperative robotic 
system. 
Fig. 10 shows the integrated result of Fig. 9 constructed in the robot server through 
cooperation of robots H1 and H2. In Fig. 10, the gray lines represent actual environmental 
shape. Solid lines represent the global map established by robot H1 and H2 collaboratively. 
Because the position error of each robot was reduced by the cooperative localization, the 
error of the map also became smaller compared with the case in Fig. 8 without sensor 
fusion. 

 
6. Conclusions 

In this chapter, we presented a multi-robot cooperative localization scheme which does not 
restrict the number of robots in the system and guarantees the optimal fusion results with 
minimum covariance matrix. In this scheme, each robot is equipped with a stereo vision 

system to recognize the individual robot and find important features in environment. This is 
advantageous compared to a robotic system with sonar or laser sensors, where the robots 
have practical limitations in recognizing more than two robot-teammates. From practical 
experiments, we observe that parallel fusion can effectively reduce robot positional 
uncertainty as expected. Using serial and parallel fusion, one can increase the accuracy of 
robot localization and reduce the errors in map-building. In the future, we will first extend 
the experiments to a more complex environment with more robots. Theoretical 
improvements will also be investigated, such as the information transmission issue between 
each robot teammate, and how often the robots need to observe each other.  
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