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1. Introduction     
 

It is important to estimate the perforation characteristics of materials in the design of the 
structure that collides with a flying object. Concretely, the ballistic limit velocity and the 
residual velocity of the material are evaluated in the impact perforation test (Backman & 
Goldsmith, 1978; Zukas, 1990). Then, the evaluation from the successive images of the 
perforation process by a super-high-speed camera system has been studied in the 
mechanical or material engineering fields (Kasano, 1999; Kasano et al., 2001). In this method, 
a steel ball is shot into the material specimen and the perforation process is taken as 
successive images. Then, the characteristics of materials are estimated from the location of 
the steel ball and the behaviour of the specimen. However, the analysis is often difficult 
because of the scattered fragments. Scattering of the fragments is especially observed in 
acrylic composites, ceramics and their composite materials which are used in structural 
applications threatened by high velocity impact. As a result, the accurate evaluation of the 
characteristic of the material often becomes difficult. 
The image clustering is necessary to evaluate the characteristic of the material from the 
successive images obtained by the impact perforation test. Neural networks are often used 
as a technique of adaptive image recognition. The neural network can be expected to classify 
an imperfect image by its robustness. There are a number of neural network models from 
the viewpoint of the learning method and the weight connection (Peincipe et al., 2000). A 
number of works have been reported in the pattern recognition by the multi-layered neural 
network (Ripley, 2007; Ogawa et al., 2006). However, an appropriate selection of learning 
data and appropriate parameter setting are necessary for data with large variance to use 
multi-layered neural networks. 
The neural network model that performs unsupervised and self-organizing learning is 
effective to such a difficult problem (Kohonen, 1989; Kohonen, 2001). It can classify the 
images based on the competitive learning. The self-organizing map has been studied as an 
unsupervised image clustering method. Because the self-organizing map can classify the 
image based on the unsupervised and self-organizing learning, it is not necessary to prepare 
any learning data for a number of fragment patterns. We proposed to apply the self-
organizing map to the image classification in the impact perforation images.  Concretely, we 
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classify a steel ball, background, and fragments in the impact perforation images by the self-
organizing map (Horiuchi et al., 2004).  
The self-organizing map performs the mapping from the input data to competitive neurons 
while maintaining the interrelation among the input data. The self-organizing map is 
suitable for the image clustering because it can express the order and the similarity between 
the provided data. Therefore, the distance between patterns can be estimated from the 
mapping result, because the self-organizing map realizes the mapping that reflects the 
topological relation. That is, the quantitative evaluation of the difficulty of the image 
clustering becomes possible. We also propose to apply the self-organizing map to evaluate 
the difficulty of the image clustering in the impact perforation images.  Concretely, we 
evaluate the difficulty of the impact perforation images of each composite material by the 
self-organizing map (Okubo et al., 2007). Moreover, the effect of the self-organizing map is 
confirmed by the simulation.  
In this chapter, I show the effectiveness of the self-organizing map for the image clustering 
of actual composite materials; polycarbonate (PC), polymethyl methacrylate (PMMA) and 
alumina (Al2O3). Also, the difficulty of the clustering of the given image is quantitatively 
evaluated. 

 
2. Impact Perforation Test 
 

In the impact perforation test, a small steel ball is shot into the material specimen to examine 
the perforation and destruction process. The system for the impact perforation test with a 
super-high-speed camera is used to observe the perforation process. In this system, we can 
observe the states before and after the impact perforation by successive images.  
When the steel ball perforates through a plate, the residual velocity of the steel ball after the 
perforation is expressed by several characteristics; the strength of the board, rigidity, initial 
form, size and so on. For example, we can estimate the material property according to the 
impact velocity, the residual velocity of the steel ball, and the geometric property of the 
material. Kasano et al. have been studying the evaluation of the material property by the 
impact perforation test based on the above-mentioned principle. The residual velocity VR is 
expressed by 
 

VR = F(a1, a2; Vi) (1) 
 
where a1, a2 and Vi mean the material properties, geometric properties of the material and 
initial velocity of a steel ball. We can estimate the material property a1, if we know the initial 
velocity Vi, residual velocity VR of the steel ball and the geometric property a2. The 
perforation limit velocity is one of the important material properties, and can be estimated 
by the initial velocity and the residual velocity that are obtained in the impact perforation 
test (Kasano et al., 2001). 
As one of the measuring method of the velocity of a steel ball, a super high-speed camera is 
used. In this system, the steel ball launched from the shooting device perforates through a 
monotonous material plate in the high temperature furnace, and the appearance is taken of 
a picture with the high-speed camera. The high-speed camera of this system can take a 
picture of four successive images. The experimental setup that we used is shown in Fig.1. 
We can measure the velocity of the steel ball with the high-speed camera from the 

 

successive images of the perforation. However, the location of the steel ball cannot often be 
measured in precision by the fragments of the destructed material in the perforation image 
of an actual material. In the current system, the image of the impact perforation test is 
visually classified. The classification from the successive images is often difficult because of 
the fragments of the material. Therefore, precise image clustering of a steel ball, background 
and fragments is necessary. We propose the use of neural network to classify them in the 
image with degradation by fragments of the specimen. We show the image classification of 
the images degraded by the scattered material fragments accurately by using the neural 
network (Ogawa et al., 2003). 
The successive images of the impact perforation test with actual composite materials; 
polycarbonate (PC), polymethyl methacrylate (PMMA) and alumina (Al2O3) specimens are 
shown in Fig.2. The number drawn in the figure shows the photographed order. The image 
of PC specimen is so clear that we can visually classify it, sufficiently. However, the 
classification of the image of PMMA specimen is a little more difficult than that of PC. 
Moreover, the classification of the image of alumina is too difficult to classify because of 
scattered fragments. The aim of this study is to classify these images accurately. The plate 
size, thickness of the specimen, the impact velocity of the steel ball and the interframe time 
of successive images are shown in Table 1. The size of the steel ball was 5mm in diameter, 
and 0.5g in mass. 
The polycarbonate (PC) has the transparency equal with the glass and the highest impact-
proof in plastic, and is used for the consumer electronic and the mobile device and so on. 
The impact-proof of PC equals a metallic material. However, there is a fault of weakness to 
an alkaline medicine and an organic solvent. The polymethyl methacrylate (PMMA) has the 
highest scratch-proof and transparency in transparent plastic, and is used for the window, 
lens and the housing of various equipments. However, it is a little inferior to the impact-
proof, and is a polymeric material that causes the same brittleness destruction as ceramics. 
Because the alumina is light and has the corrosion-proof, it is expected as a material of the 
machine structure in the ultra high temperature. However, there is a fault that resistance to 
the mechanical shock and thermal shock is extremely low because the destruction toughness 
is low and fragile. The impact perforation images of these three kinds of specimens are 
classified into the steel ball, the background, and the fragments (material).  

 

 

Super-high-speed 

cam era 

 
Fig. 1. Experimental setup of the impact perforation test. 
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The self-organizing map performs the mapping from the input data to competitive neurons 
while maintaining the interrelation among the input data. The self-organizing map is 
suitable for the image clustering because it can express the order and the similarity between 
the provided data. Therefore, the distance between patterns can be estimated from the 
mapping result, because the self-organizing map realizes the mapping that reflects the 
topological relation. That is, the quantitative evaluation of the difficulty of the image 
clustering becomes possible. We also propose to apply the self-organizing map to evaluate 
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evaluate the difficulty of the impact perforation images of each composite material by the 
self-organizing map (Okubo et al., 2007). Moreover, the effect of the self-organizing map is 
confirmed by the simulation.  
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evaluated. 

 
2. Impact Perforation Test 
 

In the impact perforation test, a small steel ball is shot into the material specimen to examine 
the perforation and destruction process. The system for the impact perforation test with a 
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impact perforation test based on the above-mentioned principle. The residual velocity VR is 
expressed by 
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where a1, a2 and Vi mean the material properties, geometric properties of the material and 
initial velocity of a steel ball. We can estimate the material property a1, if we know the initial 
velocity Vi, residual velocity VR of the steel ball and the geometric property a2. The 
perforation limit velocity is one of the important material properties, and can be estimated 
by the initial velocity and the residual velocity that are obtained in the impact perforation 
test (Kasano et al., 2001). 
As one of the measuring method of the velocity of a steel ball, a super high-speed camera is 
used. In this system, the steel ball launched from the shooting device perforates through a 
monotonous material plate in the high temperature furnace, and the appearance is taken of 
a picture with the high-speed camera. The high-speed camera of this system can take a 
picture of four successive images. The experimental setup that we used is shown in Fig.1. 
We can measure the velocity of the steel ball with the high-speed camera from the 

 

successive images of the perforation. However, the location of the steel ball cannot often be 
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of an actual material. In the current system, the image of the impact perforation test is 
visually classified. The classification from the successive images is often difficult because of 
the fragments of the material. Therefore, precise image clustering of a steel ball, background 
and fragments is necessary. We propose the use of neural network to classify them in the 
image with degradation by fragments of the specimen. We show the image classification of 
the images degraded by the scattered material fragments accurately by using the neural 
network (Ogawa et al., 2003). 
The successive images of the impact perforation test with actual composite materials; 
polycarbonate (PC), polymethyl methacrylate (PMMA) and alumina (Al2O3) specimens are 
shown in Fig.2. The number drawn in the figure shows the photographed order. The image 
of PC specimen is so clear that we can visually classify it, sufficiently. However, the 
classification of the image of PMMA specimen is a little more difficult than that of PC. 
Moreover, the classification of the image of alumina is too difficult to classify because of 
scattered fragments. The aim of this study is to classify these images accurately. The plate 
size, thickness of the specimen, the impact velocity of the steel ball and the interframe time 
of successive images are shown in Table 1. The size of the steel ball was 5mm in diameter, 
and 0.5g in mass. 
The polycarbonate (PC) has the transparency equal with the glass and the highest impact-
proof in plastic, and is used for the consumer electronic and the mobile device and so on. 
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an alkaline medicine and an organic solvent. The polymethyl methacrylate (PMMA) has the 
highest scratch-proof and transparency in transparent plastic, and is used for the window, 
lens and the housing of various equipments. However, it is a little inferior to the impact-
proof, and is a polymeric material that causes the same brittleness destruction as ceramics. 
Because the alumina is light and has the corrosion-proof, it is expected as a material of the 
machine structure in the ultra high temperature. However, there is a fault that resistance to 
the mechanical shock and thermal shock is extremely low because the destruction toughness 
is low and fragile. The impact perforation images of these three kinds of specimens are 
classified into the steel ball, the background, and the fragments (material).  
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Fig. 1. Experimental setup of the impact perforation test. 
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(a)           (b) 

 
(c) 

Fig. 2. Successive images obtained by super high-speed camera in the impact perforation test 
with composite materials, (a) polycarbonate (PC) specimen, (b) polymethyl methacrylate 
(PMMA) specimen and (c) alumina specimen. 
 

Material PC PMMA alumina 
Image size (pixel) 1172x770 1000x656 1172x770 

Specimen’s size (mm) 100x100 80x60 80x80 
Specimen’s thickness (mm) 1.5 3.0 1.5 

Initial velocities of a steel ball (m/s) 220 309 224.6 
Interval time of successive images(s) 50 150 50 

Table 1. Parameters of the impact perforation test and images. 
 
3. Self-Organizing Map 
 

There are a number of supervised learning models and unsupervised learning models in the 
neural network. Typical examples of the former and the latter are the multi-layered neural 
network and the self-organizing map, respectively. The multi-layered neural network learns 
the input-output relation using the error back-propagation method. Because the number of 
learning data are limited when the input-output mapping is learned by the multi-layered 
neural network, the network supplements the answer of the problem which was not 
provided as the learning data with the generalization ability. The multi-layered neural 

 

network has the problem of over-learning in which the learning progresses only for the 
provided learning data and the generalization ability decreases (Ogawa, 1992).   
On the other hand, the self-organizing map is an unsupervised learning model of neural 
network, which is based on the competitive learning method. Typical self-organizing map is 
composed of an input layer, a competitive layer and interlayer connection weights, as 
shown in Fig.3. An input neuron has the connection weights with all competitive neurons. 
Since the learning expresses the interrelation of input data, a competitive layer forms the 
mapping that reflects the distributions of input data. In the self-organizing map, we need 
not provide to which category input data belongs, and input data are classified by self-
organizing. The interrelation among the input data is mapped to the neurons arranged in 
one or two-dimensional area. Therefore, it is considered that the problem of supervized 
learning model can be overcome.  
At the learning phase of the network, the neuron that responds most strongly becomes a 
winner while a lot of neurons respond for a given input, and the connection weights of the 
winner neuron and the neighborhood neurons are updated. The learning is done for not 
only the winner of the competition but also their neighborhoods. In a word, the adjacent 
neurons have mutually similar connection weights because they learn the similar data. The 
template that reflects a statistical distribution of data and mutual analogous relationship is 
formed by such learning. Therefore, the similarity of the input data can be measured 
according to the relative distance of them. The concrete procedure of competitive learning of 
the self-organizing map is as follows. First, it identifies a winner neuron. Then, the weights 
of the winner neuron and the neighborhoods are updated by the input vector in each 
learning step. The weights of the winner neuron and neighborhood are updated in 
proportion to the learning rate. The self-organizing map is suitable for clustering that 
classifies the data set into some groups without learning data, because it is able to express 
the similarity of the data set. 
In this study we propose to use the self-organizing map for classifying the impact 
perforation images. The self-organizing map is used to distinguish a steel ball, background 
and fragments. In the impact perforation images, the shapes of the fragments are different 
on each material, experimental condition and so on. The image in a steel ball is also slightly 
different according to differences of the quantity of light and so on. So, it is difficult to 
prepare the appropriate and sufficient learning data for the material specimen and the 
experiment environment, beforehand. We use the self-organizing map which is one of the 
competitive learning type neural networks. As mentioned above, the unsupervised learning 
of the self-organizing map is not affected by the quality of the learning data. The impact 
perforation image is classified by the self-organizing map. The self-organizing map 
recognizes the category by a partial space which the data belongs to the division of the 
category of the feature vector space, where data exists with the represented template. 
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network has the problem of over-learning in which the learning progresses only for the 
provided learning data and the generalization ability decreases (Ogawa, 1992).   
On the other hand, the self-organizing map is an unsupervised learning model of neural 
network, which is based on the competitive learning method. Typical self-organizing map is 
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shown in Fig.3. An input neuron has the connection weights with all competitive neurons. 
Since the learning expresses the interrelation of input data, a competitive layer forms the 
mapping that reflects the distributions of input data. In the self-organizing map, we need 
not provide to which category input data belongs, and input data are classified by self-
organizing. The interrelation among the input data is mapped to the neurons arranged in 
one or two-dimensional area. Therefore, it is considered that the problem of supervized 
learning model can be overcome.  
At the learning phase of the network, the neuron that responds most strongly becomes a 
winner while a lot of neurons respond for a given input, and the connection weights of the 
winner neuron and the neighborhood neurons are updated. The learning is done for not 
only the winner of the competition but also their neighborhoods. In a word, the adjacent 
neurons have mutually similar connection weights because they learn the similar data. The 
template that reflects a statistical distribution of data and mutual analogous relationship is 
formed by such learning. Therefore, the similarity of the input data can be measured 
according to the relative distance of them. The concrete procedure of competitive learning of 
the self-organizing map is as follows. First, it identifies a winner neuron. Then, the weights 
of the winner neuron and the neighborhoods are updated by the input vector in each 
learning step. The weights of the winner neuron and neighborhood are updated in 
proportion to the learning rate. The self-organizing map is suitable for clustering that 
classifies the data set into some groups without learning data, because it is able to express 
the similarity of the data set. 
In this study we propose to use the self-organizing map for classifying the impact 
perforation images. The self-organizing map is used to distinguish a steel ball, background 
and fragments. In the impact perforation images, the shapes of the fragments are different 
on each material, experimental condition and so on. The image in a steel ball is also slightly 
different according to differences of the quantity of light and so on. So, it is difficult to 
prepare the appropriate and sufficient learning data for the material specimen and the 
experiment environment, beforehand. We use the self-organizing map which is one of the 
competitive learning type neural networks. As mentioned above, the unsupervised learning 
of the self-organizing map is not affected by the quality of the learning data. The impact 
perforation image is classified by the self-organizing map. The self-organizing map 
recognizes the category by a partial space which the data belongs to the division of the 
category of the feature vector space, where data exists with the represented template. 
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Fig. 3. Typical architecture of self-organizing map. 
 
3.1 Unsupervised Learning of Self-Organizing Map 
In the self-organizing map, a number of neurons fire to the given input. The neuron with the 
strongest output becomes a winner, and the connection weights are updated to the winner 
neuron and its neighbourhoods. The input neurons and the competitive neurons are 
connected in parallel between all neurons through the connection weights. In general, these 
weights have different values for different neurons. The output values of the competitive 
neuron to a certain input vector are compared by all competitive neurons, and the position 
that reaches the highest value in a certain measure is considered to be the response position.  
Here, we consider the network with M input neurons and N competitive neurons. The 
connection weights vector from the i-th input neuron and a certain input vector are assumed 
to be wi=(wi1, wi2, ..., wiN), i=1, 2, ..., M and x=(x1, x2, ..., xM). When input data are given, we 
compare the distances between the input vector and each competitive neuron to dicide the 
winner neuron k. The distance Dj on j-th competitive neuron is defined by euclid distance as 
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where M means the number of input neurons. Based on the competitive learning, the output 
of the neuron Zk with the most similar weight becomes one, while the output of the other 
neuron become zero. Then, the weights of the winner neuron and its neighborhoods Nk are 
updated. The weights of the winner neuron from the i-th input neuron are updated as 
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where (t) means the learning coefficient that is reduced as the learning epoch. In general, 
the weights of the neighborhood neuron is corrected at the update rate that is lower than 
that of the winner neuron. In this study, the weights of the neighborhood neurons are 
updated as 
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The other neurons are not corrected as 
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The range of the correction of the weights is shown like Fig.4. The weight wik of the winner 
neuron k is corrected in the direction of the input vector xi, and approaches to the input 
vector xi. Parameter (t) is a learning coefficient, and is the parameter that adjusts how to 
approach it to xi. Variable t means the epoch number, and the set Nc(t) of the neighborhood 
neurons of winner k and the learning coeffiecinet (t) are the function of t. Learning 
coefficient (t) is initially set to the comparatively large value, and is decreased gradually 
with the learning epoch t. Also, the size of the neighborhood region Nc(t) is decreased with 
the learning epoch. All the weights of the neuron move greatly toward the input area where 
the input vector exists. Then, the map orders itself to the given input vector, as the 
neighborhood distance decreases. The relation between the weight correction and the 
learning coefficient is shown in Fig.5. 
 

 

 
Fig. 4. Winner neuron and its neighbourhood neurons. 
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Fig. 5. Relation between weight correction and learning coefficient, (a) winner neuron (b) 
neighborhood neurons. 
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4. Image Clustering and Evaluation by Self-Organizing Map  
 

In this section, the architecture and the procedure of the self-organizing map for image 
clustering and evaluation on the impact perforation test are explained. The self-organizing 
map used in this study has the one-dimensional competitive layer. The input is the one-
dimensional vector by which the feature of the image is extracted, and the output is a 
mapped vector which appears on the one-dimensional competitive layer. The purpose of the 
image clustering is the classification of a steel ball, background and fragments in the impact 
perforation images. Also, the purpose of the image evaluation is to evaluate the difficulty of 
the image clustering from the output distribution on the competitive layer. The network 
architecture used in this study is shown in Fig.6. 
The network is used in the three steps; the learning, the classification, and the evaluation. 
They are explained by the following subsections. 

 

 
Fig. 6. Network architecture 

 
4.1 Learning by Self-Organizing Map 
Here, the learning method of the self-organizing map is explained. In general, we compose 
the input vector after compressing the image, and classify it in the image classification. In 
this study, the sub-images of the steel ball, the background, and the fragments are extracted 
from the original images. We use two sub-images of specimen fragments, because the 
fragments of the specimen is various shape. The quantitative features are calculated from 
those sub-images as input vectors. The mapping forms the template of the steel ball, the 
background, and the fragments of the specimen by unsupervised learning of the input 
vector obtained from these learning sub-images.  
The network first identifies the winner neuron for the given input vector. Then, the vector 
expressed by the weights of the winner neuron and those of the neighborhood neurons are 
brought close to the value of the input vector in each learning step. The weights of the 
winner neuron are changed for proportion to the learning rate, while those of the 
neighborhood neuron are changed for proportion to the half of the learning rate. The 
learning rate and the neighborhood distance of the winner neuron are updated through two 
phases of the ordering phase and the tuning phase. To use these two phases, the following 
four are defined (Demuth et al., 2009). 

 ・・・

 

Ordering phase 
Ordering phase lasts for the given number of steps. The neighborhood distance starts at a 
given initial distance, and decreases to the tuning neighborhood distance. As the 
neighborhood distance decreases over this phase, the neurons of the network typically order 
themselves in the input space with the same topology in which they are ordered physically.  
Tuning phase 
Tuning phase lasts for the rest of learning or adaptation. The neighborhood distance stays at 
the tuning neighborhood distance, which should include only close neighbors, i.e., typically 
1.0. The small neighborhood fine-tunes the network, while keeping the ordering learned in 
the previous phase stable. 
As with competitive layers, the neurons of a self-organizing map will order themselves with 
approximately equal distances between them if input vectors appear with even probability 
throughout a section of the input space. If input vectors occur with varying frequency 
throughout the input space, the feature map layer tends to allocate neurons to an area in 
proportion to the frequency of input vectors there. Thus, feature maps, while learning to 
categorize their input, also learn both the topology and distribution of their input. The 
summary of the procedure is as follows. 

Step 1. The sub-images of the steel ball, the background, and fragments of specimen are 
extracted  from the impact perforation images as a learning image. 

Step 2. The input vector by quantitative features is calculated from the extracted sub-
images. 

Step 3. The calculated input vector is input to the network to update the weights. 

 
4.2 Image Clustering by Self-Organizing Map 
Image clustering by the self-organizing map is performed by the learned network. The 
learning images are  mapped to the competitive layer. While the output of only the nearest 
neuron in the map becomes 1.0 if the input data of the image classified into the network is 
provided, those of other neurons become 0.0. The procedure of clustering is as follows. 

Step 1. The labeling is done to the neuron in the competitive layer after the learning. 
Step 2. The images to be classified is divided into the decided size, and the input vector 

is calculated. 
Step 3. After the calculated input vector is input to the network, and the network 

outputs it from the result of the response and the labeling in the competitive 
layer. 

To classify the input image, it is necessary to confirm which neuron in the competitive layer 
represents the input data of the learning image. We input each learning image and label the 
responding competitive neurons. As a result, the labeling is done to the neuron in the 
competitive layer and the image is classified. Figure 7 shows the concept of the labeling. The 
concept of the network architecture in the image clustering is shown in Figure 8.   
The classification images are four successive images, and the classication is performed to 
each image. The classification images are scanned and cut out to the sub-images. After the 
calculation of the input vector for each sub-image, it is classified with the label of the neuron 
that responds to the input vector. 
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4. Image Clustering and Evaluation by Self-Organizing Map  
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architecture used in this study is shown in Fig.6. 
The network is used in the three steps; the learning, the classification, and the evaluation. 
They are explained by the following subsections. 
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brought close to the value of the input vector in each learning step. The weights of the 
winner neuron are changed for proportion to the learning rate, while those of the 
neighborhood neuron are changed for proportion to the half of the learning rate. The 
learning rate and the neighborhood distance of the winner neuron are updated through two 
phases of the ordering phase and the tuning phase. To use these two phases, the following 
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Ordering phase 
Ordering phase lasts for the given number of steps. The neighborhood distance starts at a 
given initial distance, and decreases to the tuning neighborhood distance. As the 
neighborhood distance decreases over this phase, the neurons of the network typically order 
themselves in the input space with the same topology in which they are ordered physically.  
Tuning phase 
Tuning phase lasts for the rest of learning or adaptation. The neighborhood distance stays at 
the tuning neighborhood distance, which should include only close neighbors, i.e., typically 
1.0. The small neighborhood fine-tunes the network, while keeping the ordering learned in 
the previous phase stable. 
As with competitive layers, the neurons of a self-organizing map will order themselves with 
approximately equal distances between them if input vectors appear with even probability 
throughout a section of the input space. If input vectors occur with varying frequency 
throughout the input space, the feature map layer tends to allocate neurons to an area in 
proportion to the frequency of input vectors there. Thus, feature maps, while learning to 
categorize their input, also learn both the topology and distribution of their input. The 
summary of the procedure is as follows. 

Step 1. The sub-images of the steel ball, the background, and fragments of specimen are 
extracted  from the impact perforation images as a learning image. 

Step 2. The input vector by quantitative features is calculated from the extracted sub-
images. 

Step 3. The calculated input vector is input to the network to update the weights. 

 
4.2 Image Clustering by Self-Organizing Map 
Image clustering by the self-organizing map is performed by the learned network. The 
learning images are  mapped to the competitive layer. While the output of only the nearest 
neuron in the map becomes 1.0 if the input data of the image classified into the network is 
provided, those of other neurons become 0.0. The procedure of clustering is as follows. 

Step 1. The labeling is done to the neuron in the competitive layer after the learning. 
Step 2. The images to be classified is divided into the decided size, and the input vector 

is calculated. 
Step 3. After the calculated input vector is input to the network, and the network 

outputs it from the result of the response and the labeling in the competitive 
layer. 

To classify the input image, it is necessary to confirm which neuron in the competitive layer 
represents the input data of the learning image. We input each learning image and label the 
responding competitive neurons. As a result, the labeling is done to the neuron in the 
competitive layer and the image is classified. Figure 7 shows the concept of the labeling. The 
concept of the network architecture in the image clustering is shown in Figure 8.   
The classification images are four successive images, and the classication is performed to 
each image. The classification images are scanned and cut out to the sub-images. After the 
calculation of the input vector for each sub-image, it is classified with the label of the neuron 
that responds to the input vector. 
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Fig. 7. Concept of labeling 
 

 

 
Fig. 8. Concept of the network architecture in image clustering 

 
4.3 Image Evaluation by Self-Organizing Map 
The self-organizing map is able to map the input to the competitive layer with the 
topological relationship between the given input vectors. In a word, the topological 
relationship can be estimated from the distribution expressed on the competitive layer 
neuron. Based on this feature, we proposes the method of quantitatively evaluating the 
difficulty of the classification of the given image by using the self-organizing map for the 
topological relationship between images of the steel ball, the background, and the fragments 
of specimen. 

 

The steel ball, the background, and the fragments are labeled at the same time as the image's 
being classified by the self-organizing map. The location where each neuron responds to the 
output distribution on the competitive layer can be shown from the result of the labeling. 
Then, the location of fired neuron on the competitive layer in each pattern is confirmed. 
Figure 9 shows the concept of the image evaluation.  
The difficulty and accuracy of the image classification can be estimated from the location of 
the firing neuron on the competitive layer for each pattern. For instance, if each pattern of 
the steel ball, the background, and fragments is classified by the firing neuron position of a 
competitive layer in each pattern clearly, the image can be judged to be an easy classification. 
However, it can be judged that the image is difficult classification if the firing neuron 
position by each pattern is overlapping. Also, it is similarly used as an evaluation method of 
the classification result. If each pattern is separate, the image is classified almost accurately. 
On the other hand, if each pattern overlaps, it is appreciable with an inaccurate image 
classification. 
 

 

 

 
Fig. 9. Concept of image evaluation by self-organizing map, (a) result of labeling, (b) 
situation of firing on competitive layer, and (c) location of firing neuron on competitive layer 
for each pattern. 

 
4.4 Input Vector of Self-Organizing Map 
In this study, two kinds of input vector are examined to classify the image. The first method 
is to calculate the quantitative features from the sub-image and to compose the input vector. 
First of all, the sub-image is extracted from the impact perforation image. Then, the 
quantitative features; the standard deviation, the difference of the maximum value and 
minimum value, the median value, the maximum frequency value, the mean values of the 
four corners, the maximum values, the minimum value and the mean value in the pixels. 
The one used for the input vector calculation was selected from these quantitative features 
by the trial and error.  
Next, the method of inputting immediate pixel values is examined. The sub-image is 
extracted from the impact perforation image as well as the input vector by the amount of 
characteristic. Then, the pixel values of five points are extracted from the sub-image. The 
input vectors used in the simulation are shown in Table 2.  
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However, it can be judged that the image is difficult classification if the firing neuron 
position by each pattern is overlapping. Also, it is similarly used as an evaluation method of 
the classification result. If each pattern is separate, the image is classified almost accurately. 
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4.4 Input Vector of Self-Organizing Map 
In this study, two kinds of input vector are examined to classify the image. The first method 
is to calculate the quantitative features from the sub-image and to compose the input vector. 
First of all, the sub-image is extracted from the impact perforation image. Then, the 
quantitative features; the standard deviation, the difference of the maximum value and 
minimum value, the median value, the maximum frequency value, the mean values of the 
four corners, the maximum values, the minimum value and the mean value in the pixels. 
The one used for the input vector calculation was selected from these quantitative features 
by the trial and error.  
Next, the method of inputting immediate pixel values is examined. The sub-image is 
extracted from the impact perforation image as well as the input vector by the amount of 
characteristic. Then, the pixel values of five points are extracted from the sub-image. The 
input vectors used in the simulation are shown in Table 2.  
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Input vector Quantitative features Pixel values 

PC 

Standard deviation 
Difference of max and min values 

Maximum value 
Minimum value 

Five pixel values 
 

PMMA 

Difference of max and min values 
Median value 

Maximum frequency value 
Maximum value 
Minimum value 

Mean value 

Alumina 

Standard deviation 
Difference of max and min values 

Median value 
Maximum frequency value 

Maximum value 
Minimum value 

Mean value 
Table 2. Input vectors used in the simulation. 
 
5. Simulation 
 

In this study, we use the impact perforation images of PC (polycarbonate), PMMA 
(polymethyl methacrylate) and alumina, shown in Fig.2. Each image consists of four 
successive photos. The parameters are shown in Table 1. The PC image can be visually 
classified. The classification of the PMMA image is comparatively easy though it is not 
clearer than the PC image. However, it is difficult to classify the alumina image because of 
the scattering of the fragments. In this study, these images are classified by the image 
recognition network using the self-organizing map. In addition, the quantitative evaluation 
of the difficulty of image classification by the self-organizing map is examined. 
The learning image and the classification image are extracted from the original impact 
perforation images. As for the learning image of PC, the steel ball, the background and two 
material images of 16x16 pixels are extracted from the second image. The learning image of 
PMMA is extracted from the third image in the same size as PC. As for the learning image of 
the alumina image, the steel ball, the background of 16x16 pixels and two fragment images 
of 48x48 pixels are extracted from the third image. These learning images of PC, PMMA and 
alumina are shown in Figs. 10, 11 and 12 respectively. Then, the classification images are 
extracted from each original image (PMMA, PC and alumina). The extracted images are 
shown in Fig. 11. The size of each classification image is 256x256.  These four images are 
classified into four kinds; steel ball, background and two fragments. 
To examine two kinds of input values in which the quantitative features and the immediate 
pixel values of the learning image, we input these to the network in learning phase. The 
classification simulation is carried out by two methods of the quantitative features and the 
immediate pixel values, and the difficulty of the image and the accuracy of the classification 
are evaluated from the output distribution of the competitive layer.  

 

The network parameters are shown in Table 3. The network parameters are changed 
according to the input vector and the classified image. In the case of the quantitative 
features, we decided to adopt the features by trial and error. On the other hand, we sampled 
five pixels as the immediate pixel value input. We used 11 neurons that were arranged in 
one dimension as a competitive layer. 

 

 

 
                                       (a)                  (b)                  (c)               (d) 

Fig.10 Learning image of PC, (a)steel ball, (b)background, (c) fragment1, and (d)fragment2 
 

 

 
              (a)                  (b)                    (c)               (d) 

Fig. 11. Learning image of PMMA, (a)steel ball, (b)background, (c) fragment1, and 
(d)fragment2 
 

 

 
                                       (a)                 (b)                  (c)               (d) 

Fig. 12. Learning image of alumina, (a)steel ball, (b)background, (c) fragment1, and 
(d)fragment2 

 
Material PC PMMA alumina 

Input vector 4 features 
or  5 pixel values 

6 features 
or  5 pixel values 

7 features 
or  5 pixel values 

Number of input neurons 4 or 5 6 or 5 7 or 5 
Number of competitive neurons 11 

Ordering phase step number 1000 
Ordering phase learning rate 0.9 
Tuning phase step number 0.01 

Tuning phase neighbourhood  
distance 1 

Learning epoch number 500 
Table 3. Network parameters. 
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extracted from each original image (PMMA, PC and alumina). The extracted images are 
shown in Fig. 11. The size of each classification image is 256x256.  These four images are 
classified into four kinds; steel ball, background and two fragments. 
To examine two kinds of input values in which the quantitative features and the immediate 
pixel values of the learning image, we input these to the network in learning phase. The 
classification simulation is carried out by two methods of the quantitative features and the 
immediate pixel values, and the difficulty of the image and the accuracy of the classification 
are evaluated from the output distribution of the competitive layer.  

 

The network parameters are shown in Table 3. The network parameters are changed 
according to the input vector and the classified image. In the case of the quantitative 
features, we decided to adopt the features by trial and error. On the other hand, we sampled 
five pixels as the immediate pixel value input. We used 11 neurons that were arranged in 
one dimension as a competitive layer. 
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Fig.10 Learning image of PC, (a)steel ball, (b)background, (c) fragment1, and (d)fragment2 
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Fig. 11. Learning image of PMMA, (a)steel ball, (b)background, (c) fragment1, and 
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7 features 
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Number of input neurons 4 or 5 6 or 5 7 or 5 
Number of competitive neurons 11 

Ordering phase step number 1000 
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Fig. 13. Classification images, (a) PC, (b) PMMA and (c)  alumina 

 
5.1 Results 
The simulation was carried out to confirm the classification and the quantitive evaluation of the 
difficulty of the classification by the amount of characteristic and pixel value input of PC, PMMA 
and alumina impact perforation image.  
First, the classification result of PC is shown in Fig. 14. The white area in the classification result 
shows the steel ball. The gray area shows the background and fragments. A black area means 
unclassificated area. According to the result, the place of the steel ball can be distinguished. 
Neither the background nor the material are distinguished accurately partially. The output 
distribution of a competitive layer for each patterns is shown in Fig.15. In Fig.15, the white circle 
and the black circle mean the acted and not acted neurons, respectively. From result of Fig.15, it is 
understood that each pattern is separate to each learning image clearly in the PC image. Because 
the distance between patterns of the steel ball and the material is considerably large, it is 
considered that the distinction is the easiest.    
Next, the classification result of PMMA is shown in Fig.16. The result is shown similar to the case 
of PC. From the result, we can see to distinguish the steel ball clearly. Moreover, because the 
distinction of the background and the fragment is easy, it is possible to classify it. The output 
distribution of a competitive layer is shown in Fig.17. As for the PMMA image, each pattern is 
separate to each learning image clearly. Because the distance between a steel ball and fragment 
patterns is large, it is considered that the distinction becomes easy.  

 

Finally, the classification result of alumina is shown in Fig.18. From the result, it is difficult to 
distinguish the steel ball because of the scattered fragments. However, the fragments and the 
background is distinguished correctly. The output distribution of a competitive layer is shown 
in Fig.19. In the alumina image, it is considered that each pattern adjoins each learning image. 
Because the distance between a steel ball and fragment patterns is small, it is considered that the 
distinction becomes difficult.  
According to the above-mentioned result, the classification of the steel ball that is necessary to 
estimate the strength property of the material was sufficiently performed in three impact 
perforation images. Also, the classification of the fragments that is important to estimate the 
destruction property was almost done, too. Moreover, it was shown that the distinction of the 
steel ball was easy in order of the PC image, the PMMA image, and the alumina image according 
to the result of the evaluation by the output distribution in a competitive layer. From the results 
of Figs. 15, 17 and 19, the mean distances between the firing positions to the steel ball and the 
fragments on the competitive layer are calculated and are shown in Table 4. These values are 
almost corresponding to an intuitive difficulty to classify each image. That is, it was clarified that 
the output distribution of the competitive layer expressed the difficulty of the quantitative 
evaluation of the classification difficulty by the simulation. Especially, it was confirmed that the 
distance between the competitive layer neurons that responded to the input vector of the steel 
ball and the fragments expressed the classification difficulty. Therefore, the difficulty of the 
image classification can be quantitively evaluated by measuring the positions of the responding 
competitive layer neurons. 

 

 
                                   (a)                             (b)                           (c)              

Fig. 14. Classification result for PC specimen image. (a) original image, (b) result for 
quantitative feature input, (c) result for pixel value input. 
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Fig. 13. Classification images, (a) PC, (b) PMMA and (c)  alumina 

 
5.1 Results 
The simulation was carried out to confirm the classification and the quantitive evaluation of the 
difficulty of the classification by the amount of characteristic and pixel value input of PC, PMMA 
and alumina impact perforation image.  
First, the classification result of PC is shown in Fig. 14. The white area in the classification result 
shows the steel ball. The gray area shows the background and fragments. A black area means 
unclassificated area. According to the result, the place of the steel ball can be distinguished. 
Neither the background nor the material are distinguished accurately partially. The output 
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and the black circle mean the acted and not acted neurons, respectively. From result of Fig.15, it is 
understood that each pattern is separate to each learning image clearly in the PC image. Because 
the distance between patterns of the steel ball and the material is considerably large, it is 
considered that the distinction is the easiest.    
Next, the classification result of PMMA is shown in Fig.16. The result is shown similar to the case 
of PC. From the result, we can see to distinguish the steel ball clearly. Moreover, because the 
distinction of the background and the fragment is easy, it is possible to classify it. The output 
distribution of a competitive layer is shown in Fig.17. As for the PMMA image, each pattern is 
separate to each learning image clearly. Because the distance between a steel ball and fragment 
patterns is large, it is considered that the distinction becomes easy.  

 

Finally, the classification result of alumina is shown in Fig.18. From the result, it is difficult to 
distinguish the steel ball because of the scattered fragments. However, the fragments and the 
background is distinguished correctly. The output distribution of a competitive layer is shown 
in Fig.19. In the alumina image, it is considered that each pattern adjoins each learning image. 
Because the distance between a steel ball and fragment patterns is small, it is considered that the 
distinction becomes difficult.  
According to the above-mentioned result, the classification of the steel ball that is necessary to 
estimate the strength property of the material was sufficiently performed in three impact 
perforation images. Also, the classification of the fragments that is important to estimate the 
destruction property was almost done, too. Moreover, it was shown that the distinction of the 
steel ball was easy in order of the PC image, the PMMA image, and the alumina image according 
to the result of the evaluation by the output distribution in a competitive layer. From the results 
of Figs. 15, 17 and 19, the mean distances between the firing positions to the steel ball and the 
fragments on the competitive layer are calculated and are shown in Table 4. These values are 
almost corresponding to an intuitive difficulty to classify each image. That is, it was clarified that 
the output distribution of the competitive layer expressed the difficulty of the quantitative 
evaluation of the classification difficulty by the simulation. Especially, it was confirmed that the 
distance between the competitive layer neurons that responded to the input vector of the steel 
ball and the fragments expressed the classification difficulty. Therefore, the difficulty of the 
image classification can be quantitively evaluated by measuring the positions of the responding 
competitive layer neurons. 
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Fig. 14. Classification result for PC specimen image. (a) original image, (b) result for 
quantitative feature input, (c) result for pixel value input. 
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Fig. 15 Output distribution of a competitive layer for PC specimen image. (a) result for 
quantitative feature input and (b) result for pixel value input. 
 

 
                                (a)                             (b)                            (c)              

Fig. 16. Classification result for PMMA specimen image. (a) original image, (b) result for 
quantitative feature input, (c) result for pixel value input. 
 

           

 

     

 

 
 

           

 

    

 

 
Fig. 17. Output distribution of a competitive layer for PMMA specimen image. (a) result for 
quantitative feature input and (b) result for pixel value input. 
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Fig. 18. Classification result for alumina specimen image. (a) original image, (b) result for 
quantitative feature input, (c) result for pixel value input. 
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Fig. 19. Output distribution of a competitive layer for alumina specimen image. (a) result for 
quantitative feature input and (b) result for pixel value input. 
 

Input                             Materials PC PMMA alumina 
Quantitative features 6.5 3.6 3.1 

Pixel values 5.5 3.9 3.1 
Table 4. Distances between firing neurons corresponding to a steel ball and fragments.  
 
6. Conclusion 
 

In this study, we proposed to use the self-organizing map for the classification of the impact 
perforation image, as one of the image recognition problems by the neural network. Then, 
the classifications of three impact perforation images (PC, PMMA and alumina specimens) 
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Fig. 15 Output distribution of a competitive layer for PC specimen image. (a) result for 
quantitative feature input and (b) result for pixel value input. 
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Fig. 16. Classification result for PMMA specimen image. (a) original image, (b) result for 
quantitative feature input, (c) result for pixel value input. 
 

           

 

     

 

 
 

           

 

    

 

 
Fig. 17. Output distribution of a competitive layer for PMMA specimen image. (a) result for 
quantitative feature input and (b) result for pixel value input. 
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Fig. 18. Classification result for alumina specimen image. (a) original image, (b) result for 
quantitative feature input, (c) result for pixel value input. 
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Fig. 19. Output distribution of a competitive layer for alumina specimen image. (a) result for 
quantitative feature input and (b) result for pixel value input. 
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were used to examine the image recognition by the self-organizing map. The quantitative 
features and the immediate pixel values of the images were used and simulated as the 
network inputs, and the effect of the self-organizing map was confirmed. Since the self-
organizing map maintained the topological order in the data space, it was confirmed to be 
able to judge the difficulty of the image classification from the output result. 
As for the PC image, the steel ball was clearly distinguished but the material was not 
classified sufficiently. The reason is considered that the self-organizing map was not able to 
extract the feature of the image accurately. In the PMMA image, the steel ball and the 
fragments were classified clearly. The reason is considered that the self-organizing map 
extracted the features of the image almost accurately. In the alumina image, the steel ball 
was not classified sufficiently, because of the scattered fragments. However, the fragments 
and the background were separated clearly. Moreover, the difficulty of the image 
classification was evaluated from the output distribution on the competitive layer neuron to 
each pattern. Concretely, the reason why the classification of the steel ball in the alumina 
image is difficult was shown though that in the PC and PMMA images was easy.  
As the future problems, the improvement of the classification accuracy and the evaluation 
accuracy is considered. First of all, we have to examine the input vector calculation method 
to extract more features for more accurate classification. It is necessary to examine the vector 
calculation method that extracts the features of the image, while the two types of the input 
vector; the quantitative features and the immediate pixel values were used in this study. 
Moreover, it is necessary to examine the relation between the accuracy and the composition 
of the competitive layer for the quantitative evaluation of the difficulty of the image 
classification. It is considered that there is an influence on the classification accuracy by 
increasing the number of competitive layer neurons to improve the evaluation accuracy. 
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