
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Stereo Vision System for Remotely Operated Robots 59

Stereo Vision System for Remotely Operated Robots

Angelos Amanatiadis and Antonios Gasteratos

1

Stereo Vision System for

Remotely Operated Robots

Angelos Amanatiadis and Antonios Gasteratos
Democritus University of Thrace

Greece

1. Introduction

Remotely operated robots, functioning in hazardous and time critical environments, have sig-
nificant requirements for control and visual information (Davids (2002), Murphy (2004)). The
control systems are supposed to guarantee a precise timely response in order to prevent fatal
scenarios in bomb disposal operations or in life rescue missions. Significant role to these op-
erating scenarios play the concurrent visual information provided to the remote operators by
the on-board mounted cameras.
Visual information (Fong & Thorpe (2001), Desouza & Kak (2002)) is often displayed in one
or more monitors depending on the number of on-board mounted cameras. In sophisticated
and multi-tasking robots more than one operators are performing certain actions. Especially,
in case of robots with grippers and robotic arms, one operator might be dedicated only with
the maneuvering and controlling of the robotic arms or grippers. In these operation scenarios,
the dedicated user must be focused only on this task and furthermore should have the best
visual understanding of the working field. The widely used equipment and gear for these
assignments is a Head Mounted Display (HMD) and an attached head tracker.
The HMD projects visual feedback of the remote robot in front of operator eyes. A single
camera feedback projection in both eyes is not so significant since the result in operator’s per-
ception is the same as being watched from a single monitor. Thus, a pair of cameras are used
instead, in order to provide a real stereo feedback to the operator’s HMD, thus enhancing his
visual perception and improving the sense of depth (Willemsen et al. (2004)). Consequently,
operators can judge situations and perform actions more efficiently based on the qualitative
information of the synchronized stereo video streams. The use of a head tracker expands
the operator’s functions while it offers a hands-free ability to remotely control the pose of
the robot head. The inertial measurement devices used for the head tracking usually contain
rate gyroscopes (gyros) and accelerometers. The measurements of the inertial sensor can be
processed and transmitted as control signals to the remote robot.
Many different interfaces have been presented in literature recently. A method of robot teleop-
eration that allows a human operator to control a robot manipulator is presented in (Kofman
et al. (2005)). It uses a non-contacting, vision-based, human-robot interface for both the com-
munication of the human motion to the robot and for feedback of the robot motion to the
human operator. However, this visual feedback does not give the operator the depth visual
information, which is necessary for this critical task. In (Bluethmann et al. (2003)), a sophis-
ticated anthropomorphic robot is developed for space operations. It is comprised of a stereo

4

www.intechopen.com

Remote and Telerobotics60

Fig. 1. The Stereo vision system.

head which transmits the video feedback to the operator through a HMD. The same human-
machine interface is developed also in (Tachi et al. (2003)) for robot control. Both implementa-
tions however, require sophisticated and expensive equipment and are built with proprietary
software. In (Marin et al. (2005)), an on-line robot architecture is presented. It enables the
control of a robot by interacting with an advanced user interface with very promising results
but the real-time constraint for control can not be guaranteed.
In this chapter, we focus on a human-machine interface which guarantees the real-time control
of a binocular robotic head. Furthermore, a stereo video streaming transmission with low
latency is presented. This hands-free interface is implemented exclusively with open source
software on a Linux-based Real-time Operating System. The control and video architecture
satisfies also the demands of recent sophisticated telerobotics for flexibility and expandability.

2. System Design

The functions of the stereo vision system, as shown in Fig. 1, are separated into video stream-
ing and motion control and are both implemented with the use of two host computers. The
first host computer is called Mobile Mechatronic Unit (MMU), and is placed on the mobile
platform where the stereo vision head is operating. The second host computer comprises the
Mobile Control Unit (MCU) which is placed on the remote control center. There, the remote
operator wears the HMD with the attached head tracker, as shown in Fig. 2.
The video streaming presents high computational burden and resource demand while it re-
quires the full usage of certain instruction sets of a modern microprocessor. In contrast, motion
control includes filtering and signal processing from the head tracker output and requires the
operation system to be able to execute real-time tasks. This demand for high multimedia per-
formance and real-time motion control is realized by a computer structure consisting of two
high performance computers with RT-Linux operating system for the MMU and MCU host
computers. However, the two main tasks of the video streaming and the motion control will
be performed in different kernel layers due to their different requirements. Furthermore, RT-

www.intechopen.com

Stereo Vision System for Remotely Operated Robots 61

Fig. 2. The remotely operated robot.

Linux operating system was chosen in order to ensure that the different operation and com-
munications loops occur at deterministic rates, and that safety critical tasks are performed
reliably. The two host computers are connected together with a wireless high speed network.
The communication protocol between the computers uses a higher level abstraction, built on
top of sockets, meeting the requirements for low latency and priority handling. Apart from
the libraries, the communication protocol consists of a server daemon residing on each side
MCU and MMU and acts as gateway to the other side. Each server daemon is in charge of
delivering the messages received by the remote end to the clients in its network, and forward-
ing the messages received by clients in its network, to the remote end, through the wireless
link. Furthermore, there is a priority list that refers to the priority assigned to each operation.
In the MCU and MMU communication subsystem, the priority handling is realized by means
of the cooperation between the server protocol and quality of service features such as packet
identification rules, service flow classes for bandwidth reservation, latency and jitter control
on the identified packets, and quality of service classes with associated service flow classes.
Figure 3 shows the flowchart of the stereo vision software architecture. The right part shows
the control flow from the head tracker starting from the MCU and ending to the motors of the
stereo head. The left flow shows the video stream from the stereo head cameras of the MMU
to the player in the MCU.

www.intechopen.com

Remote and Telerobotics62

Camera/Motor Stereo Camera Encoder Motor

HMD/Sensor

I/O Board Controllers

Kernel Layer
Device Driver

FFmpeg Libraries

Device Driver

Onbody
Layer

Compression
Encapsulation

Signal
Processing

Network
Layer

UDP Based
Low Priority

UDP Based
High Priority

Onbody
Layer

Decoding
Synchronization Kalman Filtering

Kernel Layer
Video Driver

VLC Player

Device Driver

Head Mounted
Display

Head Tracker

RT-Linux
Kernel Module

MCU

MMU

Fig. 3. Flowchart of the stereo vision software architecture.

3. Control System

3.1 Hardware Architecture

A head tracker inertial measurement unit was used to obtain high update rate measurements.
Its internal low-power signal processor provides 3D orientation as well as kinematic data of
3D acceleration and 3D rate of turn (rate gyro). The data used for the head tracking is the
pitch and yaw in order to send the pan and tilt commands to the teleoperated stereo head,
respectively. The chosen interface used for connecting the sensor to the MCU computer is the
RS-232, in order to have full access to the basic level of the sensor unit and a full compati-
bility for the drivers, since no serial-to-USB converter drivers are needed. The second sensor
attached on the stereo head mechanism, as shown in Fig. 1, is used for the stabilization of the
stereo head (Amanatiadis et al. (2007)). Special attention was paid for the placement of this
inertial sensor. Possible errors and distortions from the strong currents of the servo motors
can be quite large enough in order to deteriorate the inertial measurements (Roetenberg et al.
(2005)). A global reset is performed each time the HMD sensor is initialized to orientate the
tracker in such a way that the sensor axes point in exactly the same direction as the axes of the
operator’s global coordinate frame. The sample frequency used is 100 Hz with a baudrate of
115 Kbps.
Two harmonic drive actuators are used to move the pan and tilt axis of the stereo head, based
on feedback acquired from incremental position encoders. The chosen high precision encoders

www.intechopen.com

Stereo Vision System for Remotely Operated Robots 63

Camera/Motor Stereo Camera Encoder Motor

HMD/Sensor

I/O Board Controllers

Kernel Layer
Device Driver

FFmpeg Libraries

Device Driver

Onbody
Layer

Compression
Encapsulation

Signal
Processing

Network
Layer

UDP Based
Low Priority

UDP Based
High Priority

Onbody
Layer

Decoding
Synchronization Kalman Filtering

Kernel Layer
Video Driver

VLC Player

Device Driver

Head Mounted
Display

Head Tracker

RT-Linux
Kernel Module

MCU

MMU

guarantee a specification 0.01 degree resolution and a maximum frequency response of 100
KHz. The DC servo motors have a maximum output speed of 110 rpm and maximum radial
load 59 N, which is adequate for the two cameras load. Each servo is connected to a controller
which sends low-level commands to the actuators for executing the trajectories received by
the head tracker. A very precise calibration of the controllers was performed so that we could
utilize the great degree precision of the position encoders. Position control strategy was cho-
sen while position is the most important aspect of a high performance head tracking control.
The Proportional Integral Derivative (PID) controller values were calibrated in discrete-time
through the use of real-time processes running with fixed time steps. The use of a simple, and
easy to tune control strategy across the pan and tilt axis helped to ensure the reliability and
robustness of the whole system. The following equation represents the general PID controller
(Astrom & Hagglund (1995)).

u = Kpe + Ki

∫
edt + Kd

d(−PV)

dt
(1)

Position control requires an additional controller on top of the velocity controller since it sets
the desired velocities in all driving phases, especially during the acceleration and deceleration
phases. This control procedure has to take into account not only the current speed as a feed-
back value, but also the current position, since previous speed changes or inaccuracies may
have had already an effect on the robot’s position. The chosen experimental parameter tuning
can be described by the following simple steps (Braunl (2008))

• Selection of the typical operating setting for the desired speed, set to zero integral and
derivative parts, and then increase of Kp to maximum or until oscillation occurs.

• Division of Kp by two, when oscillation occurs.

• Slowly increase of Kd while increasing or decreasing the speed. For the smoothest re-
sponse choose the selected value of Kd.

• Slowly increase Ki until oscillation starts. Then divide Ki by 2 or 3.

• In case the overall controller performance is satisfactorily under the typical system con-
ditions, the tuning is successful.

3.2 Software Architecture

Key feature for the implementation of the real-time control is the used operating system. Since
critical applications such as control need low response times, RT-Linux operating system is
ideal for both MMU and MCU host computers. The distribution used is an Open Source
project which provides an integrated execution environment for embedded real-time applica-
tions (Mantegazza et al. (2000)). It is based on components and incorporates the latest tech-
niques for building embedded systems. The architecture is designed to develop hybrid sys-
tems with hard and soft real-time activities as shown in Fig. 4. The Linux kernel is treated
as the lowest priority task under the RT kernel. In this case, we allocated the critical task of
control at the RT-Linux level and the less critical tasks, such as inertial data filtering, at the
Linux level. The real-time tasks need to communicate with user-space processes for things
like file access, network communication or user interface. Thus, it provides FIFOs and shared
memory implementations that provide communication with this user-space processes. The
interface for both kinds of activities is a POSIX based interface. Software routines such as boot
code, initialization positions, and input/output functions were developed using a combina-
tion of hand coded C or assembly language.

www.intechopen.com

Remote and Telerobotics64

Linux Kernel

Real-time Kernel

RT
Task

RT
Task

Linux
Process

Linux
Process

Hardware
Interupts

“Software”
Interupts

RT
Fifo

Scheduling

Fig. 4. The chosen operating system combines the use of two kernels, RT-Linux and Linux to
provide support for critical tasks and soft real-time applications, respectively.

Fig. 5. The polling or event mechanism in the internal buffer of sensor.

The data received by the head tracker at the MCU, was firstly filtered by a Kalman filter. The
software strategy dilemma of whether to use polling or events was considered in our imple-
mentation. Apart from the fact that the choice is mostly dependent on the user programming
environment several other considerations were examined. When using the polling method,
the user continuously or at a certain interval, queries the head tracker if new orientation data
has been calculated. When queried, the sensor will immediately return the most recently cal-
culated data, as shown in Fig. 5. The polling method is useful when the query function runs in
a loop at a certain update rate and each time orientation data is needed, the user just needs the
latest data and not necessarily every single sample. When using the events method, instead of
continuously querying the sensor, the event notifies the user when new data has been calcu-
lated and is available for retrieval with the appropriate functions. For the presented system,
the appropriate solution is the polling method since it ensures that the operator always get
the latest available orientation data when he asks for it. The polling method allows that the
other processes in our software to be asynchronous with the sampling rate of the head tracker
itself, and we can synchronize the data with our processes. Furthermore, polling is slightly
more straightforward to implement.
The errors in the force measurements introduced by our accelerometer and the errors in the
measurement of angular change in the orientation with respect to the inertial space introduced
by gyroscopes, were the two fundamental error sources which affected the error behavior of

www.intechopen.com

Stereo Vision System for Remotely Operated Robots 65

Linux Kernel

Real-time Kernel

RT
Task

RT
Task

Linux
Process

Linux
Process

Hardware
Interupts

“Software”
Interupts

RT
Fifo

Scheduling

the operators head trajectory. Furthermore, all inertial measurements are corrupted by addi-
tive noise (Ovaska & Valiviita (1998)). The Kalman filter (Welch & Bishop (2001), Trucco &
Verri (1998)) was used while is a form of optimal estimator, characterized by recursive eval-
uation using an estimated internal model of the dynamics of the system. The filtering was
implemented on the MCU computer where the inertial sensor is attached, using the soft-real
time kernel.
The control data received from the MMU, should be translated into motor commands for the
equivalent axis. This operation is time critical since fast and accurate position commands to a
remote robot is the only way to guarantee its safe operation. This strategy of considering the
head tracker commands time critical and their implementation in the hard real-time kernel,
allows the overall system to be flexible in a way that additional future motor commands and
even more crucial, like the operation of a gripper, can be implemented easily while satisfying
the hard real-time constraints.
The concurrency and parallelism was considered in the programming of the robotic system
by using a multi-thread model. The motor run time models are not using the wait.until.done()
function, while a change in the operator’s field of view indicates that the previous movement
should not be completed but a new motion position command should be addressed. The
following runtime model was chosen for the motor class:

Thread 1 (control)

motor.change_position()

do other things

Thread 2 (monitor)

periodically wake up

read.new_sensor_position()

if (new_sensor_position !=...

...old_sensor_position)

old_sensor_position=motor.change_...

...position.(new_sensor_position)

Simultaneous and non-synchronized accesses to the same resources, such as servo motors,
was not a set of problems for the implementation while the the pitch and yaw commands
would move separately the tilt and pan axis, respectively. However, in case of a future ad-
ditional operation, such as motor stabilization, the sharing of the same resources would be
a great problem. Thus, the software programming infrastructure considered the shared re-
sources and critical sections in order to guarantee the expandability and flexibility of the stereo
vision system. The critical sections were easily implemented since the protected operations
were limited. However, special attention must be paid since critical sections can disable sys-
tem interrupts and can impact the responsiveness of the operating system.

4. Video Streaming System

4.1 Hardware Architecture

Each of the stereo head cameras on MMU is capable of outputting progressively images of
640 × 480 pixel resolution at maximum 30 frames per second. The digital cameras transmit
the images over the fast USB 2.0 interface directly to the host’s memory without the usage
of frame grabbers. In order to determine the internal camera geometric and optical charac-
teristics, camera calibration was necessary. A variety of methods have been reported in the

www.intechopen.com

Remote and Telerobotics66

bibliography. The method we used is described in (Bouget (2001)) using its available C Open
Source code. The method is a non self-calibrating thus, we used a projected chessboard pattern
to estimate the camera intrinsics and plane poses. Finally, the calibration results were used to
rectify the images taken from cameras in order to have the best results in possible subsequent
image processing algorithms. The video processing requires high computational burden and
resources while it makes a full usage of certain instruction sets of a modern microprocessor.
Thus, a high performance processor was chosen for the MMU computer. The operator in the
MCU receives the stereo pair of images in the stereo HMD. The chosen HMD has the same
input resolution like cameras 640× 480 and a refresh rate of 70Hz. Two separate 15 pin D-Sub
(VGA) interfaces are used for the stereo image input to the HMD. Thus, the MCU computer is
equipped with a double output high performance graphic card in order to display in different
outputs each video stream.

4.2 Software Architecture

Vision systems of mobile robots must unify the requirements and demands of both com-
puter vision and image processing disciplines and robotic and embedded system disciplines.
While the state of the art in computer vision algorithms is advanced, many computer vision
processes are computationally expensive and thus inappropriately for real-time applications.
Therefore, the resource demands of computer vision applications are in conflict with the re-
quirements posed by robotics and embedded systems. For this system, a compression scheme
must be implemented in order to transmit the stereo image stream. The high input data rate
from the cameras of 2(stereo)× 640× 480(resolution)× 3(color)× 8(bit per pixel)× 25(f ps)∼=
351 Mbps requires a compression algorithm with high compression ratio, low computational
complexity and good output quality. Furthermore, the compressed video should be packe-
tized and streamed over the communication network.
The architecture chosen aims to make the MMU computer a video server which will perform
the following primary tasks:

• Capture video from both cameras

• Compress video using a codec

• Packetize the compressed video and attach time stamps within the packets

• Stream the packets over the communication network

For all the previous tasks, apart from capturing, the FFmpeg video open source libraries (FFm-
peg project (2008)) were selected. The video server allows multicast transmission while it
sends each video stream to a fixed-destination multicast address. The services dealing with
each stream, like the video player in the MCU, only have to listen to the appropriate multicast
address, so several services can receive the same video stream without increasing bandwidth
consumption. The compression was done using MPEG-4 codec, and the transmission of the
video streams using the MPEG Transport Stream (Gringeri et al. (1998)). MPEG-TS provides
many features found in data link layers, such as packet identification, synchronization, timing
(clock references and timestamps), multiplexing and sequencing information. In the architec-
ture chosen, each processing tree is executed within its own thread and is processed in parallel
with other source nodes, like the control loop. This framework ensures appropriate synchro-
nization between the image streams. With this framework, the developers do not need to
worry about locking issues and synchronization primitives. The UDP communication proto-
col was used between the two computers while it uses a higher level abstraction, it is built on
top of sockets, and meets the requirements for low latency (Traylor et al. (2005)).

www.intechopen.com

Stereo Vision System for Remotely Operated Robots 67

Fig. 6. The remotely operated robot prototype.

For video capturing the video for Linux (Video 4 Linux project (2008)) driver was chosen,
which is an open source application programming interface for video capture and output
drivers. The available streaming parameters were used to optimize the video capture pro-
cess as well as the I/O. Our pre-selected video options determine a default number of frames
per second in both digital cameras. If less than this number of frames is to be captured or
output, applications can request frame skipping or duplicating on the driver side. This is
especially useful when using the priority handling of the wireless network topology, where
cases of video frames not augmented by timestamps or sequence counters are necessary for
bandwidth saving. In order to exchange images between drivers and applications, it was nec-
essary to have standard image data formats which both sides will interpret the same way. The
used interface included several such formats but it was not limited only to these formats since
driver-specific formats were possible since in the presented stereo vision system, some appli-
cations depended on codecs to convert images to one of the standard formats when needed.
The I/O streaming was designed in a way that only pointers to buffers were exchanged be-
tween application and driver, ensuring that the data itself was not copied. The capturing
application enqueued a number of empty buffers before starting capturing and entering the
read loop. The application waited until a filled buffer could be dequeued, and re-enqueued
the buffer when the data was no longer needed. Output applications filled and enqueued

www.intechopen.com

Remote and Telerobotics68

the buffers, and when enough buffers were stacked up output was started. In the write loop,
when the application run out of free buffers it waited until an empty buffer could be dequeued
and reused.
One of the highlights of the presented system is the multiple concepts for real-time image pro-
cessing. Each image processing tree is executed with its own thread priority and scheduler
choice, which is directly mapped to the operating system process scheduler. This was neces-
sary in order to minimize jitter and ensure correct priorization, especially under heavy load
situations. Some of the performed image processing tasks were disparity estimation (Geor-
goulas et al. (2008)), object tracking (Metta et al. (2004)), image stabilization (Amanatiadis
et al. (2007)) and image zooming (Amanatiadis & Andreadis (2008)). For all these image pro-
cessing cases, a careful selection of programming platform should be made. Thus, the open
source computer vision library, OpenCV, was chosen for our image processing algorithms
(Bradski & Kaehler (2008)). OpenCV was designed for computational efficiency and with a
strong focus on real-time applications. It is written in optimized C and can take advantage of
multicore processors. The basic components in the library were complete enough to enable
the creation of our solutions.
In the MCU computer, an open source video player VLC was chosen for the playback service
of the video streams VideoLAN project (2008). VLC is an open source cross-platform media
player which supports a large number of multimedia formats and it is based on the FFmpeg
libraries. The same FFmpeg libraries are now decoding and synchronize the received UDP
packets. Two different instances of the player are functioning in different network ports. Each
stream from the video server is transmitted to the same network address, the MCU network
address, but in different ports. Thus, each player receives the right stream and with the help of
the MCU on board graphic card capabilities, each stream is directed to one of the two available
VGA inputs of the HMD.
The above chosen architecture offers a great flexibility and expandability in many different
aspects. In the MMU, additional video camera devices can be easily added and be attached
to the video server. Image processing algorithms and effects can be implemented using the
open source video libraries like filtering, scaling and overlaying. Furthermore, in the MCU,
additional video clients can be added easily and controlled separately.

5. System Performance

Laboratory testing and extensive open field tests, as shown in Fig. 6, have been carried out in
order to evaluate the overall system performance. During calibration of the PIDs the chosen
gains of (1) were Kp = 58.6, Ki = 2000 and Kd = 340.2. The aim of the controlling architecture
was to guarantee the fine response and accurate axis movement. Figure 7 shows the response
of the position controller in internal units (IU). One degree equals to 640 IU of the encoder. As
we can see, the position controller has a very good response and follows the target position.
From the position error plot we can determine that the maximum error is 17 IU which equals
to 0.026 degrees.
To confirm the validity of the vision system architecture scheme, of selecting RT-Linux kernel
operating system for the control commands, interrupt latency was measured on a PC which
has an Athlon 1.2GHz processor. In order to assess the effect of the operating system latency,
we ran an I/O stress test as a competing background load while running the control com-
mands. With this background running, a thread fetched the CPU clock-count and issued a
control command, which caused the interrupt; triggered by the interrupt, an interrupt han-
dler (another thread) got the CPU clock-count again and cleared the interrupt. Iterating the

0 50 100 150 200

-450

-300

-150

0

 Acquisition time[ms]
 Motor_Position[IU]

0 50 100 150 200

-450

-300

-150

0

 Acquisition time[ms]
 Target_Position[IU]

0 50 100 150 200

-15

-7.5

0

7.5

15

 Acquisition time[ms]
 Position_Error[IU]

www.intechopen.com

Stereo Vision System for Remotely Operated Robots 69

0 50 100 150 200

-450

-300

-150

0

 Acquisition time[ms]
 Motor_Position[IU]

0 50 100 150 200

-450

-300

-150

0

 Acquisition time[ms]
 Target_Position[IU]

0 50 100 150 200

-15

-7.5

0

7.5

15

 Acquisition time[ms]
 Position_Error[IU]

Fig. 7. A plot of position controller performance. Left: The motor position, Up Right: The
target motor position, Down Right: The position error.

above steps, the latency, the difference of the two clock-count values, was measured. On stan-
dard Linux kernel, the maximum latency was more than 400 msec, with a large variance in
the measures. In the stereo vision system implementation in RT-Linux kernel the latency was
significantly lower with maximum latency less than 30 msec and very low variation.
The third set of results show the inter-frame times, the difference between the display times
of a video frame and the previous frame. The expected inter-frame time is the process period
1/ f where f is the video frame rate. In our experiments, we used the VLC player for the
playback in the MMU host computer. We chose to make the measurements on the MMU and
not on the MCU computer in order to calculate only the operating system latency avoiding
overheads from communication protocol latencies and priorities. The selected video frame
rate was 30 frames per second. Thus, the expected inter-frame time was 33.3 msec. Figure
8(a) shows the inter-frame times obtained using only the standard Linux kernel for both
control and video process. The measurements were taken with heavy control commands
running in the background. The inter-frame time due to the control process load introduces
additional variation in the inter-frame times and increases these times to more than 40ms. In
contrast, Figure 8(b) shows the inter-frame times obtained using the RT-Linux kernel with
high resolution timers for the control process and the standard Linux kernel for the video
process. The measurements were taken with the same heavy control commands running in
the background. As we can see, the inter-frame times are clustered more around the correct
value of 33.3 msec and their variation is lower.

www.intechopen.com

Remote and Telerobotics70

0 200 400 600 800 1000 1200 1400 1600 1800 2000
28

30

32

34

36

38

40

42

44

Frame number

In
te

r f
ra

m
e

tim
e

(m
se

c)

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
28

30

32

34

36

38

40

42

44

Frame number

In
te

r f
ra

m
e

tim
e

(m
se

c)

(b)

Fig. 8. Inter-frame time measurements: (a) Both control and video process running in standard
Linux kernel; (b) Control process running in RT-Linux kernel and video process in standard
Linux kernel.

6. Conclusion

This chapter described a robust prototype stereo vision paradigm for real-time applications,
based on open source libraries. The system was designed and implemented to serve as a
binocular head for remotely operated robots. The two main implemented processes were the

www.intechopen.com

Stereo Vision System for Remotely Operated Robots 71

0 200 400 600 800 1000 1200 1400 1600 1800 2000
28

30

32

34

36

38

40

42

44

Frame number

In
te

r f
ra

m
e

tim
e

(m
se

c)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
28

30

32

34

36

38

40

42

44

Frame number

In
te

r f
ra

m
e

tim
e

(m
se

c)

remote control of the head via a head tracker and the stereo video streaming to the mobile
control unit. The key features of the design of the stereo vision system include:

• A complete implementation with the use of open source libraries based on two RT-
Linux operating systems

• A hard real-time implementation for the control commands

• A low latency implementation for the video streaming transmission

• A flexible and easily expandable control and video streaming architecture for future
improvements and additions

All the aforementioned features make the presented implementation appropriate for sophis-
ticated remotely operated robots.

7. References

Amanatiadis, A. & Andreadis, I. (2008). An integrated architecture for adaptive image stabi-
lization in zooming operation, IEEE Transactions on Consumer Electronics 54(2): 600–
608.

Amanatiadis, A., Andreadis, I., Gasteratos, A. & Kyriakoulis, N. (2007). A rotational and trans-
lational image stabilization system for remotely operated robots, Proc. of the IEEE Int.
Workshop on Imaging Systems and Techniques, pp. 1–5.

Astrom, K. & Hagglund, T. (1995). PID controllers: Theory, Design and Tuning, Instrument
Society of America, Research Triangle Park.

Bluethmann, W., Ambrose, R., Diftler, M., Askew, S., Huber, E., Goza, M., Rehnmark, F.,
Lovchik, C. & Magruder, D. (2003). Robonaut: A robot designed to work with hu-
mans in space, Autonomous Robots 14(2): 179–197.

Bouget, J. (2001). Camera calibration toolbox for Matlab, California Institute of Technology,
http//www.vision.caltech.edu .

Bradski, G. & Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library,
O’Reilly Media, Inc.

Braunl, T. (2008). Embedded robotics: mobile robot design and applications with embedded systems,
Springer-Verlag New York Inc.

Davids, A. (2002). Urban search and rescue robots: from tragedy to technology, IEEE Intell.
Syst. 17(2): 81–83.

Desouza, G. & Kak, A. (2002). Vision for mobile robot navigation: a survey, IEEE Trans. Pattern
Anal. Mach. Intell. 24(2): 237–267.

FFmpeg project (2008). http//ffmpeg.sourceforge.net .
Fong, T. & Thorpe, C. (2001). Vehicle teleoperation interfaces, Autonomous Robots 11(1): 9–18.
Georgoulas, C., Kotoulas, L., Sirakoulis, G., Andreadis, I. & Gasteratos, A. (2008). Real-time

disparity map computation module, Microprocessors and Microsystems 32(3): 159–170.
Gringeri, S., Khasnabish, B., Lewis, A., Shuaib, K., Egorov, R. & Basch, B. (1998). Transmission

of MPEG-2 video streams over ATM, IEEE Multimedia 5(1): 58–71.
Kofman, J., Wu, X., Luu, T. & Verma, S. (2005). Teleoperation of a robot manipulator using a

vision-based human-robot interface, IEEE Trans. Ind. Electron. 52(5): 1206–1219.
Mantegazza, P., Dozio, E. & Papacharalambous, S. (2000). RTAI: Real time application inter-

face, Linux Journal 2000(72es).
Marin, R., Sanz, P., Nebot, P. & Wirz, R. (2005). A multimodal interface to control a robot

arm via the web: a case study on remote programming, IEEE Trans. Ind. Electron.
52(6): 1506–1520.

www.intechopen.com

Remote and Telerobotics72

Metta, G., Gasteratos, A. & Sandini, G. (2004). Learning to track colored objects with log-polar
vision, Mechatronics 14(9): 989–1006.

Murphy, R. (2004). Human-robot interaction in rescue robotics, IEEE Trans. Syst., Man, Cybern.,
Part C, 34(2): 138–153.

Ovaska, S. & Valiviita, S. (1998). Angular acceleration measurement: A review, IEEE Trans.
Instrum. Meas. 47(5): 1211–1217.

Roetenberg, D., Luinge, H., Baten, C. & Veltink, P. (2005). Compensation of magnetic distur-
bances improves inertial and magnetic sensing of human body segment orientation,
IEEE Transactions on neural systems and rehabilitation engineering 13(3): 395–405.

Tachi, S., Komoriya, K., Sawada, K., Nishiyama, T., Itoko, T., Kobayashi, M. & Inoue, K. (2003).
Telexistence cockpit for humanoid robot control, Advanced Robotics 17(3): 199–217.

Traylor, R., Wilhelm, D., Adelstein, B. & Tan, H. (2005). Design considerations for stand-alone
haptic interfaces communicating via UDP protocol, Proceedings of the 2005 World Hap-
tics Conference, pp. 563–564.

Trucco, E. & Verri, A. (1998). Introductory Techniques for 3-D Computer Vision, Prentice Hall PTR
Upper Saddle River, NJ, USA.

Video 4 Linux project (2008). http://linuxtv.org/ .
VideoLAN project (2008). http://www.videolan.org/ .
Welch, G. & Bishop, G. (2001). An introduction to the Kalman filter, ACM SIGGRAPH 2001

Course Notes .
Willemsen, P., Colton, M., Creem-Regehr, S. & Thompson, W. (2004). The effects of head-

mounted display mechanics on distance judgments in virtual environments, Proc. of
the 1st Symposium on Applied perception in graphics and visualization, pp. 35–38.

www.intechopen.com

Remote and Telerobotics

Edited by Nicolas Mollet

ISBN 978-953-307-081-0

Hard cover, 220 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Any book which presents works about controlling distant robotics entities, namely the field of telerobotics, will

propose advanced technics concerning time delay compensation, error handling, autonomous systems,

secured and complex distant manipulations, etc. So does this new book, Remote and Telerobotics, which

presents such state-of-the-art advanced solutions, allowing for instance to develop an open low-cost Robotics

platform or to use very efficient prediction models to compensate latency. This edition is organized around

eleven high-level chapters, presenting international research works coming from Japan, Korea, France, Italy,

Spain, Greece and Netherlands.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Angelos Amanatiadis and Antonios Gasteratos (2010). Stereo Vision System for Remotely Operated Robots,

Remote and Telerobotics, Nicolas Mollet (Ed.), ISBN: 978-953-307-081-0, InTech, Available from:

http://www.intechopen.com/books/remote-and-telerobotics/stereo-vision-system-for-remotely-operated-robots

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

