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1. Introduction

Recently, the Internet has been a basis of our cultural life. Web provides a virtual huge space
of information, where an emotional experience, a political idea, a cultural custom, and the
advice of manners of music, the business, the arts, photographs, and literatures, etc. are
digitalized at a low price and are shared for our current culture. One of major other tools
gives E-mail communication which propagates not only letters from person to person, but a
means of advertisement. However, E-mail addresses on the web page are gained and the
virus is appended to E-mails, and the attacks for acquiring information on user's personal
computer (called BOT) have been spreaded. Their accumulated E-mail addresses collected
in such a way will be valuable for advertising agents. But, their E-mails are called
“Spamming” and the Spamming becomes a one of the social issues.

Spamming is the abuse of electronic messaging systems to send unsolicited bulk messages
or to promote products or services, which are almost universally undesired. Spamming is
economically viable because advertisers have no operating costs beyond the management of
their mailing lists. The sender cannot be specified, because the sender of Spamming has only
temporary E-mail address and the reply of them is not reached to the original sender.
Therefore, undesired E-mails to us have been increased everyday, so that, it is not easy to
read an important E-mail.

In order to avoid Spam E-mails, we must build the filtering system which can judge whether
the received E-mail is a Spam E-mail or not. The SpamAssassin(SpamAssassin) is the open
source software and is a mail filter which attempts to identify a Spam E-mail using various
pattern match methods including text analysis, Bayesian filtering, DNS block lists, and
collaborative filtering databases. There are the predefined rules for each filtering method to
detect a Spam E-mail. The agreement degree for each rule is scored and if the total score is
larger than the threshold value, the given E-mail is judged as Spam. Although each score in
the rule of SpamAssassin is low, there is a few cases in which total score becomes high.
Moreover, even if the message is judged as Spam, the different rules for each person are
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398 Self-Organizing Maps

required according to the personal environment such as work style, because a content of
received message will be different.

In this paper, we propose a classification method for Spam E-mail based on the results of
SpamAssassin, which is the open source software to identify spam signatures. This method
can learn patterns of Spam E-mails and Ham ones and correctly recognizes them. First, the
method divides E-mails into some categories by Self-Organizing Map (SOM) (Kohonen,
1995) and extracts the adequate judgment rules by Automatically Defined Groups(ADG)
(Hara, 1999), even if the judgment results by SpamAssassin are wrong.

The SOM is developed by Kohonen and is a topology-preserving map because there is a
topological structure imposed on the nodes in the network. A topological map is a simple
mapping that preserves neighborhood relations. The SOM is an algorithm used to visualize
and interpret large high-dimensional data sets.

The ADG is a new method that united Genetic Programming (GP) with cooperative problem
solving by multiple agents. By using this method, we had developed the rule extraction
system from database (Hara, 2004, 2005, 2008). In this system, two or more rules hidden in
the database and respective rules' importance can be acquired by cooperation of agents.

In order to verify the effectiveness of our proposed method, about 3,000 Spam and Ham E-
mails are examined. The SpamAssassin works in the Linux Server where Postfix(Frederick)
operates as Mail Transfer Agent (MTA) and the interface between MTA and content
checkers is amavisd-new (Amavisd-new). Section 2 describes the operation of SpamAssassin
and Postfix with an interface called amavisd-new. Section 3 and 4 explain the mechanism
about SOM and ADG. Section 5 described the experimental results. Section 6 gives the
conclusive discussion.

2. SpamAssassin under MTA

The SpamAssassin is a flexible and powerful set of Perl programs which score the
agreement degree from multiple types of checks to determine whether a given E-mail is
Spam. Because the SpamAssassin has no function to receive or send an E-mail, it must
operate with MTA such as Postfix. Fig.1 shows the operation between Postfix and
SpamAssassin through Amavisd-new. The clamav in Fig.1 is the Clam AntiVirus (Clam
AntiVirus) which is a GPL anti-virus toolkit for UNIX, designed especially for E-mail
scanning on mail gateways.
The SpamAssassin has the following features:

- Header tests

- Body phrase tests

- Bayesian filtering

- Check of E-mail address of blacklist/ whitelist automatically

- Check of E-mail address of blacklist/ whitelist manually

- Tests by using Collaborative Spam identification databases

- Tests by using DNS Blocklists

- Tests of Character sets and locales
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Fig.1 A flow of MTA and SpamAssassin

Even if any one of these tests may not identify a Spam or a Ham correctly, it is not easy to
make the correct judgment by only their combined score. For example, Fig.2, Fig.3, and Fig.4
show the headers of E-mails which are judged as Spams through the SpamAssassin.

X-Spam-Flag: YES

X-Spam-5core: 37.834

);_SPHI“_LCVEI: wHEFFEERAEEF A HNE SRR E S IR SRR Rk E R E SRRk E TR RS

X-Spam-Status: Yes, score=57.834 tagged above=2 required=6.31

tests=[AWL=10.800. BAYES 99=7.5 CHINANET=1,CNCGROUP=1.5. CNCIP=1.5,

DNSFRMRFCPST99=1.5, DNS_FROM_RFC _POST=0.1.DYN_DNSFRMRFCPST=3.5,

INVALIDYAHOOUIP=1, INVYJP_DYN=3.5,1S02022JP_BODY=-0.1,

NOTINCONTENTTYPE=0.2, QENCPTR1=0.2, REVDNSUNKNOWN=0.2,

SPF_SOFTFAIL=1.384, SURBL9Y=3.5, URIBL_AB SURBL=3.812,

URIBL JP SURBL=1,URIBL OB SURBL=0.1, URIBL SC SURBL=4.498,

URIBL WS _SURBL=2.14, URLBL RBLJP=1.5, URLRBLIP99=2, URLRBLJP DYN=5.5]
Fig.2 SpamAssasin Example 1 (SPAM)

X-Spam-Flag: YES
X-Spam-Score: § 916
X-Spam-Level; ##**¥¥%%
N-Spam-Status: Yes. score=8 916 tagged above=2 required=6 .31
tests=[ AWL=-2.684, BAYES 99=7 5 DNSFRMRFCABS99=0.2,
DNS FROM RFC _ABUSE=0.1, NOTINCONTENTTYPE=0.2, SURBL99=3 5,
URIBL_OB_SURBL=0.1]
Fig.3 SpamAssasin Example 2 (HAM)
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X-Spam-Flag YES
X-Spam-Score: 7 814
X-Spam-Leye]: ##=txes
X-Spam-Status: Yes. score=7 814 tageed above=2 required=6 31
tests=[AWL=3.913, BAYES _50=0001, CLICK _JP=1. CONTENT _TYPE _PRESENT=-01,
DNS FROM RFC_ABUSE=0 1, GEKIYASU=0.5, HAISHINTEISHI=0 3,
HIMITSUNO=0.1, HTML_MESSAGE=1,1S02022]P BODY=-01,
1502022JP CHARSET=-0.1, MIME HTML ONLY=0.4 MURYOU=0.2, QENCPTR1=0 .2,
RENRAKU=0.2, SUBJECT ENCODED TWICE=0.1,X MAILER PRESENT=0.1]

Fig.4 SpamAssasin Example 3 (HAM)

Fig.2 is the message judged at the score of 57.834 as Spam E-mail. However, the scores of
examples as shown in Fig.3, and Fig.4 were 8.916 and 7.814 respectively which were judged
as Spam, but the messages are Ham. Especially the score of “BAYES_99”' was 7.5 in Fig.2,
and the result shows that classification capability of Bayesian filtering is not high. In this
paper, 3,007 E-mails are accumulated in the database, where there are 2,913 Spams and 94
Hams misjudged as Spams.

3. Self Organizing Map(SOM)

The basic SOM can be visualized as a sheet-like neural network array as shown in Fig.5, the
cells (or nodes) of which become specifically tuned to various input signal patterns or
classes of patterns in an orderly fashion. The learning process is competitive and
unsupervised, which means that no teacher is required to define the correct output for an
input. Only one map node called a winner node at a time is activated corresponding to each
input. The map consists of a regular grid of processing units. A model of some
multidimensional observations, eventually a vector consisting of features, is associated with
each unit. The map attempts to represent all the available observations with optimal
accuracy using a restricted set of models. At the same time the models become ordered on
the grid so that similar models are close to each other and dissimilar models are far from
each other.

Competitive
Layer

Input Layer

% XK
Fig.5 A basic architecture of SOM

Fitting of the model vectors is usually carried out by a sequential regression process. The n
is the dimensioned number of input signals. An input vector x is compared with all the
model vectors m l-(t). The best-match unit on the map is identified. The unit is called the

winner.
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For each sample x = {xl X2, X, } , tirst the winner index c (best match) is identified by the

condition
Vi,

<l m

After that, all model vectors or a subset of them that belong to nodes centered around node
¢ are updated at time ¢ as

m;(t)+ hey(x(e)-m;(t) forvie N (o)
ml-(t+1 = mi(t) otherwise

B
=
+
-
I

Here h,,)is the neighborhood function, a decreasing function of the distance between the

ith and ¢ th nodes on the map grid. The N,(¢) specifies the neighborhood around the

winner in the map array. This regression is usually reiterated over the available samples.
In this paper, we tried to classify the 3,007 E-mails into Spams and Hams by SOM in order to
obtain the visual distribution intuitively.

4. Rule Extraction by ADG

4.1 Automatically Defined Groups

In the domain of data processing, to cluster the enormous data and to extract common
characteristic from each clustered data are important for knowledge acquisition. In order to
accomplish this task, we adopt a multi-agent approach, in which agents compete with one
another for their share of the data, and each agent generates a rule for the assigned data; the
former corresponds to the clustering of data, and the latter corresponds to the rule
extraction in each cluster. As a result, all rules are extracted by multi-agent cooperation.
However, we do not know how many rules subsist in given data and how data should be
allotted to each agent. Moreover, as we prepare abundant agents, the number of tree
structural program increases in an individual. Therefore, the search performance declines.

"= LN ™

s * s , reference
=

s
L v
_ . LA NN N L
Wk | An individual of ADG-GP

Multi-agent System
Fig.6 Concept of Automatically Defined Groups

In order to solve these problems, we have proposed an improved GP method,
Automatically Defined Groups (ADG). The method optimizes both the grouping of agents
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and the program of each group in the process of evolution. By grouping multiple agents, we
can prevent the increases of search space and perform an efficient optimization. Moreover,
we can easily analyze the behavior of agents. Respective groups play different roles from
one another for cooperative problem solving. The acquired group structure is utilized for
understanding how many roles are needed and which agents have the same role. That is,
the following three points are automatically acquired by using ADG.

- How many groups (roles) are required to solve the problem?

- Which group does each agent belong to?

- What is the program of each group?

agent gent
123

crossover

‘{2} < 3t 2 3,4}

agen a?e3nt
2 3 4 ' 2

agent 1 agent 1,
;’ } Z 4

crossover t {1. 2}¢ {1.3},

{‘I 2} {13}
agent agent
1.2: 12 4

(typec)

Fig.7 Examples of crossover

In ADG, each individual consists of the predefined number of agents. One GP individual
maintains multiple trees, each of which functions as a specialized program for a distinct
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group as shown in Fig.6. We define a group as the set of agents referring to the same tree for
the determination of their actions. All agents belonging to the same group use the same
program.

Generating an initial population, agents in each GP individual are divided into several
groups at random. Crossover operations are restricted to corresponding tree pairs. For
example, a tree referred to by an agent 1 in an individual breeds with a tree referred to by an
agent 1 in another individual. In ADG, we also consider the sets of agents that refer to the
trees used for the crossover. The group structure is optimized by dividing or unifying the
groups according to the inclusion relationship of the sets.

The concrete processes are as follows: We arbitrarily choose an agent for two parental
individuals. A tree referred to by the agent in each individual is used for crossover. We use
T and T’ as expressions of these trees, respectively. In each parental individual, we decide
aset A(T), the set of agents that refer to the selected tree 7 . When we perform a crossover

operation on trees 7 and 7", there are the following three cases.
(a) If the relationship of the sets is A(T')= A(T"), the structure of each individual is

unchanged.
(b) If the relationship of the sets is A(T')> A(T"), the division of groups takes place in the

individual with T , so that the only tree referred to by the agents in A(T') A(T") can be

used for crossover. The individual which maintains 7" is unchanged. Fig.7 (type b)
indicates an example of this type of crossover.
(c) If the relationship of the sets is A(T")z A(T)and A(T)z A(T"), the unification of groups

takes place in both individuals so that the agents in A(T)U A(T") can refer to an identical

tree. Fig.7 (type c) shows an example of this crossover.
We expect that the search works efficiently and the adequate group structure is acquired by
using this method.

4.2 Rule Extraction from classified data

In some kinds of databases, each data is classified into positive or negative case (or more
than two categories). It is an important task to extract characteristics for a target class.
However, even if data belong to the same class, all the data in the class do not necessarily
have the same characteristic. A part of data set might show a different characteristic. It is
possible to apply ADG to rule extraction from such classified data. In ADG, multiple tree
structural rules are generated evolutionally, and each rule represents the characteristic of a
subset in the same class data. Fig.8 shows a concept of rule extraction using ADG. Each
agent group extracts a rule for the divided subset. The rules acquired by multiple groups
can cover all the data in the target class.

We describe the detail of rule extraction from classified data. Here, the rules whether input
data is classified into positive cases are extracted. In order to judge whether each data is
regarded as positive case, we will find logical expressions such that the only positive data
should satisfy.

Multiple trees in an individual of ADG represent the respective logical expressions. Each
data in the training set is input to all trees in the individual. Then, calculations are
performed to determine whether the data satisfy each logical expression. The input data is
regarded as positive case if one or more logical expressions in the individual returns true. In
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contrast, the input data is regarded as negative case if all logical expressions in the
individual return false.

The concept of each agent's load arises from the viewpoint of cooperative problem solving
by multiple agents. The load is calculated from the adopted frequency of each group’s rule
and the number of agents in each group. The adopted frequency of each rule is counted
when the rule successfully returns true for each positive data. If multiple trees return true
for a positive data, the tree with more agents is adopted. When the agent a belongs to the
group g, theload of the agent w, is defined as follows:

Je

g
nagent

w, =

where nfgem represents the number of agents which belong to the group g, and f,

represents the adopted frequency of g . By balancing every agent’s load, more agents are
allotted to the group that has a greater frequency of adoption. On the other hand, the
number of agents in the less adopted group becomes small. Therefore, the number of agents
of respective rules indicates how general each rule is for judgment of the class. Moreover,
when some cases are judged to be true through a mistake of a rule, it is thought that the
number of agents who support the rule should be small. To satisfy the requirements
mentioned above, we will maximize the fitness f defined as follows:

y miss _target _data misrecognition 2N Negative fault _agent
== — — - - . .. - w
NPositive NNegative mzsrecognltzon X Nagent
—Databasse N

Grouping

Rule fo Rule fo Rule for
subset 1 subset 2 subset 3

An individual of ADG-GP
Fig. 8. Rule extraction using ADG
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In this equation, Npgiive and N yeoqive T€Present the number of positive cases and negative

cases in database respectively. miss _target _data is the number of missing data in the target
positive data that should have been judged to be true. misrecognition is the number of

mistakes through which negative data is regarded as positive case. When the rule returns
true for negative data, fault _agent is the number of agents who support the wrong rule in

each data. So, the third term represents the average rate of agents who support the wrong
rules when misrecognition happens. By this term, the allotment of agents to a rule with
more misrecognition will be restrained. V,, is the variance of every agent’s load. By the

fourth term, load balancing of agents will be achieved.

By evolution, one of the multiple trees learns to return true for positive cases, and all trees
learn to return false for negative cases. Moreover, agents are allotted to respective rules
according to the adopted frequency, and the allotment to a rule with more misrecognition is
restrained. Therefore, the rule with more agents is the typical and reliable classification rule,
and the rule with less agents is an exceptional rule for the rare case. This method is applied
to the medical data and the effectiveness is verified (Hara, 2004, 2005).

5. Experimental Results

5.1 Learning for all cases and Extraction of rules(ichimura, 2007)

The map in the trained SOM as shown in Fig. 9 creates the distribution of Spam and Ham E-
mails intuitively. The numerous label indicate the index of E-mails and each index is a
category of E-mails which is classified the characters of judgment result by SpamAssassin.
Each category usually has two or more classified E-mails. However, a category consisted of
not only the message judged as Spam but the Ham E-mail misjudged as Spam. If the
message is classified into this category, we have to reexamine the result of the classification,
because the E-mail may be a Ham. In such a case, we will try to apply the sophisticate
classification algorithm as shown in (ichimura, 2004; Ichimura, 2005; Yamaguchi 2008a;
Yamaguchi 2008b).

Moreover, to make the process of reexamination automatically, we applied the extraction
rules of finding a Ham misjudged as Spam by ADG. In ADG, two kinds of node are used for
rule representation; function node and terminal node. In this experiment, the function node
consists of {and,<,>}. The terminal nodes are two kinds of symbols; 7}, T, . The set of T is

the name of rules defined in the SpamAssassin. The initial value of 7, are given by a
random number in [0,1]. In this paper, there are 300 individuals in GP. The number of

agents in each GP is 50 respectively.

For the 3,007 E-mails judged as Spam by SpamAssassin, in which there were 2,913 Spams
and 94 Hams misjudged as Spams, ADG can detect all of 94 Ham messages as No-Spam. In
this experiment, the extracted rules to judge the Ham message correctly by ADG are shown
in Fig.10. However, ADG could not judge correctly four messages of Spam as shown in
Fig.11. That is, these four E-mails were misjudged as Ham, even if the correct judgment of
messages is Spam. This shows excessive adaptation to the identification of Ham by ADG.
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Fig. 9 Classification result of E-mails by SOM

Ruled ;

(1S02022JP_BODY <-0,0257 )and ( CHINANET = 0.7433 )

and { URLRBLJPS8 < 71,4865 )and ( DYN_ONEGAI < 1.9846 )

and { RCVD_IN_BL_SPAMCOP_NET < 0.1000 yand ( URIBL_SC_SURBL < 4 4980 }

Rule1:

{BAYES 99 <0.5507 )and( SHIFT_JIS2 <0.1101 )and ( DEETO <0.0073)

and ( USENBROAD < 0.0407 ) and { RAZOR2_CF_RANGE_E4_51 _100=0.1101)
and ( UNDISC_RECIPS <0.0618 yand ( RIPE_NCC =< 0.0997 )

and ( RCVD_IN_SEL <0.0337 }and ( URIBL_WS SURBL<0.1571)

and { FORGED_MUA_OUTLOOK < 0.2978 )

and ( HTML_OBFUSCATE 05 10<0.0073)and ( FUAN <0.0147 )

and ( WINDOWS_CHARSET = 1.4665 ) and ( ADDRESS_IN_SUBJECT <0.0391)
and { DREAMX < 1.4954 ) and ( RIMA_TDE_NET < 0.0734)

and ( FORGED _RCVD IP<0.7343 )and ( URIBL_OB_SURBL <0.0073)

Fig.10 Extracted rules by ADG
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MisdJudgement

X-Spam-Flag: YES

X-Spam-Score: 9.215

X-Spam-Leyel, **rrreer

X-Spam-Status: Yes, score=9.216 tagged_above=2 required=6,31
tests=[|ANATA=0.5, AWL=2.543 BAYES _50=0.001, CLICK_JP=1,
CONTENT_TYPE_PRESENT=-0.1 DATE_IN_PAST_06_12=0.827, FORGED_RCVD_HELO=0.135
FROM EXCESS BASEB4=1.308, FUAN=0 2, HAISHINTEISHI=0.3, HTML MESSAGE=1,
ISO2022JP BODY=-0.1, MULTIPART ALTERNATIVE=0 1, MURYOU=0.2 ONEGAI=0,2,
PLING_QUERY=0.1, QENCPTR1=0.2, SUBJECT _ENCODED_TWICE=0.1, SUPPORT=0.1,
TOOLONGSTR=0.5, X_MAILER_PRESENT=0.1]

Misdudgement2

X-Spam-Flag: YES

X-Spam-Score: 10.754

X-Spam-Level. ***vrett

X-Spam-Status: Yes, score=10.754 tagged_above=2 required=6.31
test=[AISHOU=0.2, ANATA=0.5, AWL=-3.046, BAYES_99=7.5, BUSINESS=0.2,
CONTENT_TYPE_PRESENT=-0.1, HOTERU=0.5,15S02022JP_BODY=-0.1,
IS02022JP_CHARSET=-0.1, MATTERU=0.3, MURYOU=0.2, OBSCURED _EMAIL=0.1,
QENCPTR1=0.2, SUBJECT_ENCODED_TWICE=0.1, UNFARSEABLERELAYS89=3.5
UNPARSEABLE RELAY=0.5 UWAKI=0.3]

Fig.11 Misjudged Spam as Ham

5.2 Extraction of rules by using some trained SOMs

The precise classification of E-mails will require huge amounts of E-mails and the form of
Spam will change into various ways every day. However, our method has a limitation in the
amount of E-mails to extract classification knowledge once, because SOM cannot afford to
train huge amounts of E-mails and ADG will be faced to a difficult judgment to extract a
more important rule. Therefore, we improve our proposed method to use two or more
SOMs simultaneously and then the portions of classification results by SOM are integrated
into the terminals for rule extraction by ADG. Fig.12 shows the overview of our improved
method by using some SOM modules and ADG. After scanning E-mails by SpamAssassin,
the matching score of rules in the header of E-mail is recorded. As SpamAssassin has
various rulesets described in the section 2 to detect a Spam, our improved method use two
or more SOM modules which are trained for each rulesset. We can see some divided regions
on the maps in each trained SOM. The part of rule falled into each divided region is given as

the term such as {bodyO,bodyl,---,header,...,uri} and then ADG maximizes the fitness f

defined as follows:

fault _agent

miss _target data misrecognition ,BZN""" et
— — — _a — —

Ntarget N non _ target

f=

w

misrecognition X N ;g

In this paper, there are 300 individuals in GP. The number of agents in each GP is 100
respectively. The parameters of fitness functions are as follows: a =1.0, £ =0.0001,

0 =0.01. ADG was trained for the random selected 500 cases.

We performed two kinds of experiments. In our experiment, the aim is to find E-mails with
score <20 from Spams. In the other experiments, the targets are E-mails with score > 20 .
As the experimental result, we found that the correct ratio of classification capability by
ADG was 84.0% if the total score of SpamAssassin is less than 20, otherwise about 86.6%.
The sample of extracted rules are listed in the Table 1 and Table 2.
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Fig.11 An overview of improved method by using some SOM modules

ID | #Agent Rule
1 90 (and (eq header 4 )(eq database 3 ))

2 5 (eq testtool 5)

3 4 (and (eq bodyeval 4 )(and (eq header 8 )(eq database 3)))
4 1 (and (eq header 3 )(eq database 3))

Table 1. The judgement rule in case of score < 20

ID #Agent Rule
1 48 (and (eq testtool 2 )(eq database 4 ))

2 14 (and (eq database 1 )(eq testtool 2 ))

3 13 (and (eq database 2 )(eq testtool 2 ))

4 7 (eq database 5)

5 3 (eq bodyeval 3)

6 2 (eq header 9)

7 2 (eq header 1)

8 2 (eq headereval 4)

9 2 (and (and (eq headereval 1 )(eq uri 1 ))(eq bodyeval 1))
10 1 (eqhtml 4)

11 1 (eq html 2)

12 1 (eq header 10)

13 1 (eq headereval 3)
14 1 (eq header 2)

15 1 (eq body312)

16 1 (eq testtool 1)

Table 2. The judgement rule in case of score = 20
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6. Conclusion

In this paper, we propose a classification method for Spam E-mail based on the results of
SpamAssassin. This method can learn patterns of Ham and Spam E-mails. First, SOM can
classify many E-mails into the some categories. In this phase, we can see the characters of
current received Spam E-mails. Second, ADG can extract the correct judgment rules of
Hams misjudged as Spams. However, there are a few cases of Spam misjudged as Ham. In
this experiment, ADG makes an over fitting to the characters of Hams. We have met the
problems according to the limitation of classification capability by SOM and explosive
search in GP using many nodes as shown in 7} Therefore, we improve the proposed method

to classify the Spam E-mails by using some SOM modules and to extract some rules by ADG
according to the classification results.

Moreover, these methods give the input patterns using the judgment rules in SpamAssassin
and their agreement value. Even if one rule is fire and the other rules are not fire, and the
agreement value is high, the result of judgment will be Spam. The SpamAssassin is very
useful open source software, the learning tool is equipped in itself. But we may meet the
misjudgment. The rule must be redefined by each user according to user’s work style and so
on. In order to improve such problems, the natural language processing and the mining of
important word from E-mails will be required. We will develop the hybrid classification and
rule extraction method using the learning of neural networks and ADG.
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