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1. Introduction

The Self-Organizing map (SOM) proposed by T. Kohonen (Kohonen, 1982; 1995), is a type
of artificial neural network whose training is unsupervised. It produces a low-dimensional
representation of high-dimensional input data, preserving the neighborhood relations as far
as possible.
The SOM is difficult to interpret even with such coloring methods as the U-Matrix (Ultsch &
Semon, 1990), the P-Matrix (Ultsch, 2003) or cluster connections (Merkl & Rauber, 1997). For
interpretable maps, some methods are proposed to place and move the output units on the
real-number coordinates plane. For example, Adaptive Coordinates (Merkl & Rauber, 1997)
move output units towards the best matching unit but its map does not preserve the topology
of the input data, where topology preservation means close vectors in the input space are
mapped to nearby locations in output space (Kiviluoto, 1996).
For more interpretable map with preserving the topology, we propose a real-number
SOM (RSOM), where we can not only place the output units as point freely on the real-number
coordinates plane but also add, remove and moreover move them. Voronoi tessellation visu-
alizes the map of the output units. RSOM is a natural extension of the conventional SOM
because Voronoi tessellation for the output units on the square grid generates square regions
on the output plane, the same as the conventional SOM. We illustrate several visualization
methods such as minimum spanning tree and variable boundary, which help us to under-
stand clusters or relations of input data. We also propose spherical RSOM to illustrate the
power of RSOM that can place output units freely on an arbitrary surface.

2. Real-number SOM

The output unit of the conventional SOM is geometrically restricted to be square or hexagon
with grid structure in two-dimensional visualization and with geodesic dome in three-
dimensional visualization, which result less visual presentation. Fig. 1 shows a map of the
conventional SOM with the input data in Table 1 (Kohonen, 1995), which has 16 animal names
and 13 attributes.
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e n k e l k e x g f t r n e a w

small 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0

is medium 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

big 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

2 legs 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

4 legs 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

has hair 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0

feathers 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

hunt 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0

likes run 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0

to swim 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

fly 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 1. Animal Names and Their Attributes (Kohonen, 1995)

Fig. 1. The conventional SOM trained with input data in Table 1

We propose a real-number SOM (RSOM) whose output units can be freely placed on the real-
number coordinates plane. The output unit can be considered as a point rather than a square
or a hexagon in the conventional SOM. The visual shapes of these output units on the map of
RSOM are determined by the positions of nearby units with Voronoi tessellation. RSOM is a
natural extension of the conventional SOM because Voronoi tessellation for the output units
on the square grid generates square regions on the output plane, the same as the conventional
SOM.
In this section, we describe initialization, training and drawing for RSOM on the two-
dimensional plane of [0,1] × [0,1]. Please note that these processes are almost equivalent to
the conventional SOM.
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2.1 Initial Placement of the Output Units

The output units are placed on the real-number coordinates plane. Random placement is
mainly used although many other methods can be applicable.

2.2 Training

2.2.1 Selection of the Best Matching Units

We select the best matching unit (BMU) ci for an input vector xxxi ∈ R
n, which is the smallest of

the Euclidean distances of xxxi to the reference vector mmmj ∈ R
n of output unit j:

ci = argmin
j

||xxxi − mmmj||, (1)

where || · || is the Euclidean norm and argmin is the value of the argument j for which the
value of the given expression ||xxxi − mmmj|| attains its minimum value. This step is the same as
the conventional SOM.

Fig. 2. Neighborhood Function

2.2.2 Neighborhood Function

The conventional SOM uses discrete coordinates system and defines neighborhood units
around the BMU ci, whose neighborhood function can be defined with Chebyshev distance
(i.e., chessboard distance):

hj = max(NC(t)− |rrrci − rrrj|,0), (2)

where rrrci ∈ R
2 and rrrj ∈ R

2 are unit locations of the BMU ci and an unit j on the output layer,
respectively, | · | is a chessboard norm (|rrr|= max(x,y), where rrr = (x,y)) and NC(t)≥ 0 is some
monotonically decreasing function of discrete time t.
Fig. 2-(a) shows the neighborhood function of the conventional SOM, whose rectangle be-
comes small discretely by time (Kohonen, 1995).
In RSOM, we define a neighborhood function in the same manner as the conventional SOM
in the following:

hj = max(NR(t)− |rrrci − rrrj|,0), (3)
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where NR(t) is a monotonically decreasing function of the time t, e.g., defined as follows:

NR(t) = max(δ − γt,0), (4)

where δ ≥ 0 and γ ≥ 0 are parameters of neighborhood. Fig. 2-(b) shows the neighborhood
function, whose rectangle becomes small smoothly by time.
We can use the neighborhood function of Euclidean norm instead of chessboard norm in
Eq. (2): hE

j = max(NR(t) − ||rrrci − rrrj||,0). Gaussian neighborhood function, widely used in

the conventional SOM, is also available in RSOM:

hj = exp

(

−
||rrrci − rrrj||

2

2σ2(t)

)

, (5)

where σ(t) is the width of the neighborhood at the time t and || · || is the Euclidean norm.

2.2.3 Update

In the same manner as the conventional SOM, reference vectors mmmj of output units j in the
neighborhood of the BMU ci are adjusted to the input vector xxxi with the following rule:

mmmj := mmmj + α(t)hj

(

xxxi − mmmj

)

, (6)

where α(t) is a learning rate at the time t, e.g., defined as follows:

α(t) = α0(1 − t/T), (7)

where α0 is the initial learning rate and T is the number of iteration steps.

2.3 Drawing the Output Layer

The regions of the output units are not explicitly specified since the units are points in RSOM.
For visualizing the output layer, we use Voronoi tessellation to divide the output plane into
the regions of units, where each point on the output plane belongs to the closest unit. The
boundaries of these regions are drawn with dotted line when the dominant classes of two
adjacent regions are the same and solid line when these are different. We also put the labels of
the dominant class on the BMUs. Fig. 3 shows a map for Table 1 with RSOM, where we place
the output units randomly at initial time and use the following parameters: α0 = 0.1, T = 1000
and NR(t) = 1 − t/T.
When we place the output units on the square grid, Voronoi tessellation generates square
regions on the output plane, like as the conventional SOM, shown in Fig. 1.
Choosing some parameters and functions in RSOM properly, we can have same results as the
conventional SOM. Fig. 4 shows other placement patterns of hexagonal grid, spiral, double
concentric circle and Sierpinski triangle.

3. Visualization Methods for RSOM

For more interpretable map, we propose two visualization methods such as minimum span-
ning tree and variable boundary width.
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Fig. 3. Voronoi diagram for random placement of RSOM

3.1 Drawing Variable Boundary Width

We can not easily interpret the clusters of “animal family” in Fig. 3. We emphasize the bound-
aries of two regions whose reference vectors have big difference. When two units j and k are
adjacent each other, we draw their boundary with width wjk:

wjk = ||mmmj − mmmk|| · W, (8)

where W is multiply factor of boundaries. Fig. 5 shows a Voronoi diagram with variable
boundary width for Fig. 3, where boundaries of two similar units are thiner than the ones of
different. Fig. 5 is easier to interpret clusters, e.g., bird, than Fig. 3.

3.2 Drawing Minimum Spanning Tree

Variable boundary width helps us to understand some groups of input. However, this visual-
ization method does not help us to understand relationships between two units very well. For
more intuitive understanding, we visualize a tree connecting close units. We have the dual
graph for a Voronoi diagram, called the Delauney triangulation whose edges connect adjacent
regions in Voronoi diagram. Like Voronoi diagram of RSOM, Delauney triangulation of RSOM
shows topological relationship of input vectors in Fig. 6-(a), but this is not easily understand-
able. Minimum spanning tree in which the weight of each edge is defined in Eq. (8) shows
relationships among input vectors like a dendrogram with hierarchical clustering. Fig. 6-(b)
shows the minimum spanning tree of Delauney triangulation for the map in Fig. 3, where we
can interpret relation of inputs. We can get more understandable maps to use the combination
of two visualization methods, variable boundary width and minimum spanning tree in Fig. 7

4. Spherical RSOM

Spherical SOM is useful since it removes the “border effect.” The conventional spherical SOM
uses a geodesic dome restricted the number of output units. We, therefore, propose spherical
RSOM, whose output units can be freely placed on a unit sphere.
The algorithm for spherical RSOM is the same as that of RSOM except the coordinates systems,
the geometrical norm and visualization method of the output layer. For the output units, we
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(a) hexagonal grid (b) Spiral

DoveDoveDoveDoveDoveDoveDoveDoveDoveDoveDoveDoveDoveDoveDoveDoveDove

DogDogDogDogDogDogDogDogDogDogDogDogDogDogDogDogDog

TigerTigerTigerTigerTigerTigerTigerTigerTigerTigerTigerTigerTigerTigerTigerTigerTiger

WolfWolfWolfWolfWolfWolfWolfWolfWolfWolfWolfWolfWolfWolfWolfWolfWolf

CatCatCatCatCatCatCatCatCatCatCatCatCatCatCatCatCat

FoxFoxFoxFoxFoxFoxFoxFoxFoxFoxFoxFoxFoxFoxFoxFoxFox

EagleEagleEagleEagleEagleEagleEagleEagleEagleEagleEagleEagleEagleEagleEagleEagleEagle
Hawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/OwlHawk/Owl

Duck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/GooseDuck/Goose

HenHenHenHenHenHenHenHenHenHenHenHenHenHenHenHenHen

CowCowCowCowCowCowCowCowCowCowCowCowCowCowCowCowCow

Horse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/ZebraHorse/Zebra

LionLionLionLionLionLionLionLionLionLionLionLionLionLionLionLionLion

(c) double concentric circle (d) Sierpinski triangle

Fig. 4. Voronoi tessellation of hexagonal grid, spiral, double concentric circle and Sierpinski
triangle

use polar coordinates sss = (θ, ϕ) (0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π) and the sphere norm derived from
the spherical law of cosines:

||sss|| = arccos(cosθ, cos ϕ). (9)

Fig. 8 and Fig. 9 show a result of spherical RSOM and its flat map, respectively, where we place
output units randomly and use the following parameters: α0 = 0.2, T = 1000 and NR(t) =
0.5π(1 − t/T).
Nishio et al. proposed a method for placement on a surface of a sphere with helix (Nishio
et al., 2006), in which the number of the units is not restricted, but it does not add, remove and
move the units. We can use helix for unit placement of spherical RSOM, and moreover place
output units on an arbitrary surface.
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Fig. 5. Voronoi diagram with variable boundary width for Fig. 3

Fig. 6. (a) Delauney triangulation (b) Minimum spanning tree

5. Related Works

RSOM can not only freely place the output units on an arbitrary surface for visualization, but
also add, remove and move the output units for more understandable visualization.
Grawing Grid(Fritzke, 1995a) is a variant of SOM. Grawing Grid initially has 2 × 2 units and
adds a new column (or row) of units when quantization error of a map is high. Grawing Grid
considers a some grid network and does not consider move and remove units.
Growing Neural Gas (Fritzke, 1994), (Fritzke, 1995b) uses similar growth technique of Grow-
ing Method. Growing Neural Gas can add and remove units but has no feature map. If we
have a 2-D map of Growing Neural Gas, we have to use some method, e.g., simulated anneal-
ing to create minimum connections(Ogura et al., 2003).

5.1 Visualization Methods

Two visualization methods mentioned above, variable boundary width and drawing mini-
mum spanning tree can be applicable for the conventional SOM.
In the conventional SOM, some visualization methods are developed.
In U-Matrix (Ultsch & Semon, 1990), the relative distances between neighboring reference
vectors are drawn in a gray scaled color. The P-Matrix (Ultsch, 2003) visualizes the density
relationships in the input space with the Pareto Density Estimation.
In cluster connections (Merkl & Rauber, 1997), connections of the units are represented by a
gray scaled color with distances ||mmmj − mmmk||.
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Fig. 7. Variable boundary width overlaying minimum spanning tree for Fig. 5

Fig. 8. RSOM on a surface of sphere

Fig. 9. A flat map of the spherical RSOM in Fig. 8
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6. Conclusions

We proposed a real-number SOM (RSOM), which can place output units freely on an arbitrary
surface for visualization, with removing and moving the units. We used Voronoi tessellation
for visualizing RSOM more expressively. We proposed several visualization methods such
as the minimum spanning tree, the variable boundary width, which help us to understand
clusters or relations of input data, and the spherical RSOM.
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