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1. Introduction 

The advancement of integrated circuits (ICs) has been following Moore’s Law well since 

1960s. For the sustaining of Moore’s Law, technologists in the microelectronics industry are, 

on one hand, trying to push lithography technology to the limit for making devices with 

smaller length scales. Extreme ultraviolet, e-beam, nanoimprint or other lithography 

technologies have been developed as candidate replacement technologies for the 

conventional optical lithography (Gwyn et al., 1998; Vieu et al., 2000; Chou et al., 1996). On 

the other hand, technologists are also exploring the third dimension for the 3D integration of 

chips (Baliga, 2004). Although the advancement of lithography technologies and 3D 

integration technology can keep the IC industry abreast of Moore’s Law for the next decade, 

the problems we will face at the end of that period are becoming visible. The emerging of 

nanowires/nanotubes as building blocks of ICs will bring fundamental changes to the 

future IC industry and offer continuance of Moore’s Law. Besides the applications in logic 

circuits, nanowires have very promising applications as sensing elements in highly sensitive 

bio/chemical/photon sensors and detectors.  

Nanowires are commonly grown by vapor-liquid-solid (VLS) process (Wagner & Ellis, 
1964), vapor-solid (VS) process (Zhang et al., 1999), electrochemical deposition into 
nanoporous templates (Sander et al., 2002), and solution growth (Govender et al., 2002). In 
the past 20 years, nanowires of a diverse range of compositions have been produced at a 
relatively low cost with precisely controlled parameters including structure, size, defect, and 
doping. Nanowire devices such as field effect transistors (FETs) (Ju et al., 2007), single virus 
detector (Patolsky et al., 2004), pH sensor (Cui et al., 2001), gas sensors (Zhang et al., 2004), 
and photodetectors (Soci et al., 2007) have been demonstrated to show superior performance 
than their thin-film counterparts or even exhibit novel properties that have never been 
achieved by thin-film technology. However, most of the nanowire devices are limited to the 
demonstration of single device, not adequate for production on a large scale at low cost. 
Ultimately, cost and yield will decide whether nanowire devices find their way into market. 
Developing cost-effective means to integrate nanowires into working devices on large scales 
is essential for the prosperity of nanotechnology. In this chapter, we focus on progress 
toward nanowire device assembly technologies, which may benefit for the mass production 
of nanowire devices in the future. Generally, two strategies exist for the fabrication of 
devices from nanowires, namely, transfer pre-grown nanowires onto a surface with 
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alignment and direct growth of nanowires onto a substrate at desired locations. Examples of 
nanowire devices demonstrated by these two strategies are given. It should be noted that 
although the assembly techniques described here are for nanowires, in most of the cases, 
they can also be applied to other 1D nanostructures, such as nanorods, nanotubes, and 
nanobelts.  

2. Transfer with alignment 

While manipulating atoms is still a dream to be realized in future nanotechnology, 
manipulating an assembly of them, such as nanowires, is a tough but possible task at 
current stage. At the early stage of nanowire research, nanowire devices are commonly 
made by “pick and place” method (Cui & Lieber, 2001). Nanowires grown by bottom-up 
process are removed from their substrates and suspended into a solution. Then, nanowires 
are dispersed randomly onto another substrate. Before nanowire dispersion, markers are 
made on the substrate, so that the position and angle of the nanowires can be noted under 
SEM observation. Next, a lift-off process is applied to pattern metallic contacts to the 
nanowires. This method is suitable for studying fundamental properties of the nanowires 
because the structure is well defined (Keem et al., 2006). However, it is complicated and 
costly and, therefore, not suitable for production. In some other cases, the metal electrodes 
are made before nanowire dispersion (Kind et al., 2002). Successful placement of nanowires 
between the pre-fabricated electrodes requires luck and the contact barriers between the 
electrodes and the nanowires are usually very high, which make the technique non-
reproducible and not suitable for many device applications. The assembly of many 
individual nanowires over large areas with controlled directions and interspacing is desired 
for the fabrication of complex circuits of nanowires with logic functions. In this section, we 
concentrate on techniques that have been developed to transfer pre-fabricated nanowires 
and align them parallel with each other on substrates where standard lithographic processes 
can be applied to fabricate devices. 

2.1 Alignment with fluid flow in microchannels 
The shear force created by the motion of a fluid against a solid boundary can be used to 
align nanowires that are suspended in a solution. The nanowires will reorient to the 
direction of the fluid flow to minimize the fluid drag forces. The shear forces from the 
evaporation of a droplet can align nanowires, but the resulting pattern is a ring because the 
nanowires dispersed in the drop are advected to the contact line (Deegan, 2000). By flowing 
a stream of fluid across a substrate surface, nanowires can be reoriented towards the flow 
direction and become quasi-aligned (Wang et al., 2005a). A better technique to align 
nanowires with fluid flow is to confine the fluid flow to a microfluidic channel (Huang et al., 
2001a). The microchannel can establish a shear force that is more uniform than the previous 
techniques. In this flow assembly technique, a poly(dimethylsiloxane) (PDMS) mold with a 

microchannel with width ranging from 50 to 500 µm and length from 6 to 20 mm is brought 
into contact with a flat substrate. Parallel nanowire arrays are achieved by flowing a 
nanowire suspension inside the microchannel with a controlled flow rate for a set duration. 
The degree of the alignment can be controlled by the flow rate: the angular distribution of 
the nanowires narrows substantially with increasing flow rates. The nanowire density 
increases systematically with the flow duration. High-performance p-Si nanowire transistors 
have been demonstrated using this fluid flow alignment technique (Duan et al., 2003). 
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The ability to assemble nanowires into complex crossed structures makes this technique 

more interesting for building dense nanodevice arrays. Crossed nanowire arrays can be 

obtained by alternating the flow in orthogonal directions in a two-step flow assembly 

process. An equilateral triangle of nanowires can be obtained in a three-step assembly 

process, with 60º angles between flow directions. The important feature of this layer-by-

layer assembly scheme is that each layer is independent of the others and, therefore, a 

variety of homo- and hetero-junctions can be obtained at the crossed points. By using 

nanowires with different conduction types (e.g., p-Si and n-GaN nanowires) in each step, 

the authors have demonstrated logic gates with computational functions from the 

assembled crossbar nanowire structures (Huang et al., 2001b). The weakness of this 

technique is that the area for nanowire alignment is limited by the size of the fluidic 

microchannels. It will be more difficult to establish a uniform shear force in a large channel.  

2.2 Alignment by interactions with chemically patterned surfaces 
Nanowires deposited on a substrate from a suspension have random orientations. The 

deposition site of the nanowires strongly depends on the surface chemical functionality. The 

deposition sites can be controlled through van der Waals and hydrogen bonding 

interactions between the nanowires and the chemically functionalized substrate. Selective 

deposition of nanowires onto the chemically patterned area can be achieved under proper 

deposition conditions. One common technique to achieve such interactions is through the 

hybridization of complementary DNAs (Mbindyo et al., 2001; Lee et al., 2007b), which is 

well established in biology. A suspension of nanowires whose surface is modified with 

single-stranded DNA (ssDNA) is cast onto a substrate patterned with the complementary 

DNA (cDNA) strands and polyethylene glycol (PEG) (Wang & Gates, 2009). Nanowires 

deposit on the areas that are patterned with cDNA through hybridization of ssDNA with 

cDNA, but not on the surfaces that are passivated by PEG. This assembly technique has also 

been exploited for bridging nanowires across two electrodes by selective DNA hybridization 

(Lee et al., 2007b). The assembled nanowires show ohmic contact with minimum contact 

resistance, which proves this is an effective way for nanowire assembly. Similar approaches 

to enhance the interaction between the nanowires and the substrate include using biotin-

avidin linkages (Chen et al., 2006), block-copolymer modifications (Nie et al., 2007), and 

hydrophobic/hydrophilic surface modifications (Ou et al., 2008). Future works should focus 

on improving the efficiency of the nanowire-substrate interaction and on using this 

technique to make ordered and patterned nanowire arrays. 

Although selective deposition of nanowires can be achieved by this surface modification 
technique, the nanowires are not aligned after the assembly process. The alignment is driven 
largely by the shear force during solvent evaporation. To solve this problem, Huang et al. 
have combined the surface modification technique with the flow assembly technique 
introduced above to obtain periodic aligned nanowire arrays (Huang et al., 2001a). The 
SiO2/Si substrate is patterned with NH2-terminated monolayers in the shape of parallel 
stripes with a separation of a few micrometers. During the flow assembly process, the 
nanowires are preferentially attracted to the NH2-terminated regions of the surface. The 
orientation of the nanowires is controlled by the shear force generated from the fluidic flow 
in the microchannels. Controlling both the location and orientation of the nanowires is 
therefore realized.  
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2.3 Alignment by Langmuir-Blodgett technique 
When a solid surface is vertically dipped into a liquid containing a Langmuir monolayer 

and then pull out properly, the monolayer will deposit homogeneously onto the surface. 

This process creates Langmuir-Blodgett (LB) films. The LB technique is usually used to 

transfer organic monolayer from water onto a solid substrate to form extremely thin films 

with high degree of structure order. This technique can also be applied to prepare LB films 

of nanowires if the materials for assembly meet the following requirements: 1) soluble in 

water-immiscible solvents; 2) formation of stable floating monolayers at the surface of the 

subphase with internally oriented, cohesive, and compact structure that are sheer resistant. 

To meet these requirements, the nanowires used to form LB films are usually functionalized 

by surfactants. Without functionalization, the nanowires do not form stable suspensions in 

the organic solvents and sink into water. The process of the LB technique is illustrated in 

Fig. 1a. A nanowire-surfactant monolayer is initially formed on a liquid (usually water) 

surface in an LB trough. The monolayer is then compressed using the barrier under an 

appropriate level of compression. The nanowires are close-packed as parallel arrays with 

their longitudinal axes aligned perpendicular to the compression direction to minimize the 

surface energy of the liquid. The formed nanowire monolayers resemble a microscopic 

version of “logs-on-a-river”. The monolayer of the aligned nanowires is then transferred 

onto a substrate through vertical-dipping (i.e., LB) or horizontal-lifting (i.e., Langmuir-

Schaefer (LS)) techniques. The spacing between the parallel nanowires can be adjusted by 

the lifting speed and by the pressure of the compression. 

The LB technique has so far been adopted by many researchers to assemble various 

nanowires in large scales. Tao and coworkers used the LB technique to assemble aligned 

monolayers of silver nanowires that are ~50 nm in diameter and 2-3 µm in length over areas 

as large as 20 cm2 (Tao et al., 2003). The SEM images of the resulting Ag nanowire arrays on 

a Si wafer are shown in Fig. 1b-c. The Ag nanowire monolayers serve as excellent substrates 

for surface-enhanced Raman spectroscopy with large electromagnetic field enhancement 

factors. 

Other aligned nanowire monolayers are also realized using the LB technique, including Ge 

nanowires (Wang et al., 2005b), ultrathin (~1.3 nm in diameter) ZnSe nanowires (Acharya et 

al., 2006), V2O5 nanowires (Park et al., 2008), and VO2 nanowires (Mai et al., 2009). Whang et 

al. used the LS technique to transfer Si nanowire monolayers on a 1 cm × 3 cm substrate 

(Whang et al., 2003). The spacing of the transferred nanowires is controlled from micrometer 

scale to well-ordered and close-packed structures by the compression process, as shown in 

Fig. 1d-f. Using the LS assembly of Si nanowire arrays, they have also fabricated FET arrays 

over large areas without the need to register individual nanowire-electrode interconnects 

(Jin et al., 2004). The non-registration integration method is very useful because it can also 

be applied to nanowire arrays assembled by other methods. The ability to assemble 

hierarchical nanowire structures makes the LB and LS techniques more interesting. 

Hierarchical structures are produced by repeating the assembly process after changing the 

orientation of the substrate (Whang et al. 2003; Acharya et al., 2006). The challenges of the 

LB and LS techniques are the aggregation of nanowires in the Langmuir monolayer and the 

reorientation of nanowires during the post processes. The applications of LB techniques for 

the assembly of nanomaterials including nanoparticles, nanorods, nanowires, nanotubes, 

and nanosheets have been well summarized in a recent review (Acharya et al., 2009).  
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Fig. 1. Alignment of nanowires by LB and LS techniques.  (a) Schematic processes of the LB 
and LS techniques. (b & c) SEM images of an LB assembly of Ag nanowires. Reprinted with 
permission from (Tao et al., 2003), © 2003 American Chemical Society. (d-f) SEM images of 
an LS assembly of Si nanowires. Reprinted with permission from (Whang et al., 2003), © 
2003 American Chemical Society. 

2.4 Electric and magnetic fields assisted orientation 
For nanowires with an inherent charge or modified to adopt a specific charge, electrostatic 
interactions between the nanowires and patterned substrates can be used for nanowire 
assembly (Myung et al., 2005). The process is similar to the nanowire assembly using 
chemically patterned surfaces.  Nanowires can also be aligned with the assistance of external 
electric and magnetic fields. The process for the alignment of nanowires in a fluid under 
electric field is called dielectrophoresis (DEP) assembly of nanowires. The dielectrophoretic 
forces which arise from induced dipole moments embedded in nonuniform electric fields 
are widely used to manipulate micro and nanoscale particles. The structures align with a 
minimum energy configuration within the applied field, such as along the field lines. In 
practice, electrodes with proper gap distances are fabricated by lithography on the substrate 
for DEP. Nanowire dispersion is dropped onto the substrate and a direct current (dc) or an 
alternating current (ac) electric field is applied to the electrodes. The density of the 
assembled nanowires can be controlled from a dense array of nanowires (Zhou et al., 2007) 
to a single nanowire (Duan et al., 2001). The density of the nanowires is generally increased 
with the increase in the applied voltage or with the decrease in the gap distance, that is, with 
the increase in the applied electric field. In the cases of ac electric field, the nanowire 
assembly becomes tighter, straighter, and more uniformly aligned as the frequency increases 
(Wang et al., 2007).  A gate voltage is also used to control the deposition position of the 
nanowires (Wang et al., 2007). Due to the large geometric aspect ratio of nanowires, the 
induced dipole of the nanowires is proportional to their conductivity. Therefore, the DEP 
assembly works well with metallic nanowires (Smith et al., 2000). For semiconducting 
nanowires, super-band-gap illumination has been used to increase their conductivity, which 
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results in an increase in the wire DEP mobility (Zhou et al., 2007). Theoretical understanding 
of the DEP assembly has also been done for further improving this technique (Liu et al., 
2006). The weakness of the technique is the need of prefabricated electrodes for nanowire 
assembly and the reorientation and aggregation of the nanowires upon evaporation of the 
solvent.  
For magnetic nanowires (e.g., Fe, Co, and Ni), a magnetic field can be applied to align them 

in a liquid. The nanowires align along the magnetic field lines. Pre-fabricated ferromagnetic 

microelectrodes on substrates provide an additional degree of control, dominating dipole 

interactions among nanowires, for site-specific assembly (Hangarter et al., 2007; Yoo et al., 

2006). Magnetic nanowires can be effectively trapped on templates with nanomagnet arrays 

under a low external magnetic field if magnetic charge and dimension are matched between 

the magnetic nanowires to be assembled and the gaps between the two nanomagnets (Liu et 

al., 2007). Nonmagnetic nanowires can be capped with magnetic ends and assembled using 

magnetic field (Hangarter & Myung, 2005). The field gradients can also control the 

alignment of nonmagnetic nanowires immersed inside magnetic fluids (Ooi & Yellen, 2008). 

Due to the competition between a preference to align with the external field and a 

preference to move into regions of minimum magnetic field, the nanowires align 

perpendicular to the external field at low field strengths, but parallel to the external field at 

high field strengths. Magnetic nanowires assembled in conjunction with micropatterned 

magnet arrays have been demonstrated to be a flexible tool for manipulation and 

positioning of mammalian cells (Tanase et al., 2005). One major problem for the magnetic 

assembly is the lateral aggregation and edge accumulation of the nanowires. The 

concentration of nanowires in the solution and the applied magnetic field are very 

important parameters in reducing these problems (Hangarter et al., 2007). 

2.5 Alignment in blown bubble films 
Another technique for large-scale assembly of nanowires is using shear force created by the 

expansion of a blown-bubble film (Yu et al., 2007). Blown film extrusion is a well-developed 

process for the manufacture of plastic films in large quantities. Yu et al. applied this 

technique to the formation of nanocomposite films where the density and orientation of the 

nanowires were controlled within the films. The basic steps in their approach consist of (1) 

preparation of a homogenous, stable, and controlled concentration polymer suspension of 

nanowires; (2) expansion of the polymer suspension using a circular die to form a bubble at 

controlled pressure and expansion rate; (3) transfer of the bubble film to substrates or open 

frame structures. The nanowires within the film align along the shear force created by the 

expansion of the film. More than 85% of the nanowires are aligned within ±6° of the upward 

expansion direction. Si nanowires are transferred conformally to single-crystal wafers up to 

200 mm in diameter, flexible plastic sheets up to 225 mm × 300 mm, highly curved surfaces, 

and also suspended across open frames. The nanowire density within the film can be 

controlled by the concentration of the nanowire in the polymer suspension. Large nanowire 

FET arrays were also fabricated using transferred Si nanowire blown-bubble films. The 

limitation of this method lies in the necessity to embed nanowires in the bubble films which 

result in contamination of the nanowires and degradation of their performance. Also, excess 

epoxy matrix should be removed using processes such as reactive ion etching before the 

fabrication of nanodevices. 
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3. Integration by direct growth 

Even though the transfer techniques allow one to align nanowires and control the position 
to a certain degree, their need for transfer media in most cases liquid, poses potential harm 
to the unique properties of the nanowires. Especially when the surface cleanness of the 
nanowires are critical to the performance of devices (such as detectors and sensors), 
reducing or eliminating post-processing of the nanowires is necessary. In this respect, 
integration of nanowires into devices on desired locations by direct growth possesses 
apparent advantage over the transfer methods. The synthesis methods can be modified to 
achieve selective growth of nanowires on desired locations by patterning of catalysts/seeds. 
Both vertical and planar integration of nanowires with respect to the substrate are possible. 
In this section, examples are given on the direct growth strategy for nanowire device 
integration. 

3.1 Direct growth of vertical nanowire arrays 
The simplest example of this strategy that can be given is the growth of vertically aligned 
nanowire arrays for application in devices such as nanolasers (Huang et al., 2001), light-
emitting diodes (LEDs) (Könenkamp et al., 2004; Lai et al., 2008), and solar cells (Law et al., 
2005). Starting with a substrate covered by nanosized catalysts or seeds, vertically aligned 
nanowires are grown on top of it by either vapor phase or solution growth methods. The 
substrate is chosen to have a good lattice match with the nanowires so that the nanowires 
can be epitaxially grown from the substrate to achieve better alignment. Depending on the 
purpose, post-treatments of the nanowire array may be necessary for the final device.  
For laser applications, the nanowires are optically pumped and laser emission is observed 
when the excitation intensity exceeds a threshold. The lasing threshold is much lower than 
those for random lasing obtained in disordered particles or thin films. The vertically aligned 
nanowires serve as natural resonance cavities, so that lasing action is observed in the 
nanowire array without any fabricated mirrors.  
For LED applications, the nanowires should be grown from a thin film with different 
conduction type to form p-n junction. To protect the nanowires and to form a buffer layer 
between the thin film, the nanowire array is buried in spin-on glass (Luo et al., 2006) or in 
high-molecular-weight polymers such as polystyrene (PS) and poly(methyl methacrylate) 
(PMMA). After etching the insulating layer on top of the nanowire array, ohmic contacts are 
formed on the thin film and on the exposed nanowire tips. Similar process has been 
proposed recently as a generic approach for vertical integration of nanowires (Latu-Romain 
et al., 2008). Electroluminescence is observed under a forward bias, which originates from 
the recombination of minority carriers that are injected across the junction between the thin 
film and the nanowire array. The vertical nanowire architecture of the device leads to 
waveguided emission, which is one of the advantages of using a vertical nanowire array 
over a thin film. Similar device architecture has been realized recently using InAs vertical 
nanowires on Si substrate for photovoltaic and photodetection applications (Wei et al., 
2009). 
Vertical nanowire arrays are also used to construct the anodes of dye-sensitized solar cells 
(DSCs) to replace anodes made by thick films and nanoparticles. Vertical nanowire arrays 
are grown on a transparent conductive substrate, dye-coated, sandwiched together and then 
bonded. The internal space of the cell is filled with a liquid electrolyte by capillary action. 
The nanowire anode features a large surface area as well as direct electrical pathways which 
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ensure rapid collection of carriers generated throughout the device, which promotes high 
device efficiency. Although nanoparticle DSCs offer larger surface area, they rely on trap-
limited diffusion for electron transport, a slow mechanism that can limit the device 
efficiency.  

3.2 Patterned growth of vertical nanowires 
Above devices are made using dense nanowire arrays without precisely controlling the 
locations of the nanowires. Although this technique offers the advantage of simplicity and 
low cost in the fabrication process, the alignment of the nanowires, far from ideal, presents a 
certain degree of randomness. Controlling the density, position, and arrangement of the 
nanowires is of great interest for most applications in nanoelectronics, nanophotonics, and 
optoelectronics. The patterned growth of nanowires in a periodic fashion over a large scale 
(square-centimeter and above) by inexpensive methods is highly desired. This is realized 
using patterned arrays of metal nanodots as catalysts made by nanopatterning techniques. 
The nanowires would copy the pattern of the metal nanodots due to the selective growth of 
nanowires via the VLS process. Existing nanopatterning techniques include 
photolithography (Greyson et al., 2004), e-beam lithography (Ng et al., 2004), nanosphere 
lithography (Fuhrmann et al., 2005; Zhou et al., 2008), nanoimprint lithography (Martensson 
et al., 2004), and nanoporous mask patterning (Fan et al., 2005). The nanowires are usually 
grown by CVD, MOVPE, MOCVD, and MBE. The patterned growth of vertical nanowires 
has been realized with various semiconductors, such as Si, InP, InAs, ZnO, and GaN. The 
key advantages of this technique are that the diameter, height, orientation, and location of 
the nanowires can all be controlled. For more details about the patterned growth of 
semiconductor nanowires, readers can refer to an extensive review given by (Fan et al., 
2006) and the references therein. Here, we will focus on the applications of these patterned 
nanowires for device assembly.  
One demonstrative device using highly ordered vertical nanowires is the nanowire vertical 

surround-gate field-effect transistor (VSG-FET). This device was first realized by (Ng et al., 

2004) using an array of individual ZnO nanowires. By patterning Au catalyst pads with 

diameter of ~180 nm and thickness of ~1.5 nm using e-beam lithography, a single ZnO 

nanowire with an average diameter of ~35 nm was grown at each catalyst spot in the CVD 

process. A heavily doped SiC was used as the device substrate because the SiC (0001) plane 

has very small lattice mismatch (~5.5%) between the ZnO (0001) which facilitates epitaxial 

growth of vertically aligned ZnO nanowires and its high conductivity offers bottom 

electrical contacts to the nanowires. Fig. 2a-f show a generic process flow for the fabrication 

of a functional VSG-FET. A 3D schematic cartoon and a FE-SEM cross-sectional image are 

shown in Fig. 2g-h. In principle, similar fabrication schemes can be used with other 

nanowire/substrate combinations. Similar strategy has been employed for the realization of 

a VSG-FET using Si nanowire grown epitaxially by CVD on a (111)-oriented p-type Si 

substrate (Schmidt et al., 2006). The surround gate allows better electrostatic gate control of 

the conducting channel and offers the potential to drive more current per device area than is 

possible in a conventional planar architecture (Wang et al., 2004). 1D nanowires obtained 

using the bottom-up approach completely eliminate the lithography and etching processes 

typically employed in the top-down approach to obtain nanopillars (Endoh et al., 2003). 

Direct integration of the vertically aligned nanowires using current semiconductor 

processing technology bridges the gap between microtechnology and nanotechnology. 
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Fig. 2. (a-f) Schematics of a process flow showing the major steps to fabricate a ZnO 
nanowire VSG-FET. (g) A 3D schematic illustrating the critical components of the device. (h) 
SEM cross-sectional image of the vertical surround-gate FET. Reprinted with permission 
from (Ng et al., 2004), © 2004 American Chemical Society. (i-j) SEM images of vertical and 
electrically isolated InAs nanowires on SiO2/Si. Reprinted with permission from (Dayeh et 
al., 2008), © 2008 American Institute of Physics. 

The processes in the two examples given above are designed only for single device 

demonstration. The presence of the underlying semiconducting substrate precludes 

electrical isolation and individual addressability of single nanowire. For practical 

applications, addressable patterned underlying electrical contacts are needed. Dayeh and 

co-workers (Dayeh et al., 2008) tried to address this problem by a layer transfer technique 

that combines hydrogen ion implantation and wafer bonding, known as ion-cut or Smart-

cut® process (Bruel, 1995). A thin InAs layer is transferred onto SiO2/Si by Smart-cut® 

technique and ordered InAs nanowires are epitaxially grown on the layer by MOVPE. After 

nanowire growth, the InAs layer in the regions between the nanowires is etched resulting in 

an ordered, vertical, and electrically isolated InAs nanowire array as shown in Fig. 2i-j. 

Combining this technique with the VSG-FET technique would result in the realization of 

individually addressable, high density VSG-FET arrays suitable for 3D circuit applications.  

Nanowires and nanotubes have been proved to exhibit excellent field emission properties 
due to their high aspect ratio and tip-like shape which maximize the geometrical field 
enhancement (Au et al., 1999; Wong et al., 1999; Nilsson et al., 2000). Another important 
device demonstrated using site-determined vertical nanowires is the self-aligned, gated 
arrays of individual nanotubes/nanowire emitters (Gangloff et al., 2004). The fabrication 
process of the device is shown in Fig. 3a-d. A resist hole is first patterned on a gate 
electrode/insulator/emitter electrode sandwich. The gate and insulator are then 
isotropically etched. A thin film of catalyst and a barrier layer are deposited on the 
structure. A lift-off process is performed to remove the unwanted catalyst on top of the gate 
followed by the growth of nanowire/nanowire inside the cavity. The gated nanotube 

cathode array has a low turn-on voltage of 25 V and a peak current of 5 µA at 46 V, with a 
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gate current of 10 nA, which corresponds to a gate transparency of ~99%. These low 
operating voltage cathodes are potentially useful as electron sources for field emission 
displays or miniaturizing electron-based instrument. 
 

 

Fig. 3. (a-d) Schematics of the self-aligned process for fabricating individual 
nanowire/nanotubes emitters with integrated gates. (e) An array of integrated gate Si 
nanowire cathodes. (f) Cross-sectional view of an integrated gate carbon nanotube cathode. 
Reprinted with permission from (Gangloff et al., 2004), © 2004 American Chemical Society. 

3.3 Direct growth of horizontally aligned nanowires 
The growth of vertically aligned nanowires can be easily achieved if the substrate is 
terminated with a surface which allows epitaxial growth of the material and the crystal 
orientation of the surface matches the fast growth direction of the nanowires. The growth of 
horizontally aligned nanowires is, however, not easily achieved and less studied. 
Horizontally aligned nanowires offer a benefit of fabricating integrated nanodevices. As we 
discussed before, most of the works focus on the transfer of nanowires with alignment to a 
different substrate. It would be better if nanowires could be grown horizontally on desired 
locations of the substrates.  

Nikoobakht has proposed a method to grow horizontally aligned nanowires on desired 

locations and directions (Nikoobakht, 2007). In this architecture, nanowires are grown 

where the nanodevices will later be fabricated on. Gold nanodroplets are first patterned on 

an α-plane (11 2 0) sapphire substrate. ZnO nanowires with diameter of ~10 nm are then 

grown selectively on the predefined gold sites. The growth direction of the nanowires is 

controlled using the anisotropic crystal match between ZnO and the underlying substrate. 

Subsequently, metal electrodes are deposited on nanowires at once and in a parallel fashion. 

Large numbers of top-gated ZnO nanowire field-effect transistors are fabricated using only 

three photolithographic steps. The advantages of this technique are: 1) the starting 

coordinates of the horizontally grown nanowires are defined; 2) the number of nanowires in 

each device is controlled; and 3) the technique is scalable and therefore capable of industrial 

production. The horizontally grown nanowires have also been utilized to integrate 

horizontal nanochannels with known registries to microchannels (Nikoobakht, 2009). 

Horizontally aligned GaAs nanowires have also been realized on GaAs (100) substrates 

using atmospheric pressure MOCVD with Au as catalyst (Fortuna et al., 2008). GaAs 

nanowires with diameter of ~30 nm and length of several microns are grown in plane in 

either the [1 1 0] or [ 1 10] direction axially at 460-475 °C.  The spacing between the adjacent 

planar nanowires can be controlled by the density of the gold catalysts. The drawback of 

www.intechopen.com



Progress Toward Nanowire Device Assembly Technology  

 

383 

this method is that the nanowires are grown on conducting substrates. Therefore they 

cannot be directly integrated into nanodevices. To solve this problem, the authors have 

applied a direct transfer process to the nanowires. The position and alignment of the 

nanowires are maintained after the transfer process, which makes possible the nanowire 

integration afterwards.  

A general method for growing laterally aligned and patterned ZnO nanowire arrays on any 

flat substrate is also proposed (Qin et al., 2008). The nanowires are grown by a solution 

based growth process, in which the orientation control is achieved using the combined 

effects from a ZnO seed layer and a catalytically inactive Cr (or Sn) layer for nanowire 

growth. Because the growth temperature is low (<100 °C), the method can be applied to any 

substrate. However, the alignment of the nanowires should be improved for device 

applications such as FETs. Xu et al. recently achieved highly ordered horizontal ZnO 

nanowire arrays using a hydrothermal decomposition method onto the [2 1 1 0] surface of a 

single crystal ZnO substrate (Xu et al., 2009). However, the diameter of the nanowires is 

quite large (> 400 nm) and increases with the length of the nanowire. It is apparent that 

there is much work to do in this area before the techniques can benefit to practical 

applications. 

3.4 Nanowire integration by bridging method 
For horizontally aligned nanowires obtained either by a transferring method or by a direct 
growth method, electrodes are made on top of the nanowires afterwards. The post 
processing usually introduces contamination to the nanowires, which may deteriorate the 
performance of the nanodevices. Especially, keeping the nanowire surface clean is of 
significant importance for nanowire sensors and detectors. A solution for this would be to 
grow nanowires from one desired location directly to another desired location, such as 
between two electrodes. Nanowires bridge two desired locations in the “bottom-up” 
process, therefore this technique is called “bridging method”. In this method, a substrate is 
etched to form two electrode posts using microfabrication process. Catalysts or seed layers 
are then deposited on the side walls of the posts. Nanowires are grown across the trench 
between the electrode posts and form bridges in a VLS process. Since the electrode posts are 
fabricated prior to the growth of nanowires, surface contamination is minimized. The 
nanowire integration process is also more efficient than the former methods. The bridging 
method was first demonstrated by Haraguchi and coworkers by growing GaAs 
nanowhiskers across a trench between GaAs posts (Haraguchi et al., 1996; Haraguchi et al., 
1997). Although the bridging nanowhiskers in this architecture cannot be used for electrical 
characterization because the substrate between the two posts is conductive, it shows the 
potential to directly integrate an ensemble of nanowires on-chip. In recent years, this 
technique has been used to fabricate bridging nanowire devices such as gas sensors, 
photodetectors, and transistors with Si, GaN, and ZnO. Some representative works are 
given below.  
Because of silicon’s compatibility with existing IC process, Si nanowires are especially 
attractive. Using the vast knowledge of Si technology, the Hewlett-Packard (HP) group first 
demonstrated ultrahigh-density Si bridging nanowires across a trench etched into a (110)-
oriented Si wafer (Islam et al., 2004). The sidewalls of the trench are (111) planes, on which 
Si nanowires grow vertically to the surface. The bottom of the trench is still conductive in 
this case. However, this problem can be easily solved by using a silicon-on-insulator (SOI) 
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wafer. The trench is etched into the SOI until reaching the buried insulator layer. By using Si 
bridging nanowires grown on an SOI wafer, the HP group has realized a gas sensor and 
proposed a concept for using bridging nanowires to build a sensor system (Kamins et al., 
2006).  
A typical process for the fabrication of Si bridging nanowires on an SOI is as follows. SOI 

wafers consisting of a 20-80 µm thick Si(110) layer, a 0.5-2 µm thick thermally grown SiO2 

layer, and a ~400 µm thick Si(100) handle layer are used as the substrates. A 0.5-1 µm-thick 

thermal SiO2 layer is first grown on the Si(110) surface and patterns designed for trenches 

are made by photolithography and transferred onto the SiO2 layer by plasma etching. The 

trenches are made by DRIE process using the patterned SiO2 layer as a mask. The SiO2 mask 

is removed by wet etching afterwards. Gold colloids are dispersed on the substrate at 

catalysts for VLS growth of nanowires. Si bridging nanowires are then grown by CVD. In 

this process, the lengths, diameters, and densities of the bridging nanowires can be 

controlled. The lengths of the nanowires can be tailored to fit in trenches of varying widths 

by controlling the growth time. The diameters of the nanowires can be defined by the sizes 

of the Au colloids. The density of the nanowires in the trenches can be controlled by the 

surface density of the Au colloids. Using a single Si bridging nanowire fabricated by this 

process, giant piezoresistance effect was demonstrated (He & Yang, 2006). 

Apart from Si bridging nanowires, other compound semiconductors can also be fabricated 

into a bridging architecture. GaN bridging nanowires are fabricated using a similar process 

(Chen et al., 2008). A wafer with a ~2-µm-thick layer of highly n+-doped c-plane GaN on 

sapphire is used as the substrate for fabrication of the bridging nanowire device. Ni 

electrodes with thickness of 0.2-0.4 µm are patterned on the substrate by photolithography 

and lift-off. The trenches are then made by RIE using the patterned Ni electrodes as a mask. 

To ensure the electrical isolation between two electrodes, the n+- GaN layer is over-etched 

down to the sapphire surface. After sputtering a thin (< 10 nm) layer of Au catalyst, GaN 

nanowires are grown by CVD to bridge the electrodes. The formed nanobridge device 

shows a linear I-V characteristic in dark, which suggests that there is no contact barrier 

between the electrodes and the bridging nanowires. The device shows ultrahigh (~105 A W-

1) photocurrent responsivity to UV light, which could be used as a visible-blind 

photodetector. The problem with this device is that the dark current is too large compared 

to the photocurrent, which should be addressed before using as a photodetector. One 

possible solution is to improve the crystal quality and lower the defect density of the GaN 

nanowires. The horizontally aligned GaN bridging nanowires can also be used as 

nanoelectromechanical resonators (Henry et al., 2007). 

The formation of bridging nanowires with other material is also possible using Si trenches 

on a SOI wafer as substrate. This allows the integration of other functional elements into Si 

microelectronics. Conley et al. have demonstrated a gas and UV sensor using ZnO 

nanowires bridging between n+-Si electrodes (Conley et al., 2005). Lee et al. also have 

successfully achieved ZnO bridging nanowires between Si electrode posts by a single-step 

thermal evaporation method (Lee et al., 2006). The fabricated ZnO nanobridge device shows 

very fast response upon turning on/off UV (Lee et al., 2007a). This kind of heterostructures 

have contact barrier between the electrode posts and the bridging nanowires, which may 

not be favored by some devices. On the other hand, the heterojunction can be beneficial for 

some devices if it is properly designed.  
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Recently, the HP group has advanced this technique to realize a top-gated MOSFET 

(Quitoriano & Kamins, 2008). Fig. 4a-f shows the schematic process flow for fabricating such 

a Si bridging nanowire MOSFET. An SOI wafer consisting of a 100 nm thick, (100)-oriented, 

n+-Si layer on a 200 nm thick buried SiO2 layer on a p-Si handle layer is used as the starting 

substrate. A 70 nm Si3N4 layer is deposited on the n+-Si, patterned, and used as hard mask to 

etch the exposed Si to form electrically isolated electrodes. The SiO2 layer is then etched to 

undercut the top n+-Si layer. Colloidal Au nanoparticles are deposited only on the exposed 

Si surfaces by a selective placement technique, as schematically shown in Figure 4c. Si 

bridging nanowires are grown across the gap between the source and drain in a CVD 

process. The growth direction of the Si nanowires is guided by using the SiO2 surfaces. The 

mechanism of the guided VLS nanowire growth using SiO2 is also studied by the same 

group (Quitoriano et al., 2009). The nanowires are thermally oxidized to form a 13-21 nm 

oxide. Al (200 nm in thickness) is deposited to make contacts to the source and drain and Ti 

(170 nm in thickness) is deposited as the top gate. The SEM and TEM images of the 

fabricated MOSFET are shown in Fig. 4g-i. The measured drain characteristics with gate 

voltages from 0 to -1.35 V show good saturation. The gate characteristics measured at a 

drain voltage of 0.1 V show high Ion/Ioff ratio of ~104 and inverse sub-threshold slope of 

~155 mV/decade. The integration of nanowires into MOSFETs by bridging method can help 

realize the full promise of semiconducting nanowires since practical applications of 

nanowires are likely to use a combination of top-down patterning with self-assembly to 

integrate nanowires with conventionally formed microstructures.  
 

 

Fig. 4. (a-f) Process flow and schematic architecture of the Si bridging nanowire MOSFET. 
(g) Top-view SEM image of a Si bridging nanowire grown between source (S) and drain (D). 
(h) Perpendicular and (i) longitudinal, cross-sectional TEM images of a nanowire bridging 
source and drain. Reprinted with permission from (Quitoriano & Kamins, 2008), © 2008 
American Chemical Society. 
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Fig. 5. (a) Schematic process flow of the single-step fabrication of ZnO bridging nanowires. 
(b-d) SEM images of the ZnO thick layer electrodes and the ZnO bridging nanowires. (e) 
Time-dependent UV photoresponse of the ZnO bridging nanowire UV photodetector. (f) 
Cathodoluminescence (CL) and spectral photoresponse of the ZnO bridging nanowires.  

The conventional bridging method, as shown in the above examples, requires the fabrication 

of micro-trenches and electrode posts before the growth of nanowires. The process can be 

further simplified for some device applications. Li et al. have proposed a single-step 

bridging method to fabricate ZnO bridging nanowires without resorting to any 

microfabrication process (Li et al., 2008; Li et al., 2009a, b). In this method, the electrodes and 

the bridging nanowires are synthesized simultaneously in a CVD process. The schematic 

fabrication process is shown in Fig. 5a. First, a 2-nm-thick gold catalyst layer is sputtered on 

a quartz glass through a comb-shaped metal shadow mask. Then, ZnO is grown on the Au 

patterned substrate in a CVD process. After the CVD process, the Au pattern areas, i.e., the 

comb pads and fingers, are covered by a thick ZnO layer. SEM observation reveals that the 

thick layer consists of dense ZnO nanowires and nanosheets (Fig. 5b). The gap (~100 µm in 

width) between the comb fingers is bridged by many ultra-long nanowires, as shown in Fig. 

5c-d. The key to this single-step bridging method is to achieve lateral growth of ultra-long 

nanowires at the edge of the thick layer, so that physical masking can be applied to pattern 

the Au catalyst instead of lift-off processes. The as-made structure can be directly used for 

photoresponse test by contacting the comb pads with In or Al which form ohmic contacts 

with ZnO. Time-dependent photoresponse of the device in Fig. 5e shows that the current 

increases drastically and rapidly when exposed to UV illumination. The current increases by 
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2 to 5 orders under an irradiance of 180 nW/cm2 to 48 mW/cm2. The photocurrent decay is 

also very fast. The decay time is in the order of a few seconds. With the current being 

insensitive to photon energy lower than ~3.2 eV (Fig. 5f), the device exhibits visible-blind 

spectral photoresponse. By eliminating lift-off from the fabrication process of the device, the 

nanowires are free of contamination, which is one of the major advantages of bridging 

technique as discussed above. Besides, the nanowires are lying over the substrate instead of 

being in contact with the substrate, rendering their surfaces fully exposed to the ambient 

atmosphere. This can be very beneficial to nanowire devices such as gas/chemical sensors, 

in which the surfaces of the nanowires play a central role in the sensing mechanism. 

Therefore, this single-step bridging method is suitable for the mass-production of low-cost 

and high-performance nanowire photodetectors and gas/chemical sensors. 

4. Conclusion 

The remarkable progress made on the synthesis of nanowires over recent years offers a wide 

selection of building blocks for future nanodevices which are deemed to change our life 

fundamentally. However, the assembly of these building blocks in reliable and economical 

ways should be addressed before the flourish of nanotechnology. In this chapter, 

technologies developed for the assembly of nanowire devices were reviewed. We focused 

on two main strategies for tackling this problem, that is, transfer with alignment of pre-

grown nanowires onto a surface and direct growth of nanowires onto a substrate at desired 

locations. Nanowire devices demonstrated by these assembly techniques were introduced. 

By combining the current stage top-down techniques with the nanowire assembly 

techniques, the fabricated nanodevices show properties that motivate us on carrying on the 

research. It also points out future research directions for nanotechnology. Nevertheless, 

many practical problems have to be solved for integration of nanowires into devices. A lot 

more effort has to be put into the development of new nanowire assembly techniques, as we 

have been doing for the synthesis of nanowires. It is impossible to find a universal way that 

solves all the problems. Understanding the weaknesses of each technique is as important as 

understanding their advantages, for it can help us select the right one for a specific device 

application. A combination of two or more assembly techniques will be useful as illustrated 

by some of the cases given above. Through this review, we hope that readers not only learn 

the state-of-the-art nanowire assembly technologies, but also gain more confidence on the 

future of nanotechnology despite of all the difficulties. 
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