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1. Introduction
 

Cluster analysis can be defined as the process of partition data into a certain number of 
clusters (or groups) of similar objects, where each group consists of similar objects amongst 
themselves (internal homogeneity) and different from the objects of the other groups 
(external heterogeneity), i.e., patterns in the same cluster should be similar to each other, 
while patterns in different clusters should not (Xu & Wunsch II, 2005). Typical clustering 
applications include pattern recognition, data mining, data compression, market 
segmentation and dimensionality reduction, among others. 
More formally, given a set of N input patterns: { }NxxX ,,1 = , where each 

( ) p
ipii xxx ℜ∈= Τ,,1   represents a p-dimensional vector and each measure 

ijx  represents a 

attribute (or variable) from dataset, a clustering process attempts to seek a K partition of X , 
denoted by { }KCCC ,,1 = , ( )NK ≤  such that: 
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Traditional clustering algorithms operate over a single dataset. In most cases, before 
applying traditional algorithms on distributed databases, all distributed data must be 
centered on a main site. However, in some applications, e.g. medical and business, privacy-
preserving and security policies disallow data combination, because confidential 
information can be reconstructed (Silva & Klusch, 2006). 
In very large databases, the integration of several datasets into a single location is 
discouraged (Forman & Zhang, 2000). If an organization has very large distributed 
databases and needs to gather all the data to apply clustering algorithms, processing can 
demand excessive data transfers, which can be slow and expensive. 
Moreover, any change that occurs in the distributed data, as for example, the inclusion of 
new information or alterations of existing data, will have to be updated into the central 
database. This demands a complex process of information updating, which causes a data 
transfer overload within the system. 
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For that reason, several algorithms have appear aimed at clustering dispersed data into 
several locations and summarizing results in a central unit, ensuring data security and 
confidentiality. This approach is known as distributed data clustering (DDC). 
Clustering algorithms can be based on a wide variety of theories and techniques, including 
graph theory, combinatorial search techniques, fuzzy set theory, artificial neural networks, 
and kernels techniques (Xu & Wunsch II, 2005). Artificial neural networks are an important 
computational tool, with strong inspiration neurobiological and widely used in the solution 
of complex problems, which cannot be handled with traditional algorithmic solutions 
(Haykin, 1999). Applications for neural networks include pattern recognition, signal analysis 
and processing, analysis tasks, diagnosis and prognostic, data classification and clustering. 
Competitive neural networks provide a family of algorithms used for data representation, 
visualization and clustering. Among the unsupervised neural network models, the self-
organizing map (SOM) plays a major role. SOM features include information compression 
while trying to preserve the topological and metric relationship of the primary data space 
(Kohonen, 2001). The SOM network defines, via unsupervised learning, a mapping of a 
continuous p-dimensional space to a set of model vectors, or neurons, usually arranged as a 
2-D array. 
This work proposes a novel strategy for cluster analysis in distributed databases using a 
recently proposed architecture, named partSOM, and typical clustering algorithms, such as 
SOM and K-Means. In this approach, the clustering algorithm is applied separately in each 
distributed dataset, relative to database vertical partitions, to obtain a representative subset 
of each local dataset. In the sequence, these representative subsets are sent to a central site, 
which performs a fusion of the partial results. Next, a clustering algorithm is applied again 
to obtain a final result. 
The main contribution of this paper is to show that, in situations where the volume of data is 
very large or when data privacy and security requirements impede consolidation at a single 
location, the results obtained with the application of this strategy justify its use. 
The remainder of the chapter is organized as follows: section 2 presents a brief 
bibliographical review about distributed data clustering algorithms and section 3 describes 
the main aspects of the SOM and K-Means algorithm. Section 4 presents the proposed 
strategy, detailing its operation and the advantages obtained with its use. Section 5 describes 
the methodology used in the experiments and section 6 present the results of the application 
of the proposed strategy for some datasets, comparing them with the results obtained with 
the traditional approaches. Finally, section 7 presents conclusions and the direction of future 
algorithm research. 

 
2. A Review on Distributed Data Clustering
 

Cluster analysis algorithms groups data based on the similarities between objects or 
patterns. The complexity of the cluster analysis process increases with data cardinality (N, 
the number of objects in a database) and dimensionality (p, the number of attributes). 
Clustering methods range from those that are largely heuristic to more formal procedures 
based on statistical models. The most frequently used methods are hierarchical (or heuristic) 
and partitioning (or iterative) methods. Several algorithms have been developed based on 
different strategies, including hierarchical clustering, vector quantization, graph theory, 

fuzzy logic, artificial neural networks, combinatory search, and others. Xu & Wunsch II 
(2005) and Berkhin (2006) present two recent surveys of clustering algorithms. 
Hierarchical methods have been dominant in the clustering literature and proceed by stages, 
producing a sequence of partitions, each corresponding to a different number of clusters 
(Costa & Andrade Netto, 2001). Partitioning methods produce one partition with K groups, 
usually by minimizing some objective criterion. The most common method is the K-Means, 
which uses heuristics for reducing the within-group sum of squares. Each method has its 
advantages and drawbacks. Most partitional methods, for example, require a priori choice 
of the number of clusters and may be sensitive to initialization. Furthermore, many 
validation criteria are currently available, but if left to the user’s choice, may result in 
disagreement due to the possible differences of the geometric structure imposed on the data 
space from clustering algorithm and the validation index.  
Searching for clusters in high-dimensional databases is a non trivial task. Some common 
algorithms, such as traditional agglomerative hierarchical methods, are unsuitable for large 
datasets. Moreover, the increase in the number of attributes of each entrance not only has a 
negative influence on the processing time of the algorithm, but also hinders cluster 
identification. An alternative approach is to divide the database into partitions and to 
perform data clustering of each one separately. 
Some current applications have databases that are large enough that cannot be maintained 
integrally in the main memory, even on very powerful computers. Kantardzic (2003) 
describe three approaches to solving this problem: 

a. The data are stored in secondary memory and data subsets are clustered 
separately, obtaining the results in a subsequent stage that contains the whole 
group; 

b. An algorithm of incremental grouping is used. Each element is individually stored 
in the main memory and associated to one of the existing groups or allocated to a 
new group; 

c. A parallel implementation is used and several algorithms work simultaneously on 
the stored data. 

Two approaches are frequently used to partition dataset: the first, and more common, is to 
divide the database horizontally, creating homogeneous subsets of the data, so that each 
algorithm operates on the same attributes, although treating of different registers. Another 
approach is to divide the database vertically, creating heterogeneous data subsets. In this 
case, each algorithm operates on the same registers, but handles on different sets of 
attributes. 
There have been recent published studies about distributed data clustering. Forman & 
Zhang (2000) present a method that parallels several algorithms to obtain greater efficiency 
in the data mining process of distributed databases. These authors reinforce the need for 
reducing communication overload among the bases, to reduce processing time and to 
minimize the need for powerful machines with extended storage capacities. 
Other factors that motivate the existence of distributed databases are related to security and 
privacy (Lam et al., 2004). Privacy-preserving clustering focuses its efforts on algorithms 
that ensure data privacy and security, as for example, in medical or business databases. 
Several organizations maintain geographically distributed databases as a form of increasing 
the security of their information. Thus, if security fails, the intruder can access only part of 
the information. 
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For that reason, several algorithms have appear aimed at clustering dispersed data into 
several locations and summarizing results in a central unit, ensuring data security and 
confidentiality. This approach is known as distributed data clustering (DDC). 
Clustering algorithms can be based on a wide variety of theories and techniques, including 
graph theory, combinatorial search techniques, fuzzy set theory, artificial neural networks, 
and kernels techniques (Xu & Wunsch II, 2005). Artificial neural networks are an important 
computational tool, with strong inspiration neurobiological and widely used in the solution 
of complex problems, which cannot be handled with traditional algorithmic solutions 
(Haykin, 1999). Applications for neural networks include pattern recognition, signal analysis 
and processing, analysis tasks, diagnosis and prognostic, data classification and clustering. 
Competitive neural networks provide a family of algorithms used for data representation, 
visualization and clustering. Among the unsupervised neural network models, the self-
organizing map (SOM) plays a major role. SOM features include information compression 
while trying to preserve the topological and metric relationship of the primary data space 
(Kohonen, 2001). The SOM network defines, via unsupervised learning, a mapping of a 
continuous p-dimensional space to a set of model vectors, or neurons, usually arranged as a 
2-D array. 
This work proposes a novel strategy for cluster analysis in distributed databases using a 
recently proposed architecture, named partSOM, and typical clustering algorithms, such as 
SOM and K-Means. In this approach, the clustering algorithm is applied separately in each 
distributed dataset, relative to database vertical partitions, to obtain a representative subset 
of each local dataset. In the sequence, these representative subsets are sent to a central site, 
which performs a fusion of the partial results. Next, a clustering algorithm is applied again 
to obtain a final result. 
The main contribution of this paper is to show that, in situations where the volume of data is 
very large or when data privacy and security requirements impede consolidation at a single 
location, the results obtained with the application of this strategy justify its use. 
The remainder of the chapter is organized as follows: section 2 presents a brief 
bibliographical review about distributed data clustering algorithms and section 3 describes 
the main aspects of the SOM and K-Means algorithm. Section 4 presents the proposed 
strategy, detailing its operation and the advantages obtained with its use. Section 5 describes 
the methodology used in the experiments and section 6 present the results of the application 
of the proposed strategy for some datasets, comparing them with the results obtained with 
the traditional approaches. Finally, section 7 presents conclusions and the direction of future 
algorithm research. 

 
2. A Review on Distributed Data Clustering
 

Cluster analysis algorithms groups data based on the similarities between objects or 
patterns. The complexity of the cluster analysis process increases with data cardinality (N, 
the number of objects in a database) and dimensionality (p, the number of attributes). 
Clustering methods range from those that are largely heuristic to more formal procedures 
based on statistical models. The most frequently used methods are hierarchical (or heuristic) 
and partitioning (or iterative) methods. Several algorithms have been developed based on 
different strategies, including hierarchical clustering, vector quantization, graph theory, 

fuzzy logic, artificial neural networks, combinatory search, and others. Xu & Wunsch II 
(2005) and Berkhin (2006) present two recent surveys of clustering algorithms. 
Hierarchical methods have been dominant in the clustering literature and proceed by stages, 
producing a sequence of partitions, each corresponding to a different number of clusters 
(Costa & Andrade Netto, 2001). Partitioning methods produce one partition with K groups, 
usually by minimizing some objective criterion. The most common method is the K-Means, 
which uses heuristics for reducing the within-group sum of squares. Each method has its 
advantages and drawbacks. Most partitional methods, for example, require a priori choice 
of the number of clusters and may be sensitive to initialization. Furthermore, many 
validation criteria are currently available, but if left to the user’s choice, may result in 
disagreement due to the possible differences of the geometric structure imposed on the data 
space from clustering algorithm and the validation index.  
Searching for clusters in high-dimensional databases is a non trivial task. Some common 
algorithms, such as traditional agglomerative hierarchical methods, are unsuitable for large 
datasets. Moreover, the increase in the number of attributes of each entrance not only has a 
negative influence on the processing time of the algorithm, but also hinders cluster 
identification. An alternative approach is to divide the database into partitions and to 
perform data clustering of each one separately. 
Some current applications have databases that are large enough that cannot be maintained 
integrally in the main memory, even on very powerful computers. Kantardzic (2003) 
describe three approaches to solving this problem: 

a. The data are stored in secondary memory and data subsets are clustered 
separately, obtaining the results in a subsequent stage that contains the whole 
group; 

b. An algorithm of incremental grouping is used. Each element is individually stored 
in the main memory and associated to one of the existing groups or allocated to a 
new group; 

c. A parallel implementation is used and several algorithms work simultaneously on 
the stored data. 

Two approaches are frequently used to partition dataset: the first, and more common, is to 
divide the database horizontally, creating homogeneous subsets of the data, so that each 
algorithm operates on the same attributes, although treating of different registers. Another 
approach is to divide the database vertically, creating heterogeneous data subsets. In this 
case, each algorithm operates on the same registers, but handles on different sets of 
attributes. 
There have been recent published studies about distributed data clustering. Forman & 
Zhang (2000) present a method that parallels several algorithms to obtain greater efficiency 
in the data mining process of distributed databases. These authors reinforce the need for 
reducing communication overload among the bases, to reduce processing time and to 
minimize the need for powerful machines with extended storage capacities. 
Other factors that motivate the existence of distributed databases are related to security and 
privacy (Lam et al., 2004). Privacy-preserving clustering focuses its efforts on algorithms 
that ensure data privacy and security, as for example, in medical or business databases. 
Several organizations maintain geographically distributed databases as a form of increasing 
the security of their information. Thus, if security fails, the intruder can access only part of 
the information. 

www.intechopen.com



Self-Organizing Maps46

İnan et al. (2007) present a method for clustering horizontally partitioned databases, based 
on constructing the dissimilarity matrix of objects from different sites, which can be used for 
privacy preserving clustering. Vaidya & Clifton (2003) presents an approach for vertically 
partitioned databases using a distributed K-Means algorithm. On the other hand, 
Jagannathan et al. (2006) present a K-means variant algorithm for clustering horizontally 
partitioned databases. Oliveira & Zaïane (2004) propose a spatial data transformation 
method for protecting attributes values when sharing data for clustering, called RBT, which 
is independent of any clustering algorithm. 
In databases with a large number of attributes, another approach is sometimes used to 
perform the analysis considering only an attribute subset, instead of considering all of them. 
An obvious difficulty with this approach is to identify which attributes are the most 
important in the cluster identification process. Some studies have used statistical methods 
such as Principal Components Analysis (PCA) and Factor Analysis to deal with this 
problem (Friedman & Meulman, 2004; Damian et al., 2007). 
Kargupta et al. (2001) describe a PCA-based technique, called Collective Principal 
Component Analysis (CPCA), to cluster high-dimensional heterogeneous distributed 
databases. The authors focus on reducing data transfer rates between distributed sites. 
He et al. (2005) analyze the influence of data types on the clustering process and present a 
strategy for dividing the group of attributes into two subsets, one with only the numerical 
attributes and the other with only the categorical ones. Authors then propose to cluster 
separately each of these subsets, using appropriate algorithms for each type. In the end, the 
results of each cluster are combined into a new database, which is once again submitted to a 
clustering algorithm for categorical data. 
PartSOM is a simple and efficient architecture to cluster distributed datasets, based on 
multiples self-organizing maps disposed in a parallel arrangement (Gorgônio, 2009). This 
architecture applies SOM algorithm separately in each distributed dataset, corresponding to 
vertical partitions of data, to obtain a representative subset of each local dataset. In the 
sequence, these representative subsets are sent to a central site, which performs a fusion of 
the results and applies the SOM algorithm again to obtain the final result (Gorgônio and 
Costa 2008a; Gorgônio and Costa, 2008b).  
There are two main advantages of the partSOM architecture over traditional approaches. At 
first, since only a reduced data volume is transferred between local and central units, the 
architecture is efficient in situations where the data volume is very large. Second, since only 
representative pattern are sent to central unit, the architecture is particularly interesting 
when data privacy and security policies disable data consolidation into a single location. 
This work extends this approach, showing that strategy is efficient not only with SOM, but 
also using others clustering algorithms, such as K-Means or a combination of both in the 
same process. A series of experiments we carry out with the objective to determine the 
efficacy of proposed strategy, using a set of public domain databases and experimental 
results are compared with traditional SOM and K-Means approaches. 

 

3. Clustering Algorithms
 

3.1 K-Means
K-Means is the most commonly-used clustering algorithm, particularly for its simplicity and 
ease of implementation. The algorithm objective is to group a set of N item in K groups, 
based on some similarity measure, normally the Euclidean distance, given for: 
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where xi and xj represent two elements from dataset and xif represents the f-th attribute from 
i-th element. 
The algorithm starts choosing a random set of K centroids, where K value is previously 
defined by the user. Next, the algorithm calculates a distance matrix between each one of the 
dataset elements and the centroids. 
In the following step, each element is associated with its nearest centroid. The value of each 
centroid then is recomputed, based on mean of the values of the elements that belongs to 
this centroid. A new distances matrix is calculated and the process repeats until the 
convergence. The algorithm finishes when each element is associated to the cluster 
represented for its centroid. 

 
3.2 Self-Organizing Maps
The self-organizing feature map (SOM) has been widely studied as a software tool for 
visualizing high-dimensional data. Important features include information compression 
while preserving the topological and metric relationship of the primary data items 
(Kohonen, 2001). The SOM is composed of two layers of neurons: an input layer and an 
output (or competitive) layer. The output layer neurons are connected to adjacent neurons 
by a neighboring relation, defining the topology of the map. 
Training is accomplished by presenting one input pattern x at a time in a random sequence 
and comparing it, in parallel, with all the reference vectors. The best match unit (BMU), 
which can be calculated using the Euclidean metric, represents the weight vector with the 
greatest similarity to that input pattern. Denoting the winning neuron by c, the BMU can be 
formally defined as the neuron for which 
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where .  is the measure of distance.  

The input is thus mapped to this location. The weight vectors of BMU as well as the 
neighboring nodes are moved closer to the input data vector. The magnitude of the attrac-
tion is governed by the learning rate. The SOM update rule for the weight vector of the unit i 
is 
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İnan et al. (2007) present a method for clustering horizontally partitioned databases, based 
on constructing the dissimilarity matrix of objects from different sites, which can be used for 
privacy preserving clustering. Vaidya & Clifton (2003) presents an approach for vertically 
partitioned databases using a distributed K-Means algorithm. On the other hand, 
Jagannathan et al. (2006) present a K-means variant algorithm for clustering horizontally 
partitioned databases. Oliveira & Zaïane (2004) propose a spatial data transformation 
method for protecting attributes values when sharing data for clustering, called RBT, which 
is independent of any clustering algorithm. 
In databases with a large number of attributes, another approach is sometimes used to 
perform the analysis considering only an attribute subset, instead of considering all of them. 
An obvious difficulty with this approach is to identify which attributes are the most 
important in the cluster identification process. Some studies have used statistical methods 
such as Principal Components Analysis (PCA) and Factor Analysis to deal with this 
problem (Friedman & Meulman, 2004; Damian et al., 2007). 
Kargupta et al. (2001) describe a PCA-based technique, called Collective Principal 
Component Analysis (CPCA), to cluster high-dimensional heterogeneous distributed 
databases. The authors focus on reducing data transfer rates between distributed sites. 
He et al. (2005) analyze the influence of data types on the clustering process and present a 
strategy for dividing the group of attributes into two subsets, one with only the numerical 
attributes and the other with only the categorical ones. Authors then propose to cluster 
separately each of these subsets, using appropriate algorithms for each type. In the end, the 
results of each cluster are combined into a new database, which is once again submitted to a 
clustering algorithm for categorical data. 
PartSOM is a simple and efficient architecture to cluster distributed datasets, based on 
multiples self-organizing maps disposed in a parallel arrangement (Gorgônio, 2009). This 
architecture applies SOM algorithm separately in each distributed dataset, corresponding to 
vertical partitions of data, to obtain a representative subset of each local dataset. In the 
sequence, these representative subsets are sent to a central site, which performs a fusion of 
the results and applies the SOM algorithm again to obtain the final result (Gorgônio and 
Costa 2008a; Gorgônio and Costa, 2008b).  
There are two main advantages of the partSOM architecture over traditional approaches. At 
first, since only a reduced data volume is transferred between local and central units, the 
architecture is efficient in situations where the data volume is very large. Second, since only 
representative pattern are sent to central unit, the architecture is particularly interesting 
when data privacy and security policies disable data consolidation into a single location. 
This work extends this approach, showing that strategy is efficient not only with SOM, but 
also using others clustering algorithms, such as K-Means or a combination of both in the 
same process. A series of experiments we carry out with the objective to determine the 
efficacy of proposed strategy, using a set of public domain databases and experimental 
results are compared with traditional SOM and K-Means approaches. 

 

3. Clustering Algorithms
 

3.1 K-Means
K-Means is the most commonly-used clustering algorithm, particularly for its simplicity and 
ease of implementation. The algorithm objective is to group a set of N item in K groups, 
based on some similarity measure, normally the Euclidean distance, given for: 
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where xi and xj represent two elements from dataset and xif represents the f-th attribute from 
i-th element. 
The algorithm starts choosing a random set of K centroids, where K value is previously 
defined by the user. Next, the algorithm calculates a distance matrix between each one of the 
dataset elements and the centroids. 
In the following step, each element is associated with its nearest centroid. The value of each 
centroid then is recomputed, based on mean of the values of the elements that belongs to 
this centroid. A new distances matrix is calculated and the process repeats until the 
convergence. The algorithm finishes when each element is associated to the cluster 
represented for its centroid. 

 
3.2 Self-Organizing Maps
The self-organizing feature map (SOM) has been widely studied as a software tool for 
visualizing high-dimensional data. Important features include information compression 
while preserving the topological and metric relationship of the primary data items 
(Kohonen, 2001). The SOM is composed of two layers of neurons: an input layer and an 
output (or competitive) layer. The output layer neurons are connected to adjacent neurons 
by a neighboring relation, defining the topology of the map. 
Training is accomplished by presenting one input pattern x at a time in a random sequence 
and comparing it, in parallel, with all the reference vectors. The best match unit (BMU), 
which can be calculated using the Euclidean metric, represents the weight vector with the 
greatest similarity to that input pattern. Denoting the winning neuron by c, the BMU can be 
formally defined as the neuron for which 
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The input is thus mapped to this location. The weight vectors of BMU as well as the 
neighboring nodes are moved closer to the input data vector. The magnitude of the attrac-
tion is governed by the learning rate. The SOM update rule for the weight vector of the unit i 
is 
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where t denotes time, x(t) is the input vector randomly drawn from the input data set at 
time t and hci(t) is the neighborhood kernel around the winning unit c at time t. This last 
term is a non-increasing function of time and of the distance of unit i from BMU and usually 
composed of two components: the learning rate function α(t) and the neighborhood function 
h(d,t): 
 

( )trrhtth icci ,)()( −⋅=α  (4) 
 
where ri denotes the location of unit i on the map grid. 
As learning proceeds and new input vectors are given to the map, the learning rate α(t) 
gradually decreases to zero, according to the specified learning rate function type. Along 
with learning rate, the neighborhood radius decreases as well. 
Despite the SOM is an excellent tool in clustering tasks, almost always, another 
complementary approaches may be needed to increase the obtained results, particularly 
when there are many clusters or cluster borders are not well defined. A number of methods 
for visualizing data relations in a trained SOM have been proposed, such as multiple views 
of component planes, mesh visualization using projections and 2D and 3D surface plots of 
distance matrices. 
The U-matrix method (Ultsch, 1993) enables visualization of the topological relations of the 
neurons in an organized SOM. A gradient image (2D) or a surface plot is generated by 
computing the distances between adjacent neurons. High values in the U-matrix encode dis-
similarities between neurons and correspond to cluster borders.  
A host of strategies for cluster detection using the U-matrix were proposed in the literature 
(Costa & Andrade Netto, 2001a; Costa & Andrade Netto, 2003). Three main algorithms were 
presented: mathematical morphology derived map segmentation (Costa & Andrade Netto, 
2001b); a graph partitioning approach (Costa & Andrade Netto, 2003) and contiguity-
constrained hierarchical clustering approaches (Gonçalves et al., 2008; Murtagh, 1995). Both 
algorithms were developed for automatic partitioning and labeling of a trained SOM 
network.  
The first approach uses image processing algorithms such as the watershed transform, 
which are used to obtain connected regions of neurons representing similar stimuli classes. 
The second approach uses rules to partition the map by analyzing inconsistent neighboring 
relations between neurons. Each resulting neuron cluster is a sub-graph that defines 
complex and non-parametric geometries in the input space, which approximately describes 
the shape of the clusters. Regarding the last approach, Gonçalves et al. (2008) present 
improvements of contiguity-constrained hierarchical clustering approaches using validation 
indexes. 
Some works apply clustering algorithms over the U-matrix to segment the map in well 
defined regions. Vesanto & Alhoniemi (2000) propose strategies for cluster detection using 
different approaches to group similar neurons in the SOM, including the use of hierarchical 
agglomerative clustering and partitive clustering, using the K-Means algorithm. 

 

4. The Proposed Strategy
 

Distributed clustering algorithms usually work in two stages. Initially, the data are analyzed 
locally in each unit that is part of the distributed database. In a second stage, a central 
instance gathers partial results and combines them into an overall result. 
This section presents a strategy for clustering similar objects located in distributed databases 
using traditional clustering algorithms, such as self-organizing maps and K-Means. An 
imposed restriction is that proposed strategy requires a prototype-based algorithm to 
perform the dataset partition into subsets and select a set of one or more representative 
elements to each cluster. This representative set is normally named prototype (or codebook) 
and will be used in a process similar to vectorial quantization in order to select a sample of 
each remote unit. 
The entire process is also divided into two stages: 

1. The clustering algorithm is applied locally in each one of the distributed bases, in 
order to elect a representative subset from input data, which is send to central unit; 

2. The clustering algorithm is applied again, this time to the representatives of each 
one of the distributed bases, that are unified in a central unit; 

The proposed strategy, consisting of five steps, is presented as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 1 applies anyone traditional clustering algorithm in each local dataset, relative to 
vertical partitions from the database. Thus, the algorithm is applied to an attribute subset in 
each of the remote units, obtaining a reference vector from each data subset. This reference 
vector, known as the codebook, contains a representative subset of each local unit. 
Step 2 codes the input data of each local unit using the codebook obtained in the previous 
stage. Each input is presented to the obtained codebook and the index corresponding to the 
closest vector present in the codebook is stored in an index vector. So, a data index is created 
based on representative objects instead of original objects. Despite the difference from the 
original dataset, representative objects in the index vector are very similar to the original 
data. 
In step 3, each remote unit sends its index and reference vector to the central unit, which is 
responsible for unifying all partial results. An additional advantage of the proposed 
algorithm is that the amount of transferred data is considerately reduced, since index 
vectors have only one column (containing an integer value) and the codebook is usually 
mush less than the original data. So, reducing data transfer and communication overload are 
considered by the proposed algorithm. 

Proposed Strategy
1. Each local site applies any clustering
algorithm to its data, obtaining a reference 

vector (codebook)
2. Each local site codes its data, using the 

codebook, to obtain a vector of data indexes 
that will represent the original data

3. Each local site send indexes and reference 
vectors to the central site

4. The central site remounts the dataset based 
on each index and reference vectors received
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where t denotes time, x(t) is the input vector randomly drawn from the input data set at 
time t and hci(t) is the neighborhood kernel around the winning unit c at time t. This last 
term is a non-increasing function of time and of the distance of unit i from BMU and usually 
composed of two components: the learning rate function α(t) and the neighborhood function 
h(d,t): 
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where ri denotes the location of unit i on the map grid. 
As learning proceeds and new input vectors are given to the map, the learning rate α(t) 
gradually decreases to zero, according to the specified learning rate function type. Along 
with learning rate, the neighborhood radius decreases as well. 
Despite the SOM is an excellent tool in clustering tasks, almost always, another 
complementary approaches may be needed to increase the obtained results, particularly 
when there are many clusters or cluster borders are not well defined. A number of methods 
for visualizing data relations in a trained SOM have been proposed, such as multiple views 
of component planes, mesh visualization using projections and 2D and 3D surface plots of 
distance matrices. 
The U-matrix method (Ultsch, 1993) enables visualization of the topological relations of the 
neurons in an organized SOM. A gradient image (2D) or a surface plot is generated by 
computing the distances between adjacent neurons. High values in the U-matrix encode dis-
similarities between neurons and correspond to cluster borders.  
A host of strategies for cluster detection using the U-matrix were proposed in the literature 
(Costa & Andrade Netto, 2001a; Costa & Andrade Netto, 2003). Three main algorithms were 
presented: mathematical morphology derived map segmentation (Costa & Andrade Netto, 
2001b); a graph partitioning approach (Costa & Andrade Netto, 2003) and contiguity-
constrained hierarchical clustering approaches (Gonçalves et al., 2008; Murtagh, 1995). Both 
algorithms were developed for automatic partitioning and labeling of a trained SOM 
network.  
The first approach uses image processing algorithms such as the watershed transform, 
which are used to obtain connected regions of neurons representing similar stimuli classes. 
The second approach uses rules to partition the map by analyzing inconsistent neighboring 
relations between neurons. Each resulting neuron cluster is a sub-graph that defines 
complex and non-parametric geometries in the input space, which approximately describes 
the shape of the clusters. Regarding the last approach, Gonçalves et al. (2008) present 
improvements of contiguity-constrained hierarchical clustering approaches using validation 
indexes. 
Some works apply clustering algorithms over the U-matrix to segment the map in well 
defined regions. Vesanto & Alhoniemi (2000) propose strategies for cluster detection using 
different approaches to group similar neurons in the SOM, including the use of hierarchical 
agglomerative clustering and partitive clustering, using the K-Means algorithm. 

 

4. The Proposed Strategy
 

Distributed clustering algorithms usually work in two stages. Initially, the data are analyzed 
locally in each unit that is part of the distributed database. In a second stage, a central 
instance gathers partial results and combines them into an overall result. 
This section presents a strategy for clustering similar objects located in distributed databases 
using traditional clustering algorithms, such as self-organizing maps and K-Means. An 
imposed restriction is that proposed strategy requires a prototype-based algorithm to 
perform the dataset partition into subsets and select a set of one or more representative 
elements to each cluster. This representative set is normally named prototype (or codebook) 
and will be used in a process similar to vectorial quantization in order to select a sample of 
each remote unit. 
The entire process is also divided into two stages: 

1. The clustering algorithm is applied locally in each one of the distributed bases, in 
order to elect a representative subset from input data, which is send to central unit; 

2. The clustering algorithm is applied again, this time to the representatives of each 
one of the distributed bases, that are unified in a central unit; 

The proposed strategy, consisting of five steps, is presented as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 1 applies anyone traditional clustering algorithm in each local dataset, relative to 
vertical partitions from the database. Thus, the algorithm is applied to an attribute subset in 
each of the remote units, obtaining a reference vector from each data subset. This reference 
vector, known as the codebook, contains a representative subset of each local unit. 
Step 2 codes the input data of each local unit using the codebook obtained in the previous 
stage. Each input is presented to the obtained codebook and the index corresponding to the 
closest vector present in the codebook is stored in an index vector. So, a data index is created 
based on representative objects instead of original objects. Despite the difference from the 
original dataset, representative objects in the index vector are very similar to the original 
data. 
In step 3, each remote unit sends its index and reference vector to the central unit, which is 
responsible for unifying all partial results. An additional advantage of the proposed 
algorithm is that the amount of transferred data is considerately reduced, since index 
vectors have only one column (containing an integer value) and the codebook is usually 
mush less than the original data. So, reducing data transfer and communication overload are 
considered by the proposed algorithm. 

Proposed Strategy
1. Each local site applies any clustering
algorithm to its data, obtaining a reference 

vector (codebook)
2. Each local site codes its data, using the 

codebook, to obtain a vector of data indexes 
that will represent the original data

3. Each local site send indexes and reference 
vectors to the central site

4. The central site remounts the dataset based 
on each index and reference vectors received
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Step 4 is responsible for receiving the index vector and the codebook from each local unit 
and combining partial results to remount a database based on received data. To remount 
each dataset, index vector indexes are substituted by the equivalent value in the codebook. 
Datasets are combined juxtaposing partial datasets; however, it is important to ensure that 
objects are in the same order as that of the original datasets. Note that the new database is 
slightly different from the original data, but data topology is maintained, similar to 
procedure used for vectorial quantization. 
In step 5, any clustering algorithm is again applied over the complete database obtained in 
step 4. The expectation is that the results obtained in that stage can be generalized as being 
equivalent to the clustering process of the entire database. The data obtained after the step 4 
and that will serve as input in stage 5 correspond to values close to the original, because 
vectors correspondents in codebook are representatives of input dataset.  
An overview of the complete architecture is showed in Fig. 1, considering the SOM 
algorithm. Similarly, K-Means or other prototype-based clustering algorithms can be used in 
proposed strategy. 
 

 
 
Fig. 1. Complete architecture of proposed strategy using the SOM algorithm 

5. Methodology
 

In order to verify the precision of the proposed strategy, results with this approach are 
compared with those of traditional clustering using traditional SOM and/or K-Means 
algorithms. Experiments were carried out using the SOM Toolbox 2.0 package, a SOM 
implementation for Matlab, available at http://www.cis.hut.fi/projects/somtoolbox/ 
(Vesanto, 2000). 
As a form of validating the proposed strategy, several comparative criteria were used, 
including the individual counting of errors obtained in the application of the algorithm over 
well known datasets, the use of quality measures present in SOM toolbox and visual 
comparison of the trained maps and U-Matrix between the traditional SOM algorithm and 
the proposed approach. 
Several quality measures have been proposed to evaluate and compare clustering 
algorithms. The SOM Toolbox includes two:  

1. Data representation accuracy, measured using average quantization error between 
data vectors and their BMUs on the map, and  

2. Dataset topology representation accuracy, measured using topographic error, 
which is the percentage of data vectors for which the first and second BMUs are not 
adjacent units. 

The databases used were obtained from the UCI data repository (Asuncion & Newman, 
2007). Additional information about number of instances, number of attributes and clusters 
contained in each dataset are presented in Table 1. 
 

Dataset Instances Attributes Attribute Type Clusters 

Iris 150 4 Numerical 3 
Wine 178 13 Numerical 3 
Breast Cancer 699 10 Numerical 2 
Mushroom 8124 22 Categorical 2 

Table 1. Characteristics of datasets used in experiments 

 
6. Experiments
 

6.1 Iris Dataset
The well-known Iris dataset was used in a variety of studies on pattern recognition. It 
presents 150 instances containing width and length measures of the sepals and petals of 
three species of the flower Iris: 'Setosa', 'Versicolor' and 'Virginical'. With 4 attributes and 3 
classes, each containing 50 objects, the aim is to cluster similar species based on their 
measurements. One class is linearly separable 'Setosa' whereas classes 'Versicolor' and 
'Virginica' have a degree of mixture. 
In the first experiment, Iris dataset was analyzed initially using the traditional SOM 
algorithm, in a plan hexagonal lattice map with 11 x 6 neurons. Dataset was then vertically 
partitioned into two subsets, each containing two attributes. The SOM algorithm was 
applied to two subsets separately and, finally, on the representatives of each one. In this 
phase, we used two maps, with 9 x 7 and 21 x 3 neurons in the local units and a final map 
with 11 x 6 neurons, both plan and hexagonal lattice. Maps size was automatic defined by 
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Step 4 is responsible for receiving the index vector and the codebook from each local unit 
and combining partial results to remount a database based on received data. To remount 
each dataset, index vector indexes are substituted by the equivalent value in the codebook. 
Datasets are combined juxtaposing partial datasets; however, it is important to ensure that 
objects are in the same order as that of the original datasets. Note that the new database is 
slightly different from the original data, but data topology is maintained, similar to 
procedure used for vectorial quantization. 
In step 5, any clustering algorithm is again applied over the complete database obtained in 
step 4. The expectation is that the results obtained in that stage can be generalized as being 
equivalent to the clustering process of the entire database. The data obtained after the step 4 
and that will serve as input in stage 5 correspond to values close to the original, because 
vectors correspondents in codebook are representatives of input dataset.  
An overview of the complete architecture is showed in Fig. 1, considering the SOM 
algorithm. Similarly, K-Means or other prototype-based clustering algorithms can be used in 
proposed strategy. 
 

 
 
Fig. 1. Complete architecture of proposed strategy using the SOM algorithm 

5. Methodology
 

In order to verify the precision of the proposed strategy, results with this approach are 
compared with those of traditional clustering using traditional SOM and/or K-Means 
algorithms. Experiments were carried out using the SOM Toolbox 2.0 package, a SOM 
implementation for Matlab, available at http://www.cis.hut.fi/projects/somtoolbox/ 
(Vesanto, 2000). 
As a form of validating the proposed strategy, several comparative criteria were used, 
including the individual counting of errors obtained in the application of the algorithm over 
well known datasets, the use of quality measures present in SOM toolbox and visual 
comparison of the trained maps and U-Matrix between the traditional SOM algorithm and 
the proposed approach. 
Several quality measures have been proposed to evaluate and compare clustering 
algorithms. The SOM Toolbox includes two:  

1. Data representation accuracy, measured using average quantization error between 
data vectors and their BMUs on the map, and  

2. Dataset topology representation accuracy, measured using topographic error, 
which is the percentage of data vectors for which the first and second BMUs are not 
adjacent units. 

The databases used were obtained from the UCI data repository (Asuncion & Newman, 
2007). Additional information about number of instances, number of attributes and clusters 
contained in each dataset are presented in Table 1. 
 

Dataset Instances Attributes Attribute Type Clusters 

Iris 150 4 Numerical 3 
Wine 178 13 Numerical 3 
Breast Cancer 699 10 Numerical 2 
Mushroom 8124 22 Categorical 2 

Table 1. Characteristics of datasets used in experiments 

 
6. Experiments
 

6.1 Iris Dataset
The well-known Iris dataset was used in a variety of studies on pattern recognition. It 
presents 150 instances containing width and length measures of the sepals and petals of 
three species of the flower Iris: 'Setosa', 'Versicolor' and 'Virginical'. With 4 attributes and 3 
classes, each containing 50 objects, the aim is to cluster similar species based on their 
measurements. One class is linearly separable 'Setosa' whereas classes 'Versicolor' and 
'Virginica' have a degree of mixture. 
In the first experiment, Iris dataset was analyzed initially using the traditional SOM 
algorithm, in a plan hexagonal lattice map with 11 x 6 neurons. Dataset was then vertically 
partitioned into two subsets, each containing two attributes. The SOM algorithm was 
applied to two subsets separately and, finally, on the representatives of each one. In this 
phase, we used two maps, with 9 x 7 and 21 x 3 neurons in the local units and a final map 
with 11 x 6 neurons, both plan and hexagonal lattice. Maps size was automatic defined by 
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SOM Toolbox, based on data distribution in input space (Vesanto, 2000). In all experiments 
maps were randomly initialized and batch SOM algorithm was used.  
Two training phases were performed: rough and fine tuning training phases. In rough phase 
of the traditional SOM approach, neighborhood radius was defined as σinitial = 2 and σfinal = 1 
and trainlen was defined to 5 epochs. In fine tuning phase, σ = 1 and trainlen was defined to 
18 epochs.  
In proposed strategy approach, was used over again a randomly initialized map and batch 
training method. In rough phase, neighborhood radius was defined as σinitial = 2 in the first 
map and as σinitial = 3 in the second. Final map used same values of the traditional SOM 
experiment (11 x 6 neurons). Final neighborhood radius was σ = 1 to all three maps. The 
trainlen parameter was defined as 5 epochs in rough phase in the three maps and as 17 
epochs in fine tuning phase for two first maps (encoding phase) and as 18 epochs in the final 
map. 
Two criteria were used to compare the results. The first consists of labeling each of the 
neurons on the map with information about the class number it belongs to, in agreement 
with the number of input data instances that it represents. For this to occur, each input data 
instance had to have a label to identify its class. Note that privileged information was not 
used during the training phase, only during the algorithm accuracy verification. 
In the first approach, traditional SOM was 96% accurate, which corresponds to 6 missing 
classifications out of 150 instances. In the alternative approach, the accuracy of the proposed 
strategy increased to 96.7%, which corresponds to 5 missing classifications in the analyzed 
group.  
The second criterion is more subjective, because it is based on a visual comparison. As 
previously described, the U-matrix enables visualization of clusters (similarity and 
dissimilarity regions) detected by SOM algorithm. Fig. 2 shows the self-organizing maps 
obtained with traditional SOM and the proposed strategy using the Iris dataset. Maps were 
manually colored to identify the class that the neuron belongs to. 
 

Fig. 2. Comparison between segmented maps to traditional SOM algorithm (left) and 
proposed strategy (right), using Iris dataset. 
 
In the second experiment, Iris dataset was analyzed using combined SOM and K-Means 
algorithms. As in previous experiment, the dataset was vertically partitioned into two 

subsets, each containing two attributes. The SOM algorithm was applied to two subsets 
separately and K-Means was applied on the representatives of each one. Maps size and 
lattice were identical to those defined in the previous experiment. In the central unit, 
centroids number was defined as k = 3, identical to classes number. 
Table 2 summarize average values obtained in the first experiment and present other 
clustering quality measures like QE (average quantization error) and TE (topographic error). 
 

Algorithm QE TE Errors Hits (%) 

Traditional SOM approach 0.3927 0.0133 6 96.0% 
Proposed Strategy  
with SOM + SOM 0.2934 0.0067 5 96.7% 

Table 2. Comparatives missing cluster values betweens traditional SOM and the proposed 
strategy (Iris Dataset) 
 
Table 3 summarize average values obtained in the second experiment, using a combined 
approach with SOM and K-Means algorithms. 
 

Algorithm Errors Hits (%) 

Traditional K-Means approach 27 82.0% 
Proposed Strategy with SOM + K-Means 25 83.3% 

Table 3. Comparatives missing cluster values betweens traditional K-Means and the 
proposed strategy (Iris Dataset) 

 
6.2 Wine Dataset
The Wine dataset has 178 instances and 13 attributes, which correspond to the results of 
chemical analyses performed with three types of wines that are produced in the same region 
of Italy, but from different cultivations. Attributes include alcoholic content, acidity, 
alkalinity, color intensity, among others. The dataset has 59 instances of the first class, 71 
instances of the second class and 48 instances of the third. The classes are labeled as '1', '2' 
and '3', in order to facilitate a subsequent identification and the validation of the algorithm. 
The dataset has well defined classes, so that the identification of these classes is performed 
with relatively little difficulty.  
The strategy used in experiments was similar to the previous one, with Iris database. The 
dataset was divided into two subsets, one with the first six attributes and the other with the 
seven remaining attributes. The clustering algorithm was applied separately over each one 
of the subsets and, later, on their representatives.  
In the first approach, using traditional SOM, we have used a map size with 11 x 6 neurons in 
a hexagonal lattice. Training parameters used are σinitial = 2, σfinal = 1 and 4 epochs in rough 
phase and σinitial = σfinal = 1 and 15 epochs in fine tuning phase. 
In the second approach, using proposed strategy, two maps were used, with 9 x 7 and 11 x 6 
neurons in local phase, and a map with 11 x 6 neurons in final phase, both plans and 
hexagonal lattice. Training parameters used in all three maps are σinitial = 2, σfinal = 1 and 4 
epochs in rough phase and σinitial = σfinal = 1 and 15 epochs in fine tuning phase. In both 
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SOM Toolbox, based on data distribution in input space (Vesanto, 2000). In all experiments 
maps were randomly initialized and batch SOM algorithm was used.  
Two training phases were performed: rough and fine tuning training phases. In rough phase 
of the traditional SOM approach, neighborhood radius was defined as σinitial = 2 and σfinal = 1 
and trainlen was defined to 5 epochs. In fine tuning phase, σ = 1 and trainlen was defined to 
18 epochs.  
In proposed strategy approach, was used over again a randomly initialized map and batch 
training method. In rough phase, neighborhood radius was defined as σinitial = 2 in the first 
map and as σinitial = 3 in the second. Final map used same values of the traditional SOM 
experiment (11 x 6 neurons). Final neighborhood radius was σ = 1 to all three maps. The 
trainlen parameter was defined as 5 epochs in rough phase in the three maps and as 17 
epochs in fine tuning phase for two first maps (encoding phase) and as 18 epochs in the final 
map. 
Two criteria were used to compare the results. The first consists of labeling each of the 
neurons on the map with information about the class number it belongs to, in agreement 
with the number of input data instances that it represents. For this to occur, each input data 
instance had to have a label to identify its class. Note that privileged information was not 
used during the training phase, only during the algorithm accuracy verification. 
In the first approach, traditional SOM was 96% accurate, which corresponds to 6 missing 
classifications out of 150 instances. In the alternative approach, the accuracy of the proposed 
strategy increased to 96.7%, which corresponds to 5 missing classifications in the analyzed 
group.  
The second criterion is more subjective, because it is based on a visual comparison. As 
previously described, the U-matrix enables visualization of clusters (similarity and 
dissimilarity regions) detected by SOM algorithm. Fig. 2 shows the self-organizing maps 
obtained with traditional SOM and the proposed strategy using the Iris dataset. Maps were 
manually colored to identify the class that the neuron belongs to. 
 

Fig. 2. Comparison between segmented maps to traditional SOM algorithm (left) and 
proposed strategy (right), using Iris dataset. 
 
In the second experiment, Iris dataset was analyzed using combined SOM and K-Means 
algorithms. As in previous experiment, the dataset was vertically partitioned into two 

subsets, each containing two attributes. The SOM algorithm was applied to two subsets 
separately and K-Means was applied on the representatives of each one. Maps size and 
lattice were identical to those defined in the previous experiment. In the central unit, 
centroids number was defined as k = 3, identical to classes number. 
Table 2 summarize average values obtained in the first experiment and present other 
clustering quality measures like QE (average quantization error) and TE (topographic error). 
 

Algorithm QE TE Errors Hits (%) 

Traditional SOM approach 0.3927 0.0133 6 96.0% 
Proposed Strategy  
with SOM + SOM 0.2934 0.0067 5 96.7% 

Table 2. Comparatives missing cluster values betweens traditional SOM and the proposed 
strategy (Iris Dataset) 
 
Table 3 summarize average values obtained in the second experiment, using a combined 
approach with SOM and K-Means algorithms. 
 

Algorithm Errors Hits (%) 

Traditional K-Means approach 27 82.0% 
Proposed Strategy with SOM + K-Means 25 83.3% 

Table 3. Comparatives missing cluster values betweens traditional K-Means and the 
proposed strategy (Iris Dataset) 

 
6.2 Wine Dataset
The Wine dataset has 178 instances and 13 attributes, which correspond to the results of 
chemical analyses performed with three types of wines that are produced in the same region 
of Italy, but from different cultivations. Attributes include alcoholic content, acidity, 
alkalinity, color intensity, among others. The dataset has 59 instances of the first class, 71 
instances of the second class and 48 instances of the third. The classes are labeled as '1', '2' 
and '3', in order to facilitate a subsequent identification and the validation of the algorithm. 
The dataset has well defined classes, so that the identification of these classes is performed 
with relatively little difficulty.  
The strategy used in experiments was similar to the previous one, with Iris database. The 
dataset was divided into two subsets, one with the first six attributes and the other with the 
seven remaining attributes. The clustering algorithm was applied separately over each one 
of the subsets and, later, on their representatives.  
In the first approach, using traditional SOM, we have used a map size with 11 x 6 neurons in 
a hexagonal lattice. Training parameters used are σinitial = 2, σfinal = 1 and 4 epochs in rough 
phase and σinitial = σfinal = 1 and 15 epochs in fine tuning phase. 
In the second approach, using proposed strategy, two maps were used, with 9 x 7 and 11 x 6 
neurons in local phase, and a map with 11 x 6 neurons in final phase, both plans and 
hexagonal lattice. Training parameters used in all three maps are σinitial = 2, σfinal = 1 and 4 
epochs in rough phase and σinitial = σfinal = 1 and 15 epochs in fine tuning phase. In both 
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approaches, maps size was automatic defined by SOM Toolbox, considering principal 
components of data distribution. 
The results obtained with the proposed strategy were very near to those of the traditional 
approach, where all the variables were analyzed simultaneously. The U-matrix obtained 
with the Wine dataset, using both approaches, is presented in Fig. 3. 
 

Fig. 3. U-matrix of the SOM algorithm (left) and the proposed strategy (right), using the 
Wine dataset 
 
Additionally, Fig. 4 shows final self-organizing map with the respective labels that identify 
each neuron. The numbers represent the class that the neuron belongs to. This is obtained by 
a voting process on how many elements of the original dataset the neuron is associated to. 
Fig. 5 presents the same maps labeled to improve the visualization quality. Maps were 
manually colored based on labels obtained in previous stage. 
 

Fig. 4. The self-organizing map, with the respective labels that identify the class of each 
neuron, for the traditional SOM algorithm (left) and the proposed strategy (right), using the 
Wine dataset 

Fig. 5. The manually coloured self-organizing map for the traditional SOM algorithm (left) 
and the proposed strategy (right), using the Wine dataset. 
 
Table 4 summarizes the average results obtained with traditional SOM and proposed 
strategy. It presents QE (average quantization error) and TE (topographic error) to Wine 
dataset. In a similar form of previous section, results obtained with the proposed algorithm 
were very near to those of traditional methods, using a single dataset. Furthermore, the 
experiment was replicated using different attribute subsets.  The dataset was divided into 
three, four and five partitions to verify how the partitioning method affects the proposed 
algorithm performance. In both cases, obtained results were very similar to those presented 
in Table 4. 
 

Algorithm QE TE Errors Hits (%) 

Traditional SOM 1.8833 0.0169 4 97.8% 
Proposed Strategy 2.0967 0.0674 7 96.1% 

Table 4. Comparatives missing cluster values betweens traditional SOM and the proposed 
strategy (Wine Dataset)  
 
In a similar experiment, the Wine dataset was analyzed initially using the traditional K-
Means algorithm, and next, using the proposed strategy with the K-Means algorithm. As in 
previous experiment, the dataset was divided into two subsets, with six and seven 
attributes, respectively. The K-Means algorithm was applied separately over each one of the 
subsets and, later, on their representatives.  
In traditional approach, the centroids number was defined as k = 3, identical to classes 
number. In distributed approach, the centroids number was defined as k = 66 in local stage 
and as k = 3 in central stage. At first stage, the k value was maximized for two reasons: first, 
a large number of prototypes improve the performance of the algorithm, and second, was 
used the same number of SOM neurons in previous experiment, with the objective to 
become more adequate the comparative between both approach. Table 5 summarizes the 
average results obtained with traditional K-Means and distributed strategy. 
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approaches, maps size was automatic defined by SOM Toolbox, considering principal 
components of data distribution. 
The results obtained with the proposed strategy were very near to those of the traditional 
approach, where all the variables were analyzed simultaneously. The U-matrix obtained 
with the Wine dataset, using both approaches, is presented in Fig. 3. 
 

Fig. 3. U-matrix of the SOM algorithm (left) and the proposed strategy (right), using the 
Wine dataset 
 
Additionally, Fig. 4 shows final self-organizing map with the respective labels that identify 
each neuron. The numbers represent the class that the neuron belongs to. This is obtained by 
a voting process on how many elements of the original dataset the neuron is associated to. 
Fig. 5 presents the same maps labeled to improve the visualization quality. Maps were 
manually colored based on labels obtained in previous stage. 
 

Fig. 4. The self-organizing map, with the respective labels that identify the class of each 
neuron, for the traditional SOM algorithm (left) and the proposed strategy (right), using the 
Wine dataset 

Fig. 5. The manually coloured self-organizing map for the traditional SOM algorithm (left) 
and the proposed strategy (right), using the Wine dataset. 
 
Table 4 summarizes the average results obtained with traditional SOM and proposed 
strategy. It presents QE (average quantization error) and TE (topographic error) to Wine 
dataset. In a similar form of previous section, results obtained with the proposed algorithm 
were very near to those of traditional methods, using a single dataset. Furthermore, the 
experiment was replicated using different attribute subsets.  The dataset was divided into 
three, four and five partitions to verify how the partitioning method affects the proposed 
algorithm performance. In both cases, obtained results were very similar to those presented 
in Table 4. 
 

Algorithm QE TE Errors Hits (%) 

Traditional SOM 1.8833 0.0169 4 97.8% 
Proposed Strategy 2.0967 0.0674 7 96.1% 

Table 4. Comparatives missing cluster values betweens traditional SOM and the proposed 
strategy (Wine Dataset)  
 
In a similar experiment, the Wine dataset was analyzed initially using the traditional K-
Means algorithm, and next, using the proposed strategy with the K-Means algorithm. As in 
previous experiment, the dataset was divided into two subsets, with six and seven 
attributes, respectively. The K-Means algorithm was applied separately over each one of the 
subsets and, later, on their representatives.  
In traditional approach, the centroids number was defined as k = 3, identical to classes 
number. In distributed approach, the centroids number was defined as k = 66 in local stage 
and as k = 3 in central stage. At first stage, the k value was maximized for two reasons: first, 
a large number of prototypes improve the performance of the algorithm, and second, was 
used the same number of SOM neurons in previous experiment, with the objective to 
become more adequate the comparative between both approach. Table 5 summarizes the 
average results obtained with traditional K-Means and distributed strategy. 
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Algorithm Errors Hits (%) 

Traditional K-Means 6 96.6% 
Distributed K-Means Strategy 7 96.1% 

Table 5. Comparatives missing cluster values betweens traditional K-Means and the 
proposed strategy (Wine Dataset)  

 
6.3 Wisconsin Breast Cancer Dataset
The Wisconsin Breast Cancer dataset has 699 instances of the cytological analysis of fine 
needle aspiration of breast tumors. Each instance contains 10 attributes that are computed 
from a digitized image of a fine needle aspiration of a breast mass. Attributes include radius, 
texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, 
and fractal dimension. The dataset contain 458 (65.52%) benign instances and 241 (34.48%) 
malignant instances. 
The SOM algorithm was applied to the entire database and to some partitions of the same 
dataset, according to proposed strategy. The first five attributes were trained in a map and 
the four remaining attributes were trained separately in another. As before, representatives 
of both groups were gathered and combined to form a new dataset, which was later 
clustered using the SOM algorithm again. 
In the first experiment, using traditional SOM, was used a 2D hexagonal lattice map with 
size 22 x 6 neurons. In the second experiment (proposed strategy) two maps with 19 x 7 and 
17 x 8 neurons in local phase and a map with 22 x 6 neurons in final phase were used. All 
SOM were 2D hexagonal lattice maps. As in previous experiments, maps size was automatic 
defined by SOM Toolbox, based on input data distribution. In both experiments, training 
parameters used are σinitial = 3, σfinal = 1 and trainlen = 2 epochs in rough phase and σinitial = 
σfinal = 1 and trainlen = 15 epochs in fine tuning phase. 
Table 6 summarizes the obtained results with traditional SOM and proposed strategy, 
including QE (average quantization error) and TE (topographic error) to Wisconsin Breast 
Cancer dataset. 
 

Algorithm QE TE Errors Hits (%) 

Traditional SOM 0.9461 0.0272 17 97.57% 
Proposed Strategy 1.0009 0.0615 13 98.14% 

Table 6. Comparatives Missing Cluster Values Betweens Traditional SOM and the Proposed 
Strategy (Wisconsin Breast Cancer Dataset) 
 
Fig. 6 presents the final self-organizing map, which was manually colored to improve the 
visualization quality. Darker tones represent benign instances and light tones represent 
malignant instances. As in previous experiment, each neuron is labeled based on amount of 
instances from original dataset associated with this neuron and privileged information is 
used only to label the map and verify the algorithm accuracy. 
 

Fig. 6. The manually labelled self-organizing map for the traditional SOM algorithm (left) 
and the proposed strategy (right), using the Wisconsin Breast Cancer dataset. 

 
6.4 Mushroom Dataset
The Mushroom dataset contain 8124 instances and 22 categorical attributes, with 
descriptions of hypothetical samples corresponding to several species of gilled mushrooms. 
Attributes include shape, surface, color, and others. Each species is identified as definitely 
edible, definitely poisonous, or of unknown edibility and not recommended. This latter class 
was combined with the poisonous one. 
Initially, a pre-processing step was required to convert all categorical data to numeric data, 
because traditional SOM algorithm handles only numeric data. This processing increases the 
complexity of the clustering process, since attributes number (dimensionality) is enlarged. 
After pre-processing, the number of database attributes increased to 117. 
The strategy used in experiments was similar to the previous one. In traditional approach, 
the SOM algorithm was applied to the entire database. However, in the proposed approach, 
dataset was partitioned into two, three e four subsets. In all experiments, the partitions were 
carrying out in order that similar attributes were grouped together. For example, 
‘cap_shape’, ‘cap_surface’ and ‘cap_color’ attributes were grouped in the same subset. 
In the first approach, using traditional SOM, was used a map size with 23 x 19 neurons in a 
hexagonal lattice. Training parameters used are σinitial = 3, σfinal = 1 and 1 epoch in rough 
phase and σinitial = σfinal = 1 and 3 epochs in fine tuning phase. 
In the second approach, using proposed strategy, the dataset was divided into two subsets, 
one with the first 49 attributes and the other with the 68 remaining attributes. Two maps 
were used, with 25 x 18 and 23 x 19 neurons in local phase, and a map with 23 x 19 neurons 
in final phase, both plans and hexagonal lattice. Training parameters used are σinitial = 4, σfinal 
= 1 in first map and σinitial = 3 and σfinal = 1 in second map, and training are performed using 
1 epoch in rough phase and 2 epochs in fine tuning phase. In final map, were used σinitial = 
σfinal = 1 and 1 epoch in rough phase and 2 epochs in fine tuning phase. 
Next, the dataset was divided into three subsets, with 49, 33 e 35 attributes respectively. The 
clustering algorithm was applied separately over each one of the subsets and, later, on their 
representatives. Three maps were used, with 25 x 18, 25 x 18 and 23 x 19 neurons in local 
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Algorithm Errors Hits (%) 

Traditional K-Means 6 96.6% 
Distributed K-Means Strategy 7 96.1% 

Table 5. Comparatives missing cluster values betweens traditional K-Means and the 
proposed strategy (Wine Dataset)  

 
6.3 Wisconsin Breast Cancer Dataset
The Wisconsin Breast Cancer dataset has 699 instances of the cytological analysis of fine 
needle aspiration of breast tumors. Each instance contains 10 attributes that are computed 
from a digitized image of a fine needle aspiration of a breast mass. Attributes include radius, 
texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, 
and fractal dimension. The dataset contain 458 (65.52%) benign instances and 241 (34.48%) 
malignant instances. 
The SOM algorithm was applied to the entire database and to some partitions of the same 
dataset, according to proposed strategy. The first five attributes were trained in a map and 
the four remaining attributes were trained separately in another. As before, representatives 
of both groups were gathered and combined to form a new dataset, which was later 
clustered using the SOM algorithm again. 
In the first experiment, using traditional SOM, was used a 2D hexagonal lattice map with 
size 22 x 6 neurons. In the second experiment (proposed strategy) two maps with 19 x 7 and 
17 x 8 neurons in local phase and a map with 22 x 6 neurons in final phase were used. All 
SOM were 2D hexagonal lattice maps. As in previous experiments, maps size was automatic 
defined by SOM Toolbox, based on input data distribution. In both experiments, training 
parameters used are σinitial = 3, σfinal = 1 and trainlen = 2 epochs in rough phase and σinitial = 
σfinal = 1 and trainlen = 15 epochs in fine tuning phase. 
Table 6 summarizes the obtained results with traditional SOM and proposed strategy, 
including QE (average quantization error) and TE (topographic error) to Wisconsin Breast 
Cancer dataset. 
 

Algorithm QE TE Errors Hits (%) 

Traditional SOM 0.9461 0.0272 17 97.57% 
Proposed Strategy 1.0009 0.0615 13 98.14% 

Table 6. Comparatives Missing Cluster Values Betweens Traditional SOM and the Proposed 
Strategy (Wisconsin Breast Cancer Dataset) 
 
Fig. 6 presents the final self-organizing map, which was manually colored to improve the 
visualization quality. Darker tones represent benign instances and light tones represent 
malignant instances. As in previous experiment, each neuron is labeled based on amount of 
instances from original dataset associated with this neuron and privileged information is 
used only to label the map and verify the algorithm accuracy. 
 

Fig. 6. The manually labelled self-organizing map for the traditional SOM algorithm (left) 
and the proposed strategy (right), using the Wisconsin Breast Cancer dataset. 

 
6.4 Mushroom Dataset
The Mushroom dataset contain 8124 instances and 22 categorical attributes, with 
descriptions of hypothetical samples corresponding to several species of gilled mushrooms. 
Attributes include shape, surface, color, and others. Each species is identified as definitely 
edible, definitely poisonous, or of unknown edibility and not recommended. This latter class 
was combined with the poisonous one. 
Initially, a pre-processing step was required to convert all categorical data to numeric data, 
because traditional SOM algorithm handles only numeric data. This processing increases the 
complexity of the clustering process, since attributes number (dimensionality) is enlarged. 
After pre-processing, the number of database attributes increased to 117. 
The strategy used in experiments was similar to the previous one. In traditional approach, 
the SOM algorithm was applied to the entire database. However, in the proposed approach, 
dataset was partitioned into two, three e four subsets. In all experiments, the partitions were 
carrying out in order that similar attributes were grouped together. For example, 
‘cap_shape’, ‘cap_surface’ and ‘cap_color’ attributes were grouped in the same subset. 
In the first approach, using traditional SOM, was used a map size with 23 x 19 neurons in a 
hexagonal lattice. Training parameters used are σinitial = 3, σfinal = 1 and 1 epoch in rough 
phase and σinitial = σfinal = 1 and 3 epochs in fine tuning phase. 
In the second approach, using proposed strategy, the dataset was divided into two subsets, 
one with the first 49 attributes and the other with the 68 remaining attributes. Two maps 
were used, with 25 x 18 and 23 x 19 neurons in local phase, and a map with 23 x 19 neurons 
in final phase, both plans and hexagonal lattice. Training parameters used are σinitial = 4, σfinal 
= 1 in first map and σinitial = 3 and σfinal = 1 in second map, and training are performed using 
1 epoch in rough phase and 2 epochs in fine tuning phase. In final map, were used σinitial = 
σfinal = 1 and 1 epoch in rough phase and 2 epochs in fine tuning phase. 
Next, the dataset was divided into three subsets, with 49, 33 e 35 attributes respectively. The 
clustering algorithm was applied separately over each one of the subsets and, later, on their 
representatives. Three maps were used, with 25 x 18, 25 x 18 and 23 x 19 neurons in local 
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phase. Training parameters used in local phase were σinitial = 2, σfinal = 1 and 1 epoch in rough 
and tuning phase. In final phase, was used a plan and hexagonal lattice map with 25 x 18 
neurons. Training parameters used were σinitial = σfinal = 1, 1 epoch in rough and 3 epochs in 
fine tuning phase. 
Finally, the dataset was divided into four subsets, with 31, 18, 33 e 35 attributes respectively. 
The clustering algorithm was applied separately over each one of the subsets and, later, on 
their representatives. Four maps were used, with 25 x 18, 23 x 19, 25 x 18 and 23 x 19 
neurons in local phase, and a map with 23 x 19 neurons in final phase, both plans and 
hexagonal lattice. Training parameters used in first and third maps are σinitial = 4, σfinal = 1, 1 
epoch in rough and fine tuning phase. In all remain maps, parameters used are σinitial = 4 e 
σfinal = 1 and 3 epochs in fine tuning phase. 
Table 7 summarizes the average results obtained with Mushroom dataset, using traditional 
SOM and proposed strategy with two, three and four partitions. The average quantization 
error (QE) and the topographic error (TE) are presented. Also, are presented the number of 
errors and hits obtained in the application of the algorithm in a classification task. As in 
previous section, results obtained with the proposed algorithm were very near to those of 
traditional methods, using a single dataset. 
 

Algorithm QE TE Errors Hits (%) 

Traditional SOM 5.545 0.042 295 96.37% 
Proposed Strategy with 2 partitions 5.859 0.049 292 96.41% 
Proposed Strategy with 3 partitions 8.048 0.159 331 95.93% 
Proposed Strategy with 4 partitions 5.783 0.062 292 96.41% 

Table 7. Comparatives missing cluster values betweens traditional SOM and the proposed 
strategy (Mushroom Dataset) 
 
One of the main advantages of the proposed strategy in relation to the traditional approach 
is the data transfer reduction between remotes and central units. Suppose the input data 
consist of N × p matrix, where N denotes the number of instances existent in the database 
and p denotes the data dimensionality. The codebook can be represented as a k × p matrix, 
where k denotes the number of prototypes in the codebook and the indexes vector can be 
represented as a N × 1 matrix. 
Therefore, since only the indexes vector and the codebook are transferred from remotes 
units to central unit, and generally, k « N, the strategy appears to be sufficiently adequate for 
application in distributed data clustering, because the traffic among units is reasonably 
decreased. 
 

Algorithm Unit1 Unit2 Unit3 Unit4 Total 

Traditional SOM with 2 partitions 398,076 552,432 - - 950,508 
Proposed Strategy with 2 partitions 30,174 37,840 - - 68,014 
Traditional SOM with 3 partitions 398,076 268,092 284,340 - 950,508 
Proposed Strategy with 3 partitions 30,174 22,974 23,419 - 76,567 
Traditional SOM with 4 partitions 251,844 146,232 268,092 284,340 950,508 
Proposed Strategy with 4 partitions 22,074 15,990 22,974 23,419 84,457 

Table 8. Comparatives data volume transferred betweens traditional SOM and the proposed 
strategy (Mushroom Dataset) 

Table 8 presents a comparative between traditional SOM and the proposed approach, in 
relation to the data volume transferred, considering two, three and four remote units. Only 1 
byte for each attribute was considered, since all the attributes were converted to binary in 
pre-processing step. 

 
7. Commented Results
 

The main contribution of this work is to present an alternative strategy for distributed data 
clustering in vertically partitioned databases using common algorithms. This approach can 
be performed in a distributed way, executing several instances of the same (or another) 
algorithm in parallel, each at one site, and combining all results in a central site.  
In the first experiment, the Iris dataset was analyzed with proposed strategy using two 
approaches: first, using SOM in both local and central stages, and second, using SOM in the 
local stage and K-Means in the central stage. We compared traditional approach with 
distributed strategy and showed that the very similar results can be obtained in both 
approaches. 
In the second experiment, the Wine dataset was analyzed with traditional SOM and 
traditional K-Means algorithms and with the proposed strategy using multiple SOM and 
multiple K-Means instances. The results show that the number of errors in the application of 
the strategy in a classification task is near to obtained with traditional approaches. 
Additionally, we carried out other experiments, with 3, 4, 5 and 6 partitions, obtaining 
similar results. 
In the third experiment, the Wisconsin Breast Cancer dataset was analyzed with traditional 
SOM algorithm and with the proposed strategy using multiple SOM instances. The results 
show that the number of errors in the application of the strategy in a classification task is 
near to obtained with traditional approach. 
In the fourth experiment, the Mushroom dataset was analyzed with traditional SOM and 
proposed strategy. We carried out experiments with two, three and four partitions, and 
results show the efficiency of proposed strategy. Additionally, we analyze the traffic among 
units and it was showed that using the proposed strategy, the data volume transferred can 
be efficiently reduced. 

 
8. Conclusion
 

There is a growing need for effective approaches to analyze data distributed among several 
sites. This is motivated by the increase in geographically distributed databases and security 
policies. Merging several parties of a database into a single site is not recommended in some 
applications, because confidential information can be remounted. Distributed data 
clustering algorithms are an alternative approach to cluster analysis tasks in distributed 
databases, because do not require very large databases and reduce inter-sites 
communication. 
Two common algorithms, SOM and K-Means have been widely used in data clustering 
applications. K-Means is the most used, because is simple and easy of implementation. Self-
organizing maps have some advantages in visualization process, including topology 
preserving mapping, which maps similar data vectors together. 
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phase. Training parameters used in local phase were σinitial = 2, σfinal = 1 and 1 epoch in rough 
and tuning phase. In final phase, was used a plan and hexagonal lattice map with 25 x 18 
neurons. Training parameters used were σinitial = σfinal = 1, 1 epoch in rough and 3 epochs in 
fine tuning phase. 
Finally, the dataset was divided into four subsets, with 31, 18, 33 e 35 attributes respectively. 
The clustering algorithm was applied separately over each one of the subsets and, later, on 
their representatives. Four maps were used, with 25 x 18, 23 x 19, 25 x 18 and 23 x 19 
neurons in local phase, and a map with 23 x 19 neurons in final phase, both plans and 
hexagonal lattice. Training parameters used in first and third maps are σinitial = 4, σfinal = 1, 1 
epoch in rough and fine tuning phase. In all remain maps, parameters used are σinitial = 4 e 
σfinal = 1 and 3 epochs in fine tuning phase. 
Table 7 summarizes the average results obtained with Mushroom dataset, using traditional 
SOM and proposed strategy with two, three and four partitions. The average quantization 
error (QE) and the topographic error (TE) are presented. Also, are presented the number of 
errors and hits obtained in the application of the algorithm in a classification task. As in 
previous section, results obtained with the proposed algorithm were very near to those of 
traditional methods, using a single dataset. 
 

Algorithm QE TE Errors Hits (%) 

Traditional SOM 5.545 0.042 295 96.37% 
Proposed Strategy with 2 partitions 5.859 0.049 292 96.41% 
Proposed Strategy with 3 partitions 8.048 0.159 331 95.93% 
Proposed Strategy with 4 partitions 5.783 0.062 292 96.41% 

Table 7. Comparatives missing cluster values betweens traditional SOM and the proposed 
strategy (Mushroom Dataset) 
 
One of the main advantages of the proposed strategy in relation to the traditional approach 
is the data transfer reduction between remotes and central units. Suppose the input data 
consist of N × p matrix, where N denotes the number of instances existent in the database 
and p denotes the data dimensionality. The codebook can be represented as a k × p matrix, 
where k denotes the number of prototypes in the codebook and the indexes vector can be 
represented as a N × 1 matrix. 
Therefore, since only the indexes vector and the codebook are transferred from remotes 
units to central unit, and generally, k « N, the strategy appears to be sufficiently adequate for 
application in distributed data clustering, because the traffic among units is reasonably 
decreased. 
 

Algorithm Unit1 Unit2 Unit3 Unit4 Total 

Traditional SOM with 2 partitions 398,076 552,432 - - 950,508 
Proposed Strategy with 2 partitions 30,174 37,840 - - 68,014 
Traditional SOM with 3 partitions 398,076 268,092 284,340 - 950,508 
Proposed Strategy with 3 partitions 30,174 22,974 23,419 - 76,567 
Traditional SOM with 4 partitions 251,844 146,232 268,092 284,340 950,508 
Proposed Strategy with 4 partitions 22,074 15,990 22,974 23,419 84,457 

Table 8. Comparatives data volume transferred betweens traditional SOM and the proposed 
strategy (Mushroom Dataset) 

Table 8 presents a comparative between traditional SOM and the proposed approach, in 
relation to the data volume transferred, considering two, three and four remote units. Only 1 
byte for each attribute was considered, since all the attributes were converted to binary in 
pre-processing step. 

 
7. Commented Results
 

The main contribution of this work is to present an alternative strategy for distributed data 
clustering in vertically partitioned databases using common algorithms. This approach can 
be performed in a distributed way, executing several instances of the same (or another) 
algorithm in parallel, each at one site, and combining all results in a central site.  
In the first experiment, the Iris dataset was analyzed with proposed strategy using two 
approaches: first, using SOM in both local and central stages, and second, using SOM in the 
local stage and K-Means in the central stage. We compared traditional approach with 
distributed strategy and showed that the very similar results can be obtained in both 
approaches. 
In the second experiment, the Wine dataset was analyzed with traditional SOM and 
traditional K-Means algorithms and with the proposed strategy using multiple SOM and 
multiple K-Means instances. The results show that the number of errors in the application of 
the strategy in a classification task is near to obtained with traditional approaches. 
Additionally, we carried out other experiments, with 3, 4, 5 and 6 partitions, obtaining 
similar results. 
In the third experiment, the Wisconsin Breast Cancer dataset was analyzed with traditional 
SOM algorithm and with the proposed strategy using multiple SOM instances. The results 
show that the number of errors in the application of the strategy in a classification task is 
near to obtained with traditional approach. 
In the fourth experiment, the Mushroom dataset was analyzed with traditional SOM and 
proposed strategy. We carried out experiments with two, three and four partitions, and 
results show the efficiency of proposed strategy. Additionally, we analyze the traffic among 
units and it was showed that using the proposed strategy, the data volume transferred can 
be efficiently reduced. 

 
8. Conclusion
 

There is a growing need for effective approaches to analyze data distributed among several 
sites. This is motivated by the increase in geographically distributed databases and security 
policies. Merging several parties of a database into a single site is not recommended in some 
applications, because confidential information can be remounted. Distributed data 
clustering algorithms are an alternative approach to cluster analysis tasks in distributed 
databases, because do not require very large databases and reduce inter-sites 
communication. 
Two common algorithms, SOM and K-Means have been widely used in data clustering 
applications. K-Means is the most used, because is simple and easy of implementation. Self-
organizing maps have some advantages in visualization process, including topology 
preserving mapping, which maps similar data vectors together. 
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In this work, we propose a novel strategy for data clustering in vertically partitioned 
databases using a distributed approach that execute typical clustering algorithms (such as 
self-organizing maps and K-Means) in local units of a distributed database and combine 
partial results in a central unit. This strategy can be applied to cluster geographically 
distributed databases, as to avoid excessive data overload from remote units as to maintain 
the data security and privacy.  
We carried out several experimental using UCI databases for demonstration purposes and 
showed that the proposed strategy, running in a distributed environment, obtained similar 
results to those with same clustering algorithms, running in traditional approach. 
Also, were discussed previously published studies and was presented situations in which 
for security and privacy reasons or due to high cost of transferring data to a central unit, a 
central database cannot be recommended. Otherwise, it was demonstrated that privacy-
preserving data is guaranteed, since only reference vectors are sent to the central site.  
Future research directions will use a mean and residual-vector quantization approach to 
increase security and data representation. 
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In this work, we propose a novel strategy for data clustering in vertically partitioned 
databases using a distributed approach that execute typical clustering algorithms (such as 
self-organizing maps and K-Means) in local units of a distributed database and combine 
partial results in a central unit. This strategy can be applied to cluster geographically 
distributed databases, as to avoid excessive data overload from remote units as to maintain 
the data security and privacy.  
We carried out several experimental using UCI databases for demonstration purposes and 
showed that the proposed strategy, running in a distributed environment, obtained similar 
results to those with same clustering algorithms, running in traditional approach. 
Also, were discussed previously published studies and was presented situations in which 
for security and privacy reasons or due to high cost of transferring data to a central unit, a 
central database cannot be recommended. Otherwise, it was demonstrated that privacy-
preserving data is guaranteed, since only reference vectors are sent to the central site.  
Future research directions will use a mean and residual-vector quantization approach to 
increase security and data representation. 
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